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SCALING MATRICES TO PRESCRIBED ROW AND COLUMN MAXIMA*

URIEL G. ROTHBLUMf, HANS SCHNEIDER:l:, AND MICHAEL H. SCHNEIDER

Abstract. A nonnegative symmetric matrix B has row maxima prescribed by a given vector r, if for each
index i, the maximum entry in the ith row ofB equals rg. This paper presents necessary and sufficient conditions
so that for a given nonnegative symmetric matrix A and positive vector r there exists a positive diagonal matrix
D such that B DAD has row maxima prescribed by r. Further, an algorithm is described that either finds such
a matrix D or shows that no such matrix exists. The algorithm requires O(n lg n + p) comparisons, O(p)
multiplications and divisions, and O(q) square root calculations where n is the order of the matrix, p is the
number ofits nonzero elements, and q is the number ofits nonzero diagonal elements. The solvability conditions
are compared and contrasted with known solvability conditions for the analogous problem with respect to row
sums. The results are applied to solve the problem of determining for a given nonnegative rectangular matrix
A positive, diagonal matrices D and E such that DAE has prescribed row and column maxima. The paper
presents an equivalent graph formulation of the problem. The results are compared to analogous results for
scaling a nonnegative matrix to have prescribed row and column sums and are extended to the problem of
determining a matrix whose rows have prescribed lp norms.
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1. Introduction. A matrix B is called a symmetric scaling of a nonnegative square
matrix A if B DAD for some positive diagonal matrix D. A matrix B is called an
equivalence scaling of a nonnegative rectangular matrix A ifB DAE for some positive
diagonal matrices D and E. In this paper we give necessary and sufficient conditions that
a given symmetric nonnegative matrix A has a symmetric scaling with prescribed row
maxima. In particular, we show that for a given pattern (i.e., locations of strictly positive
entries) if the class of symmetric nonnegative matrices with that pattern and having the
prescribed row maxima is nonempty, then every nonnegative matrix with that pattern
can be symmetrically scaled into the class. Thus, our conditions relate the prescribed
row maxima to the pattern of the matrix A.

Further, we describe an algorithm that for a given matrix A either determines a
symmetric scaling B with prescribed row maxima or shows that no such scaling exists.
Using our results for symmetric scalings, we also establish corresponding results for the
problem of determining an equivalence scaling ofa rectangular nonnegative matrix with
prescribed row and column maxima. Our results have natural interpretations in terms
of weighted undirected graphs.

We call the problem of finding for a given square nonnegative matrix a symmetric
scaling with prescribed row maxima max symmetric scaling and the problem of finding
for a given rectangular nonnegative matrix an equivalence scaling with prescribed row
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and column maxima max equivalence scaling. These problems are analogues of corre-
sponding well-studied scaling problems in which row and column sums are prescribed.
We refer to the sum versions of these problems as sum symmetric scaling and sum
equivalence scaling. The problem of sum equivalence scaling was described in the en-
gineering literature by Kruithof 10 and was considered by Sinkhorn 17 ], Brualdi 5 ],
Sinkhorn and Knopp 18 ], Bregman ], Menon 12 ], Menon and Schneider 13 ],
Schneider and Zenios 16 ], and many other authors. The sum symmetric problem was
considered by Brualdi [3], [4] and Marshall and Olkin [11].

One important application of sum equivalence scaling concerns the updating of
(dynamic) data that is given in matrix form, e.g., traffic intensity between sources and
destinations. When new data is not fully observable, but new marginals consisting of
corresponding row sums and column sums are observable, a common technique is to
replace the old data given by a matrix A by a scaling DAE whose row sums and column
sums equal the observed marginals. Max equivalence scaling arises naturally when ob-
servations about the new data concern row and column maxima.

We describe our notation in 2 and list some solvability results for sum symmetric
and sum equivalence scalings in 3. We consider these problems both for a given pattern
and for all subpatterns of a given pattern, and we add some new results in the latter case.
In 4 we give nine equivalent conditions for the existence of a solution of the max
symmetric scaling. In 5 we present an algorithm that, for a given nonnegative matrix
A, either symmetrically scales A to have prescribed row maxima or determines that no
such scaling can exist. In 6, we apply the results of 4 to study max equivalence scaling,
and in 7 we restate our results in terms of weighted undirected graphs. Finally, in 8
we unify max symmetric scaling and sum symmetric scaling by considering scaling prob-
lems in which the lp norms of the rows of the matrix are prescribed.

2. Notation and definitions. For a positive integer n, we use the notation (n) to
denote the set of integers { 1, 2, n }. For a subset I

___
(n), we use Ic to denote the

set (n)\I, the complement ofI with respet to (n). The identity of n will always be clear
from the context. The cardinality ofa finite set S is denoted SI. Also, we use the symbols
c and

___
to denote strict and weak containment, respectively.

Let A be an m n nonnegative matrix and let I and Jbe nonempty subsets of (rn)
and (n), respectively. We use the notation AIj to denote the III JI submatrix ofA
corresponding to the rows and columns of A, indexed by I and J, respectively. We
identify an index and the set { }. For example, when I { }, we write Aij for AI. By
convention, we write AI 0 if either I or J equals the empty set.

For a vector r (rl,..., rn)r e n and subset I
___

(n), we use the notation r1 to
denote the subvector of r whose entries are ri for e I, and we use r(I) to denote the
element sum of ri. We follow the standard convention that the summation over the
empty set is defined to be 0. Also, the value of maxi ri in the case of I depends
on the underlying group to which the elements r belong. Specifically, ifwe are considering
the entries of r as entries of the multiplicative group of nonnegative real numbers, then
the maximization over the empty set is defined to be 0, whereas if the entries are viewed
as elements ofthe additive group ofreal numbers, then the maximization over the empty
set is defined to be -. The additive case arises in 7 when we consider graph versions
of our results. Also, for a > 0, we define the operation +. This operation will occur
only in minimization expressions over sets containing an element of finite value.

The n n diagonal matrix whose diagonal entries are dl, d2, d is denoted
diag dl, d2 dn). A diagonal matrix D diag d, d2, dn) is called positive if
di > 0 for e (n). For an n n nonnegative symmetric matrix A, a matrix B is called
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a symmetric scaling ofA if B DAD for some positive diagonal matrix D. For an
m n nonnegative matrix A, a matrix B is called an equivalence scaling ofA if B
DAE for some positive diagonal matrices D and E.

An m n matrix P [P0] is called a pattern matrix if every entry of P is either 0
or 1. Given two m n pattern matrices P and P’, the matrix P’ is a subpattern of P if
P’ =< P. Given a m n nonnegative matrix A [aij], the pattern ofA is the m n
pattern matrix P such that for (m) and j (n)

ifa0>0, and
Po

0 otherwise.

For an m n pattern matrix P, we define the pattern class ofP, written II(P), to be the
set of all m n nonnegative matrices whose pattern is P.

3. Existence conditions for sum scaling. We summarize numerous characterizations
for the solvability of sum symmetric scaling and sum equivalence scaling.

We call a matrix, or a vector, positive if all of its elements are positive. For a positive
vector r (ri, rn) r , let S(r) denote the set of all n n nonnegative matrices
A [ai] such that

(1) ao= ri forie(n).
j=l

Conditions (i), (ii), (iii), and (vi) of the following theorem are contained in Brualdi
3 ], 4 ]. Conditions (iv) and (v) are, apparently, new.

THEOREM 1. Let P be an n n symmetric pattern matrix, and let r be strictly
positive. Then thefollowing are equivalent:

(i) Each symmetric A II(P) has a symmetric scaling B in S(r).
(ii) Some symmetric A II(P) has a symmetric scaling B in S( r).
(iii) The set II(P) fq S( r) is nonempty.
(iv) IfI and J are subsets of(n) such that PIS O, then r(I) <= r(J) with equality

homing ifand only if Pcs O.
(v) If1 and J are subsets of(n) such that PIS O, then r(1 f) J) <= r((1 t.J J))

with equality homing ifand only if P(toj)c,(tt.jj)c O.
(vi) If{K, L M) is any partition of(n) such that PI,IZ O, then r(K) <- r( M)

with equality holding ifand only ifPz,t O.
Proof. The equivalence of (i), (ii), (iii), and (vi) is given in Brualdi 3 ], 4 ]. The

implication (iii) (iv) is found in [13], and the equivalence of (iv) and (v) follows
from the observations that r(I) r( I f’) J) + r(I\J) and r(J) r((I tO J)) + r(I\J).
Finally, to see that (v) (vi), consider a partition {K, L, M} of (n) such that
Pr,iu L 0. Then apply (v) to the sets K and K t_J L. [3

For positive vectors r (r, rm) r fitm and c (c c,,) r Rn, let S(r, c)
be the set of all m n nonnegative matrices A a0] such that

n rn

(2) aij ri forie(m) and , aij ci forje(n).
j=l i=l

The following theorem summarizes results ofMenon 12 ], Brualdi 2 ], and Menon and
Schneider 13 ].

THEOREM 2. Let P be an m n pattern matrix, and let r fit and c )m be strictly
positive. Then thefollowing are equivalent:

(i) Each matrix A II(P) has an equivalence scaling B in S(r, c).
(ii) Some matrix A II(P) has an equivalence scaling B in S(r, c).
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(iii) The set II(P) fq S(r, c) is nonempty.
(iv) IfI and J are subsets of(m> and (n >, respectively, such that PIJ O, then

r( I) <-_ c(Jc) with equality holding ifand only if Ptc,jc O.
The following two theorems characterize solvability ofsum equivalence scaling and

sum symmetric scaling for subpatterns of a given pattern matrix P, respectively.
THEOREM 3. Let P be an rn n pattern matrix, and let r t and c Jtn be strictly

positive. Then thefollowing are equivalent"
(i) For some subpattern P’ ofP, each A H(P’) has an equivalence scaling in

S( r, c).
(ii) For some subpattern P’ ofP, some matrixA H(P’) has an equivalence scaling

in S(r, c).
(iii) For some subpattern P’ ofP, the set II(P’) fq S( r, c) is nonempty.
(iv) IfI and J are subsets of (m> and (n, respectively, such that PIJ O, then

r( I) < c(JC).
Proof The equivalence of (i), (ii), and (iii) is immediate from Theorem 2 applied

to a corresponding subpattern P’ of P. A proof of the equivalence of (iii) and (iv) of
Theorem 3, which is simpler than the one given in [14], can be found in [15].

THEOREM 4. Let P be an n n symmetric pattern matrix, and let r n be strictly
positive. Then thefollowing are equivalent"

(i) For some symmetric subpattern P’ of P, each symmetric A II(P’) has a
symmetric scaling in S( r, c).

(ii) For some symmetric subpattern P’ of P, some symmetric A II(P’) has a
symmetric scaling in S( r, c).

(iii) For some symmetric subpattern P’ ofP, the set II(P’) fq S(r) is nonempty.
(iv) IfI and J are subsets of( n ) such that PIJ O, then r( I) <= r( jC).
(v) IfI and J are subsets of(n) such that PIJ O, then r(I N J) <= r((I t.J J)C).
(vi) If K, L, M is any partition of( n such that Pl,u i O, then r(K) < r(M).
Proof. The equivalence of(i), (ii), and (iii) follows directly from Theorem 1, applied

to a corresponding subpattern P’ of P.
(iii) (iv)" If (iii) is satisfied for subpattern P’ of P and I, J

_
(n) with PIJ O,

then P’Ij 0, and it follows from the implication (iii) (iv) of Theorem that r(I) -<
r(jC), and therefore (iv) holds.

(iv) , (v) (vi)" These implications follow from the arguments used to show the
analogous implications of Theorem 1.

(vi) (v)" Assume that (vi) holds and that I, J
_

( n > with PIJ 0. Then
PIJ, 0, and by the symmetry of P we have Pzs,i\s [PI\s,osI 7 0; therefore,
PIj,IJ 0. Applying condition (vi) to the partition {K, L, M} with K I f3 J,
L (I\J) tD (J\I), and M (I tO J), it follows that r( I f) J) r(K) =< r(M)
r( I t_J j)c).

(iv) (iii)" We prove this implication using a modification of the technique used
in the proofofTheorem 3.7 in 4]. Suppose that (iv) holds. It follows from the implication
(iv) (iii) of Theorem 3 with rn n and c r that for some subpattern Q (which need
not be symmetric) of P there exists a matrix C H(Q) satisfying (2) with c r. Then
B 1/2(C + Cr) satisfies (1) and B H(P’), where P’ 1/2(Q’ + Q) is a symmetric
subpattern of P.

We observe that it suffices to prove that for some subpattern P’ (which need not be
symmetric ofPthere exists a matrix B e H(P’) satisfying 2 with c r and, consequently,
rn n). This follows because if B is such a matrix, then B’ 1/2 (B + Br) satisfies
and B’ e H(Q), where Q 1/2(P’ + (p,)r) is a symmetric subpattern of P. Therefore,
the implication follows from the implication (iv) (iii) of Theorem 3. El
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4. Problem statement and existence conditions. We present our main result giving
eight equivalent conditions characterizing the existence of a solution for max symmetric
scaling.

For a positive vector r (rl rn) r e tn, let M(r) denote the set of all n n
nonnegative matrices A aij] such that

(3) max aij ri for e (n).
j(n

Also for a vector r e t and scalar a t, let the a-level set of r, denoted lev (r, a), be
the set { (n)" ri >- a }. Finally, if we have that A is an n n symmetric matrix and
I lev (r, a) :/: b, we call An an r-upper principal submatrix ofA.

THEOREM 5. Let P be an n n symmetric pattern matrix, and let r n be strictly
positive. Then thefollowing are equivalent"

(i) Each symmetric A II(P) has a symmetric scaling in M(r).
(ii) Some symmetric A II(P) has a symmetric scaling in M( r).
(iii) The set II(P) fq M(r) is nonempty.
(iv) The set II(P’) f) M(r) is nonempty for some pattern matrix P’ satisfying

p’ <=p.
(v) IfPij 0 for subsets I, J

_
(n), then

(4) max ri <= max rj.
iI jjc

(vi) IfPlj 0 for subsets I, J
_

rt ), then

(5) maxri<= max r.
.If3J j(IkJ J)

(vii) If { K, L, M} is any partition of n such that PI,I O, then

(6) max r =< max r.
iK iM

(viii) IfPij 0 for J
_
(n and J, then

(7) ri <- max r.
jejc

(ix) No upper r-principal submatrix ofP has a zero row.
Proof. The implication (i) (ii) is trivial because II(P) is nonempty (P e II(P)),

and the implication (ii) (iii) is straightforward because DAD II(P) whenever A e
II(P) and D is a positive diagonal matrix. Also, the implication (iii) (iv) is trivial.

(iv) (v)" LetA e II(P’) N M(r) for some pattern matrix P’ =< P, and let I and J
be nonempty subsets of (n such that PIJ 0, and therefore P[ AI 0. Because ri
is the maximum of the entries in the ith row and A is symmetric, it follows directly that

max ri max max ai max max ai max max a0 <= max rj.
iI iI j(n iI j.jc j.jc iI j_jc

(v) (vi)" Let I and J satisfy the assumptions of condition (vi). Then PinJ,iUJ
0 (see the proof of (vi) (v) in Theorem 4) and (5) follows by applying (4) to the sets
I f) J and l LJ J.

(vi) (vii)" If K, L, and M satisfy the assumptions of condition (vii), 6 follows
by applying (5) to the sets I K and J K LI L and observing that K fq (K t.J L) K
and [KU (KU L)] M.

(vii) (viii)" If and J satisfy the assumption of condition (vii), then
{ { }, J\ { }, jc } is a partition of (n) satisfying the assumptions of condition (viii),
and (7) follows by applying (6).
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(viii) (ix): Suppose that for some a e t and J= {j e (n) r >-- a} , the ith
row of the upper principal submatrix P is zero. Then, J (n), Pis 0, and ri >=
a > rj for j e J. This violates condition (viii) for the partition { { }, J\ { i}, jc} and
therefore proves the implication.

(ix) (i): We prove this implication constructively in 5 by exhibiting an algorithm
that for a given nonnegative symmetric matrix A and positive vector r either finds a
symmetric scaling ofA in M(r) or finds an upper principal submatrix ofA containing a
zero row. E]

The following observations compare max symmetric scaling and sum symmetric
scaling. First, note that feasibility conditions (iii) and (iv) in Theorem 5 are equivalent.
By contrast, there is no such equivalence for sum symmetric scaling, and the assertion
that for some subpattem P’ ofP there is a matrix A in II(P’) satisfying is not equivalent
to condition (iii) of Theorem 1. In fact Rothblum and Schneider [14 provide separate
characterizations of each of these two conditions. As a result of the equivalence of con-
ditions (iii) and (iv) of Theorem 5, conditions (v), (vi), and (vii) of Theorem 5 are
simpler than the analogous conditions (iv), (v), and (vi) of Theorem 1. For example,
for the nonequivalence for sum scaling consider

P
0

and r

Then P M(r), but there is no symmetric scaling ofP whose rows sums are 1, r.
Second, as a consequence of properties of the max operation, the set conditions

(v), (vi), and (vii) of Theorem 5 are equivalent to the simple point conditions (vii) and
(viii). No analogous simplification is possible for sum symmetric scaling.

Third, a solution for sum symmetric scaling is unique, whereas a solution for max
symmetric scaling need not be unique. For example, let

A
2

and r=

Then the general symmetric scaling ofA that is in M(r) is given by

(a 0 )(a 0 ) (a
2

)B=
0 (2a)-

A
0 (2c)- (4c)-1

where 1/2 =< a =< 1.

5. The algorithm. We describe an algorithm for max symmetric scaling. For a given
nonnegative symmetric matrix A and strictly positive vector r, our algorithm either finds
a symmetric scaling ofA in M(r) or certifies that no such scaling exists by showing that
condition (ix) of Theorem 5 is violated.

THE MAX SYMMETRIC SCALING ALGORITHM

Input: An n n nonnegative symmetric matrix A and a strictly positive vector r e .
Output: Either a positive diagonal matrix D such that DAD M(r) or a subset J

_
(n

and an index e J such that A is an r-upper principal submatrix ofA with zero
row A.

Step 0 (Initialization): Let a for e (m be the distinct values in the vector r listed in
decreasing order. That is,

{ailie(m} {rlie(n} and c>2> >Cm.

Setk= 1, J=,andd= lfor/= 1,2 ,n.
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Step 1 (Push down): Set

(8) I= {ie(n)lr =ak} and J= {ie(n)lr >-ak}.

If Aj 0 for some e I, output (J, i) and STOP; otherwise, set the values d for
I so that d =< and

(9) diaijclj.<=a for/e/ and jeJ.

Step 2 (Pull up): Select any e I and set I I\ i. Set

(10) di min I min {a}jeJ
j/i

If I :/: , repeat Step 2.

Step 3 (Termination): If k < m, replace k by k + and return to Step 1; if k m, then
output D diag (d, d2,..., dn) and STOP.

We observe that whenever the algorithm does not stop in Step 1, then AIj has no
zero row and we can achieve (9) by setting

(11)

The following lemma is crucial for our analysis.
LEMMA 6. During the Max Symmetric Scaling Algorithm, after each execution of

Step 2, we have

(12)

and

diao <- ri for i, j
_
J

(13) max diaijd ri for J\I.
jJ

Furthermore, the d’s are nondecreasing throughout consecutive executions ofStep 2.
Proof. We first show that the d’s are nondecreasing and that if (12) and 13 hold

at the beginning ofan execution ofStep 2, then they also hold at the end ofthat execution.
Let s be the element selected out of I for the execution of Step 2, let d’ and I’ be,
respectively, the values of d and I at the beginning of the execution of the current Step
2, and let d" and I" be the values of d and I at the end of that execution. Thus, we are
assuming that (12) and 13 hold for d d’ and I I’. Now the selection of s and the
definition of d ensure that

(14) max dasjd)’ Otk rs.
jeJ

As d’ d for j e J\ { s } and as the specialization of (12) with d d’ to s ensures
that we have

d’asjd) <- r for all j e J,

we conclude that d >_- d]. As the remaining coordinates of d are unchanged, it follows
that d" >- d’.

We next establish (12) and 13 with d d" and I I". First, if e J\ { s } and j e
J\ { s }, then d aijd’ d aijd’j <= rs. Also, (14) ensures that d’ajd’ <= r for all j J.
Next, for e J we have from the symmetry ofA, from (14), and from the fact that rs
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ak min { rjlj e J} that

di Uistls dsttsitti < rs ri,

completing the proofthat (12) holds for d d". Further, as it is assumed that ( 13 holds
for d d’ and I I’, as d" >- d’, and as we have seen that (12) holds for d d", we
conclude that (13) is also valid with d d" and I I’. This fact combines with (14) to
show that

(15) max d’[aodj’ ri for J\I" (J\I’) U { s}.
jeJ

That is, (13) holds for d d" and I I".
It remains to show that (12) and 13 hold upon each entrance of Step 2 from Step

1. This fact is obvious for the first entrance of Step 2 from Step because then J I;
hence, 12 follows from (9) and 13 is vacuous. Next, assume that (12) and 13 ) hold
for the kth entrance of Step 2 from Step and consider the (k + )st entrance, assuming
that Step leads to Step 2 rather than to termination. Our earlier arguments show that
(12) and (13) will stay valid throughout consecutive iterations of Step 2; hence, they
will hold at the (k + )st entrance into Step 1. Let d’, J’, and I’ be the values of d,
J, and I upon the (k + )st entrance into Step 1, and let d", J", and I" be the updated
values of d, J, and I after the (k + )st execution of Step 1. In particular, J"\I"
J’\I’ J’, and (12) and (13) hold for d d’, I I’, and J J’. Further, as d}’ d}
for j J"\I" J’, we have from the validity of (13) for d d’, J J’, and I I’ that
for J"\I" J’\I’

max dTaodi’= max max diaijd), max diaijd’
jjt j.j, j_Ip

(16)

=max{ri,maxdTaijd)’}.ji,,
Now, for j I", r ak + min { rjlj J" } hence, the symmetry ofA and (9) with
d d", J J", and I I" imply that for j e I’

17 daidi’ d)’ajid <= ak + <- ag ri.

Combining (16) and (17) we conclude that

max di ttijttj ri for all J"\I".
j jtp

That is, 13 holds for d d", J J", and I I". This fact and (9) ensure that (12)
holds as well. Thus, both 12 and 13 hold at the end of (k + st execution of Step
and therefore at the entrance to Step 2. []

THEOREM 7. If the Max Symmetric Scaling Algorithm is executed with input A
R " and r ", then either the algorithm terminates in Step 3 with a positive diagonal
matrix D such that DAD H(r) or the algorithm terminates in Step with J (n) and

J such that Ajj is an r-upper principal submatrix ofA with Aij O. The algorithm
requires O( n In n + p) comparisons, O(p) multiplications anddivisions, and O(q) square
root calculations, where p and q are, respectively, the number ofnonzero elements and
the number ofnonzero diagonal elements ofthe matrix A.

Proof. The algorithm must teinate as Step is executed at most m times, and
each execution of Step 2 reduces III. If the algorithm teinates in Step 1, then Aj is a
zero row of the r-upper principal submatfix Asj. It follows from Lemma 6 that each
time Step 3 is executed, we have (DAD)jj H(O) because I when Step 3 is exe-
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cuted. Therefore, if the algorithm terminates in Step 3, then J (n) and (DAD)jj
DAD II(r).

We finally determine the complexity ofthe algorithm. With O(n In n) comparisons,
we can sort the values { ri (n) } as required in Step 0. In total, Step can be performed
withp comparisons andp divisions, and Step 2 can be performed withp n comparisons,
p q multiplications, p divisions, and q square root calculations. I-1

The following example shows that the square root calculations cannot, in general,
be eliminated. Let

A=[1]t1 and r=(2)t.
Then the only scaling DAD ofA that is in II(r) has D /. If the diagonal elements of
A are all zero, then because the square-root operation in (9) can be omitted, the algorithm
can be executed over any linearly ordered group (multiplicative) Abelian group with
zero, that is, a group G together with an element 0 such that a0 0 0a for any a G.
In particular, if the underlying matrix is nonnegative, then the output elements will be
in any subgroup that contains the input elements. The above example shows that this
conclusion need not hold when A has nonzero diagonal elements.

We note that a diagonal element aii is considered twice in the course ofan execution
ofthe algorithm. If ri ak, we have aii aiid in the kth execution of Step 1, and then
in one of the following executions of Step 2, ]/Otk/aii /ri/aii is determined and is
compared with other numbers to update di. Thus, the square rooting can be avoided if
each original aii is the product of ri and the square of a known number. Consequently,
the square rooting can be avoided in the "decision problem" where one determines
whether or not there exists a scaling corresponding to a given vector r and matrices in a
given pattern P. This is achieved by testing any matrix A in II(P) with aii ri for all
with eli O.

6. Equivalence scaling. We apply our results for max symmetric scaling to max
equivalence scaling.

For strictly positive r (rl, rm) 7" fitm and c (c, cn) T 6 fitn, let
M(r, c) denote the set of all m n nonnegative matrices A ao] such that

(18) max aij r for e (m) and max aj cj forj (n).
j(n) i(m)

In the following theorem we characterize the existence of a solution for the max
equivalence scaling by reducing it to max symmetric scaling.

THEOREM 8. Let P be an m n pattern matrix, and let r m and c be strictly
positive. Then thefollowing are equivalent:

(i) Some A II(P) has an equivalence scaling in M(r, c).
(ii) Each A II(P) has an equivalence scaling in M( r, c).
(iii) The set II(P) N M( r, c) is nonempty.
(iv) The set II(P’) fq M(r, c) is nonemptyfor some pattern matrix P’ <-_ P.
(v) The vectors r and c satisfy

(19) max ri max cj;
i(m)

furthermore, ifPij 0 for subsets I (m) and J =_ (n), then

(20) max ri <= max c and max cj =< max ri.
iI jjc jJ iI
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(vi) Thefollowing conditions hold:
a The vectors r and c satisfy 19 ).

(b) IfPij O for (m) and J
_

(n), then

r =< max cj.
j.jc

(c) IfPij O for I (m) andj (n), then

cj -< max r.
i1

(vii) The vectors r and c satisfy (19), and for all a fit and subsets I
lev , r) ( m) and J lev a, c)

_
( n ), ifI, J , then the submatrix PIJ contains

neither a zero row nor a zero column.
Proof. The implications (i) (ii) (iii) (iv) follow from the arguments used

to establish the corresponding implications in Theorem 5.
(iv) (v): Suppose that A II(P’) fq M(r, c) for some pattern matrix P’ =< P.

Then

max ri max max at/= max max aO max cj.
i<m> i<m> j<n> j<n> i(m>

Furthermore, if PIJ 0 for some I
_
(m) and J

_
(n >, then

max ri max max aj max max ao <= max cj.
i.I i.I j.jc j.jc i.I jjc

A symmetric argument proves the second inequality in (20).
(v) (vi): This implication is trite because parts (b) and (c) of condition (vi) are

the specializations of the second part of condition (v) for the cases of I and J j,
respectively.

(vi) (vii): Suppose that for some a , I lev (, r) q: and J
lev (a, c) q: . It follows that

ri >-- a > max cj foriI
jjc

and

c>=a>maxri forjJ.
iI

Therefore, if PI has a zero row or a zero column, we get a violation of parts (b) or (c),
respectively, of condition (vi). The implication (vi) (vii) now follows because the
first assertion of (vii) is the same as part a of (vi).

(vii) (i): For an m n nonnegative matrix A, define the (m + n) (m + n)
matrix A’ and the vector r’ }m+ n by

(21) A’= and r’=
A T 0

It is straightforward to show that max symmetric scaling with input A’ and r’ has a
solution D’ diag (d’, d,..., d, / n) if and only if max equivalence scaling for A, r,
and c has a solution D diag (d’, d, d,) and E diag (d,+ d/ n). We
conclude that condition (i) of Theorem 8 is equivalent to condition (i) of Theorem 5
applied to A’ and r’. It is straightforward to show that condition (vii) of Theorem 8 is
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equivalent to condition (vii) of Theorem 5 when applied to A’ and r’. Therefore, the
equivalence of (i) and (vii) follows from Theorem 5. [2]

We observe that the reduction ofmax equivalence scaling to max symmetric scaling
in the proof of Theorem 8 shows that max equivalence scaling can be solved by the Max
Symmetric Scaling Algorithm. Moreover, the diagonal elements ofthe matrix A’ defined
in (21 are all zero. Therefore, it follows from the complexity analysis at the end of 5
that max equivalence scaling can be solved using O((n + m) In (n + rn) + p)comparisons
and O(p) multiplications and divisions, where p is the number of nonzero elements of
the matrix A. Further, we observe that max equivalence scaling can be solved over any
linearly ordered Abelian group with zero. The example given in 5 shows that in general
max symmetric scaling does not have this property. Also, sum equivalence scaling does
not have this property. For example, let

A and r c-

The only equivalence scaling ofA with row and column sums all equality is the matrix

B= 2-/ )/r- 0 /r-- 0

We note that when a solution to max equivalence scaling exists, it need not be
unique. For example, let

A=
4

and r=c=
4

Then the general equivalence scaling B ofA that is in M(r, c) is given by

B=
0 o 0 - 2o 4

where ] -< a _-< 2. By contrast, the corresponding equivalence in sum equivalence scaling
is unique.

The results about max equivalence scaling were derived from results about max
symmetric scaling. Historically, a reverse logic has been applied in the sum case as results
about sum equivalence scaling are used to establish results about sum symmetric scaling
(see Brualdi [2 and Csima and Datta 7 ]). The latter arguments use uniqueness (up to
multiplicative scalar) of diagonal matrices D and E for which DAE has prescribed row
sum vector r and column sum vector c. Hence, ifA is symmetric and r c, the fact that
DAE and EA rD EAD have the same row and column sums can be used to argue that
(with proper normalization) D E. But, as we have seen above, no such uniqueness
results are available in the max case.

7. Graphs. We observe that max symmetric scaling and the corresponding solv-
ability theorem have an equivalent undirected graph statement. An (undirected) graph
is an ordered pair G (V, E), where V is a finite set of vertices and E is a set of edges
composed of unordered pairs of vertices. Given such a graph G (V, E) and a vertex
v e V, we let N(v) denote the set of neighbors of v, i.e., N(v) { u e V { u, v } e E },.
In particular, we say that v is isolated if N(v) . Note that by definition a graph
may contain loops but may not contain repeated edges. For subsets S, T

_
V, we use

[S, T] to denote the set of edges { u, v } e E with u S and v T or u T and v S.
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A weightfunction for a graph G (V, E) is a real-valued function f defined on the
edges E. For convenience, in this case we write fuo forf( { u, v } ). A weighted graph is a
triple (V, E, f), where (V, E) is a graph and f is a weight function for G. A potential for
G is a real-valued function defined on the vertices V. For a nonempty subset W of V,
we define the subgraph induced by W to be the graph (W, E’), where E’ contains all
edges ofE of the form e { u, v } for vertices u, v e W.

Next, we define a mapping from the set of symmetric nonnegative matrices to
the set of weighted graphs. For an n n symmetric nonnegative matrix A a0], we
define the mapping by

(22) A - (V, E,f),

where

E= {{i,j}lao>O}, and

fj= lnai for{i,j)E.

It is easy to see that is a bijection between the set of nonnegative symmetric matrices
and the set of weighted graphs.

We state the following lemma without proof.
LEMMA 9. Let A be an n n symmetric nonnegative matrix, and let V, E, f) be

the corresponding weighted graph under the mapping ,b in (22). Let r R" be strictly
positive, and let s be the potential defined by si In ri for ( n ). Then thefollowing
are equivalent:

There exists a positive diagonal matrix D diag dl, d2 dn) such that
DAD M(r).

(ii) There exists a potential p such that

(23) max {Pu+ fuo+Po} =so forv V.
uN(v)

Furthermore, D andp are related by pu In dufor u ( n ) V.
The next theorem follows directly from Theorem 5 and the correspondence between

matrices and graphs described in Lemma 9.
THEOREM 10. Let G V, E) be a graph, and let s be a potentialfor G. Then the

following are equivalent:
For every weightfunctionffor G there exists a potential p satisfying (23).

(ii) For some weightfunctionffor G there exists a potential p satisfying (23).
(iii) There exists some weightfunctionffor G such that

(24) max fuo so for v V.
uN(v)

(iv) There exists E’
_
E and some weightfunction f: E’ -- R such that

max fuv s for v V,
uN’(v)

where N’ v { u V: { u, v ) E’ ).
(v) If IS, T] ( for S, T

_
V, then

max so --< max so.
vS T
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(vi) If [S, T] for S, T V, then

max so=< max so.
vSN T ve(St3 T)

(vii) If { S, T, U} is any partition of V such that S, S t_J T J, then

max so =< max so.
vS vU

(viii) Let W V. Ifv W is an isolated vertex ofthe subgraph induced by W, then

so =< max Su.
u W

(ix) For every , the subgraph ofG induced by the level set lev s, ) has no
isolated vertex.

We observe that Theorem 8 also has an equivalent graph formulation in terms of
bipartite graphs. We have omitted the details because they are straightforward.

8. pth power scaling. For 0 =< p =< and x R, we define the lv norm of x by
x[[v. We consider the problem ofdetermining a symmetric sealing ofa given nonnegative

symmetric matrix such that the rows of the resulting matrix have prescribed v norms.
Of course, the eases of p and p o reduce to sum and max symmetric sealing,
respectively. Here, we show that the eases of0 < p < o can be reduced easily to the ease
ofp 1.

For an m n nonnegative matrix A and 0 < p < c, the pth Hadamard power of
A, written A tP), is the matrix whose ijth entry is (a). Let A denote the ith row of the
matrix A. For a strictly positive vector r and 0 < p -< o, let SV(r) denote the set
of all n n nonnegative symmetric matrices B such that Bi lip ri for each e (n.

It is easily seen that B e SP(r) if and only if B<p) S(r<P)). Moreover, B DAD if
and only if B<p) D<P)A<P)D<p). Thus, as an immediate consequence of Theorem 1, we
obtain the following theorem.

THEOREM (/p-symmetric scaling). Let P be an n n symmetric pattern matrix,
let r Rn be strictly positive, and let p fit with 0 < p < o. Then the following are
equivalent:

(i) Each symmetric A II(P) has a symmetric scaling B SP(r).
(ii) Some symmetric A II(P) has a symmetric scaling B SP(r).
(iii) The set II(P) N SP(r) is nonempty.
(iv) IfPij O for I, J (n), then Ilrll --< IIrjcll with equality holding ifand only

if Pcjc O.
Conditions (v) and (vi) of Theorem can also be extended in the obvious way.

Further, analogous results can also be derived for the cases of-o -< p < 0.
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Abstract. This paper is a continuation of Part [M. H. Gutknecht, SIAM J. Matrix Anal.
Appl., 13 (1992), pp. 594-639], where the theory of the "unsymmetric" Lanczos biorthogonalization
(BO) algorithm and the corresponding iterative method BIORES for non-Hermitian linear systems
was extended to the nongeneric case. The analogous extension is obtained here for the biconjugate
gradient (or BIOMIN) method and for the related BIODIR method. Here, too, the breakdowns of
these methods can be cured. As a preparation, mixed recurrence formulas are derived for a pair
of sequences of formal orthogonal polynomials belonging to two adjacent diagonals in a nonnormal
Padd table, and a matrix interpretation of these recurrences is developed. This matrix interpretation
leads directly to a completed formulation of the progressive qd algorithm, valid also in the case of
a nonnormal Padd table. Finally, it is shown how the cure for exact breakdown can be extended
to near-breakdown in such a way that (in exact arithmetic) the well-conditioned formal orthogonal
polynomials and the corresponding Krylov space vectors do not depend on the threshold specifying
the near-breakdown.
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Introduction. In Part I [13] we derived a number of basic results on sequences
of formal orthogonal polynomials of the first and second kind (FOPls and FOP2s,
respectively). Given a linear functional (I) P --. C defined on the space 7) of complex
polynomials byI

:= (k e

there is a finite or infinite sequence {nj J}j=0 (J -< c) of indices with 0 =: no < nl <
n2 < (< nj if J < oc) for which a regular (monic) FOP1 Pj "=/;j exists. By
definition, these are those values of the index n for which a unique monic polynomial
Pn := P;n of exact degree n satisfying

(1.2) (PPn) 0 (p e [:n--1)

exists. These indices are also characterized by the nonsingularity of the n n moment
matrix

(1.7) M. := M;. :=

1 1+1
1-}-1 l-{-2

lTn-1 lTn
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Starting from these regular FOPls Put we have obtained a full sequence (Pn}n=o :=
(Pl;n}n=o of monic FOPls by setting

(1.28) Pn(z) :-- Wn_,(z)Pn(z) if nj _< n < nj+l --: n + h.
Here Wn-, could be an arbitrary monic polynomial of exact degree n n, but in
view of actual implementations we have primarily considered the case where Wn-n
is the n nj element of a fixed sequence (Win} of monic polynomials satisfying a
three-term recurrence

w w(2.10) Wm+l(z) (z am Win(z) tim Wm--l(Z) (me N)

(with Wo(z) :=- 1, W-l(Z) :=_ O, floW "-0).
The FOPls Pn of (1.28) satisfy the formal orthogonality conditions

(2.1) ’I(PPn) 0 (Vp E Ta_I) ((zaPn) = O, where :-- nj +nj+l-n-1.

In particular, when Pn is regular, n nj, then

(2.2) fi nj + hj 1 nj+l 1.

Equivalently, assuming ni <_ n <_ ni+l and n <_ n <_ n+l, we can write

(2.5) (P,,P,) 0 if i j
or i-j and n+n<nj+n+l-1,

(2.6) ’(Pn’Pn) -: ij 0 if i j and n’ + n nj + nj+l 1,

where 6j is independent of n- nj and n nj.
The formula (2.10) implies that the nonregular FOPls Pn (nj < n < nj+l) can

be generated according to

(2.11) Pn+l(Z) (z aw,_,) P,(z) flw_,, P,-l(z) n <_ n <_ n:i+l 2.

(Likewise any other recurrence for (Win) leads to one for those Pn.) Less trivial is
the fact that the orthogonality relation (2.1) allows us to establish for the regular
FOPls a three-term recurrence

(2.17) Pn+I (z) (Wh (z) a:i(z))Pn (z) :iPn_ (z) j 0,..., J 1,

with a monic polynomial coefficient Wh --aj 7h (hence, aj 6 :Phi-l) and a scalar
coefficient j e C. (The initial values are: P,_, (z) :_= 0, P,o(Z) :=_ 1, flo := 0.)
For the coefficient flj there is an explicit formula and for the coefficients of aj(z)
-h-1
8=0 o8,jWs(z) we have found a recursive formula based on the solution of a lower

triangular system:

(2.23a) j((P,-Pn_) ,(zPn-Pn+-),
(2.23b) ((a:iPn+kP) ((zP+:Pn+,-1) Oh_lW ((p,+p,+_l)

-I((P+kPn+-2), k 0,..., hj 1.

After introducing the infinite row vector p :-- [P0, P1,...], we can express the
recurrences (2.11) and (2.17) as

(3.11) zp(z) p(z)H,
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where the Gragg matrix H is an infinite block tridiagonal unit upper Hessenberg
matrix

(3.0) n .=

Ao B
Co A B2

C A2 ".

". (Bj)
(Cj-l)(Aj)

Under the assumption (2.10), the diagonal blocks Aj are hj x h comrade matrices
containing on the diagonal and the first superdiagonal the coefficients amW and/mW
from (2.10), and in the last column the coefficients c%i of the polynomial aj. The off-
diagonal blocks C and Bj are zero except for the element in the upper right corner,
which is 1 in C and/ in Bj. If J < o, Bj is the hg_l x cx zero matrix, and Aj
is the infinite tridiagonal matrix TW representing the recurrence (2.10) in the form
zw(z) w(z)Tw (where w := [W0, Wl,...]).

By using matrix notation, we can express the orthogonality properties (2.5)-(2.6)
in compact form:

(3.22) Ol(pTp) D,

where D is a block diagonal matrix whose blocks D are hj x h lower right triangular
matrices with all antidiagonal elements equal to 8j.

The FOPls Pn and the associated FOP2s Qn (n E N) are essentially the denomi-
nators and the numerators, respectively, of the proper parts of the Pad6 approximant
lying on the/th diagonal of the Pad6 table of the formal Laurent series

(1.25) f(z)--- Ckzk.

More exactly, the (m, n) :- (l + n- 1, n) Padd approximant of f is equal to

:= +
k-’-oo Pn(z-1)

cf. (1.21), (1.22), and (1.34). The rational function rm,n is the (m, n) entry of the
Pad table.

An important feature of the Pad6 table is its block structure: Identical entries
occur in finite or infinite square blocks, cf. Corollary 1.6. The regular FOPls belong to
entries on the first row or the first column of such a square block. This Block Structure
Theorem is important in this second part, where we now consider pairs of sequences
of FOPls, {Pn}=0 :- {Pl;n}n=0 and {P}=0 := {P+;n}n=o, which belong to two
adjacent diagonals of the Pad6 table. We mark the quantities corresponding to the
second sequence by a prime, writing for example Mn, H, p. We also set (I) "= (I) and
(I) := (I)+. Note that this usage of primes differs from the one in Part I, where they
indicated quantities belonging to the FOP2s, the polynomials of the second kind.

In 5 we define a new sequence of regular FOPls whose elements are alterna-
tively taken from the two above-mentioned sequences and belong to all distinct Pad6
approximants that lie on the two diagonals. We call the corresponding sequence of
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Pad(! approximants a block staircase sequence. In analogy to the three-term recur-
rence (2.17) for the regular FOPls that belong to one diagonal, we derive a pair of
three-term recurrence formulas (with one polynomial coefficient in each) for the new
sequence of FOPls. Since FOPls from both diagonals appear in these formulas, we
call them mixed recurrences. Two equivalent but different matrix formulations for
them are given in 6. Actually, these matrix formulations involve all the polynomials
from the two sequences {Pn}n=o and {P}=0 and not just the regular ones.

By eliminating either the first or the second sequence, we rediscover in 7 the
matrix formulations of the separate recurrences for the second and the first sequence,
respectively, which are both of the type discussed in Part I, i.e., they are determined
by Gragg matrices of the form (3.6). It turns out that the Gragg matrix of the second
sequence is obtained from the one of the first sequence by executing one step of a
block LR algorithm, i.e., we have to compute a particular block LU decomposition
and then multiply the factors together in reverse order. The factors, which are block
bidiagonal (but none of which is chosen with unit block diagonal), are exactly the
matrices that describe the mixed recurrences of the block staircase. This block LR
algorithm generalizes Rutishauser’s LR algorithm for tridiagonal matrices, and hence
also his (equivalent) qd algorithm [23]. It is the key to a nongeneric progressive qd
algorithm, which, in contrast to the classical (generic) progressive qd algorithm, never
breaks down in exact arithmetic.

In 4 of Part I we applied the results on (diagonal) sequences of FOPls to the
unsymmetric Lanczos process. Let A 7 --+ 7 be a bounded linear operator mapping
a separable real or complex Hilbert space into itself. The standard inner product in
/is denoted by (., .), but we use instead a formal inner product (., .) defined by
(y, x) :- (y, Bx), which is induced by another bounded linear operator B 7 -+ 7
that commutes with A. (The cases of practical interest are B I, B A, and
B A-.) Orthogonality with respect to this indefinite inner product is referred to
as formal orthogonality. Associated with A, x0, y0, and this inner product are the
Schwarz constants or moments

(4.1) :- (y0,Akx0)B := (yo, BAxo) (k e N).

The link to the above-described theory of FOPs is based on the identification of these
moments with the values that the linear functional I) (I)0 of (1.1) takes on the
monomials.

Starting from A, x0, Y0, the classical (generic) Lanczos biorthogonalization (BO)
Ix y-1 and v--1slorithm [19], [15], [Ii] generates the two sequences t =o {Y}=o such that

for O, l,...,v i

(4.6a) xn ( (n+l := span (xo, Axo, A2xo,..., Anxo),
(4.6b) Yn e :n+ := span (Y0, Any0, (An)2y0,..., (Ag)ny0),

and

=0 if re#n,(4.7) (y,,x) 0 if m=n.

In view of (4.6), xn must be equal to a polynomial in A times x0, and yn must be
equal to a polynomial in AH times Y0. From the orthogonality condition (4.7) and
the uniqueness of the regular FOPs it follows easily that actually

(4.14) x Pn(A)xoFn, Yn nn(AH)y0n,



THE UNSYMMETRIC LANCZOS PROCESS, PART II 19

where Pn is the monic regular FOP1 of degree n, Pn is the polynomial with the
complex conjugate coefficients, and Fn and Fn are scale factors. As we know, such a
regular FOP1 need not exist, and that is when (4.7) no longer holds and the generic
BO algorithm breaks down. Our remedy for this breakdown was to use (4.14), with

Pn being any FOP1 of degree n (regular or not). The nongeneric BO algorithm
(Algorithm 1) was then obtained by translating the recurrences for the FOPls via
(4.14) to recurrences for xn and Yn. In these recurrences the scale factors
are replaced by the relative scale factors

(4.20a) %, := Fn/Fn-i, z/n,i := F/F_i (n E N, i E N).

The application of the BO algorithm to solving linear systems of equations Ax
b is based on defining a sequence of approximants zn in such a way that xn is the
residual vector for

(4.61) xn=b-Azn, n=0,1,2,...,

(normalized BIOtiE5 algorithm) or such that xn is the residual of zn in a system with
scaled right-hand side

(4.62) xn bpn Azn, n 0, 1, 2,...,

(unnormalized BIORES algorithm).
The BO algorithm terminates when xn 0 or Yn 0. But while the generic BO

algorithm (and thus also BIOPES) breaks down seriously whenever (Yn, xn)B 0, our
generalization fails only if the inner product vanishes for all n beyond some bound ng.

This is then called an incurable breakdown [22], [21]. Unfortunately, in order to detect
such an incurable breakdown, we theoretically have to work with exact arithmetic and
to iterate until n reaches the rank of A. When the algorithm is applied to solving a
linear system, the hope is that in theory xn 0 for some n, and that in practice the
residual xn is sufficiently small even much earlier. There is, however, the additional
difficulty that Yn 0 causes the algorithm to stop, and this requires that we find a
nonzero replacement for Yn that is orthogonal to K:n and can be used to proceed.

Here, we discuss in 8 three iterative linear system solvers that are closely re-
lated to the unnormalized nongeneric BIORES algorithm and have in fact the same
breakdown behavior. (For the generic versions this is not true [11].) The first two,
normalized and unnormalized nongeneric BIOMIN, are extensions of the well-known
and highly successful biconjugate gradient (BCG) method [20], [7], [11]. The third
is (normalized) nongeneric BIODIR, which, independently, has also been developed
by Joubert [17], [18]. These three methods generate relevant subsequences of es-
sentially the same sequences of approximants Zn, residuals xn, and corresponding
B-biorthogonal vectors y as nongeneric BIORES; but .additionally they produce two
BA-biorthogonal sequences (un} and (vn}. The elements of the first serve as di-
rection vectors, i.e., they specify the direction of the correction for zn. While the
vectors xn and y correspond according to (4.14) to a diagonal sequence of FOPls,
the vectors un and vn correspond similarly to the FOPls on the adjacent diagonal.
And while nongeneric BIORES is based on the recurrence for the first block diagonal
sequence of FOPls, nongeneric BIOMIN is based on the recursion for the block stair-
case sequence, and nongeneric BIODn makes use of the one for the block diagonal
sequence on the adjacent diagonal.

Finally, in 9 and 10, we present a theoretically clean approach to treating near-
breakdowns. Of course, such an approach is of great importance in practice, where
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the occurrence of exact breakdown is very unlikely, but near-breakdown may cause
severe numerical effects. We formulate this theory for polynomials, but the applica-
tion to the above-mentioned iterative linear solvers is straightforward. (The actual
implementation still requires a careful treatment of many nontrivial details. This is
the subject of joint work with Roland Freund and Noiil Nachtigal [8].)

This treatment of near-breakdown is based on defining appropriate clusters or
blocks of polynomials in such a way that formal orthogonality is maintained between
the blocks, but not within the blocks. The first polynomial in each block is still a
regular FOP1, and, moreover, it is well conditioned if the blocks are suitably cho-
sen. To construct these polynomials (or the corresponding sequences of Krylov space
vectors) we apply a block orthogonalization process, which is just the appropriate
generalization of the Gram-Schmidt process.2 The resulting algorithm, which is de-
scribed here in terms of polynomials and in [8] in terms of Krylov space vectors, can
be considered as a generalization of the nongeneric BO algorithm of 4 and of the
similar algorithms proposed by Parlett, Taylor, and Liu [22], [21], [24] and by Soley
et al. [1]. Although mainly exact breakdowns were considered in [22], [24], we suggest
applying Parlett’s adjective "look-ahead," which is by now well established, to the
near-breakdown versions of all of the above-mentioned algorithms, while the adjective
"nongeneric" should be reserved for the versions curing exact breakdown.

In Parlett, Taylor, and Liu [22] the discussion was actually restricted to 2 x 2
blocks. Several options of block LDU decomposition of the moment matrix were
considered for this case, but the resulting generalizations of the Lanczos algorithm
differ in detail considerably from the proposals made here, even for exact breakdown.
In particular, the left Lanczos vectors are chosen differently; thus, in the relations
(4.14) the polynomial Pn is there in general not the complex conjugate polynomial of
Pn. Moreover, as we will see in 9, the above-mentioned "appropriate generalization"
of the Gram-Schmidt process for near-breakdowns is not the straightforward one,
which would not yield a "block three-term" recurrence. Finally, here we not only
treat block diagonal sequences (9), but also block staircase sequences (10), which
present some additional difficulties.

Upon revision of this paper we learned of nongeneric algorithms developed by
Hegediis [14] for applying conjugate gradients to a particular indefinite problem. From
his treatment one must conclude that he was probably also aware of the possibility
of developing some of the nongeneric algorithms given here; but he did not specify
them.

5. Block staircase sequences and corresponding recurrences. In this sec-
tion we consider two adjacent sequences of FOPls, {P} :- P;n} and P :-
{P+I;}, and their associated sequences of FOP2s, {Qn} :- {Q;n} and {Q} :-
{Q+l;n}, and derive a recurrence for a particular sequence formed alternatively from
regular elements of {P} and {P}. We denote those elements of this sequence that
are taken from {P} by P,, and those taken from {P} by P’v. The index sequences

jA jv{n2}j:0 and

still indicate the degrees of the corresponding polynomials and are subsequences of the
two index sequences {nj } and {n}, respectively, that belong to the regular FOPls in

2 We use the notion "block orthogonal" here, although there is a danger of confusion with the
different meaning the word "block" has in "block Lanczos" or "block Gram-Schmidt."
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m

FIa. 3. A block staircase sequence. The elements of the staircase are marked by ,, while the
^vother regular elements on the two adjacent diagonals are marked by o. The notation nj means

A V
nj nj.

{Pn} and {Pn’ }, respectively. These subsequences are chosen such that n "= 0 and

(5.1) v ^ J^ 1)^< v jv), nj <nj+l (J=0,n n (j=0,...,

and such that they contain as many indices as possible; in the cases where the in-
v ^ uniquely, we make the lastterlacing condition (5.1) does not determine nj or nj+l

of the choices allowed by (5.1). From the Block Structure Theorem 1.6 for the Pad
table, it is seen that such ambiguities occur in connection with blocks that contain
elements from both {Pn} and {P}, i.e., which are intersected both by the upper and
the lower diagonal (on which m- n and m- n + 1, respectively), cf. Fig.
3. In such cases, either the first column or the first row of the block contains regular
elements out of both {Pn} and {Pt+l;,}, and then the lower or the right, respectively,
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of these elements is dropped, while the other becomes an element of {Pn. } or {P’, },
respectively. Note that

(5.2) jv _< j^ < jv + 1 < oo,

i.e., there can be at most one more marked element on the upper diagonal, and the
number of elements may be infinite.

Let us also set

(5.3) A A V. V
m# :=n# +/-1, m# =n# +l,

A. V A V A V g,A V A V(5.4) h# --n# -n# +l--m# -m#, h# :-- #+l-n# -m#+l-m# +1.

Both h and h are > 1. If J^, jv < oc, then h^ hv :- n^ nv+l oc.
J^ V jvThe index pair sequences ((m, n)}#=o and {(m, n# )}=0 define the block stair-

case sequence for the two adjacent diagonals of the Pad(! table. (For the more general
situation of the Newton-Pad@ table, block staircase sequences have been introduced
in [12].) Note that the index pairs specify for each block an entry of minimum degrees
m and n on one of the two adjacent diagonals, but do not indicate the upper left
corner of the block.

The orthogonality result of Theorem 2.1 yields the following lemma for such block
staircase sequences.

LEMMA 5.1. The following .formal orthogonality properties hold:

(5.5b)

and

(5.6a)

(5.6b)

(PPn. 0 (p E 7n. +h. _2

:= # 0,

Proof. Apply (2.1) and (2.2) to the current situation and note that the regular
elements following Pn. and P on the same diagonal have the indices

n#

A A A V V(5.7) ny+l=n +hi and nj+l=n# +hi,
respectively, independently of whether this following regular element is part of the
block staircase or not. This is due to the fact that, in case of a dropped element, the
index of the next element differs from that of the dropped one only by 1, as can be
seen from Fig. 3. D

COROLLARY 5.2. The following .formal orthogonality properties hold:

O’(PPn. 0 (VP 79,. +h. -3 79n. -2),

O’(zn’-lpn. # 0,

and

(5.9b)

l(zpPtn. 0 (P ’n.-l-h.--2
# o.

n#



THE UNSYMMETRIC LANCZOS PROCESS, PART II 23

Proof. In the same way that (1.2) was written as the homogeneous linear system
(1.6), (5.5a) can be written as

0, i + n,...,1 + 2n+ h- 2,

^ h ^ When the first equation is deleted, this system representswhere n "= nj, "= hi.
(5.8a). Both (5.5b) and (5.8b) express that the "next equation after (5.10)," with
i := + 2n + h- 1, is not homogeneous.

Similarly, (5.6a) and (5.9a) are represented by the same homogeneous linear sys-
tem, and (5.6b) and (5.9b) yield the same strictly inhomogeneous equation. 0

Lemma 5.1 and Corollary 5.2 allow us now to establish recurrence formulas for
block staircase sequences. By analogy to the derivation of the recurrence formula for
diagonal sequences in 2, we start from representations of Pn.+l and Pv in terms of

+1
the previous elements of the staircase. Clearly, in view of (5.4), there are polynomials
^ and v (s 0, 1, j) such thatt, P.-I t, P,_

(5.11)
s----0

v 0.) We multiply this relation with the monomials of degree(If hv 1, we set ts, :--
v V_l_n^at most nj + hj j+l 1. Each of these monomials can be written as either

A Vz ,+k with0_< k <_ h-2,0<_i <_j, orz +k with0<_ k_< h-l, 0_<i<_j.
(Note that the range of k in the first loop is empty if h 1, in which case the
multiplier zn+ is not used.) Then, we apply (I) to the resulting n+l relations in

A VAorder to obtain a linear system of n+ equations for the polynomials ts,j and re,j,
s 0, ,j. In view of (5.4), these polynomials have a total of nj+^ coefficients.

In view of (5.8a), all expressions (zn+ Pn.+) and (I)(zn’+ Pn^+l) vanish, so that

Pn^ does not appear in the system. In order to verify the structure of this system,
5+1

we list a number of results following directly from (5.4), (5.5), and (5.9); k is always
assumed to lie in the given ranges.

(5.12a) !I(zn++ Wh.- P’v) 0 if i < j.

A ^(Here, for the case i j- 1, we have used that nj_l + k _< nj_ -t- hj -2
v ^-2 <_ v-2.)nj_ 1 <_ nj nj

(5.12b) ((Zn+k+l Wh.- P’)
0 if i _< j 1,

us ( 0 if i--j, k-O.

(Here, we have used that v v ^ ^ ^ -2 v_ 1.)n_l + h_ + h 2 nj + hj nj

(5.13a) V(z++ vt,j P,:) 0 if i _< s;

(5.13b)
=0 if i<s,

(i)(zn’+k+l tBv, p) 0 if i s, k + Otv, < hV 1,
-0 if i=s, k+OtBv,j=hV-l;
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=0
o

#o

if i<s,
if i s, k + Ots,j < h l;
if i s, Ots,j > O, k + Ots,j h l;

=0 if i<s,(5.13d) gO(zn+k ts, pn.
7 0 if i s, Ots, O, k O.

By capitalizing on these formulas, the above-mentioned linear system (which was
obtained by multiplying (5.11), for i 0,1,...,j, with z+k (k 0,...,h -2)
and zn7+k (k 0,... ,h 1), and then applying ) reduces to the following set of
equations:

i--1

(5.14a) E (Zn+k+l vt,,j P=: + (z +k t,j Pn2 O,
s=0 s=0

k=0,...,h-2; i=0,...,j;

(5.14b) (zn:++ tsi P: + (zn:+ tsi Pug)
s=0 s=0

0 ifi<j-1,
(znk+l r v P’) 0 if i j, k 0,h 1

+k+;r P’) ifi=j,wh 1

k 0,...,h 1; i 0,...,j.

This system is of triangular structure, like the one for diagonal sequences, which
consists of (2.13) d (2.14). Again, except for the lt few equations, the system is
homogeneous and we can conclude that "most" of the unknown polynomials e zero.
In ft, let us sume that j > 0 and, at first, that t,j 0. Then, if, > 0, the
equation with i 0 and k h- ,j 1 in (5.14a), which is homogeneous but
contains in view of (5.13c) exactly one nonzero term, yields a contradiction. Likewise,
if ,j 0, we let i k 0 and use (5.14b), (5.13b), and (5.13d) to obtain a
contradiction. Next, suppose that t,g t,j t,g t_,j tj 0, but
V V Vt,j 0 for somei <j-1. Then, (5.14b) and (5.135) withk h -i,j-1
{1, 2,..., h 1} le again to a contradiction; hence tj 0. If t,j t,j t,j

t_l,j 0 for some i j 1, we can likewise conclude from (5.14a) and (5.13c)
or from (5 145) (5.135) and (5.13d) that t6. 0. In summary, if j > 0, there holds

(5.15) t,i t,i n v n vt,j tj_2,j tj_,j tj_,j 0.

By the same arguments we conclude from (5.14a) and (5.13c) that Otj 0; from
(5.14b), (5.13b), and (5.13d), by choosing i j and k 0, we conclude that

A # 0,
v being given bythe constant j

(5.17a) j 5/5, where 5 O(z% P 5 O(z%+ n
v. v v_ 1 equationsFor ej tj,j we get from (5.14b) (with i j) the additional hj

P.2) why_l(5.17b)
O(zY++1 ejv p,) + j

k= 1,...,hy 1.
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v is expressed in powers of z or in terms of the polynomialsIf the polynomial ej
Win, it follows from (5.9b) that the matrix of the resulting linear system for the
coefficients is right lower triangular and regular, since its antidiagonal elements are
all equal to 5/ 0. In case of the monomial basis, the matrix is Hankel.

Summarizing, we have shown so far that the general representation (5.11) reduces
actually to a mixed three-term recurrence formula

(5.18) P.+I (z) [zWh. _l (Z) ze (z)]P@. (z) o. Pn. (z), j- 0,1,...,J^- 1.

In a completely analogous manner we can derive a mixed three-term recurrence
formula for computing P.v. We start from the representation

j j-1

^ (z)Pn:(z) Z tsv,J(z)P: (z)P (z) Wh.-l(z)Pn; (z)nj
s=0 s=O

^ (s 0, 1, .., j) and t,j E Ph:-i ,..with new polynomials ts,j E Ph2-2 v (s 0, 1 j-
^ 0o)1). (If h 1, we set t,j :--

This time, we multiply this relation with the monomials zn+k (1 k h 1,
0 i j) and zn+k (1 k h, 0 i j- 1), which together e all the

1 v Again, we then applymonomials with deees between 1 d n + h n.
to both sides. Due to (5.9a), Pv does not appear in the resulting linear system ofn

d v innjV equations, and in view of (5.4), the total number of coefficients of t,j ts,j
v To simpli the system we need the following formula, which e(5.19) is also nj.

analogous to (5.12) and (5.13). (Note that the ranges of k and the mimum degrees
of Ot and Ots have changed.)

(5.20a) (Z+k Wh.-1 Pn. 0 if i <_ j 1

(5.20b)
=0

(Z+k Wh. 1P. 0
#o

if i<j-1,
if i j -1, k <_ hi! -1,
if i=j-1, k=hjV_l-1;

(5.21a) vts,jP: =0 if i N s;

(5.21b)
=0

0

#0

if i < s,
if i= s, k + Otv,j < hV,
if i= s, k + Otsv,j hV;

(5.2c)
=0

t.2 o
o

if i < s,
if i s, k + Ot,j < h l,
if i= s, k +Ot, h 1;

(5.21d) O(zn+kts,j Pn2) 0 if < s.
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By applying these formulas, we can rewrite the linear system as

(5.22a)

(5.22b)

Again, the system has a triangular structure. For let us assume that j > 0 and
t,j 0. Then (5.21c) and (5.225) with i 0 and k h 0t0̂,-1 e {1,2,...,h-l}
yield a contradiction, showing that t,.. 0. By the same argument, t,j t,

t,. 0 (for somei < j-1i implies that t. 0 On the other hand,3 ,3

assuming t.= t,. t[.= 0, t. 0 (for some i < j 1), we conclude from
,3 3 ,3 ,3.

(5.21b) and (5.22a), by choosing k h -0t,v, e {1, 2,..., h/} there, that tiv,j 0,
unless i --j- 1 and k- hv_z. In the latter case there holds

(5.23) v ^=_. o,

^ is given bywhere the constant oj

^(5.24a) p. e ev P 5; (z"}’ 1p.,)./ j_z, where 5._ ((zn
nj_

Finally, choosing i j in (5.22b) yields a linear system of h- 1 equations for
A A

ej := tj,j

(5.24b)
(I)(z"’+ ^ P"’ + (I)(z"’+P (I)(z"’+ W,_x P,,)ej nj_z

k= 1,...,h 1.

^ is expressed in a basis of polynomials with ascending degrees, theHere also, if ej
coefficient matrix of this system is right lower triangular and regular, with antidiagonal
elements 5 # 0. If the monomial basis is used, the matrix is again Hankel.

Summarizing, we get the following theorem.
jv.... J^ and Pv j--0,...,THEOREM 5.3. The regular FOPls Pn. j O, n

of the block staircase sequence starting at (0, n (0, l) satisfy a pair of mixed three-
term recurrence formulas:

jvj=0,1,...,

J^ 1,j 0,1,...,

with initial values Pn_ (z) "=- O, Pn (Z)"------ 1, := 0. {WmIm=0 is an arbitrary pre-

I A’tgV and -f ^y 1J^scribed sequence of monic polynomials of respective degree m; twj Jj=0 tj lj=o
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are sequences of uniquely determined nonzero complex constants, each of which is

given by (5.24a) or (5.17a), respectively; and {e}]V_o and {e}]^-1 are sequences of_--’0
complex polynomials of respective degree Oe <_ h- and Oe <_ h-2, each of which
is the unique solution of a linear system (5.24b) or (5.17b), respectively. (e(z) =_ 0
if h 1, and e (z) =- 0 if h 1.) The integers h and h7 are determined by (5.5)
and (5.9), respectively, i.e.,

(5.26a)

(5.26b)

Similar recurrences, which, however, involve all regular FOPls on both diagonals,
have been given by Draux [6, pp. 394-398].

As in 2 we could state as corollaries the special results obtained for the cases
where the polynomials Wm satisfy a three-term recurrence and where the polynomials
^ and v

ej ej are expressed as linear combinations of these W,. At this point, the
formulation of these results is left to the reader, but in 6 we will give their matrix
formulation.

Theorem 5.3 allows us to construct recursively the sequence Pn Pn Pn P
Pn, that contains all essentially distinct regular FOPls on two adjacent diagonals.

}j=o and {Pn. }j=o inHowever, as is apparent from Fig. 3, each of the sequences {Pn. J^ yV

general does not contain all regular FOPls of the corresponding diagonal If nY > n,3
then Pn is also a regular element of the lower (v) diagonal, and if n+x > n + 1,
then zP_v is also a regular element of the upper (^) diagonal. To obtain two full

sequences of FOPls, we use additionally the definition (1.28):

(5.27a)

Then, clearly,

(5.28a)
(5.28b)

P(z) P(z) if nj
P,(z) v n^=zP_(z) ifnj <n< j+.

Equations (5.27) and (5.28) allow us to modify the recurrences (5.25) in several ways.
If the three-term recurrence (2.10) is assumed to hold, we have moreover

(5.29a) Pn+(z) (z w w ^ v- ^)Pn(z)- P,_(z), < n <_ 1,
n--n# tn-n, nj nj

(5.29b) w v < n < ^Pn+(z) (z an_nv)pn(z) #n_n. p_(z), nj nj+ 2.

Here, by (5.28), the terms zPn(z) and zP(z) on the right-hand side can be replaced
by zP(z) and P+(z), respectively:

P (z) +(5.30a) zPn(z) Pn+x (z) + ^n--n#
W( .a0b) + +

^<n_ V 1,nj nj

V<n A
n# n#+ 2.
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^(z)P,. (z) and ze(z)P’v (z), which ap-It is also worth noting that the terms ej
pear in (5.25) and are only nonzero if h > 1 and h > 1, respectively, are, according
to (5.28), equal to e/(z)P’.(z) and e(z)Pn.+l(z), respectively. In view of the def-

initions (5.27), the terms Wh._l(Z)Pn2(Z and Wh._l(Z)Pn.(z) can be written as

Pn.(z) and P’^ -1 (z), so that the recurrences (5.25) become

The notation Pn(0 indicates here and below that one can use either Pn or Pn’-
Finally, in view of the later application to the nongeneric BCG process, we give

the analog of Theorem 2.9. By an argument based on the orthogonality relations (5.5)
and (5.9), which is analogous to the one for establishing (2.22), and by using (5.27),
we obtain:

A A/V where ’_1 " "(’)(5.32a) oj j, j-1 [zY,,_lP-_V ), 5 O(P,yP,)
A(5.32b) O(eP,+kP,) O(P,+kP,y), k 1,...,hj 1;

v v (,) v p(,)

(v-- _), h(.32d) v v 1.

If (2.10) holds, we may insert Pn, and Pn’^ -1 into (5.32b) and (5.32d), according to
+1

(5.29). We may also use (5.28b), although, in contrast to the situation in 2, there is
no need to do that:

(5.32e) ^ Pn}’-2))C e PnA kPn^ (Pn. +k I

^k 1,..., hj 1,

k:l,...,hj -I.

THEOREM 5.4. The linear systems (5.24) and (5.17) for computing $he poly-
Vnomials ej, ejV and the constants can be replaced by the equivalent system

and , and of a ght lowerol
andtangular systems for the coecients of ej e. If (2.10) holds, we may replace

6. Matrix interpretations of stairce recurrences. In this section we give
a matrix formulation of Theorem 5.3 on the mixed three-term recurrences for block
stairce sequences of orthogonal polynomials. It is analogous to the mtrix for-
mulation in Theorem 3.1 for the diagonal three-term recurrence (Theorem 2.7 and
Corollry 2.8). Where block tridiagon] matrix H emerged there we first find
here two block digonl mtrices, Ev nd E, nd lower nd n upper block bidig-
onl mtrix, Fv and F, respectively. They give rise to two further block bidiagonl
matrices := F(E)-1 and := F(E)-I which turn out to be block LU
factors of H, but also block UL factors of another matrix H of the same structure,
which belong to the functional instead of to .
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Again, we assume in view of the later application to the BCG method that the
polynomial basis {Win} satisfies the three-term recurrence (2.10) whose matrix for-
mulation is given by (3.1)-(3.3). Then Theorem 5.3, the definitions (5.27), and the
relations (5.28) and (5.30) easily yield the following theorem.

THEOREM 6.1. Let {Pn} and {Pn} be the sequences of FOPls corresponding to
the functionals and (, respectively, uniquely specified by (5.27), where {Win} is
a sequence satisfying the three-term recurrence (2.10) (possibly with (wm wm O,
Vm N). Define the infinite row vectors

p := IF0, P1,...], p’ := [Pg, p;,...],

and, .for finite or infinite value of J^, the infinite matrices

(6.2) Ev :- block diag [E, E/,..., E^], E^ block diag [E, E,..., E^],
with square blocks E and E of order h + h 1 that .for j 0,..., J^ 1 are
given by

(6.3)

Here, I and I are the unit matrices of order h 1 and h 1, respectively, and
the row vectors

v v v T(6.4) ei := [e0,i, 1,i, , eVv-2jlhj
contain the coefficients of the polynomials

vhj --2

Wi(z)(6. 1 (z) ,3

i=O

A. A Aei [e0,i,Q,i,...,e _2,i]T

Ah --2

A

i--O

from Theorem 5.3, expressed in terms of the basis {Win}. If hî 1 or hi
v 1,

the rows and columns containing I and I, respectively, are missing in E and E.
If J^ < oc (and thus gv < oo also), then E^ :- I (the infinite unit matrix); if
jv j^ 1, E^ := I also, while, if jv j^, then E^ has the same structure as

Also define the infinite block bidiagonal matrices

(6.6)
F L F
L F L F

Fv:: L F F^:= L "’.

L^_ F^
v and ^ ^ v 1, whose upper left corner is thewith square blocks Fi Li of order hi + hi

^ Fv F^ J^(n, ni )-entry3 of and respectively, and which for j 0 1,..., 1 are

3 The entries in the upper left corner of Fv and F^ are considered as (0,0)-entries. The entries
^) entryin the subblocks are in this text identified by their indices in the full matrix, e.g., the (n, nj

v is the nthof FjV is the same as the (n, n) entry of Fv. Likewise, the nth row (column) of Fj
row (column) of Fv.
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given as follows: If h > 1 and h > 1,

v:=/l.":’ o o|,

whereas, if h- 1 and h > 1,

v [ OT
(6.75) Fj :-- v

and, if h > 1 and hy- 1,

(.c) F :=
1;’

which reduces even further to

^ "= / o ’:)" "r)’:’
L o o l,j

Iv v]^ c TLj :--
0 1T

L := 0T 1

V A(6.7d) Fj := [o’], Lj := [1],

if both h? 1 and h 1. If TW denotes the tridiagonal matrix of order m + 1 with
entries kW, and 1 in its (k + 1)th column, cf. (3.2), then the blocks F, F, L,
and I.,2 contain

If JV J^- I < cx,

(6.8e) F^ :-- TW, L^ :-- I,

while, if jv= j^ <

(6.8f)
TS^

F^ :-- lT
0 Ol [0T L^’= I^

0
I

0 O]
where c^ [1, 0, 0,...IT has infinitely many components.

A V A VThe off-diagonal blocks Fi and L are rank-one matrices of size (hj + hj -1) (h. + hr. 1) and (h. "- hV. 1i (h^ +h 1), respectively Each-has a sngle+ + j
V V A A A Aoott,, the (. ,. t. ofF d th (.

V V A A V A V1 of F which lies in the upper right corner of Lj. If j < J and h 1, hj 1, h, hj,
A V A Vh+l, hj+l > 1, then Fi and Lj have the structure

(6.9) F:= ( fx O
o o o’j

L/’: o /
o o_1
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(hi+1-1)(hi -1), l(h}/-1) v(hj+ 1) 1, respectively. If one or several of
these sizes are zero, the structure is again modified, but the nonzero entry of Ly is
always in the upper right corner; the one of Fn. is in the first column if h. 1, in3 3

hy 1, hy_ 1.
jv j^ 1 < cx, F^ O; and if jv j^ < o, F^ has the same structure as
in (6.9), but the last block column is infinitely wide.

In terms of the above-defined quantities, the mixed recurrences (5.25) for the se-
quences {P,. } and {Py } can be written as

(6.10a) p(z)E^ p’(z)F^,
(6.10b) zp’(z)Ev p(z)Fv.

v ^ v ^ denote the principal submatrices of order n + 1 ofLikewise, if E[nl, E[nl, F[nl, F
EV, E^,Fv, and F^, respectively, and if

(6.11) pn := Po P Pn p := P P P
then we have

(6.12a)
(6.125)

pn(z)En p(z)Fn],

zpn(z)En]- pn(z)Fn + [0,... ,O, Pn+(z)].

Remarks. (i) Ev and E^ are unit upper triangular and block diagonal, and the
same holds for their inverses, which have the blocks

^ onlydiffering from Ey and E by the missing minus sign in front of e} and ej
(ii) Fv is unit upper Hessenberg, and F^ is unit upper triangular.
(iii) If h h 1 (Vj), Ev and E^ are the infinite unit matrix, and Fv and F^

are lower and upper bidiagonal,

(6 14) FV 1 / F^
1 ""

By using (6.13), we can readily turn the relations (6.10) into formally explicit
formulas for p and p, which, however, are used in an implicit way as recurrences for
the elements of p and p, respectively, appearing on the right-hand side.

COROLLARY 6.2. Under the assumptions of Theorem 6.1, there holds

(6.15a) p(z) p’(z) G^
and

(6.15b) zp’(z) p(z) Gv,
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where

(6.16a) Gv Fv (EV)-1

G
L Gvl

:= L G

and

(6.16b) G^ F^(E^)-1 ::

have the same o-diagonal blocks as Fv and F^. The diagonal blocks G and G,
j O, 1,..., g^-1, are defined as follows: If h > 1 and h > 1,

V’=IlA-T ’oT 0 /’ G’:-- )’ T)(6.17a) Gj
l 0 1}/7’

whereas, if h 1 and h > 1,

v A cj Tj A(6.17b) G := v v G :=
Ij ej 0 1T Lj;

if h/ > 1 and hy 1,

v T f v ^ I e(6.17c) Gj :-
1T 0 F, G := 0T 1

and, if both h 1 and h 1,

V V(6.17d1 Gj := [7] F, A AGj := [1] L.
If JV =jA-l < oo,

(6.17e) G^ :=F^ =TW, G^ ::L^ =I,

while, if jv= j^ <

(6.17f) G^ "= F^ :=
TS^

O

Note that the two relations (6.15) are just the recurrences (5.30) and (5.31) ex-
pressed in matrix notation.
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TABLE 1
Computation of H from (v and G^ by equating the elements ol It with those

vn +1
V+lnj
V+lnj
V+lnj

A Vq_ 1nj+ n
A V

n.+l nj q- 1

n+l n + 1
A V

nj+ nj + 1

A
n:i+l
^nj+l

v
nj+ + 1

n)+ + 1
vn+ + 1

V Ahi_ hj
>1 >I
--I >I
>I =I

=1 --I

>1 >I
=I >I
>I --I

=1 =I

vhj
>1

>1

>1

>1
=1

=1

=1

=1

a+l +1
ej

v v
ej
v v

7. Matrix relations between diagonal and staircase recurrences: The
nongeneric qd algorithm. From the two relations (6.15) we can eliminate either p
or p to obtain

(7.1a) zp(z) p(z)GVG^
and

(7.1b) zp’(z) p’(z)OAOv.
However, these are--in matrix notation--just the recurrences for the FOPls Pn and
those for the FOPls Pn Therefore, they must be identical to (3.11), which describes
this recurrence for Pn, and with the corresponding relation for the set {P}, respec-
tively. This leads to the following result.

THEOREM 7.1. Under the assumptions of Theorem 6.1 let H and H be the block
tridiagonal matrices from (3.6) that describe, according to (3.11), the recurrences for
the FOPls {Pn} and {Pn}, respectively, that correspond to the linear functionals
and . Then H has the block LU factorization

(7.2a) H GvG^,

and H has the block UL factorization

(7.2b) H’ GAGv,
where Gv and G^ are the block bidiagonal matrices defined by (6.16)-(6.17) and (6.9).
The resulting relation between the entries ofGv, G^, and H or H are listed in Tables



34 MARTIN H. GUTKNECHT

TABLE 2
Computation of I-I from Gv and G^ by equating the elements of I-I with those o.f GAGv.

A V Ah# h# h#+ ni_

^>I >I >1
1 >1 >1 v

n#_
^>1 =I >I

=I =I >I n_
A>I >I =i

1 >1 1 v
#--I

>1 =I =I
=1 =1 =1 v

n#-i

ni n+

v

v

^ v
n# n#

^ v
n# =n#

n+2
A Vnj+l nj+l
A V

A V+l V
B#+I B# B#+I

+ 1
v A A

n#+ n#+ n#+2
v A

n#+ n#+ n#+2
V A V+l A
#+i #+1 # n#+2
v A V+l A

n#+ n#+ n# n#+2

h hy hl h
v>1 >1 >1
v=1 >1 >1
v>1 =1 >1 h#

=I =I >I
>I >I =I

v=1 >1 =1

>I =I =i
v=1 =1 =1

denote the sequences of the indices of the regular FOPls out1 and 2. There n and n
of {Pn} and {Pn}, respectively; the entries of H’ are also distinguished by a prime
from those of H. The functions f# and f are defined by

A

(7.3a) aj(e’, o) := The_1

-I

V

(7.3b) a(e, ):= The_1
e# +
-1

Remark. In the case Wm(z)= zm, the definitions (7.3) reduce to

^, v.
ej ej

Proof. We have already derived (7.2), so it remains to relate the entries of H and
H to those of GV and GA. For this we need to compute explicitly the elements of the
products GvGA and GAGv. The tk is complicated by the fact that the structure
of the blocks depends on the quantities h# and h being larger than or equal to 1.

Let us start with the off-diagonal blocks of the products. First, the (j + 1,j)-
A V V respectively. Theblocks of GvGA and GAGv are LG L and G#+IL# L#,
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(j- 1, 1)-blocks are G_1F and FG, and their structure depends on the value of
h.v and h., respectively Since F. has only one nonzero entry, namely, the (nv.

1, nV’)3-- 3 3 3-- 3
entry ; of G^, only the nth column ofG and the nth row of G matter.
(Columns and rows of the blocks of Gv and G^ are here again numbered according

vv th column of Gj_ contains 1 as itsto their indices in the whole matrix.) The nj_
V V V V A V V(n_ + 1 z) entry if > 1, and as its 1.n_ h_

_
(nj_, nj_l) entry if h_

Consequently,

F ],,n 9
j--i 0

and

(7.5b)

if (m, n) v v }(n_ + 1, n if hY
otherwise 3--1 > 1

^ {v[G_IFj ]m,n j-lj
0

v
if hi_zv =1if (m, n) (n_l, nj

otherwise

v_ 1) entry if A VThe nYth row of G contains 1 as its (n, nj hj > 1, and j as its

(n, n+ 1) entry if h 1, so that

A if (m,n)= (nL1 n A[F# vG ], J if hj > 1
0 otherwise

(7.6b) A v 9j j[F G ]m,
if (m, n) v ^(nj_l, 1) ^nj+ if h 1.
otherwise

V A V A A VThe diagonal blocks of GVGA and GAGv are GG + L_IFj and GG +
Fj+ILv. Here we obtain

v A hvLj_IFj -O if -1>1,

(7.7b) [L_lF]m,n v}if (re, n) (n,nj) if hY 1
otherwise 3-1

A V hAFj+ILj O if j+l > 1,

(7.8b) A V {[Fj+ILj ]m,n 0

Furthermore, if h > 1 and h > 1,

(7.9a)

if (m,n)=(ny ^ --I) } ^otherwise
’nj+l if h.+l 1.

CC

..AAT OT + =j j

V AT Tc lj

0T Ily

v VT

0T

v .VIVTTj +

v vTj ej

Tj ej
v ^ | I.ATGG A

hj-
V

Cj
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ifh--landh/>1,

[V

if h2 > 1 and h7 1,

v ^

and, if h2 h 1,

V VTT’ / e lj

V V V V ]cj j -F Tj ej

Ev --2,j

%v%^ %^%
To relate the entries of H and H’ with those of GVG^ and G^Gv, we need to
associate the blocks Ai, Bi, Ci of H and the blocks A, B, C of H with those of
GvG^ and G^Gv, respectively. However, depending on h and h being equal to
or greater than 1, a diagonal block

A V A V A(7.10a) H := GG + Lj_F
of order h + h 1 of GvG^ H and such a block

V A V A V(7.10b) H := GG + Fj+L
of G^Gv H’ corresponds either to a single block A or A or to a 2 2 block
matrix

[Ai Bi+I] or [ A-I B](7.11) Ci Ai+I C;_ A;

respectively. Likewise, the off-diagonal blocks may correspond to a 1 1, 1 2, 2 1,
or 2 2 block matrix.

The indices of the regular elements of the sequences {Pn} and {Pn} are now
denoted by ni and n, respectively, while {n} C_ {hi} and {n/} C_ {n} still denote
the index subsequences of the regular elements in the generalized staircase. Since the
upper left corners of Ai and v ^Gj Gj are at (n, n) and (n, n), the association of
the blocks is based on the identification ni n. Likewise, the upper left corner of

V VAi at (n,, n,) corresponds to the (nj, nj) element ^ vof G G, hence we have n’ n.V
From (7.3)-(7.9) we can then read off the associations listed in Tables 1 and 2.

Tables 1 and 2 describe the structure and the entries of the products H GvG^
and H’ G^Gv in terms of the entries of Gv and G^. Next, we are interested in
inverting these two operations, i.e., in computing the lower block bidiagonal matrix
Gv and the upper block bidiagonal matrix G^, either from H or from H. Of course,
Gv and G^ are required to have the structure specified by (6.16) and (6.17). While
H GvG^ is a block LU decomposition, H’ G^Gv is a (not so often encountered)
block UL decomposition. Theoretically, in view of

(7.12) (H’)- (Gv)-I(G^)-1

the latter could be obtained via a block LU decomposition of (H’)-1 followed by the
inversion of the factors, but we can directly determine the block UL decomposition

Tjej +ff ^ v= T +GG e lj
^-2,j 1T 0
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with ease. From Theorem 7.1 we know that these two block decompositions exist, but
it is not yet clear how the sizes of the blocks of Gv and G^ can be determined from
those in H or from those in H’.

In the jth step of the block LU decomposition, H GVG^, the block pivot
element is obtained by subtracting L#v_IF from a diagonal block H of H of the
appropriate size. It must then be split into GG:

A V A V A(7.13) H# Lj_IFj {gj Gj.

However, given H structured according to (3.6)-(3.10), we do not know a priori the
sizes of these diagonal blocks, since they may correspond to a single block A or to
a 2 2 block matrix given on the left-hand side of (7.11). (This is also the reason
for calling these blocks H and not H#; the block sizes are the same as in G^ and
Gv.) But any block pivot has to be nonsingular, and from this requirement we can
determine the correct size of the block H. Any tentative 1 1 block pivot is either
a 1 x 1 matrix obtained by updating [0,] or a unit upper Hessenberg matrix. The
latter is a companion matrix if we assume for the moment that Win(z) zm. Hence
it is nonsingular if and only if the element in its upper right corner is nonzero. Thus,
identifying n n, we then have H := A if and only if c0, minus the (n, n+l- I)

v 1 (cf. Tableelement of L_IF does not vanish, i.e., in view of (7.7) and n n+l-
i), if and only if

~Y V(7.14a) qoj := co,i # 0 in case hi_ > 1,
~V A V(7.14b) o# := a0,i o# # 0 in case hi_ 1.

^ #i/_ if v 1 (cf. Table 1), and that this quantity can beNote that hi-1
computed at this moment. Moreover, in the case of a 1 x 1 block pivot, i.e., when

v 5. Hence, (7.14) means(7.14) holds, we conclude from Table 1 and (7.4) that
V Vthat we test whether the tentative value # ofj does not vanish. This value does not

depend on the basis {Win} chosen, as long as this basis consists of monic polynomials,
v is the coefficient of a regular FOP1 in one of our mixed three-term recurrencesince

formulas (5.25). Therefore, in the general case, we can replace (7.14) by a test for
the nonvanishing of the tentative value of, which can be found by inversion of the
function fj, cf. Table 1.

If the test fails, we end up with a 2 x 2 block pivot,

(7.15) H# Ci Ai+l
A V Acf. (7.11), for which the unit Hessenberg matrix Hj L#_IFj is always nonsingular,

since #i+1 0, while the (n, n+2 1)-element of LJ F# is always zero because
nj < Hi+2

The matrices Gv and G^ can thus be built up by successive determination of
the sizes of the block pivots and simultaneous computation of the entries by using
the formulas of Table 1. The result is summarized in the following theorem and in
Table 3.

THEOREM 7.2. Given H, one can compute the block LU factorization H GvG^
by a Gauss block elimination process. In step j, where the upper left corner of the

V h is at (n, n) (Hi, Hi) the block H of H is defined byblock pivot H Lj_1Fj
identifying it with either the 1 x 1 block Ai or the 2 2 block (7.15) (hence the size

of the block pivot is either hi or hi + hi+), depending on whether the tentative value
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v entrees e#, qa# ,e#, andi of v given in Table 3 is nonzero or zero. The relevant v v ^
of and 12,^ are then obtained according to Table 3. There the functions fi

and ’ are together the inverse of fi# defined in (7.3a); they are computed as follows:
Partition the matrix T_ and the vector a according to

(7.16) Th-1 S t ai

then set

(7.17a) a(ai) :-- s-l(a -- t),
A T A(7.17b) w# (hi)’= a + T S ft# (hi).

The process starts at j i 0 with n no, qo :- 0, Lv-IF O. (hv_l does not
matter.)

Remark. In the case where Win(z) zm, the definitions (7.17) reduce to

(7.18a) fi(a/) "= a Jh-la,
(7.18b) w(a4) := a

TABLE 3
Formulas for the block LU factorization H GvG^.

v hi -v A vh#_ o# n# n#
> 1 > 1 w(ai)- 0 ni ni+l- 1

A 0 ni ni+l 11 > 1 w(ai) a#
> 1 1 ao,i 0 ni ni ni+l 1

1 1 oto,i--99 0 ni ni ni+l 1

> 1 > 1 w(ai) : 0 ni ni+l 1

1 > 1 to#(ai) . 0 ni ni+l 1

> 1 1 ao,i - 0 ni ni ni+l 1

1 1 ao,i--qO y 0 ni ni ni+l 1

A
n#+l
niT2

hi+2

niT2

ni+l

ni+l

v hi -V A V A A V Vhi_ ## h# h# e# ## e#
A> 1 > 1 0 hi hi+l - 1 fl# (hi) fi ai+l #iT
A1 > 1 0 hi hi+l + 1 j (ai) i/_ T1

> 1 1 0 hi hi+l W 1 i ai+l i+1
1 1 0 hi hi+l+ 1 i/-1 ai+l i+1

A>1 > 1 0 hi 1 #(ai) i 0
A V -V#/_

>1 =1 o h 1
-V=1 =1 o h I_

For the block UL decomposition H G^Gv we must likewise find a diagonal
^ v is nonsingular and can beblock H of H’ of appropriate size, so that

split into

(7.19) V_FA Lv A v
#+1 # G#G#
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In the case Win(z) zm any tentative 1 x 1 block pivot is again either a 1 x 1 matrix
or a companion matrix. The condition for it to be nonsingular is now that a’ minus0,i

n’ 1)-element of Fj+ILj nthe , n+l, ^ v does not vanish; i.e., in view of (7.8), njV
and n+1’ nj+lA (cf. Table 2) if and only if

(7.20a)
(7.20b)

a’ hA0,0incase j+l>l,
a, A hA0,-j+l0incase j+l--1.

However, A
j+l is not known at this moment. But we can apply a different argument.

and assume that the elements of Gv and GA have already beenLet n :- n
A Vdetermined up to the (n 1)th column. Then h, e, and are known, and hj

From Table 2 we see that o is determined byis equal to the dimension h of ai.
A Moreover, by analogy to (7.17) and (7.18) there are functions t andand

inverting t; the first one yields e if h > 1.
Next, let us first assume that h > 1 and consider

(7.21) ~A (w(a;) in case h > 1,
)+ :-

(’0,i in case hV 1

Aas a tentative value for A. If nonvanishing, we let it be the true value of j+3+
and set h.A-+ :-- 1 (e+l is then void). Otherwise, Ah+ > 1, hence v

j-bl :--

e)+l "--i+1, ’j+l .--/’i+1.
If h 1, we instead let

v v in caseh >1,(7.22) ~A wj (a) oj
j-}-I :--" QI V

0,i- In case h 1,

be the tentative value for A
0j+1. The rest of the step is the same as before.

To complete the definition of the procedure we have to describe its start. At this
point we must note that although the functional (I) is uniquely determined by (I), the
converse is not true, since (I) depends on (I)(1) l, while (I) is independent of 1.
Hence, the set {Pn} of FOPls determined by (I) cannot be uniquely determined by
the set (P} corresponding to (I). Moreover, the value of Cz determines whether the
(l- 1, 0) and the (l, 0) Pad(! approximants of f(z) _, kzk belong to the same block
of the table or not. In fact, they do if and only if 0. (Recall that these Pad
approximants are polynomial interpolants.)

Therefore, given the recurrence formulas for (Pn} (i.e., given the matrix HI),
those for (Pn} and those for the mixed recurrence (i.e., the matrices H, Gv and GA)
are only determined after Cz has been specified.

According to (5.17a), satisfies

(7.23)

In the case h 1, where n := n := n 0 (i.e., i j 0), h :- h,n :--- ni
and where both e and are void, we obtain

(.24) / :--" ((ZWn_l)/l,
which for the monomial basis Wm(z) zm reduces to

(7.25) := Ct+nl/t.
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In the case h > 1, where n :-- n 0,n n (i.e., i 1,j 0), h :-

h + 1, h :--- h, we have e "= a (cf. (7.9a) and (7.9c) with (3.7)) and, from (7.23),

(7.26)

which for Win(z) zm reduces to

(7.27) "= Ct+/t+i.
In both cases e, e, and are obtained according to the general formulas in Table
4. Altogether we get the following analog of Theorem 7.2.

THEOREM 7.3. Given I-I and either 0 and Ct+nl or Ct 0, Ct+nl, and
Ct+%, we can compute the block UL factorization H G^Gv by the following pro-

v through n+l 1 of Gv and G^,cess. In step j, where we compute columns n
^ 1) isthe diagonal block H of H (containing rows and columns ni through Hi+

defined as either the 1 x 1 block H "= Ai or the 2 x 2 block

(7.28) Hi- C_ A
depending on whether the tentative value of 1 given in Table 4 is nonzero or
zero. The relevant entries e, ’, e’+l, an +1 -o+f (v and (^ are then obtained
according to Table 4. There the functions
defined in (7.3b); they are computed as follows: Partition the matrix T_ and the

according tovector a

(7.29) ’rh- =:
$ t ai =:

then

v S-(a + t),
T V.= +

The first step depends on the value (I)(1) (on which H’ does not depend,
while H does):

If O, then

(7.31a)
(7.31b) :=n0=0,

e8 is void, and is given by (7.24); e, e, 8 are then obtained from the general
formulas in Table 4, with i j O.

If O, then

(7.32a)
(7.32b)
(7. 2c)

h8:=h)+l, h:=h,
--0r n nl 2n := no n :=

e :-- a,
and is given by (7.26); e, e’, 8 are obtained from Table 4 by setting i 1,
j=0.
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TABLE 4
Formulas for the block UL factorization H’ G^Gv.

Starting from the recurrence coefficients for some sequence {Pn},__0 of FOPls,
say from {Pm0}nc__0, inductive application of Theorem 7.2 and of the H’ G^Gv

part of Theorem 7.1 allows us to compute the recurrence coefficients of any sequence
{Pml},__0, 1,2, These two theorems therefore define the progressive qd algo-
rithm, even for nongeneric situations. In the generic case, for which the algorithm
is due to Rutishauser [23], only the formulas for h# h hi h 1 (Vi, j) are
used, i.e., only those in the last rows of Tables 2 and 3. In this generic case the qd
table contains the recurrence coefficients for every diagonal sequence of FOPls, i.e.,
our coefficients (0,i (i 0, 1,...) and #i (i 1, 2,...) for every diagonal (1 0, 1,...).
The progressive qd algorithm allows us to build up the qd table from its main diag-
onal, where 0. (More generally, one can proceed downwards from any diagonal
or row.) Rutishauser had some heuristic rules for dealing with nongeneric situations,
namely, rules for filling the then appearing gaps in the qd table with zeros and oo
symbols. Draux [6] also formulated and established such rules. However, according to
the above result, we can define a qd table that is valid in every nongeneric situation
and contains as entries on its/th diagonal the nontrivial entries ai (i 0, 1,...) and
i (i 1, 2,...) of the matrix H for this I.

Likewise, starting from the recurrence coefficients of {Pn;0}n--0, inductive applica-
tion of Theorem 7.3 and of the H GvG^ part of Theorem 7.1 allows us to compute
those of any sequence {Pml}=0, -1,-2, In each step a new "moment" ,

-1,-2,..., has to be provided. Hence, we can proceed from the main (or any
other) diagonal upwards and to the right. For the generic case this process is well
known. We call this the backward qd algorithm.

The progressive qd algorithm enables us in particular to compute the moments
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(1 0, 1,...) from the coefficients ai (i 0, 1,...) and fli (i 1, 2,...) of the main
diagonal. Conversely, given the moments, the ordinary qd algorithm yields in the
generic case the recurrence coefficients on the main diagonal. This process is known
to be highly unstable. The same task can be done with the Chebyshev algorithm,
which is less likely to break down or to be unstable, since it requires only that all
FOPls Po;n on the main diagonal are regular. However, often the problem itself is
ill conditioned, and there is no chance for numerically stable computations. It has,
therefore, been proposed to replace the moments by modified moments if possible.
Golub and Gutknecht [9] have extended the corresponding modified Chebyshev algo-
rithm to the nongeneric case. The nongeneric Chebyshev algorithm is included there
as a special case.

The progressive and the backward qd algorithms are well known to have interest-
ing convergence properties. Basically, by proceeding downwards in the qd table we
obtain the poles of f, and by moving to the right we find its zeros, see, e.g., [3].

8. The nongeneric biconjugate gradient algorithm (BCG or BIOMIN)
and nongeneric BIODIR. The biconjugate gradient (BCG) algorithm is closely
related to the Lanczos biorthogonalization (BO) method. It can be traced back to
Lanczos [20], where it was introduced as "the complete algorithm for minimized itera-
tions." More than 20 years later, Fletcher [7] revived and popularized it. It generates
the same biorthogonal vector sequences {xn}, {Yn} characterized by (4.6)-(4.7), and
the same iterates {zn} satisfying (4.61) as the normalized BIOtES algorithm [11], but
additionally it generates two biconjugate vector sequences {u,} and {vn} taken from
the same nested sequences of Krylov spaces as {xn} and {Yn}:

(8.1a) un ](:n-l-1 :: span (xo, Axo, A2xo,..., A’xo),
(8.1b) v ( /:n+l :-- span (Yo, AHyo, (AH)2yo,..., (AH)nyo)

with

=0 if mn,(8.2) (Vm, flkUn)B 0 if m n.

This process can break down for various reasons, cf. [11]. From 4 we know
already that {Xn} and {Yn} satisfying (4.6.) and (4.7) may not exist and that a
suitable modification of the process can be based on the theory of formal orthogonal
polynomials. An argument analogous to the one given in 4 shows that if (8.1) and
(8.2) can be fulfilled for n- 0, 1,..., v- 1, then they are fulfilled by

(8.3) u P(A)x0r, v P’(A)y0r,
where the scale factors F’n and F’n are not necessarily the same as the factors Fn
and Fn in (4.14), and where Pn’ is the nth monic FOP1 with respect to the linear
functional (I)= (I)1 defined by

(8.4) ’(zk) :-- k4-1 :’-- <y0, Ak+Ix0>B.
(Recall that if (8.2) holds for all m < v and n < u, all the polynomials Pn’ (n < u) in
(8.3) are regular FOPls.)

In case of a breakdown, the formulas (8.3) point again to the correct generalization
of the process: un and vn must still have the same form, with P’ being an nth FOP1
for (I)’, even if it is not a regular FOP1; hence (8.2) does not hold for this n. The
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recurrences of 5 allow us to find a recursive algorithm for computing un and vn along
with xn and Yn, and the relations of 6 and 7 yield corresponding matrix results.

First we formulate the matrix algorithm that is based on a reinterpretation of
Theorems 5.3 and 5.4. Since it yields both a pair of biorthogonal and a pair of
biconjugate sequences, we call it, as in [11], the BOBC algorithm.

As an extension of (4.20a), for i, n E N we let

(8.5a)
(8.5b)

and

(8.6a)
(8.6b)

Recall that the mixed three-term recurrence relations (5.25) allow us to generate
}j=0 and {Pn’ }j=0 consisting of regular FOPls for and O’,the two sequences {Pn. J^ jv

respectively, and that two full sequences of FOPls for these two functionals are then
V A V A Vdefined by (5.27). If h := nj -n + 1 > 1 or hj := nj+ -nj > 1, some polynomials

on the two diagonals coincide or differ only by a factor of z, cf. (5.28); consequently,

(8.7a)
(8.75)

The polynomials Wm in (5.27) are for practicality again assumed to satisfy the three-
term recurrence (2.10), so that the recurrences (5.29) hold, which translate into

(8.8b)

(8.8c)

(8.8d)

Xn+l [Axn xnoIWn_n^]’/n+l,1 WXn--ln--"n+l,2’

n <_ n <_ n
Xn+l [Ax x w wnan_n_l]%+l,1 Xn_1n_n_1%+1,2,

V An < n n+z 2,

Un+l [Aun u w w
"+1-.-.2J%+1,1 U.-l._. ,2,

un+ [Aun u w w +a_j%+, u_,_ ,,
V<n A --2nj nj+

Of course, analogous formulas with the complex conjugate coefficients amW and/mW,
with the scale factors ,i and -7h, of (8.6) and with A replaced by 2kH hold for {Yn}
and {vn}, but from now on we only give those for {xn} and {un}. For simplicity we
refer to these analogous formulas as the conjugate recurrences, although /h,i-^ and %,i-v
need not be complex conjugate to -h,i^ and ,i.v

A V AIf e.v.,3 and Q,j denote the coefficients of the polynomials ej and ej, respectively,
(as is the case in (6.5)), the mixed three-term recurrence formulas (5.25) yield

(8.9a)
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when hJ > 1, cf. (5.27a) and (5.31a). In view of (5.27b), (5.29b), and (5.28b), when
h > 1,

(8.9b)
A V A

A
V A

XAj+I A[un+l-I")/+1 ,i un^+1-2"Chv.-2,j/n+1,2, Un+-3eh-3,J2+l,3
V A V

AU3e0’J2+l hVj X3J j+l ,hjV+h2_
A V V

(O.HC) AUn+I. 1+1,1_. XA+I hV-2,3 ._+l’nA ,1 XnA+1_2eh_3,3%+1.A ,2

v X
V

hV+h-1x+lSX,_,h.-1
$+ $+ $+

XA --2 ( + h--Z)nl,2 XA _3y A
+ +I --4,3ni+ ,3

V
X V+l0,jn+l hV X A

V
A ,h +h -1

(el. (.ab)). owever, whe h2 1, i.e., n n2, hen Wh;_() 1 and e () 0,
so hag instead of (8.9a) we simply obtain

A

A VLikewise, if h 1, i.e., nj+ nj + 1, (a.ab)-(a.ad) e replaced by

(8.90
+1

It remains to give formul for the index sequences {n2} and {n} and for the
coecients e, e, , and 4 ha appear in (8 9) first, according o (g.26) and

A V A V A V(.27), hj := nj nj + 1 d hj := nj+ nj e gven by. N+(8.10a) hj rain {k e (yn;,xn+-) 0},
v. N+ v,u+_) 0}(a.10b) h min {k e ;(

Second, equations for ghe mentioned coeNciens follow from Theorem g.4; we choose
io (.a)-(.a) and (.a2f) in order to work without v+l,..., vn2+-"
(8.11a) j h2,hv_xn-V,h (Yn2-1, AuL >B (Y,x, >B,

k

(8.11b)
s:l

k= 1,...,h
w c v v

j ,h-ln2+,-1,h-l <Yn no >B <Yn2+1-1, AUn>B
k

1,1n+--l,s ,U V+k>B
s:l

Vk= l,...,h -1.

again, (8.11a) and (8.11c) are single linear equations, hence explicit formula, for
respectively. Equations (8.11b) and (8.11d) are riangular systems for theand
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^ and v If^ and v in the representation (6.5) of the polynomials ej ej.coefficients s,
h 1, the system (8.11b) is void, and, if h 1, the system (8.11d) is void.

We now obtain the following algorithm.

ALGORITHM 4 (NONGENERIC BOBC ALGORITHM). Given a bounded linear
operator A 7-l --. 7-I and two initial vectors Xo, Yo E 7-/satisfying <yo,xo>B 0, set
Uo xo, vo := Yo, h := 1. Then construct sequences {xn}n=o,
and {vn}n__o according to the inductive process, which, .for j O, 1,..., consists of:

x ^ {Yn’ k=o and ^ defined by executing(i) /fh > 1, then{ nj+klk=l +k hj are

concurrently (8.8a), the corresponding conjugate recurrence for Yn’+k, and (8.10a);
jvif h oc, then J^ := j, "= j- 1; in particular, if xn. 0 or Yn. O, then

h o and xnj^+k 0 (Vk _> 0) or Yn.+k 0 (Vk _> 0), respectively, and the
algorithm terminates (in practice, xn^+k and Yn.+k are then not needed);

^ is given by (8.11a)(ii) once h has been determined, the nonzero constant
^--2

and, if h > 1, the coefficients {sd}sh=l are obtained by solving the triangular
linear system (8.11b);

(iii) depending on whether or not h > 1, unv. and v v are then given by (8.9a)
v v #O, set vor (8.9e) and the conjugate recurrence; if( n ,Aun,)B h :-- 1; otherwise

h > 1;

}h. h. v defined by(iv) /f h > 1, then {u’+k k=l Yn’+l, tY,.+kk=2 and hj are

(8.8d), (8.7b), the recurrence conjugate to (8.8b), and by (8.105); if h oc, then
jv := j^ := j; in particular, if un, 0 or v. O, then h oc "and xn,+k
0 (Vk _> 1) or Y,’+k 0 (Vk _> 1), respectively, and the algorithm terminates (in
practice, xn.+t and Yn’+k are then not needed);

v is given by (8.11c)(v) once h has been determined, the nonzero constant
v_2

and, if h > 1, the coefficients {sv,j}sh=l are obtained by solving the triangular
linear system (8.11d);

(vi) depending on whether h > 1 or not, xn^ and yn^ are either given by
(8.9b) and the conjugate recurrence to (8.9d) or by (8.9f) and its conjugate recurrence;

^ ^if v ^ un^ )B 0, set hj+1:=1, otherwise hj+1 >1

and r’ e ) which determine ^ v -^ -v
%,i, %,, %,, "F,i, %,, 9/,, 6/,i,

and 6/,i according to (8.5) and (8.6), can be chosen freely. (For the sake of simplicity,
we assume that F0 := F := F0 "= F := 1.)

As in Algorithm 1 (4) we could set F "= := := := 1 (n E N), which
would imply that ^ v -^ -v -,

%,i n, /n,i "n,i %,i /n,i ’,i %,i 1 (Vn, Vi),
but might lead to overflow or underflow.

Of course, Algorithm 4 also has a matrix interpretation, which is analogous to
the one for Algorithm 1 that was formulated in Theorem 4.2 of Part I.

THEOREM 8.1. Gather the vectors generated by Algorithm 4 into

(8.12a)
(8.12b)

X [X0, Xl, X2,..
u := [uo, u2,...],

Y "= [Yo, Yl, Y2,...],
V "= Iv0, Vl, Y2,...],

and the scale factors used into

(8.13a) r :- diag [Fo, F1, F2,...], r := diag [Fo, F1,F2,...],
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(8.13b) r’ := diag [r, rl, rl,...], ’ := diag [’, i, ’,...].

Let D^ and Dv be the block diagonal matrices

(8.14) D^ :-- (I)((p)Tp), Dv := (I)’((p’)Tp’)

expressing the .formal orthogonality of the two sequences of FOPls, and let

D :- D^r, D :- ’Dvr’

be corresponding diagonally scaled matrices,a Furthermore, using the block matrices
E^, Ev, F^, Fv, (^, and (v from 6, introduce the scaled matrices

(8.16a) E := (r’)-E^r, E? := (’)-E^r,
(8.16b) E := (r)-Evr’, E .= (’)--",
(8.16c) F := (r)-F^r, F .= ()-’F^r,
(8.16d) F := (r’)-r’, .= (t’)-t’,
(S.l) e := (r)-e^r’, e? := (’)--",
(a.fl eg := (r,l-e,,r, eg := (,,)-lvi,.

Then Algorithm 4 induces the relations

(8.17a) AUE XF, AHv- YF,
(8.17b) XE UF, YE V-,
which imply

(8.18a) AU XG, AHv YG,
(8.18b) X UGh, Y VG.
Moreover, if we write the infinite matrix with (m, n)-element (ym,X,)B formally as
yHx, and the one with (m, n)-element (vm, Aun)B as VHAU, then we have

(8.19) yHx D, VHAU- D.
Note that (8.9b) corresponds to (8.17a), while (8.9c) translates into the relation

(8.18a), which is equivalent to (8.17a).
From Algorithm 4 it is a small step to a nongeneric version of the BCG method,

which also goes under the names Lanczos/ORTHOMIN [16] and BIOMIN [11]. This
normalized nongeneric BIOMIN algorithm is a nearly straightforward application of
the above BOBC algorithm to the problem of solving a linear system of equations
Az b. As in the generic case [11], the basic strategy is to define a sequence
of approximants in such a way that the vectors x generated by Algorithm 4 are
the residuals, which means that FnPn is the nth residual polynomial. Consequently,
for the normalized algorithm we have to choose Fn := 1/Pn(O), thus producing a
breakdown whenever Pn (0) O. However, the latter equality holds whenever h > 1
and njV < n < nj+l,^ cf. (5.28b). This mirrors the fact that the restriction of A that

4 The solid overbar denotes complex conjugation.
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is implicitly constructed at this stage is singular, and, hence, the projected system
cannot be solved in general. Recall that the same difficulty occurred in the nongeneric
normalized BIOIES algorithm (Algorithm 2 of Part I). But here, the difficulty is easier
to recognize since it corresponds exactly to the case h > 1. It is also easier to
understand how to circumnavigate it.

By translating (8.9b) into a polynomial recurrence (i.e., by inserting (8.3) and
(4.14)) we see that

(8.20) PnJ’+, (0) Fn,+, -Pn’ (0) Fn v
^%+,+-,

so that normalization is inherited from Pn’. (0)Fn, to Pn.+, (0)Fn’+, i.e., from x%^
to x,^ simply by choosing

-i
A V A_ :--"(8.21) +i,+ V"

In contrast to Algorithm 2, only the iterates z A are considered as approximants,
and only the corresponding vectors x A are true residuals. (It is possible to modify
Algorithm 2 accordingly, thus avoiding the breakdown due to normalization. The
resulting version is, in fact, just the unnormalized Algorithm 3 with scale factors
which yield normalized iterates when n n.)

ALGORITHM 5 (NORMALIZED NONGENEIIIC BOBC ALGORITHM FOI LINEAR
SYSTEMS" NORMALIZED NONGENEIIC BIOMIN). For 8olvig iz b, choose
initial approximation zo, set u0 "= x0 := b- Azo, choose vo "= y0 with (y0, X0)B
O, and apply Algorithm 4 with the special choice (8.21) for the relative scale factors

^ v ^ n+l),"+l,a +-I (which determine F^+I while the other scale fctors F (n
’, , and may be chosen arbitrarily nonzero).

Additionally, compute ]or j 0, I,... the approximant z^ according o
5+1

(8.22) ^ =-[u^ ^ v ^_I+i,i UnA _2Vv_2,jAA+ ,2 UnA’.+ .+I .-{-- hj +’-3h-3’J’+, ’3

U v V A v]_l_Zn.A V
A v_l_h#,_ I.% 0,#0’.’+l,h# # /%+1,#

A

oio oJ Az b. Hoeer, iJ #+1
.found using those initial vectors (a case of incurable breakdown).

As an analogy to the generic case [11] and to Algorithm 3 of Part I, we also suggest
an unnormalized version of the nongeneric BIOMIN algorithm. It not only avoids the
danger of breakdown due to normalization (as our nongeneric normalized BIOMIN
algorithm does too), but allows to monitor independently the damping effect of the
Lanczos polynomials Pn and the often adverse effect of normalization at 0. In this
unnormalized version of BIOMIN we can choose all the scale factors In arbitrarily. We
keep track of them by evaluating a recurrence for Pn. :- Fn. Pn(0), which follows from

V(8.20). Note that Pn. 0 (Vj) in view of# 0 (Vj). In contrast to our unnormalized

nongeneric BIOIES algorithm of Part I (Algorithm 3), we restrict ourselves here to
this subsequence; thus there is now only a small difference between the normalized
and the unnormalized version.

ALGORITHM 6 (UNNORMALIZED NONGENERIC BOBC ALGORITHM FOR LINEAR
SYSTEMS" UNNORMALIZED NONGENERIC BIOMIN). For solving Az b choose an
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initial approximation Zo, set Uo := Xo := b- Azo, choose Vo := Yo with (yo, xO)B
O, and apply Algorithm 4 (with arbitrary nonzero scale factors Fn, Fn, n, and n)"
Additionally, compute recursively the vector sequence (zn } according to (8.22) and
the scalar sequence (Pn. } according to

V(8.23) p,+,^ - 7n.+,,hV +h.-Pn.

^ and xn 0 Then, n^ n and zn/p isThe algorithm terminates when n nj+1

^ n^ but xn O, the solution cannotthe solution of Az b. However, if n nj+l
be found using those initial vectors (a case of incurable breakdown).

By an induction argument we obtain the following theorem, which is analogous
to Theorem 4.6.

THEOREM 8.2. (i) In Algorithm 5 (normalized nongeneric BIOMIN) holds

x., =b-Azn, j=0,1,2,

(ii) In Algorithm 6 (unnormalized nongeneric BIOMIN) holds

x ^ =bpn. -Azn,, j=0,1,2,

Proof. Assume that (8.25) holds up to a certain j. Using the formulas (8.23),
(8.22), and (8.9b) of Algorithm 6 we get

bpn.+l
(8.26)

Hence, (8.25) follows by induction. In Algorithm 5, (8.21) guarantees that Pn., defined
by (8.23), is 1 for all j, so that (8.24) holds. D

Finally, we want to sketch the nongeneric generalization of yet another important
algorithm, namely, of BIODIR [11] (or Lanczos/ORTHODIR [16]). As in the generic
case [11], we first define a "biconjugation algorithm," which is nothing more than the
BO algorithm with the inner product (., .)BA instead of (., .)B. This algorithm can be
used to generate the sequences {un} and {vn} alone, without concurrently building
up {xn} and {y}.

ALGORITHM 7 (NONGENERIC "BICONJUGATION (BC) ALGORITHM"). Given a
bounded linear operator A 7-l --, TI and two initial vectors u0, v0 E 7-/ satisfying
(u0, Av0)B 0, apply the nongeneric BO algorithm (Algorithm 1) with the inner
product I., .)BA (instead of (., .)B) to produce the two vector sequences {u} and {v,}
with scale factors Fn and Fn and the matrix H containing the recurrence coefficients

and letof the corresponding FOPls. Denote the indices of the regular FOPls by ni,

h := ni+1 ni.

In view of their orthogonality properties, the resulting vector sequences are the
same as the sequences {un}, {Vn} generated by the BOBC algorithm (if the initial
vectors and the scale factors are the same). By applying half a step of the nongeneric
backward qd algorithm (specified by Theorem 7.3), we can find the factors G^ and
Gv of the relevant block UL decomposition of HI. Finally, we can apply formulas
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(8.9b) and (8.22) to compute the subsequences xn, and znJ’, and (8.23) to find the
appropriate scale factors for the normalization given below.

ALGORITHM 8 (NORMALIZED NONGENERIC BIODIR). For solving Az b,
choose an initial approximation Zo, set Uo :- xo := b- Azo, choose vo := Yo with
(yo, xo)B 0, and apply Algorithm 7 (with arbitrary nonzero scale factors Fn and
Fn) in order to produce the two vector sequences {un} and {vn} and the matrix I-I
of recurrence coefficients of the corresponding FOPls. Concurrently, compute block
by block the relevant block UL decomposition I-I’ G^Gx/ according to Theorem 7.3.
The initial moments required .for that are

=(x (vo,
(8.27) 0" _Y_,__0_B I :=

FoF0 FoFn_
Add t o  tt , j O, 1,... } } to
(S.9b) (8.22), (8.21).
the scale factors Fn, while Fn (n n) can be chosen arbitrarily nonzero.)

AThe algorithm terminates when n n+ and xn O. Then n^ n and zn is

^ n^, but O, the solution cannot be foundthe solution of Az b. If n n+ xn
using those initial vectors (a case of incurable breakdown).

This algorithm is normalized in the same sense as Algorithm 5; the residual
polynomials FnP, of the approximants z ^ are normalized to 1 at 0. Of course, wen
could try to replace the backward qd step by the solution of an extra triangular system
of equations similar to (8.11c) and (8.11d). But this would require computation of
both extra vectors and inner products.

Note that the breakdown conditions for the nongeneric versions of unnormalized
BIORES, normalized and unnormalized BIOMIN, and normalized BIODIR are all the
same. This is in contrast to the generic versions of these algorithms [11].

9. The treatment of near-breakdown for diagonal sequences. So far we
have assumed that we work with exact arithmetic and that, therefore, the regular
formal orthogonal polynomials (FOPls) are well defined, and the corresponding ele-
ments of the various vector sequences generated .by Lanczos-type algorithms can be
computed accurately. Index steps hj of size greater than 1 between regular FOPls
occur as a consequence of serious, but curable, breakdown. However, in practice exact
curable breakdown is very unlikely, but near-breakdown may occur as a consequence
of either n exact breakdown contaminated by roundoff or a very small Ijl. Any
such near-breakdown means that the recurrence coefficients c% and/+ are proba-
bly large nd numerically not well determined; then the subsequent FOPls and the
corresponding Krylov space vectors must be expected to be inaccurate.

Therefore, one must find a way to treat near-breakdowns. The simplest approach
would be to use exactly the same formulas as for the exact curable breakdown. This
would mean that we proceed implicitly with slightly modified data, but process them
in a stable way, instead of treating the original data in an instable way. However, in
this section we show that we can do even better. It is possible to treat near-breakdown
exactly and still fairly efficiently. If our previously defined algorithms are modified
accordingly, then, in exact arithmetic, those regular FOPls that are well conditioned
are obtained independently of the threshold used to define near-breakdown. The
same is true for the corresponding Krylov space vectors. (Of course, the number of
"well-conditioned" regular FOPls depends on the threshold.) Here we present only
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the polynomial formulation of these algorithms. Details of implementation for the
corresponding Lanzos-type algorithms are described in joint work with Freund and
Nachtigal [8]

In this section we treat ordinary, diagonal sequences of FOPls. Recall that
{nj}]=o denotes the index sequence of the regular FOPls Put for some functional, and that this sequence is characterized by

(9.13) (pPn#)-O (Vp E Pn#+l-2),
(9.1b) (zh#-lP#) =" O,

where hj :- n+l -nj, j 0,..., J- 1 (J _< o). This recursive definition of the
sequence (n} implies that for j < J the diagonal blocks

of the formal Gramian D in (3.23) and (8.14) are nonsingular. For the intermediate
values of n (i.e., for those satisfying nj < n < nj+l for some j) the FOPls are not
uniquely determined, and we made the particular choice (1.28) for these inner FOPls.

Now, we want to extract an index subsequence {nk}k=O~g C {n}]=o that marks
the well-conditioned regular FOPls P. Before we come to its recursive definition
we choose first, by analogy to (1.28), tentative inner FOPls for this subsequence:

(9.2) n(z) :- Wn_(z)P(z) if k _< n < k+l.
Here Wm is still a prescribed monic sequence, for example, one satisfying a three-term
recurrence (2.10). In the latter case the tentative inner polynomials 15n themselves are
obtained by a three-term recurrence. For simplicity, we could choose Win(z) zm,
although in practice this is often a rather inappropriate basis. To simplify formulas
we include in (9.2) n k, where I5n P is regular and thus not inner. Actually,
when computing the next well-conditioned regular FOP1 P+I, we also start from a
polynomial of the form (9.2), with n k+, which is then orthogonalized with respect
to the previous blocks. We assume here that for those FOPls this orthogonalization
process has already been carried out, so that (9.2) holds for k _< n < k+ instead
of for k < n _< k+l.

One is tempted to define the index steps k := fik+l --fik by analogy to (9.1) by

(9.3a) (pP) 0 (p e P-I),
(9.35) [(ziP2)[ _< (0 <_ i _< hk 2),

(9.3c) (zh-P2)--: k, [[ > e,

where e > 0 is some prescribed small constant. This would imply that
(9.4)

0 if fik _< n _< k+ 2 and m / n < 2.k,

(PmP) O(e) if k _< n _< k+l --2 and 2k

_
m + n

_< fik + k+ 2,
k+O(e) if fik<_n<_+--I and m+n=fik+k+--l.
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For example, if K 5 and 0 0, 1 1, 2 2, 3 5, 5 7, and if g,/if:, and
, are abbreviations for O(e), 5k + O(e), and O(1), respectively, the formal Gramian
of (lSn } is then of the form

(9.5) [(I) (iSmlSn)]re,n--0

g g ..
g g g

There are two serious problems with this approach: First, while the formal
Gramian D of the FOPls {Pn} is block diagonal, this is obviously no longer true
for the one of {15n }. Here, small O(e) elements can penetrate into several off-diagonal
blocks. As a consequence, it can be seen that the Hessenberg matrix of recurrence
coefficients for {15n} is no longer block tridiagonal; the formula for the regular FOP1

15+ may contain not only terms from the two previous blocks but even terms from
older ones. Hence, the major alvantage of the generic and the nongeneric Lanczos
algorithms is lost here. Second, hk and thus the sequence {ilk) is generally not appro-
priately defined. Since Ik] need not be much larger than e, ]: + O(e)l may be small
or may even vanish, and the diagonal blocks of the formal Gramian may be singular.

The second difficulty can be overcome if we transform the sequence, {15n}, by a
block orthogonalization process5 into a new formally block orthogonal sequence, {iSn },
whose formal Gramian is block diagonal. The index subsequence {ilk } is then defined
by requiring that the diagonal blocks

(9.6)

of this formal Gramian are not only nonsingular, but neither near-singular nor ill
conditioned:

(9.7) rmin(bk) > ’, ;(Ik)
__

;’.

The appropriate order of magnitude of e and of the upper bound ’ of the condition
number a depend on the functional (I). If the latter or the inner polynomials are
scaled such that (rmax(Ik) is a priori bounded, it suffices--at least in theory--to
make the first check. This is in accordance with the recommendation of Parlett
[21]. Note that also just in theory--the near-breakdown threshold e need not be
very small and the block size chosen need not be the minimal one satisfying (9.7).
Unfortunately, in practice, roundoff spoils the orthogonality and the determination of
the block size according to (9.7) may not work for large-scale systems. Therefore, a
different strategy has to be chosen in the implementation (see [8] for details).

5 Confer footnote 2 at the end of the introduction.
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However, as is seen from (9.5), the block orthogonalization process suggested
above also has the disadvantage that it may involve sums that contain elements from
several previous blocks, i.e., the upper triangular matrix describing this process is not
block bidiagonal, as one might have hoped. In fact, "long" recurrences may occur
here not only for some 15, but also for some inner 15n.

Things change if we build up the block orthogonal sequence {15n) directly by
orthogonalizing zihn with respect to previous blocks. In fact, by a standard argument
we are going to conclude that the Hessenberg matrix H of recurrence coefficients is
then block tridiagonal. The freedom of choice present in (9.2) is gained from the
possibility of adding any linear combination of polynomials that have already been
computed in the block under construction. (The coefficients in this linear combination
are the same as those in the recurrence (2.10).) Since this linear combination is alr_eady
orthogonal to all previous blocks, it has no effect on the off-diagonal blocks of I-I.

Let fi :-- 50,15,...] be the infinite row vector whose elements are the resulting
monic block orthogonalized polynomials 15n. Then the block diagonal formal Gramian
of these polynomials can be written as

(9.8)

(Recall that its diagonal blocks satisfy (9.7) by definition of {ilk}.)
Since the polynomials axe monic of ascending degree, they can certainly be gen-

erated by a recurrence that has the matrix form

(9.9) z)(z) )(z),
with I-I being unit upper Hessenberg. Consequently,

(9.10a) bI:I (I)(r)I:I (I)(rI:I) (I)(Tz)
(9.10b) (Tf)Tf)) I=IT(I)(T) i=iTb.

Since I=I is upper Hessenberg and is block diagonal, the left-hand side is upper
block Hessenberg and the right-hand side is lower block Hessenberg. Consequently,
both sides axe block tridiagonal, and multiplication by D-1 shows that the same is
true for H itself, i.e., by analogy to (3.6),

(9.11) I:t "=

In general the block structure is coarser here than in (3.6), but all block boundaries
in this matrix are also present in the matrix H of (3.6). In view of I:I being unit
upper Hessenberg, the blocks (k have again just a 1 in the upper right corner, and
the blocks Ak are either 1 x 1 or unit upper Hessenberg. It remains to investigate the
upper triangular part of Ak and the superdiagonal blocks Bk. Moreover, we have to
discuss how to determine the elements of these blocks.

The only condition we are imposing is that (ihn} be formally block orthogon_al,
i.e., (I)(T) ) is block diagonal. Splitting the row vector into blocks of size hk,
we set --[)0, 1,..., ()K)] to get

(9.12a) b}
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From the kth block column of (9.10a) we extract the three conditions

(9.12b)

(9.12d)

If k-1, I5, and k-1 are known, (9.12a)-(_9.12_c) allow us, if they are used column
by column and in parallel, to build up )k, Bk, Ak, and k, and to determine k+l
and i5+ Actually, except for its last column, Ak can be chosen as an arbitrary unit
upper Hessenberg matrix, hence we assume it given, except for the last column. For
example, each of the other columns may be zero except for a 1 on the subdiagonal.

First, since (I)(p}) 0T for all p E P_, only the last line of (9.12b) is nonzero:

(9.13a) )k k -lk’k

where

(9.13b)

Hence, Ik has rank 1. Once 15n is known for some n with (k _< n _< k+l 1),
column n of tk is obtained by solving a linear system with the coefficient matrix
k-1, which is no longer triangular, but has constant nonzero antidiagonal elements
and a small upper left triangular part.6 If n < k+l 1, the corresponding column
of Ak is prescribed, and thus 15n+1 can be computed _according to (9.9). Moreover,
the element n + 1 in the first row (i.e., row k + 1) of Dk can be evaluated explicitly
u_sing the definition (9.12a) of Dk. Once n + 1 k+l 1, the whole first column of
Dk is known, as is its first row, thanks to symmetry.

After splitting off the first row and column~ of Dk and the first row and the last
column of A, (9.12c) is seen to yield a set of h 1 triangular systems for compu_ting
the yet unknown elements of Dk. Then, by (9.12b), too, the last column k of Ak is
also found by solving a linear system with coefficient matrix k"

(9.14) )k k ( T(PkZP+I-)"

Finally, now that the last columns of k and Ik are known, the recurrence for the
next well-conditioned regular FOP1, i5+ is ready.

Due to the special structure of (k, the only part of k that matters in (9.12d)
is the first column. It is easy to see that for the elements in this first column (9.12d)
provides formulas that are mathematically equivalent to those from the definition
(9.12a) of k.

S_ummarizing, we see that on the basis of the relations (9.12) we can build up H
and D column by column.

One may wonder what can be said about the order of magnitude of the elements
of k and Bk if (9.3) holds for some << 1 and with I1 >> 1 (k’- k- 1, k). In

6 Column n of ]k refers to the part of column n of I=I that lies in Ik; rows and elements are
referred to in an analogous fashion.
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the notation of (9.5) we clearly have, for 0 _< k < K,

(9.15) Dk .."

(When K < c, the last diagonal block DK is infinite and consists of elements of
order O(e).) From (9.15) it is easy to conclude that

(9.16) -1

and, therefore, that

T(9.17) I
g g ,
g2 g2 g

g2 g2 g

where g2 :: O(2).
Actually, the order-of-magnitud_e statement in (9.17) can be seen~ to be a conse-

quence of the block diag_onality of~ D, the block tridiagonality of H, and the special
structure of the blocks Dk and Ck. Comparing superdiagonal blocks in the relation
(9.10), we get k- ]k (’-- ])k hence
(9.18)

Comparing (9.13), (9.17), and (9.18), we get the additional relation

(9.19) b" "= (I)(z:fi-i}k) ~lk4kT -1) (:a)k),

which is, indeed, a consequence of 15, (n _> k) being orthogonal to -1.
10. The treatment of near-breakdown for staircase sequences. In this

section we modify the ideas of the previous section in order to compute a block
staircase sequence of well-conditioned FOPls instead of a block diagonal sequence.

The aim is to determine two full sequences f) {i5}=0, ’ :- {Pn}n=0 of monic
polynomials (iSn and i5’n being of degree n) that are block orthogonal, well conditioned,
and block compatible in the following sense. There are two (finite or infinite) index

TAkKv ~V KA
K^ Kv cx)) satisfyingsequences t,k sk=0, {nk}k=o (with Kv <_ <_ + 1 <_

(10.1) _< (k 0,... ,KV), < +1 (k 0,... ,K^- 1)
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such that the following two conditions hold: First

(10.2a) (I)(/5,ihn)- 0 if m < _< n for some k

or m _< < n for some k,
(lO.2b) ~’ ~’(PmPn)= 0 if m < fi _< n for some k

orm<^ <nforsomek,k+l

which means that the two formal Gramians

(10.3) I^ (I)(T), bv :- (I)’(()’)T’)
are block diagonal, with blocks starting at the columns nk,~ ^ , -I- 1 (_ nk+1~^ and n~ v,
nk+l~^ (_ nk+l~v ), respectively. Second, for their diagonal blocks

,v l,,k%1_(10.4a) b := [(mn)lm,n=aC, DC+1/2 := [@(mPn)Jm,n=n+l,
fi+1--1 -! ],--I(lO.a ) := DL1/2 =

holds, by analogy to (9.7), (for some e > 0, ’ > 1)"

A and v may be void. They exist only ifNote that some of the blocks Dk/(1/2 Dk_(1/2
the respective index step

~A IT)A ~A ~Vis larger than 1. Then Dk/(1/2 lies in between D and Dk+l, and Dk_(1/2 lies
V Vin Dv between Dk_1 and Dk The blocks in (10.4a) have order h and h 1; those

in (10.45) have order and 1, respectively.
The recursive process for constructing these two sequences, like the one in 5,

alternates between the two sequences. The block structure generated in this way
in the corresponding analog of the Pad table (which is a "near-FOP1 table") still
resembles the one of Fig. 3, but at this point it is restricted to the two diagonals
specified by and / 1. A conflict arises because we require the four conditions
(10.ha)-(10.hd), although (10.ha) and (10.5c) would be enough to determine the two
index sequences {’} and {fi}. But it is important that ~’pa lies in the first row

of a block, and/5a+1 in the first column, as happens automatically in 5, cf. Fig. 3.
A andThis must now be enforced by a condition guaranteeing that the blocks Dk+(1/2

~VDk_(1/2) are nonsingular. In order that ~pa and P%+1~’^ be well-conditioned regular
FOPls, these blocks can be neither near-singular nor ill conditioned. Consequently,
on each diagonal the sizes of some blocks may turn out to be larger than when we
apply the algorithm of the previous section to the respective diagonal. But this is the
price we have to pay for a "compatible" block structure on the two diagonals, i.e.,
index sequences {}, {}, which together define the blocks on both diagonals.

Now we come to the details of the algorithm. Its basic pattern is as follows:
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(i) When n , (I)-orthogonalize zPn- with respect to :Pa,_ to get iSn; check

(10.5a) to determine whether D is just 1 1. If yes, set := n and proceed with
(iii).

(ii) If not, i.e., if "vnk > , then, for n nk + 1, nk + 2, ..., -orthogonalize
n- with respect to Pa_ to get Pn-, and set n := zPn-; check (10.5a) and

(10.5d) to determine whether D and Dk_(/2 are completed, in which ce nk := n.

(iii) When n n-Vk, -orthogonalize n with respect to Pa_ to get ; check

(10.5c) to determine whether nk+ : n and proceed with
(i).

(iv) If not, i.e., if nk+- > nk-v + 1, then, for n nk-v + 1, nk-v +2, -orthogonalize
z_ with respect to Pa to get Pn := n; check (10.5c) and (10.5b) to

determine whether and Dk_(/2 are completed, in which ce nn+ := n + 1.

Note that the choice n "= z_ in (ii) implies that n is -orthogonal to Pa_;
alogously, the choice -Pn := Pn is -orthogonal to Pa_.

By analo to the generality introduced in 9, one can modi n- and z_
(in (ii)), d -zpn_ and n (in (iv)) by ding a linear combination of polynomials
(of the other type) that have already been found in the respective substep.

Since the polynomials Pn) e not orthogonal to each other
within the blocks, the orthogonalization procedures called in the algorithm have to
me use of the inverses ()- (Dk+(/2))- (and v respec-
tively).

As is seen from this recipe, other complication that ises is that the analog of
(5.28) does not hold. We still have

(10.7a)
(10.Tb)
(10.7c)
(10.7d)

and we know that the left-hand sides are true when ^ < n in (a) ~vnk nk < n in (b) and
(c), and -^nk < n in (d), respectively; but, in general,

(10.8) (I)’(Zfi-ln) 0 and (I)(zaZn_l) 0.

Therefore, i5 needs to be (I)-orthogonalized with respect to za- or i5_ to get

~ Z
~/ ,v

Pn, likewise Pn- needs to be (I)-orthogonalized with respect to z or ~- vPn to get iSn.
In the recurrence formulas for p~’ (or 15n) the polynomials I5 (or iSm, respectively) of
the previous block appear, but not those from older blocks.

There are other, theoretically equivalent formulations for the algorithm. Our
version, which is truly sequential, suggests an implementation by recurrence formulas
that have the matrix form

(10.9) ^,

as in (6.15), with (^ unit upper triangular and (v unit upper Hessenberg. As in
(7.1), elimination of ) or , respectively, leads to

(10.10a) z(z) (z)I^, where I:I^ :-- dvd^,
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and

(lO.lOb) zf’(Z) ’(z)I=Iv, where I=Iv := d^(v.
Each of these equalities is of the same type as (9.9). But as we mentioned above, if we
apply the algorithm of 9 to (, the block structure of tt in (9.9) may turn out to be
finer than the one of I=I^ in (10.10a), because here we have the four conditions (10.5)
instead of the condition (9.7) determining the block sizes in (9.9). But we have also
pointed out that there is no need to choose in 9 the minimum block sizes satisfying
(9.7), and since each of the pairs (10.ha)-(10.hb) and (10.hc)-(10.hd) is equivalent to
(9.7) (applied to the two different functionals (I) and (I)’), each of (10.10a) and (_10.10b)
is, indeed, identical to a case of (9.9). From 9 it follows in particular that H^ and
I=I are block tridiagonal unit Hessenberg matrices. Therefore, (^ and (v are block
upper bidiagonal and block lower bidiagonal, respectively:
(10.11)

d^:= "..

analogous to (6.16). From (10.9) and our description of the algorithm, it is clear that
the blocks f have again just a 1 in their upper right corner, that the blocks
are itself unit upper Hessenberg, and that the blocks G are unit upper triangular.
Further results on the structure of the blocks can be obtained by mixing the approach
of 6 with the one of 9, but the details become somewhat tedious.

Conclusions. In the two parts of this paper we have reviewed the theory of for-
mal orthogonal polynomials (FOPs) of the first and second kind (FOPls and FOP2s,
respectively), and we have derived old and new recurrences for recursively constructing
certain sequences of such FOPs. From the beginning we dealt with the so-called non-
normal or nongeneric case, where some of the FOPs are not regular and the associated
Pad(! table has singular blocks. This led to "nong.eneric" algorithms for constructing
such FOPs. By translating these nongeneric algorithms into algorithms for sequences
of vectors in Krylov space, we found nongeneric versions of the Lanczos-type algo-
rithms BIORES, BIOMIN, and BIODIR. They can overcome most exact breakdowns of
the previously known standard versions of these algorithms. (The exception is the
so-called incurable breakdown.)

Finally, in 9 and 10, we addressed the near-breakdown and presented algorithms
for generating sequences of FOPls in a stable way. By translating these "look-ahead"
algorithms for constructing FOPls into algorithms for sequences of vectors in Krylov
space, we readily find stable look-ahead versions of BOIES, BIOMIN, and BIODIR.

Since the FOPls are denominators of Pad approximants, and since the numer-
ators of Pad approximants satisfy the same recurrences, with different initial condi-
tions, the algorithms given in this work can also be considered as algorithms for gen-
erating sequences of Pad approximants on either a diagonal or a generalized staircase
of the Pad table. The look-ahead versions can be expected to be stable, in contrast to
other algorithms [2], [4]-[6], [10] that have been proposed for nonnormal Pad tables
and the related partial realization problem of systems theory. Applications to the fast
solution of Hankel systems are also foreseeable.
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A BOTTOM-UP INDUCTIVE PROOF
OF THE SINGULAR VALUE DECOMPOSITION*
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Abstract. The singular value decomposition (SVD) has a long history. The first proofs of the
SVD for real square matrices came out of the study of bilinear forms, first by Beltrami in 1873 and,
independently, by Jordan in 1874. Beltrami recognized and used the relationship of the SVD to the
eigenvalue decomposition of the matrices ATA and AAT, while Jordan used an inductive argument
that constructs the SVD from the largest singular value and its associated singular vectors. Many
proofs of the SVD in modern references are still based on one of these methods. The purpose of this
note is to give a new simple "bottom-up" inductive proof of the SVD, starting from the smallest
singular value, which is essentially different from either of these methods.

Key words, singular value decomposition

AMS subject classifications. 15A18, 15A23

The singular value decomposition (SVD) has a long history, a detailed survey
of which is given in [6, pp. 134-144]. The first proofs of the SVD for real square
matrices came out of the study of bilinear forms, first by Beltrami in 1873 [2] and,
independently, by Jordan in 1874 [7]. Beltrami recognized and used the relationship
of the SVD to the matrices ATA and AAT. Jordan used an inductive argument
that constructs the SVD from the largest singular value and its associated singular
vectors. The first proof of the SVD for square complex matrices seems to be by
Autonne in 1915 [1] and, later in 1939, Eckart and Young [3] who dealt with the
rectangular complex case. Many proofs of the SVD in modern references either rely
on the eigenvalue decomposition of the positive semidefinite Hermitian matrices A*A
and AA* [5], [8]-[10] or use a "top-down" inductive argument similar to Jordan’s [4],

p.
The purpose of this note is to give a new simple "bottom-up" inductive proof of

the SVD, starting from the smallest singular value. One should note that this proof
is essentially different from the "top-down" one; there does not appear to be a direct
dual to the "top-down" proof. The QR decomposition is needed in our proof. The
proof is motivated by ideas from a paper by Stewart [11]. Our proof also shows that,
if the estimates of the smallest singular value and its associated right singular vector
were exact in each step, Stewart’s URV decomposition [11] renders the exact SVD.

In this paper, bold lowercase letters denote the column vectors, and []. [[2 is either
the Euclidean norm of a vector or the spectral norm of a matrix. The ith column of
an identity matrix is denoted by e.

LEMMA 1. For a square nonsingular complex matrix A one has

1
min IIAxll2-
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Proof. Since A is nonsingular, it is easy to see that

IIA-1112 max IIA-lxll2 max IlYlI2 1

xO IIx]12 yO IIAyll2
min

IIAylI2
yO IlYlI2

1
min IIAyll2

LEMMA 2. If R is an m x n upper triangular matrix with m > n, then

.for each diagonal entry rii of R.
Proof. If R is rank deficient, the stated bound is immediate since Rx 0 for

some Ilxl12 1, so we may assume that R has full column rank.
First note that for any entry aij of a complex matrix A,

The matrix R has the form [R1 0] with R1 invertible and (R-I) 1/r. Thus
[[R-1[[2 > [(R-l)ii[- [1/rii[, from which, by Lemma 1, the result follows since

min [[Rx[[2- min [[R1x[[2--

THEOREM 1. Each matrix A E Cmxn has an SVD. That is, there exist unitary
matrices

UECmxm and VECnxn

such that

U*AV diag(al, ,ap) E C"x’ p min{m, n},

where (r >_ (r2 >_ >_ rp >_ O.
If A E I:tmXn, then U and V may be taken to be real orthogonal matrices.

Proof. Assume that rn > n (otherwise, consider A*). Let x0 be a unit vector such
that IlAxoll2 minllxll2=l IlAxl[2, and set a "= [[Axoll2. Let V1 E Cnxn be a unitary
matrix whose last column is xo and let U1 Cmxm be a unitary matrix such that
U;(AV1) R--: [rij] is upper triangular (here we use the QR decomposition).

Since

IlRell2- IIUAVleII2 IIUAxoll2- IlAxoll2 ,
from Lemma 2 we have

2 2 gr2 [2Irln +’" + [rnnl < Irnn
aeit forand hence Irlnl 2 + + ]rn_l,nl2 0. It follows that Irnl a so that rn

some t. Now define the diagonal unitary matrix W1 := diag(1,..., 1, eit) Cnx and
observe that

A UIR(VIW1)* [R1 0]with R 0 a E Cmxn

0 0
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Since Ri E C(n-i)x(n-i) and ViWi is unitary, a straightforward inductive
argument proves that there exist unitary matrices U E Cmxm and V E Cnxn such
that

A=U
drn

V*. D
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PREDICTING STRUCTURE IN SPARSE MATRIX COMPUTATIONS*
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Abstract. Many sparse matrix algorithmsmfor example, solving a sparse system of linear
equationsnbegin by predicting the nonzero structure of the output of a matrix computation from
the nonzero structure of its input. This paper is a catalog of ways to predict nonzero structure. It
contains known results for some problems, including various matrix factorizations, and new results
for other problems, including some eigenvector computations.
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1. Introduction. A sparse matrix algorithm is an algorithm that performs a
matrix computation in such a way as to take advantage of the zero/nonzero structure
of the matrices involved. Usually this means not explicitly storing or manipulating
some or all of the zero elements; sometimes sparsity can also be exploited to work
on different parts of a matrix problem in parallel. Large sparse matrix computations
arise in structural design, geodetics, fluid dynamics, heat transport, semiconductor
modeling, circuit analysis, molecular dynamics, geophysical reservoir analysis, and
many other areas. It is common for problems to be so large that they could not be
solved at all without sparse techniques.

Many sparse matrix algorithms [6], [15]-[17], [21] have a phase that predicts the
nonzero structure of the solution from the nonzero structure of the problem, followed
by a phase that does the numerical computation in a static data structure. This saves
space, because the space used by the pointers in a dynamic data structure during the
first phase can be reused by the numeric values in the second phase. Also, in many
applications a sequence of problems with the same nonzero structure must be solved,
and the structural phase can be done just once. The structural phase may also be
used to schedule the numerical phase efficiently on a parallel machine [20], [29].

Structure prediction can be used to save time as well as space in sparse Gaussian
elimination. The asymptotically fastest algorithms used to compute the Cholesky
factorization of a symmetric positive definite matrix are those of the Yale Sparse
Matrix Package [12] and Sparspak [15], which predict the structure of the triangular
factor by a version of Theorem 4.3. Gilbert and Peierls [24] have used prediction
of the structure of the solution of a triangular system of equations to develop the
first algorithm that performs sparse LU factorization with partial pivoting in worst-
case time proportional to the number of real arithmetic operations. (This method of
prediction is a special case of Theorem 5.1.)

Graph theory is a useful language in which to state and prove the results of
structure prediction. One reason for this is that the structural effect of a matrix
computation often depends on path structure, which is easier to describe in terms of
graphs than in terms of matrices. Parter [33] was among the first to use graph theory
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as a tool to investigate sparse matrix computation; Fiedler [13] also pioneered many
of these ideas.

This paper is a catalog of the effects of several common matrix computations
on nonzero structure. It includes arithmetic, linear systems, various factorizations,
and some eigenvector problems. Where appropriate, it cites algorithms to compute
nonzero structure as well as theorems that describe it. Some of these results are not
new. The known results are scattered among papers on various topics in linear algebra
and algorithms that have been published in journals on numerical analysis, theoretical
computer science, operations research, and engineering. Here they are presented in a
common framework, together with a few new results.

Three or four different graph models are used for structure prediction. Undirected
graphs model symmetric matrices; directed graphs model unsymmetric matrices un-
der symmetric permutations; bipartite graphs model arbitrary rectangular matrices;
and column intersection graphs can sometimes be used to apply undirected graph
results to rectangular matrices. This paper describes results using all the models, but
concentrates most heavily on those that use directed graphs to model unsymmetric
matrices with nonzero diagonal elements.

Sections 3-6 contain the results of the paper: Roughly speaking, the results in

3 are immediate; those in 4 are known; most of those in 5 are consequences of
known results; and those in 6 are new. This paper is based on an earlier technical
report [19].

2. Definitions. We assume that the reader is familiar with such basic graph-
theoretic terms as directed graph, undirected graph, and path. Harary [26] is a good
general reference.

2.1. Directed graphs and matrix structures. Let A be an n x n matrix.
The structure of A is its directed graph

struct(A) G(A),

whose vertices are the integers 1,..., n and whose edges are

{ (i, j): i # j and Aj # 0}.

When no ambiguity can arise, we shall sometimes not distinguish between a matrix,
its graph, and the set of edges of its graph.

The graph G(A) does not specify whether the diagonal elements of A are zero or
not. In this paper we will use G(A) only for matrices with nonzero diagonal elements;
in the context of structure prediction, matrices with zero diagonal elements are more
usefully studied by means of their bipartite graphs, as described below.

Applying the same permutation to the columns and rows of A corresponds to
renumbering the vertices of the directed graph of A. In other words, if P is a permu-
tation matrix, then the directed graph of PAPT is isomorphic to the directed graph
of A. In general, if P and Q are different permutation matrices, then the directed
graph of PAQT is not isomorphic to that of A.

The structure of a vector x is

struct(x) {i: x - 0},

which can be interpreted as a set of vertices of the directed graph of any n x n matrix.
We will use the notation G1 c_ (2 to mean that graph G1 is a subgraph of

graph (2; that is, that both the edge and vertex sets of G are subsets of those of (2.
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2.2. Predicting structure in a computation. To say more precisely what
we mean by the structural effect of a computation, we make some remarks based on
those of Brayton, Gustavson, and Willoughby [3] and Edenbrandt [10]. Let f be a
function from one or more matrices or vectors to a matrix or vector. The structure
of A may not determine the structure of f(A); for example, in general the sum of two
full vectors is full, but (1, 1)T + (1,-1)T is not full. We wish to ignore zeros created
by coincidence in the numerical values of A and determine the smallest structure that
is "big enough" for the result of f with any input of the given structure. That is,
given f and struct(A), we want to determine

U(struct(f(B)) struct(B) C_ struct(A)}.
B

Brayton, Gustavson, and Willoughby called an algorithm "s-minimal" if it computes
this structure from struct(A). We sometimes call this a "one-at-a-time" structure
prediction, since each position in the predicted structure can be made nonzero, but
there is no guarantee that all can be made nonzero at the same time.

Most of the functions we consider in this paper have the property that for each
input structure S, there is a worst-case value A with struct(A) S such that
struct(B) C_ S implies struct(f(B)) c_ struct(f(A)). In other words, each input
structure corresponds to a unique maximal output structure. We sometimes call such
an analysis an "all-at-once" structure prediction.

A function for which there is no "all-at-once" structure prediction is f(A) U, the
upper triangular factor of A in Gaussian elimination with partial pivoting. Suppose
the structure of A is

(x )X X

X X

Depending on the relative magnitudes of the elements in the first column, the structure
of f(A) may be

X X X X or X X

X X X X

The smallest structure big enough for f(A) is a full upper triangular matrix, even
though f(A) cannot be full.

2.3. Graph terminology. Representing a matrix structure as a graph has the
advantage that it is easy to describe properties that depend on paths in the graph.
Here we define several graph notions that depend on path structure.

AThe notation i j means that there is an edge from i to j in G(A); that is, that

Aii 0. The notation i j means that there is a directed path from i to j in G(A).
ASuch a path may have length zero; that is, i == i always holds. The matrix A may

be omitted if it is clear from context.
Now let G(A) be a directed graph, and let x be a subset of the vertices of G. We

say x is closed (with respect to A) if there is no edge of G from a vertex not in x to
a vertex in x; that is, if x1 0 and Ai 0 imply x 0. The closure of x (with
respect to A) is the smallest closed set containing x,

closure(x) N( Y" x C_ y and y is closed},
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x x x
x x x

x x
X x x

x x
x x
x x x x

FIG. 1. A matrix and its directed graph, closure({5}) is outlined.

which is the set of vertices of A from which there are paths to vertices of x. Figure 1
shows a matrix and its graph, with closure({5}) outlined.

The transitive closure of A is the graph G*(A) whose edges correspond to paths
in A. Thus

i a*(-A) j ifandonlyif i j and i j.

The structural effect of Gaussian elimination can be described in terms of a subgraph
of G* (A) called the filled graph of A, which we write as G+ (A). This graph has edges
corresponding to paths whose highest-numbered vertices are their endpoints:

G+(A)
i ---. j if and only if i j and i j through vertices less than min(i, j).

Figure 2 is an example. Notice that the filled graph depends on the numbering of the
vertices of A, whereas the transitive closure and the closure of a vertex are preserved
under renumbering (that is, under graph isomorphism).

Remark 2.1. Rose [35] introduced the notation G*(A) for the filled graph of A,
but that notation is also widely used for transitive closure. Since we want to refer to
both transitive closures and filled graphs, we use G+ (A) for the "smaller" of the two.

A graph G is strongly connected if there is a path from every vertex to every other
vertex, or, equivalently, if G* is a complete directed graph. A square matrix A is called
irreducible if struct(A) is strongly connected. Clearly, for any permutation matrix P,
PAPT is irreducible if and only if A is. The strongly connected components (or just
strong components) of a graph G are its maximal strongly connected subgraphs. Every
vertex of a graph is in exactly one strong component, and every edge is in at most
one strong component. If a square matrix A is permuted into block triangular form
with as many diagonal blocks as possible, the diagonal blocks partition the rows and
columns of A into sets corresponding to the strong components of struct(A). Figure 3
shows the strong components of the graph in Fig. 1, with the vertices renumbered so
that the matrix has a diagonal block for each strong component.

A square matrix A is called fully indecomposable if struct(PAQT) is strongly con-
nected for all permutation matrices P and Q. Clearly, this is equivalent to struct(PA)
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FIG. 2. Filled graph of example from Fig. 1.

x x x
x x x

x x x
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FIG. 3. Matrix from Fig. 1 permuted to block triangular form. Strong components are outlined.

being strongly connected for all permutations P. As we will remark in the next sec-

tion, fully indecomposable matrices are the same as square strong Hall matrices.
If matrix A is symmetric, its directed graph contains edge (i, j) if and only if it

contains edge (j, i). Informally, we shall not distinguish between this graph and the
undirected graph of A, which has an undirected edge {i, j} if Aj 0. Chordal graphs
are undirected graphs that are useful for describing symmetric Gaussian elimination.
An undirected graph is chordal if every cycle of length at least 4 has a chord; that
is, if for every cycle vl, v2,..., vk, vl with k >_ 4 there is some edge {v, vj} for which
iCj+l (mod k).

2.4. Nonsquare matrices. This paper concentrates on structure prediction re-
sults that use directed graphs and that (for the most part) apply to square matrices
with nonzero diagonals. For completeness, however, we include some results on ma-
trices that need not be square, or that may have zero diagonal elements. Two other
graph models are appropriate in that case.

If A has m rows and n columns, then ATA is an n n symmetric matrix, whose
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diagonal is nonzero if A has no zero columns. Its structure is related to the column
intersection graph of A, which is the undirected graph Gn(A) whose vertices are the
integers 1,..., n (corresponding to the columns of A), and whose edges are

{ {i, j}" i j and 3k with Aki 0 and Akj 0}.

Thus Gn(A) has an edge between any pair of columns that share a nonzero row. This
implies that

G(ATA) c_ Gn(A),
with equality unless there is numerical cancellation in ATA. Permuting the rows of A
does not change the column intersection graph: if P is a row permutation matrix,
then Gn(PA) is the same as Go(A).

If A has m rows and n columns, the bipartite graph of A is the undirected graph
H(A) whose vertices are 1’, 2’,..., m’ and 1, 2,..., n, and whose edges are ((i’,j}"
Aij 0}. The superscript prime notation is intended to indicate that the row and
column vertices of H(A) are chosen from two different copies of the positive integers.
Permuting the rows and columns of A only relabels the vertices of the bipartite graph:
if P and Q are row and column permutation matrices, then H(PAQT) is isomorphic
to H(A).

Several structure prediction problems use matchings and alternating paths in the
bipartite graph of a matrix [4], [6], [7], [20], [23], [21], [32]. This paper does not
consider such problems in detail, but we include enough definitions here to state some
of these results in later sections.

Let A be an m n matrix with m _> n. We say that A has the Hall property
if, for every k with 0 _< k _< n, every set of k columns of A contains nonzeros in
at least k rows. (That is, every set of k column vertices of H(A) is adjacent to at
least k row vertices.) We say that A has the strong Hall property if, for every k with
0 < k < n, every set of k columns of A contains nonzeros in at least k / 1 rows. The
graph H(A) has a matching that covers all of its columns if and only if A has the Hall
property. A square matrix A with nonzero diagonal is irreducible if and only if H(A)
has the strong Hall property; an arbitrary square matrix A is fully indecomposable
if and only if H(A) has the strong Hall property. See Lovasz and Plummer [30] for
background on bipartite matching. Our terminology is from Coleman, Edenbrandt,
and Gilbert [4].

Incidentally, although permuting the rows and the columns of A independently
can change the directed graph of A, it does not change the row partition and the
column partition induced by the strong components of the graph of A. Another
way to say this is that, given a matrix A, if we first permute rows and columns
(asymmetrically) to make the diagonal elements nonzero, and then permute rows
and columns symmetrically to block triangular form with as many diagonal blocks as
possible, then regardless of the initial choice of nonzero diagonal we always get the
same block triangular form, up to possible permutation of the diagonal blocks and
reordering of the rows and columns within each block.

2.5. Other definitions. We will call a finite set {xl,... ,xn} of complex num-
bers algebraically independent if the point (xl,... ,xn) is not a zero of any nonzero
n-variable polynomial with integer coefficients. Then xi is transcendental over the
field Q(x,... ,xi_,xi+,... ,Xn) of the rationals extended by all the x’s except xi.
There exist arbitrarily large algebraically independent sets, even of real numbers, by
a simple countability argument.
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3. Products. The following simple result is used in the proof of Theorem 6.1.
The structure is the bipartite graph of the matrix in question.

THEOREM 3.1. Let the structures of an m n matrix A and an n-vector x be
given.

(i) Whatever values A and x have, struct(Ax) is a subset of the row vertices of
H(A) adjacent to column vertices whose indices are in struct(x).

(ii) There exits values .for the nonzeros of A and x such that struct(Ax) is equal
to the set of row vertices described above. D

The generalization to products of matrices is immediate, since each column of AB
is A times a column of B. Theorem 3.1 also implies that G(ATA) c_ Gn(A).

4. Factorizations. In this section we describe the structural effect of several
matrix factorizations. The necessary definitions are in 2.

4.1. LU factorization. For the factorization A LU, where L is lower trian-
gular with unit diagonal and U is upper triangular, we consider square matrices A
with nonzero diagonal, and the graph in question is the directed graph of A. The
square matrix L + U- I represents the entire factorization. (Not all nonsingular
matrices have LU factorizations without pivoting. In a later subsection we consider
factorization with partial pivoting.)

THEOREM 4.1 (see [36]). Let a structure G(A) be given, with nonzero diagonal
elements.

(i) /] values are chosen .for which A has an LU factorization as above, then
G(L / V I) c_ G+ (A).

(ii) Values for the nonzeros of A exist with G(L / V I) G+ (A).
Rose and Warjan [36] gave an algorithm for computing G+(A) from A in O(nm)

time, where A is n n with m nonzeros. They also showed that G*(A) can be
computed in time asymptotically the same as that to compute G+(A), so a faster
algorithm to compute G+(A) would give a faster algorithm to compute transitive
closures than the best currently known. By using various transitively reduced graphs,
Eisenstat, Gilbert, and Liu [11], [22] give algorithms to compute G+(A) that are more
efficient in practice than transitive closure.

Remark 4.2. A nonsingular square matrix may have an LU factorization even
though it has zeros on the diagonal. In this case, Theorem 4.1(i) still holds; but the
converse, part (ii), is false. Brayton, Gustavson, and Willoughby [3] gave a counterex-
ample. Let

X X X

struct(A) x
X X X

X X

The (4, 3) entry in G+(A) is nonzero, but La,3 0 regardless of the nonzero values
of A.

4.2. Cholesky factorization. Here we consider the factorization A LLT,
where A is a symmetric, positive definite matrix, and L is lower triangular with
positive diagonal. Then A has a nonzero diagonal because it is positive definite, and
the directed graph of A corresponds to an undirected graph because A is symmetric.

THEOREM 4.3 (see [37]). Let a symmetric structure G(A) be given, with nonzero
diagonal elements.
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(i) No matter what values A has, if A has a Cholesky factorization A LLT
then G(L) C_ G+(A).

(ii) There exist symmetric values for the nonzeros of A such that G(L + LT)
G+(A). D

Rose, Warjan, and Lueker [37] gave an O(n / f) algorithm to compute G+ (A) for
a symmetric n n matrix A with fill of size f. Another such algorithm is implemented
in several standard sparse matrix computation packages [12], [15].

Rose showed that the graphs of Cholesky factors of symmetric matrices are exactly
the chordal graphs; or, equivalently, that a structure can be reordered to have no fill
if and only if it is chordal.

THEOREM 4.4 (see [37]). Let a symmetric structure G(A) be given, with nonzero
diagonal elements.

(i) G+(A) is a chordal graph.
(ii) Conversely, if G(A) is a chordal graph, then there is a permutation matrix P

such that G+(PAPT) G(PApT). D
Rose, Warjan, and Lueker [37] and Warjan and Yannakakis [39] gave linear-time

algorithms to determine whether a G(A) is chordal and, if so, to reorder its vertices
so that G+(PAPT) G(PApT). Such a reordering is called a "perfect elimination
order."

4.3. Partial pivoting. The example in 2 showed that a result of the form of
Theorem 4.3 is not possible for LU factorization with partial pivoting, because no
single choice of nonzero values for A is guaranteed to produce nonzeros in all possible
positions of U. George and Ng [16] gave an upper bound. A few remarks are necessary
to understand the bound.

There are two ways to write the LU factorization, with partial pivoting, of a square
matrix A. One is as A PLU, where L is unit lower triangular, U is upper triangular,
and P is a permutation matrix. The other is as A P1L1P2L2...Pn-ILn-IU,
where Pi is a permutation that just transposes row i and a higher-numbered row,
and Li is a Gauss transform (a unit lower triangular matrix with nonzeros only in
column i). To get the first factorization, use the standard outer product form of
Gaussian elimination to replace A by its triangular factors, pivoting by interchanging
two rows of the matrix at the beginning of each major step; at major step k, each row
thus interchanged contains entries of L in the fist k- 1 positions and entries of the
partially factored A in the remaining positions. To get the second factorization, pivot
by interchanging, at the beginning of major step k, only columns k through n of the
two rows in question. In this case an entry of the lower triangle is never moved once
it is computed, and only the rows of the partially factored matrix are interchanged.

The factorizations are equivalent in the sense that the same arithmetic is per-
formed in each case, the two U’s are the same, and the values of the nonzeros in L- I
and ], l<i<n(Li- I) are the same; only the positions of the nonzeros in the lower

triangular factors are different. The George-Ng theorem describes the structures of ],
and U, saying that both of them are subsets of the structure of the symbolic Cholesky
factor of ATA, that is, of the filled graph of the column intersection graph of A.

THEOREM 4.5 (see [16]). Let a structure G(A) be given. Whatever values A has,
if Gaussian elimination with partial pivoting gives the factors and U as above, then
G(L + U)c_ G+(A).

The example in 2 showed that the converse of this theorem is not true. Various
partial converses hold, however. If we restrict ourselves to structures that are strong
Hall (fully indecomposable), which includes irreducible structures with nonzero diago-
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nals, then there is a "one-at-a-time" converse to Theorem 4.5 for the upper triangular
factor U:

THEOREM 4.6 (see [20]). Let a square strong Hall structure H(A) be given. For
G+(A)

any choice of i < j with i j, there is a choice of values .for A for which the
factorization with partial pivoting PA LU makes Uij O. D

The "all-at-once" version of this statement is not true even for irreducible matri-
ces. For example, take G(A) to be a tridiagonal matrix plus a full first column. Then
G(A) is irreducible (and strong Hall), and it is easy to see that G+(A) is full. As
Theorem 4.6 states, it is possible to choose values for A to make any single position
in U nonzero; however, the first row of U will always be some row of A, so the entire
first row of U cannot be nonzero at the same time.

For the lower triangular factor L, Theorem 4.5 is not as tight as possible, even
in the "one-at-a-time" sense for strong Hall structures. For example, let G(A) be
tridiagonal (and hence strong Hall). When^G+(A) is five-diagonal, predicting that
L could be lower tridiagonal; but, in fact, L must be lower bidiagonal. George and
Ng [17] suggest a way of predicting the structures of L and U by efficiently simulating
all possible pivoting steps. Gilbert and Ng [23] have recently shown that this method
(which we do not describe here in detail) gives a tight "one-at-a-time" prediction of
the structures of both L and U in the strong Hall case.

4.4. QR factorization. Suppose A is an m n matrix with m <_ n. Here we
consider the factorization A QR, where Q is an orthogonal matrix and R is upper
triangular with nonnegative diagonal. George and Heath observed that, since this R
is the same as the Cholesky factor of ATA, the structure of R can be predicted by
forming Gn(A) and doing structural Cholesky factorization.

THEOREM 4.7 (see [14]). Let the structure H(A) be given .for a rectangular matrix
A with at least as many rows as columns. Whatever values A has, ifA has full column
rank, then its orthogonal .factorization A QR satisfies G(R) c_ G+ (A).

The converse of this theorem is false; for example, if A is upper triangular with a
nonzero diagonal and a full first row, then Gn(A) G+(A) is full, but the orthogonal
factor R is equal to A. Coleman, Edenbrandt, and Gilbert supplied a converse in the
strong Hall case.

THEOREM 4.8 (see [4]). Let a structure H(A) be given with at least as many
rows as columns. If H(A) has the strong Hall property, then there exist values .for
the nonzeros of A such that G(R) G+ (A), where R is the orthogonal factor of A as
above.

Hare, Johnson, Olesky, and van den Driessche [27] gave a more complicated pre-
diction of the structure of both R and the orthogonal factor Q. They showed that
their prediction was tight in the "one-at-a-time" sense for all Hall structures, that is,
for all structures with full symbolic column rank. Pothen [34] then proved that the
prediction of Hare et al. was in fact tight in the "all-at-once" sense, thus finishing off
the problem for both Q and R in the Hall case.

George and Ng [18] studied another representation of the structure of the orthog-
onal factor Q in the case that A is square and has nonzero diagonal elements. They
showed that a suitable representation of Q has a structure that also satisfies Theo-
rem 4.7. Suppose A is reduced to upper triangular form by a sequence of Householder
transformations that zero the subdiagonal elements of the first column, then the sec-
ond column, and so on. The Householder transformation used to zero column j (for
1 <_ j < n) has the form Qj I-wjw, where wj is a column vector whose first j- 1
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entries are zero. The orthogonal factor Q T T T....Q1 Q2 Qn-1 is conveniently repre-
sented by the lower triangular matrix W whose columns are the wj. The George-Ng
result describes the structure of this triangular matrix.

THEOREM 4.9 (see [18]). Let a structure G(A) be given for a square matrix A
with nonzero diagonal elements. Whatever values A has, if its orthogonal factor is
represented by the matrix W described above, then G(W) c_ G+ (A). D

This result is useful because in practice it often suffices to represent the orthogonal
factor by the sequence of Householder vectors, and that representation is often sparser
than an explicit representation of Q. For example, consider a symmetric structure
whose graph G(A) is a square grid with n vertices, corresponding to the standard
five-point finite difference stencil on a k k mesh with n k2. The number of
nonzeros in A is (n). Take the numeric values of A to be algebraically independent.
It is straightforward to use the results cited above [18], [27] to show that a nested
dissection ordering of Gn(A) asymptotically minimizes the number of nonzeros in all
of Q, R, and W, and that for such an ordering the number of nonzeros in both R and
W is (n log n) while the number of nonzeros in Q is (n3/2). Thus in this model
problem W is a much more efficient way to store the orthogonal factor than Q.

5. Solutions of linear systems. In this section we determine the structure
of the solution x to the square system of linear equations Ax b. We solve the
related problem of determining the structure of A-. These results have not appeared
before in this form, but the upper bounds in Theorem 5.1 and Corollary 5.4 are
straightforward consequences of Tarjan’s work on elimination methods for solving
path problems in graphs [40] and are closely related to work done by Fiedler [13].
The proofs here are somewhat different.

The extremes of path structure in directed graphs are a strongly connected graph
(which corresponds to an irreducible matrix) and an acyclic graph (which corresponds
to a permutation of a triangular matrix). Some of these results become almost trivial
at the strongly connected extreme--for example, the inverse of an irreducible matrix
is full in the absence of coincidental cancellation. In solving general nonsingular
linear systems it is often advantageous to begin by partitioning the matrix into strong
components and then to factor only the irreducible blocks of the partition. This
approach is taken, for example, in the Duff and Reid MA28 code [9].

Curiously enough, the most important applications of the results in this section
are at the opposite extreme, for triangular systems. Structure prediction for sparse
triangular systems is used in efficient algorithms for LU factorization with partial
pivoting [24] and in parallel triangular solution [1].

Throughout this section A is an n n matrix with nonzero diagonal, and the
graph in question is the directed graph G(A).

THEOREM 5.1. Let the structures of A and b be given.
(i) Whatever the values of the nonzeros in A and b, if A is nonsingular then

struct(A-b) c_ closure(b).

(ii) There exist nonzero values .for which struct(A-b) closure(b). (In fact,
all the nonzeros in b can have the value 1.)

Proof. Part (i). Let values be given for which A is nonsingular. Renumber the
vertices of A so that closure(b) {1, 2,..., k} for some k _< n. Then Ax b can be
partitioned as
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where B is k k. By the definition of closure(b), there is no edge (i, j) with i
closure(b) and j E closure(b). Therefore C 0. Then Ez O. Since A is nonsingular
and C 0, matrix E is nonsingular. Therefore z 0. Thus struct(x) C_ {1,..., k}
closure(b).

Part (ii). Choose algebraically independent values for the nonzeros of A, and let
bi 1 if i E struct(b). Then A is nonsingular because det A is a nonzero polynomial
in the nonzeros of A. Let x A-lb. Renumber the vertices of A so that struct(x)
(1, 2,..., k} for some k _< n. Then Ax b can be partitioned as

where B is k k and all entries of y are nonzero. Consider row i of C. We have

(1) c,jyj
l<_j_k

Now B is nonsingular, since det B is a nonzero polynomial. By Cramer’s rule, By d
implies yj det(BI])/det B, where B] is B with column j replaced by d. Then (1)
implies

(2) Z c, det(B]]) e, det S 0.

This is a polynomial with rational coefficients in the entries of A, so it is the zero
polynomial. Now yj 0 implies that det(B]]) is not the zero polynomial, so cj must
be zero. Thus C 0. This implies that x () is closed. Furthermore, det B 0,
so (2) implies e, 0. Thus e 0, so b (0d) and struct(b) c_ struct(x) closure(x).
Therefore closure(b) C_ struct(x). With part (i), this gives closure(b)

Remark 5.2. The proof of part (i) never assumes that the "nonzero values" of
A are in fact different from zero. Thus we have the slightly stronger result that if
G() c_ G(A) and struct() C_ struct(b) and is nonsingular, then struct(-l)
closure(b).

Remark 5.3. It seems natural to conjecture in part (i) that if A is singular and
Ax b has a solution, then it has some solution with struct(x) C_ closure(b). Oddly
enough, this is false. Consider

2 2 0 1
and b

1A-
0 0 1 -1 0
0 0 1 -1 0

All solutions to Ax b are of the form (a,-a, 1, 1)T, none of which is a subset of
closure(b) (x, x, 0, 0)T.

COROLLARY 5.4. Let the structure G(A) be given.
(i) Whatever values A has, if A is nonsingular then G(A-) c_ G*(A).
(ii) Values exist for the nonzeros of A such that G(A-) G*(A).

Proof. Note that column j of G*(A) is closure(e(J)), where e() is the jth unit
vector. The corollary is immediate from Theorem 5.1, noting that part (ii) of the
theorem holds even if the right-hand-side entries are all zeros and ones.

Corollary 5.4 implies that if A is irreducible with nonzero diagonal, then A- is
full unless numerical coincidence occurs. Duff et al. [8] gave another proof of this
special case.
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The case where A is allowed to have zeros on the diagonal is a straightforward
extension. First, for A-1 to exist, H(A) must be Hall. That implies that a per-
mutation P exists for which PA has nonzero diagonal. Then the structure of the
solution to Ax b is the structure of A-ib (PA)-(Pb), which is the closure of
Pb with respect to the graph G(PA) by Theorem 5.1. The structure of A- can be
predicted similarly by permuting to nonzero diagonal, forming the transitive closure,
and permuting back. This also implies a slightly stronger version of the result of Duff
et al.: if nonsingular A is fully indecomposable, or, equivalently, strong Hall (with no
restriction on the diagonal), then A-1 is full unless numerical coincidence occurs.

The case where A is symmetric is simpler and less interesting, but the puzzling
examples such as the one in Remark 5.3 do not arise. If A is symmetric and its
graph is not connected, then A is block diagonal, and a linear system splits into a
separate problem for each block. If A is connected, then it is strongly connected and
the closure of every nonempty set is the whole graph. Then the upper bound in part
(i) of Theorem 5.1 is trivial, and values exist to achieve it.

THEOREM 5.5. Let a symmetric structure .for A be given along with a nonzero
structure .for b. If the structure .for A is connected (i. e., irreducible, or not block diago-
nal), then there exist symmetric values .for A such that struct(A-lb)
{1,2,... ,n}; that is, x is full. Also, in this case, A-1 is full.

Proof. The proof is almost identical to that of Theorem 5.1 (ii), so this is just a
sketch: Choose algebraically independent values for the lower triangle of A and make
the upper triangle symmetric. Then A is nonsingular. The polynomial in (2) does
not contain cj, so we can still conclude cj 0 from the fact that it occurs multiplied
by a nonzero polynomial. Therefore A-1b is closed. But if symmetric A is connected,
then it is strongly connected, so the only nonempty closed set is {1, 2,..., n}. D

6. Eigenvectors. In this section we determine the structure of the eigenvectors
of a square matrix A. The results in this section are new. We deal only with the case
of distinct eigenvalues. As described at the end of the section, the reason we cannot
handle multiple eigenvalues is related to Remark 5.3 above.

Throughout this section A is an n x n matrix with nonzero diagonal, and the
graph in question is the directed graph of A. Recall that e(i) is the ith unit vector
and closure(e(i)) is the structure of column i of the transitive closure of A.

THEOREM 6.1. Let the structure G(A) be given.
(i) Whatever the values of the nonzeros in A, if A has n distinct eigenval-

ues A,...,An, then the eigenvectors of A can be numbered u(),...,u(n) such that
struct(u(i)) c_ closure(e(i)).

(ii) There exist nonzero values .for which A has n distinct eigenvalues, and the
eigenvectors satisfy struct(u(i)) closure(e(i)).

Proof. Part (i). Let values be given for A. Renumber the vertices of A to put A
in block upper triangular form--that is, to put the strongly connected components of
A in topological order. Then A is partitioned as

where each Bj is square and strongly connected. Renumber the eigenvalues and eigen-
vectors in nondecreasing order of the highest-numbered nonzero in the eigenvector.
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(i (i-1) (i-1) (i-1)That is, if Uk k+l
(i) u O, then uk ’’k-.F1 Un O, for

l<i<n.
Consider some eigenvector u(i). Suppose its highest-numbered nonzero is in a row

that runs through block Bj. Then Au() ,kiu() is partitioned as

0 Bj G w =), w whereD= "..
0 0 H 0 0 0 Bj-1

etc.

Then Bjw Aiw with w 0, so Ai is an eigenvalue of Bj. In fact, each Ai is an
eigenvalue of one Bj, with j increasing as i increases. Since no Bj has more eigenvalues
than its dimension, we conclude by counting rows that row i and column i of A run
through Bj. Now Bj is strongly connected, so closure(e(i)) closure(Bj) (where
closure(Bj) denotes the closure of the set of vertices of Bj with respect to A).

We have Dv + Ew Air, so

(D )iI)v Ew.

Since the eigenvalues of A are simple, Ai is not an eigenvalue of D and D- AiI is
nonsingular. Thus, by Theorem 5.1,

struct(v) C_ closure(Ew).

Now if D is m m and B is t t, struct(w) C_ {m + 1,m + 2,...,m + t and
struct(Ew) C_ (1 <_ k <_ m’ak 0 for some/ E struct(w)} by Theorem 3.1, so
struct(Ew) c_ closure(w) (closure still with respect to A) and struct(v) c_ closure(w).
Therefore, struct(u(i)) --struct(v)U struct(w) C_ closure(w). Since w c_ B, this
implies that struct(u(i)) c_ closure(Bj) closure(e(i)).

Part (ii). Choose algebraically independent values for A, choosing the diagonal
elements so far apart that no two are closer than 2 max ’iCj laijl. By Gerschgorin’s
theorem [25], this guarantees that there are n distinct, simple eigenvalues. (It would
be more elegant to conclude that the eigenvalues are simple from the algebraic inde-
pendence of the elements, but I do not know how to prove it.)

First we will show that each eigenvector is closed. Let u be an eigenvector with
Au As. Renumber the vertices of A so that.struct(u) (1, 2,..., t} for some t <_ n.
Then Au- Au can be partitioned as

C E 0 0

where B is t t and vk 0 for 1 _< k <_ t. We will show C 0. Intuitively, it seems
clear that if C 0, then v cannot be both an eigenvector of B and a null vector of
C. A field-theoretic argument makes this intuition precise.

Since Bv Av and the diagonal elements of B are far enough apart that their
Gerschgorin discs do not overlap, A is in the Gerschgorin disc of exactly one bkk.
Renumber vertices 1 through t so that bkk is b11. Choose v such that vl 1. Then
Bv- Av partitions into

b11
g

1 1

/T ) V2 V2

B
)

vt vt
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where f and g are t- 1-vectors. Now we have

(B’- AI)
t

By Gerschgorin’s theorem, A is not an eigenvalue of B’, so B’-AI is nonsingular and

det(B’ AI)I-g for 2

_
k

_
t.(4) Vk det(B’- AI)

Now we fix i and j and show that cij 0 (for 1 _< i _< n- t and 1 _< j _< t).
Let F be the field obtained by adjoining to Q (the rationals) all the nonzeros of

B and all the nonzeros of row i of C except cij. Now Fix] is the ring of one-variable
polynomials with coefficients in F, and F(A) is the field obtained by adjoining A to F.
We know A is a zero of a nonzero polynomial in F[x], namely, det(B- xI). Therefore,
A is algebraic over F, so every element of F(A) is a zero of some nonzero polynomial

Since Cv--O, we have

E cikvk O.
l<k<t

All the vk are nonzero, so

By (4), each vk is a rational function of A and elements of F, so v} e F(A). Each
cik with k j is in F. Therefore, the whole right-hand side of (5) is in F(A), so

c E F(A). This means that cj is a zero of a nonzero polynomial in Fix]. But if c
is nonzero, then cij was chosen to be transcendental over F. Thus cij 0; and, since
i and j were arbitrary, C -0.

Recalling the partition of A in (3), C 0 implies that the eigenvector u () is
closed.

Now all the eigenvectors of A are closed. Renumber the eigenvectors so that Ai
is in the Gerschgorin disc of ai. The argument following (3) shows that Ai is in

a Gerschgorin disc whose index j corresponds to a nonzero u) of u(0; since Ai is

in only one disc, this means ui) 0. Therefore, struct(e(0) c_ struct(u(0). Since
u(i) is closed, closure(e(i)) c_ struct(u(0). Part (i) gives the opposite containment, so
struct(u(0) closure(e()). [:]

COROLLARY 6.2. Let the structure of A be given.
(i) No matter what nonzero values A has, ifA has only simple eigenvalues, then

its eigenvectors can be ordered so that the matrix U whose columns are the eigenvectors
has G(U) c_ G*(A).

(ii) There exist values for the nonzeros of A such that the eigenvectors can be
ordered so that G(U) G*(A).

Proof. Similar to Corollary 5.4. D
Remark 6.3. It is natural to conjecture that if A has multiple eigenvalues, then

there is some choice of a maximal set of eigenvectors whose structure is a subset of the
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FIG. 4. Graph of counterexample in Remark 6.3.

transitive closure of A. Again, oddly, this is false. From the example in Remark 5.3
we can construct

3 1 0 1 -1 x x x x x
2 4 0 1 -1 x x x x x

A= 0 0 3 -1 0 so G*(A)= x x
0 0 1 1 0 x x
000 0 2 x

The graph of A is shown in Fig. 4. The characteristic equation of A is det(xI- A)
(x 2)4(x 5), so the eigenvalues are 2 and 5. The eigenspace of 5 is one-dimensional
and consists of multiples of (1, 2, 0, 0, 0)T, which comprise a column of the transitive
closure. However, the eigenspace of 2 is also one-dimensional and consists of multiples
of (0, 0, 1, 1, 1)T, which do not form a subset of any column of the transitive closure.

Mascarenhas [31] has recently extended Theorem 6.1 to the case where A has
multiple eigenvalues, provided that no two diagonal blocks of the block upper trian-
gular form of A share an eigenvalue. He has also proved a similar result for the more
general case where there are n linearly independent eigenvectors, that is, where each
eigenvalue has equal geometric and algebraic multiplicity.

For symmetric A, the situation for eigenvectors is the same as for symmetric linear
systems: If A is block diagonal, then each block is a separate problem; if A is not
block diagonal (i.e., A is irreducible or connected), then the upper bounds are both
trivial and tight.

THEOREM 6.4. Let a symmetric structure for A be given. If the structure is con-
nected, then there exist symmetric values for A such that A has n distinct eigenvalues,
and all its eigenvectors are full.

Proof. Just as in Theorem 5.5, the proof of Theorem 6.1 part (ii) goes through,
even if A is required to be symmetric. [:]

7. Remarks, applications, and open problems. We have described several
matrix computations in which the nonzero structure of the result of the computation
can be inferred, partly or completely, from the nonzero structure of the input to the
computation. The language of graph theory seems most appropriate to state these
results, primarily because path structure is most easily described in graph-theoretic
terms.

Matchings in bipartite graphs are important in several of the results of 4. Bipar-
tite matching theory plays a central role in two other structural problems that we have
not described here: finding the sparsest basis for the range space (McCormick [32])
and for the null space (Coleman and Pothen [5], [6], Gilbert and Heath [21]) of a rect-
angular matrix. It turns out that the structural range space problem can be solved
in polynomial time, but the null space problem is NP-complete.
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Several applications of structure prediction to solving systems of linear equations
were cited in 1. Some of the present work was motivated by Gilbert and Peierls’s use
of structure prediction for triangular linear systems as part of an efficient algorithm for
sparse LU factorization with partial pivoting [24]. Another application of structure
prediction for triangular systems is in a practical problem in reservoir analysis. Here
a finite-element model of an underground reservoir of hot water (to be tapped for
power and heating for the city of Reykjavl"k) requires the solution of hundreds of
positive definite linear systems with the same coefficient matrix. All the systems have
very sparse right-hand sides, and, in addition, only a few of the unknown values are
required for each system. Sigur0sson [38] has used structure prediction with a simpler
version of Theorem 5.1 to speed up the Sparspak triangular solver for this problem.

We have been concerned exclusively with predicting nonzero structure in this
paper. A related question is: Given a matrix and a matrix function, which entries of
the matrix are unchanged in value by application of the function? Barrett, Johnson,
Olesky, and van den Driessche [2], [28] have given such characterizations for functions
including LU factorization and Schur complement.

A few open problems in structure prediction, some of which have already been
mentioned, are as follows. Is it possible to give a tight bound on the nonzero struc-
tures of the factors in Gaussian elimination with partial pivoting (4)? What can be
said about solutions to singular linear systems in light of the counterexample in 5?
What can be said about eigenvector structures for matrices with multiple eigenvalues
([31, 6])? What can be said about the structure of the singular value decomposition
(SVD) of a rectangular matrix [25]? The relationship between the singular values
of A and the eigenvalues of ATA, together with Theorem 6.4 on eigenvectors of sym-
metric matrices, suggests that the SVD of a connected matrix is always full (ignoring
numerical cancellation). This would certainly confirm the conventional wisdom that
there is no such thing as an SVD with sparse singular vectors.

Acknowledgments. My thanks to Tom Coleman, Anders Edenbrandt, Mike
Heath, Joseph Liu, Esmond Ng, Ragnar Sigur0sson, and Sven Sigur0sson for inter-
esting and useful discussions of these problems. Earl Zmijewski gave this paper a
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publication.
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CIRCULANT PRECONDITIONED TOEPLITZ LEAST SQUARES
ITERATIONS*
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Abstract. The authors consider the solution of least squares problems min lib- Txll2 by the
preconditioned conjugate gradient method, for m-by-n complex Toeplitz matrices T of rank n. A
circulant preconditioner C is derived using the T. Chan optimal preconditioner on n-by-n Toeplitz row
blocks of T. For Toeplitz T that are generated by 2r-periodic continuous complex-valued functions
without any zeros, the authors prove that the singular values of the preconditioned matrix TC-1 are
clustered around 1, for sufficiently large n. The paper shows that if the condition number of T is of
O(na), a > 0, then the least squares conjugate gradient method converges in at most O(cda log n+ 1)
steps. Since each iteration requires only O(m log n) operations using the Fast Fourier Transform, it
follows that the total complexity of the algorithm is then only O(am log2 n+m log n). Conditions for
superlinear convergence are given and regularization techniques leading to superlinear convergence
for least squares computations with ill-conditioned Toeplitz matrices arising from inverse problems
are derived. Numerical examples are provided illustrating the effectiveness of the authors’ methods.

Key words, least squares, Toeplitz matrix, circulant matrix, preconditioned conjugate gradi-
ents, regularization
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1. Introduction. The conjugate gradient (CG) method is an iterative method
for solving Hermitian positive definite systems Ax b (see, for instance, Golub and
Van Loan [21]). When A is a rectangular m-by-n matrix of rank n, one can still use
the CG algorithm to find the solution to the least squares problem

(1) min

This can be done by applying the algorithm to the normal equations in factored form,

(2) A*(b- Ax) O,

which can be solved by conjugate gradients without explicitly forming the matrix A*A
(see Bjorck [7]).

The convergence of the CG algorithm and its variations depends on the singular
values of the data matrix A (see Axelsson [5]). If the singular values cluster around a
fixed point, convergence will be rapid. Thus, to make the algorithm a useful iterative
method, one usually preconditions the system. The preconditioned conjugate gradient
(PCG) algorithm then solves (1) by transforming the problem with a preconditioner
M, applying the CG method to the transformed problem, and then transforming
back. More precisely, one can use the CG method to solve

min lib AM-ylI2,

Received by the editors December 2, 1991; accepted for publication May 27, 1992.
Department of Mathematics, University of Hong Kong, Hong Kong (rchanCuxmail.ust .hk).
Institute for Mathematics and Its Applications, University of Minnesota, Minneapolis, Min-

nesota 55455 (nagy@cygnus .math. smu. edu).
Department of Mathematics and Computer Science, Wake Forest University, P. O. Box 7388,

Winston-Salem, North Carolina 27109 (plemmonsCdeacon.mthcsc.wfu.edu). The paper was com-
pleted while this author was visiting the Institute for Mathematics and Its Applications, University
of Minnesota, Minneapolis, Minnesota 55455. The research of this author was supported by United
States Air Force grant AFOSR-91-0163.

8O



TOEPLITZ LEAST SQUARES ITERATIONS 81

and then set x-- M-ly.
In this paper we consider the least squares problem (1), with the data matrix

A T, where T is a rectangular m-by-n Toeplitz matrix of rank n. The matrix
T (tjk) is said to be Toeplitz if tjk tj-k, i.e., T is constant along its diagonals.
An n-by-n matrix C is said to be circulant if it is Toeplitz and its diagonals cj satisfy
cn-j c_j for 0 < j _< n- 1. Toeplitz least squares problems occur in a variety of
applications, especially in signal and image processing. (See Andrews and Hunt [3],
Jain [24], and Oppenheim and Schafer [28].)

Recall that the solution to the least squares problem

(3) min lib Tx]12

can be found by the PCG method by applying the method to the normal equations (2)
in factored form, that is, using T and T* without forming T*T. The preconditioner
M considered in this paper is given by an n-by-n circulant matrix M C, where
C*C is then a circulant matrix that approximates T*T.

The version of the PCG algorithm we use is given in [7] and can be stated as
follows.

Algorithm PC(] for Least Squares. Let x() be an initial approximation to
Tx b, and let C be a given preconditioner. This algorithm computes the least
squares solution, x, to Tx- b.
r() b- Tx()
p(O) s(O) C-.T.r(O)

2

for k- 0,1,2,...
q(k) TC-lp(k)

x(k-l) x(k) -- OlkC-lp(k)r(k+l) r(k) okq(k)
s(k+l) C-.T.r(k+)

,),+/’
p(k+l) S(k+l) + kp(k)

The idea of using the PCG method with circulant preconditioners for solving
square positive definite Toeplitz systems was first proposed by Strang [30], although
the application of circulant approximations to Toeplitz matrices has been used for
some time in image processing, e.g., in [6]. The convergence rate of the method was
analyzed by R. Chan and Strang [9] for Toeplitz matrices that are generated by posi-
tive Wiener class functions. Since then, considerable research has been done in finding
other good circulant preconditioners or extending the class of generating functions for
which the method is effective. (See W. Chan [17], R. Chan [10], Tyrtyshnikov [32],
Wismenetsky [31], Huckle [23], Ku and Kuo [25], R. Chan and Yeung [13], W. Chan
and Olkin [18], R. Chan and Jin [12], and R. Chan and Yeung [14].)

Recently, the idea of using circulant preconditioners has been extended to non-
Hermitian square Toeplitz systems by R. Chan and Yeung [15] and to Toeplitz least
squares problems by Nagy [26] and by Nagy and Plemmons [27]. The main aims of this
paper are to formalize and establish convergence results and to provide applications
in the case where T is a rectangular Toeplitz (block) matrix.
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For the purpose of constructing the preconditioner, we will see that by extending
the Toeplitz structure of the matrix T and, if necessary, padding zeros to the bottom
left-hand side, we may assume without loss of generality that m kn for some positive
integer k. This padding is only for convenience in constructing the preconditioner and
does not alter the original least squares problem. In the material to follow, we consider
the case where k is a constant independent of n. More precisely, we consider in this
paper, kn-by-n matrices T of the form

(4) T

where each square block Tj is a Toeplitz matrix. Notice that if T itself is a rectangular
Toeplitz matrix, then each block Tj is necessarily Toeplitz.

Following [26], [27], for each block Tj, we construct a circulant approximation Cj.
Then our preconditioner is defined as a square circulant matrix C, such that

k

c*c c;c .
j----1

Notice that each Ci is an n-by-n circulant matrix. Hence they can all be diagonalized
by the Fourier matrix F, i.e.,

Cj FAiF*,

where Aj is diagonal (see Davis [191). Therefore, the spectrum of C, j 1,..., k,
can be computed in O(n log n) operations by using the Fast Fourier Transform (FFT).
Since

k

C*C F (A;Aj)F*,
j--1

C*C is also circulant and its spectrum can be computed in O(knlogn) operations.
Here we choose, as in [26], [27],

(5) C- F AAj F*.
j--1

The number of operations per iteration in Algorithm PCG for Least Squares
depends mainly on the work of computing the matrix-vector multiplications. In our
case, this amounts to computing products:

Ty, T’z, C-ly, C-*y

for some n-vectors y and m-vectors z. Since

--1/2

F’y,
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the products C-ly and C-*y can be found efficiently by using the FFT in O(n log n)
operations. For the products Ty and T*z, with T in block form with k n-by-n blocks
Tj, we have to compute n products of the form T:iw where T. is an n-by-.n Toeplitz
matrix and w is an n-vector. However, the product Tjw can be computed using the
FFT by first embedding Tj into a 2n-by-2n circulant matrix. The multiplication thus
requires O(2nlog(2n)) operations. It follows that the operations for computing Ty
and T*z are of the order O(m log n), where m nk. Thus we conclude that the cost
per iteration in the PCG method is of the order O(m log n).

As already mentioned in the beginning, the convergence rate of the method de-
pends on the distribution of the singular values of the matrix TC-, which are the
same as the square roots of the eigenvalues of the matrix (C*C)-I(T*T). We will
show, then, that if the generating functions of the blocks Tj are 2r-periodic con-
tinuous functions and if one of these functions has no zeros, then the spectrum of
(C*C)-I(T*T) will be clustered around 1, for sufficiently large n. We remark that
the class of 2r-periodic continuous functions contains the Wiener class of functions,
which in turn contains the class of rational functions considered in Ku and Kuo [25].

By using a standard error analysis of the CG method, we then show that if the
condition number (T) of T is of O(n), then the number of iterations required for
convergence, for sufficiently large n, is at most O((logn + 1), where a > 0. Since
the number of operations per iteration in the CG method is of O(m log n), the total
complexity of the algorithm is therefore of O(cm log2n + m log n). In the case in
which c 0, i.e., T is well conditioned, the method converges in O(1) steps. Hence
the complexity is reduced to just O(m log n) operations, for sufficiently large n. On
the other hand, the superfast direct algorithms by Ammar and Gragg [2] require
O(n log2 n) operations for n-by-n Toeplitz linear systems. The stability of fast direct
methods has been studied by Bunch [8].

The outline of the paper is as follows. In 2, we construct the circulant precon-
ditioners C for the Toeplitz least squares problem and study some of the spectral
properties of these preconditioners. In 3, we show that the iteration matrix TC-has singular values clustered around 1. In 4, we then establish the convergence rate
of the PCG method when applied to the preconditioned system, and indicate when
it is superlinear. In 5, we discuss the technique of regularization when the given
Toeplitz matrix T is ill conditioned. Numerical results and concluding remarks are
given in 6.

2. Properties of the circulant preconditioner. In this section, we consider
circulant preconditioners for least square problems and study their spectral properties.
We begin by recalling some results for square Toeplitz systems.

For simplicity, we denote by (2 the Banach space of all 2r-periodic continuous
complex-valued functions equipped with the supremum norm I1" Io. As already
mentioned in 1, this class of functions contains the Wiener class of functions. For all
f E C2, let

f(O)e-dO, k 0,+1,+2,ak -be the Fourier coefficients of f. Let A be the n-by-n complex Toeplitz matrix with
the (j, k)th entry given by aj-k. The function f is called the generating function of
the matrix A.

For a given n-by-n matrix A, we let C be the n-by-n circulant approximation of
A as defined in W. Chan [17], i.e., C is the minimizer of F(X) -IIA- XIIF over all
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circulant matrices X. For the special case where A is Toeplitz, the (j, g)th entry of C
is given by the diagonal cj_t where

(n--k)ak+kak_n
O<k<n,

ck rt
Cn_t_k 0 < -k < n.

The following three lemmas are proved in R. Chan and Yeung [15]. The first two
give the bounds of IAII2 and IICII2 and the last one shows that A- C has a clustered
spectrum for certain Toeplitz matrices A.

LEMMA 1. Let f E 2. Then we have

If, moreover, f has no zeros, i.e.,

min If(0)l > 0,
0e[-,]

then there exists a constant c > 0 such that .for all n sufficiently large, we have

(8) IIAII > a.

LEMMA 2. Let f Cur. Then we have

(9) IlCll2 21lfll < n 1,2,

If, moreover, f has no zeros, then for all sufficiently large n, we also have

(10) IIC-1112_<2

LEMMA 3. Let f C2. Then for all e > O, there exist N and M > O, such that
for all n > N,

A-C=U+V,

where

rank U < M

and

IIVII2 e.

Now let us consider the general least squares problem (3) where T is an m-by-n
matrix with m _> n. For the purpose of constructing the preconditioner, we assume
that m kn, without loss of generality, since otherwise the final block Tk can be
extended to an n n Toeplitz matrix by extending the diagonals and padding the lower
left part with zeros. (This modification is only for constructing the preconditioner.
The original least squares problem (3) is not changed.) Thus we can partition T as

(4), without loss of generality. We note that the solution to the least square problem
(3) can be obtained by solving the normal equations

T*Tx T* b,
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in factored form, where

k

T*T ZT]Tj.
j-1

Of course, one can avoid actually forming T*T for implementing the CG method for
the normal equations [7].

We will assume in the following that k is a constant independent of n and that
each square block Tj, j 1,... ,k is generated by a generating function fj in C2.
Following Nagy [26] and Nagy and Plemmons [27], we define a preconditioner for T
based upon preconditioners for the blocks Tj.

For each block Tj, let Cj be the corresponding T. Chan circulant preconditioner
as defined in (6). Then it is natural to consider the square circulant matrix

(11)
k

c*c c;c 
j--1

as a circulant approximation to T*T [27]. Note, however, that C is computed (or
applied) using (5). Clearly C is invertible if one of the Cj is. In fact, using Lemma 2,
we have the following lemma.

LEMMA 4. Let fj E 2 for j 1, 2,..., k. Then we have

k

(12) I[C[I - Ifl12 < , n 1, 2,
j----1

If, moreover, one of the fj (say, ft) has no zeros, then for all sufficiently large n, we
also have

(13) II(C*C)-ll
_

4

Proof. Equation (12) clearly follows from (11) and (9). To prove (13), we just
note that CCj are positive semidefinite matrices for all j 1,..., k; hence

,min(C*C)

_
min(CC),

where min(’) denotes the smallest eigenvalue. Thus by (10), we then have

1112II(c*c)-lll _< II(cc)-lll IIc/lll _< 4 .
3. Spectrum ofTC-. In this section, we show that the spectrum of the matrix

(C*C)-(T*T)
is clustered around 1. It will follow then, that the singular values of TC- are also
clustered around 1, since (C*C)-I(T*T) is similar to (TC-)*(TC-). We begin by
analyzing the spectrum of each block.

LEMMA 5. For 1 j k, if fj C2, then for all e > O, there exist Nj and
Mj > O, such that for all n > Nj,

T;T-C;C U + V,
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where Uj and V are Hermitian matrices with

rank Uj _< Mj

and

Proof. We first note that by Lemma 3, we have for all e > 0, there exist positive
integers Nj and Mj such that for all n > Nj,

where rank Uj _< M and ]lvll2 _< e. Therefore,

Here

and

T;(% C) + (T C)*C
T;(T C) (T C)*(T C) + (T C)*T

=_v + y.

It is clear that both U and V axe Hermitian matrices. Moreover, we have rank
Uj _< 2Mj and

By (7), we then have

Using the facts that

k

T*T- C*C E(TTj C]Cj)
j-1

and that k is independent of n, we immediately have the following lemma.
LEMMA 6. Let fj E 2, for j 1,..., k. Then for all e > O, there exist N and

M > O, such that for all n > N,

T*T-C*C=(]+r,
where and are Hermitian matrices with

(14) rank U _< M
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and

We now show that the spectrum of the preconditioned matrix

(C*C)-I(T*T)
is clustered around 1. We note that this is equivalent to showing that the spectrum
of (C*C)-I(T*T)- I, where I is the n-by-n identity matrix, is clustered around zero.

THEOREM 1. Let fj E C2 for all j 1,..., k. If one of the fj (say, fe) has no
zeros, then for all e > O, there exist N and M > O, such that for all n > N, at most
M eigenvalues of the matrix

(C*C)-I(T*T) I

have absolute values larger than e.

Proof. By Lemma 6, we have

(C*C)-I(T*T) I (C*C)-I(T*T- C’C) (C*C)-I(] + r).
Therefore, the spectra of the matrices

(C*C)-I(T*T) I and (C*C)-1/2( + )(C*C)-U2

are the same. However, by (14), we have

rank {(C*C)-I/20(C*C)-1/2}
__
M

and by (15) and (13), we have

<_ II ll ll(C*c)-lll <

where replaces the e specified in (15). Thus by applying the Cauchy interlace theorem
(see Wilkinson [33]) to the Hermitian matrix

(C*C)-l/2f(C*C)-l/2 t_ (C*C)-l/2r(c*c)-l/2,
we see that its spectrum is clustered around zero. Hence the spectrum of the matrix
(C*C)-I(T*T) is clustered around 1.

From Theorem 1, we have the desired clustering result; namely, if fi E C2 for
all j 1,..., k and if one of the fi has no zeros, then the singular values of the
preconditioned matrix TC-1 are clustered around 1.

4. Convergence rate of the method. In this section, we analyze the con-
vergence rate of Algorithm PCG for Least Squares, for our circulant preconditioned
Toeplitz matrix TC-1. We show first that the method converges, for sufficiently large
n, in at most O(c log n + 1) steps where O(n) is the condition number of T. We
begin by noting the following error estimate of the CG method.

LEMMA 7. Let G be a positive definite matrix and x be the solution to Gx b.
Let xj be the jth iterant of the ordinary CG method applied to the equation Gx b.
If the eigenvalues {hk} of G are such that

0 < 51 <__’’" <__ 5p <__ 1 <__ 5p+1 <__’’"
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then

XollG 7 + [7,r-]

Here

>1

and Ilvll v*Gv.
Proof. It is well known that an error estimate of the CG method is given by the

following minimax inequality:

where Pj is any jth degree polynomial with constant term i (see Axelsson and Barker
[4]). To obtain an upper bound, we first use linear polynomials of the form (5--bk)/bk
that pass through (i.e., have as roots) the outlying eigenvalues 5k, 1 _< k _< p and
n q + 1 _< k _< n, in order to minimize the maximum absolute value of 7j at these
eigenvalues. These polynomials are thus used as factors of the polynomials being
constructed. Next we use a (j-p- q)th degree Chebyshev polynomial T_p_q to
minimize the maximum absolute value of :Pj in the interval [8p+1,5n-q]. Then we get

max {I(8-8k] n’[’n,] 8kk=l k=n-q+

Equation (16) now follows by noting that for 8 e [71,72], we always have

8k 8
O< <1, n-q+l<k<n

and that

J--P--q [72--71]-172--71 <2(77-1 )+1

j--p--q

(see Axelsson and Barker [4]).
For the system

(17) (C*C)-I(T*T)x (C*C)-IT*b,

the iteration matrix G is given by

G (C*C)-I/2(T*T)(C*C)-1/2.

By Theorem 1, we can choose 71 1 -e and 72 1 + e. Then p and q are constants
that depend only on e but not on n. By choosing e < 1, we have

7- 1 1- x/l- e2

7+1
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In order to use (16), we need a lower bound for 5k, 1 _< k _< p. We first note that

2 a(T*T).IIG-1112 II(T*T)-(C*C)II2 < IICII 2

If one of the ft has no zeros, then by (8), we have for n sufficiently large

for some c > 0 independent of n. Combining this with (12), we then see that for all
n sufficiently large,

IIG-1112 (_ -a(T*T) <_ 5n,
for some constant 5 that does not depend on n. Therefore,

1
5k --> m_in 5t---- _> cn-a, l<k<n.

Thus for 1 _< k _< p and i E [1 -e, 1 + el, we have

5 5k0< <cna.
5k

Hence (16) becomes

< d’n"e-’-q.

Given arbitrary tolerance T > 0, an upper bound for the number of iterations required
to make

is therefore given by

j0 =- P + q
p log c + ap log n log T

O( log n + 1).
log e

Since by using FFTs, the matrix-vector products in Algorithm PCG for Least
Squares can be done in O(m log n) operations for any n-vector v, the cost per iteration
of the CG method is of O(m log n). Thus we conclude that the work of solving (17)
to a given accuracy T is O(omlog2n + m logn) when c > 0 and for sufficiently
large n.

The convergence analysis given above can be further strengthened. For T an m-
by-n matrix of the form (4) with m kn, let min(TTj) O(n-a for j 1,..., k.
By Lemma 1, we already know that

)min(Tj*Tj)

_
Amax(T;Tj)

_
211fll,

therefore j >_ 0. By the Cauchy interlace theorem, we see that

k

/min(T’T) >_ Z min(T;Tj)

_
O(-a),

j-1
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where

a min aj _> O.

Therefore,

Amax(T*T)(T*T)

_
Amin(T*T) - O(na)"

In the case when one of the aj 0, i.e., the block Tj is well conditioned inde-
pendent of n, we see that the least squares problem is also well conditioned, so that
a(T) O(1).

When at least one a 0, i.e., a(T) O(1), the number of iterations required for
convergence is of O(1). Hence the complexity of the algorithm reduces to O(m log n),
for sufficiently large n. We remark that in this case, one can show further that the
method converges superlinearly for the preconditioned least squares problem due to
the clustering of the singular values for sufficiently large n (see R. Chan and Strang
[9] or R. Chan [11] for details). In contrast, the method converges just linearly for
the nonpreconditioned case. This contrast is illustrated very well in the section on
numerical tests.

5. Preconditioned regularized least squares. In this section we consider
solving least squares problems (3), where the rectangular matrix T is ill conditioned.
Such systems arise in many applications, such as signal and image restoration; see
[3], [24], [28]. Often, the ill-conditioned nature of T results from discretization of
ill-posed problems in partial differential and integral equations. Here, for example,
the problem of estimating an original image from a blurred and noisy observed im-
age is an important case of an inverse problem and was first studied by Hadamard
[22] in the inversion of certain integral equations. Because of the ill conditioning of
T, naively solving Tx b will lead to extreme instability with respect to perturba-
tions in b. The method of regularization can be used to achieve stability for these
problems [7]. Stability is attained by introducing a stabilizing operator (called a reg-
ularization operator), which restricts the set of admissible solutions. Since this causes
the regularized solution to be biased, a scalar (called a regularization parameter) is
introduced to control the degree of bias. More specifically, the regularized solution is
computed as

(18) min
b

where # is the regularization parameter and the p x n matrix L is the regularization
operator.

The standard least squares solution to (3), given by x T?b, is useless for these
problems because it is dominated by rapid oscillations due to the errors. Hence in
(18), one adds a term rain []Lx[[ 2 to (3) in order to smooth the solution x. Choosing L
as a kth difference operator matrix forces the solution to have a small kth derivative.
The regularization parameter # controls the degree of smoothness (i.e., degree of bias)
of the solution, and is usually small. Choosing # is not a trivial problem. In some
cases a priori information about the signal and the degree of perturbations in b can be
used to choose # [1], or generalized cross-validation techniques may be used, e.g., [7].
If no a priori information is known, then it may be necessary to solve (18) for several
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values of # [20]. Recent analytical methods for choosing an optimal parameter # are
discussed by Reaves and Mersereau [29].

Based on the discussion above, the regularization operator L is usually chosen
to be the identity matrix or some discretization of a differentiation operator [6], [20].
Thus L is typically a Toeplitz matrix. Hence, if T has the Toeplitz block form (4),
then the matrix

retains this structure, with the addition of one block (or two blocks if L is a difference
operator with more rows than columns): Since has the block structure (4), we can
form the circulant preconditioner C for T and use the PCG algorithm for least squares
problems to solve (18).

Notice that if L is chosen to be the identity matrix, then the circulant precondi-
tioner for can be constructed by simply adding # to each of the eigenvalues of the
circulant preconditioner for T. In addition, the last block in (i.e., #I) has singular
values #. Thus, due to the remarks at the end of 4, if each block in T is generated
by a function in C2, and if # 0, then () _< 0(#-1) for all n. It follows then,
for these problems, that (18) can be solved in O(mlogn) operations, for sufficiently
large n.

6. Numerical tests. In this section we report on some numerical experiments
that use the preconditioner C given by (5) in 1 for the CG algorithm PCG for
solving Toeplitz and block Toeplitz least squares problems. Here the preconditioner
C is based on the T. Chan optimal preconditioner C, for each block T of T, as in 2.
The experiments are designed to illustrate the performance of the preconditioner on
a variety of problems, including some in which one or more Toeplitz blocks are very
ill conditioned.

We use the stopping criteria 118(J)112/118()[12 < 10-7 for all numerical tests given
in this section. (Note that s(J) is the (normal equations) residual after j iterations,
and the zero vector is our initial guess. Observe that the value IIs(J)ll2 is computed
as part of the CG algorithm.) All experiments were performed using the Pro-Matlab
software on our workstations. The machine epsilon for Pro-Matlab on this system is
approximately 2.2 10-16.

To describe most of the Toeplitz matrices used in the examples below, we use the
following notation. Let the m-vector c be the first column of T and the n-vector rT

be the first row of T. Then

T Toep(c, r).

The right-hand-side vector b is generally chosen to be the vector of all ones.
Example 1. In this example we construct m n Toeplitz matrices generated by

a positive function in the Wiener class, varying the number of rows and columns
and fixing the number of blocks in the block form (4) to k 3. This example is a
rectangular generalization of test data used by Strang [30] and is defined as follows.
Let

1 1
c(i)-- 2i_1

i- 1,...,m, and r(j)- 2j_1, j-- 1,...,n.

The convergence results for this example are shown in Table 1, which shows
the number of iterations required for Algorithm PCG to converge using T (i.e., no
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FIG. 1. Singular values ]or T and TC-x in Example 1.

preconditioner) and our C. We can see from Table i that the use of our preconditioner
does accelerate the convergence rate of the CG algorithm for this problem. Moreover,
for this example the nurnber of iterations remains essentially constant as m and n
increase.

In Fig. 1 we plot the singular values of T and TC-1. The plot of the singular
value distributions shows that the preconditioner clusters the singular values very well
for this example.

Example 2. In this example we use the following three generating functions in the
Wiener class to construct a 3n x n block Toeplitz matrix.

(i) Example (a) from R. Chan and Yeung [15]:
c (j) r (j) (IJ 11 + 1) -1"1 + v/-(IJ 11 + 1) -1"1, j 1, 2,..., n.

(ii) Example (b) from R. Chan and Yeung [15]"
c(i) (li- 11 + 1) -1"1, i= 1, 2,..., n,
r2(j) J-(IJ 11 + 1) -1"1, j 1, 2,..., n.

(iii) Example (f) from R. Chan and Yeung [15]"
c3(I) r3(1) }Tr4

7r 6c3(j) r3(j) 4(-1)(J-D((j_I). (j-l),), j 2,3,...,n.
The matrix T is defined as

TT= IT1T, T2T, T3T],

where T1 =Toep(cl, rl), T2 =Toep(c2, r2), and T3 =Toep(c3, r3). For n n systems R.
Chan and Yeung [15] show that n2(T3) O(n4), while T1 and T2 are well conditioned.
They also show that the T. Chan preconditioner works well for T1 and T2, but not
well for T3.

In Table 1 we show the convergence results for this example, using no precon-
ditioner and C as a preconditioner, for several values of m and n. Figure 2 shows
the singular values of T and TC-1 for m 210 and n 70. These results illustrate
the good convergence properties using the preconditioner C for this example contain-
ing an ill-conditioned block. Moreover, our computations verify the fact that 2(T)
remains almost constant as n increases from 40 to 80.
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n
40
50
0
70
8O

TABLE 1
Numbers of iterations for convergence in Examples 1-3.

Example 1 (m--3n)
no prec. with prec.

33 7
36 7
’41 7
41 7
44 7

Example 2 (m 3n)
no prec. with prec.

96 14
126 14
155 13
167 13
186 13

Example 3 (m 2n)
no prec. with prec.

29 11
33 15
44 13
52 12
65 14

1.5

0.5-

0-

-0.5

-1
10-1

Example 2: m 210, n 70

Preconditioned T
/ + -I.-/ /

T

Singular Value Distributions

FIG. 2. Singular values for T and TC-1 in Example 2.

Example 3. In this example we form a 2n x n block Toeplitz matrix using gen-
erating functions from R. Chan and Yeung [15] that construct ill-conditioned n n
Toeplitz matrices. Here T1 T2 and thus both blocks of T are ill conditioned. The
generating function, which is in the Wiener class, is:

Example (c) from R. Chan and Yeung [15]"
cx(1) r(1)=0
c(j) r(j) (IJ 11 + 1)-’1 + x/Z(IJ 11 + 1)-’, j 2,..., n.
Using the above generating functions, we let

TT= [T, T2]T,

where T T2 =Toep(o, rx).
In Table 1 we show the convergence results for this example, using no precon-

ditioner and C as a preconditioner, for several values of rn and n. Figure 3 shows
the singular values of T and TC- for m 140 and n 70. These results illustrate
the good convergence properties of C for this example even though it contains all
ill-conditioned blocks.

Example 4. Here we consider an application to one-dimensional image or signal-
reconstruction computations. In this example we construct the 100 100 Toeplitz
matrix T, whose i, j entry is given by

(19) t, { 1g(0.15, ifli-J’ > 8,
xi x) otherwise,
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FIG. 3. Singular values for T and TC-1 in Example 3.

where

and

4i
xi=, i=1,2,...,100,

Matrices of this form occur in many image-restoration contexts as a "prototype prob-
lem" and are used to model certain degradations in the recorded image [20], [24]. Due
to the bandedness of T, its generating function is in the Wiener class. The condition
number of T is approximately 2.4 106.

Because of the ill conditioning of T, the system Tx b will be very sensitive to
any perturbations in b (see 5). To achieve stability we regularize the problem using
the identity matrix as the regularization operator. Eld(!n [20] uses this approach to
solve a linear system by direct methods with the same data matrix T defined in (19).
To test our preconditioner we will fix/z 0.01, where u is chosen based on some tests
made by El&in.

Let

2=
/zI

and = 0

Then is simply a block Toeplitz matrix. Thus we can apply our preconditioner C,
and the PCG algorithm, to solve (18). The convergence results for solving Tx b
and 2bx ) with no preconditioner and x using C as a preconditioner are
shown in Table 2. The ^sing^lar values of T and C-x and the convergence history
for solving Tx b and Tx b using our preconditioner C are shown in Fig. 4. These
results indicate that the PCG algorithm with our preconditioner C may be an effective
method for solving this regularized least squares problem.

In summary, we have shown how to construct circulant preconditioners for the
efficient solution of a wide class of Toeplitz least squares problems. The numerical
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TABLE 2
Numbers of iterations for convergence in Example 4.

1.5

0.5

-1
10-7

Example 4: Regularized Problem with n 100

Preconditioned System

T

10"6 10-5 10-4 10-3 10-2 10-1 10o 101 102

Singular Value Distributions

101

10o

10-1

10-2

10-3

10-4

10-5

10-6

10-7

Example 4: Regularized Problem with n 100

tl Preconditioned System

0 20 40 60 80 100

Iterations

FIG. 4. Singular values and convergence history for T and ’C-x.

experiments given collaborate our convergence analysis. Examples 1 and 2 both illus-
trate superlinear convergence for the PCG algorithm preconditioned by C, even when
in Example 2 the matrix T contains an ill-conditioned block. In addition, even though
the matrix T in Example 3 contains all ill-conditioned blocks, the scheme works well
for the computations we performed.

Example 4 illustrates the applicability of the circulant PCG method to regularized
least squares problems. The example comes from one-dimensional signal restoration.
Two-dimensional signal or image restoration computations often lead to very large
least squares problems where the coefficient matrix is block Toeplitz with Toeplitz
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blocks. Block circulant preconditioners for this case are considered elsewhere [16].
In this paper we have used the T. Chan [17] optimal preconditioner for the Toeplitz

blocks. Other circulant preconditioners such as ones studied by R. Chan [11], Huckle
[23], Ku and Kuo [25], Strang [30], Wismenetsky [31], or Wyrtyshnikov [32], can be used,
but the class of generating functions may need to be restricted for the convergence
analysis to hold.
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INVERSE OF STRICTLY ULTRAMETRIC
MATRICES ARE OF STIELTJES TYPE*

SERVET MARTiNEZ, GIRARD MICHON$, AND JAIME SAN MARTN

Abstract. This paper shows that a nonnegative ultrametric matrix A is nonsingular and that
its inverse is a strictly diagonally dominant Stieltjes matrix. The method consists of studying the
spectral decomposition of A by showing that A preserves a maximal filtration.

Key words, ultrametric matrices, Stieltjes matrices
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1. Introduction. Our main result, which is Theorem 1, deals with the study of
properties of strictly ultrametric matrices (see definitions below). We show that these
matrices are nonsingular and that their inverses are Stieltjes matrices. In the proof of
the main result we show the following properties:

(i) any strictly ultrametric matrix A has an equilibrium potential, i.e., there
exists a measure u such that Au 1, the 1-constant vector;

(ii) the matrix A given by A(i,j) A(i,j)#(j), # being the normalized vector
proportional to u, preserves a maximal filtration of partitions;

(iii) this last result allows us to explicitly obtain the spectral decomposition of
A, and the monotone properties of its eigenvalues allow us to prove the theorem.

We remark that our results only concern finite ultrametric matrices. But these
results can be extended to strictly ultrametric matrices in which an increasing se-
quence (ha :c _> 1), defined analogously as in the proof of Theorem 1, has no finite
accumulation point.

Ultrametricity was first introduced in relation with p-adic number theory. In
applications like taxonomy [Be, p. 138], ultrametricity is an important notion because
of its relation with partitions. On the other hand, strictly ultrametric matrices appear
as covariance matrices of random energy models in statistical physics [CCP] as a
generalization of the diagonal case. Since most of the relevant quantities depend on
the inverse of the covariance matrix, our result concerning the inverse of a strictly
ultrametric matrix might be useful in this theory.

Relations between ultrametric matrices and filtrations of partitions (or fields)
were first developed by Dellacherie in [De]. A detailed study concerning ultrametric
matrices, maximal filtrations, and the associated spectral decomposition for countable
probability spaces was made in [DMS]. On the other hand, in [Mi] the study of strictly
ultrametric matrices was done in relation with potential theory in compact ultrametric
spaces.

Now let us give-needed definitions as well as our main result. First, recall that
a metric on a set X is said to be ultrametric if it verifies the ultrametric inequality
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[Di, p. 37]
d(x, y) <_ max{d(x, z), d(z, y)} for any x,y,z E X.

We shall only deal with ultrametric distances on finite sets. Denote by I :=
{1,..., N} a finite set.

DEFINITION 1 (see [De]). A symmetric matrix A (A(i, j), i, j I) is said to be
ultrametric if there exists an ultrametric distance d on I such that

(1) d(i, j) d(i, k) iff A(i, j) A(i, k).

DEFINITION 2. A symmetric nonnegative matrix A is said to be strictly ultra-
metric if there exists an ultrametric distance d on I such that

(2) d(i, j) <_ d(i, k) iff A(i, j) >_ A(i, k).

Recall that a symmetric nonnegative matrix A is strictly ultrametric if and only
if (iff) it verifies the following two conditions:

(3) A(i, j) >_ inf(A(i, k), A(k, j)} for any i, j, k e I,

(4) A(i, i) > sup{A(/, k)" k e I- {i}} for any i e I,

where, in the case N- 1, condition (4) means A(i, i) > O.
In fact, if A is strictly ultrametric, condition (3) follows from property (2). Also

(4) is implied by (2) and the strict inequality d(i, i) < d(i,j) for any i j. Re-
ciprocally, if (3) and (4) are verified, the following metric d is an ultrametric and
it verifies (2): d(i,i) 0 for any i I and d(i,j) R-A(i,j) ifi j, where
R > max{A(i,j): i j}.

DEFINITION 3. A symmetric matrix B is a Stieltjes matrix if its off-diagonal ele-
ments are nonpositive, it is nonsingular, and B-1 is nonnegative (see [LT, par. 15.2]).

Our main result is the following theorem.
THEOREM 1. If A is a nonnegative strictly ultrametric matrix, then it is non-

singular, A- is a strictly diagonally dominant Stieltjes matrix, and A-(i,j) 0 iff
A(i, j) 0 .for i j.

2. Proof of the main theorem. Let us first show that a strictly ultrametric
matrix has an equilibrium potential.

LEMMA 1. Let A be a nonnegative, symmetric, strictly ultrametric matrix. Then,
there exists a strictly positive vector u (u(i): i I), such that

Au 1, where 1 is the 1-constant vector.

Proof. Let q(A) I{A(i, j)" i, j e I}l be the cardinality of the set of values taken
by the elements of matrix A. We shall prove the result by induction on q(A).

If q(A) 1, the condition (4) implies N- 1. Since A(N,N) > O, the result is
evident.

Let q(A)

_
2. Assume we have shown the result for any strictly ultrametric

matrix A with q(A) < q(A).
Let h :- sup(A(i,j) i j}. Define the equivalence relation: i j if i j

or A(i,j) h. Denote by the equivalence class containing i and by the set of
equivalence classes. We remark that if i (i}, then A(i, i) > h.
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Conditi_on (3)_ and the definition of i imply that i_f . _ ),_th_en _A(i’, j’) A(i, j)
for any i’ E i, j E j. Then, the following matrix t (A(i, j)’i, j I) is well defined:

(6) A(i, j) A(i, j) if i - j,

(7) .,(, ) A(i, i) if {i},

(8) (, ) h + (K())-1 if {i},

where

(9) K() (A(k,k) h) -1

The matrix A is symmetric and its coefficients are nonnegative. Let us show that it
satisfies properties (3)and (4).

First, let u_s _pr_ove (4). Take . Then (,) A(i,j. _If_- (i}, it is evident
that (, ) > A(i, j). If (i}, we have by definition that A(i, i) > h > t(, ).

Now let us show inequality (3),_ which is evident in the cases ] or- : - . The case = k is implied by p_rope_rty (4). If- k , it
is deduced from the equality A(i,j) A(j, k), and if i j k, it is obtained from
A(i,j) A(i, k).

Thus, the matrix satisfies properties (3) and (4). On the other hand, q()
I(A(i, j)" i, j e I}1 < q(A), so, from induction hypotheses, we deduce that there exists
a strictly positive vector 5 (5()" e i) such that . 1. This means that

Z(’J)(J) 1 for any e L
jI

Now, define

(10) (i) P()if {i}

and

(11) ,(i) 5()(A(i, i) h)-I(K())- if {i}.

From the definition of K() given in (9), we get )-ke (k) 5() for any e L We
have

Z A(i, j),(j) ZZA(i, e)(e) + A(i, k)(k).

Since A(i,e) A(,) when e d 5() te (), then to complete the
induction, it suffices to show the equality

(’ )f() Z A(i, k),(k).
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If (i}, the equality holds trivially, so assume (i}. Since A(i, k) h for any
k i- {i}, we deduce

ZA(i,k)v(k)_()(K())_l(Zkeke-{i} h(A(k’k)-h)-+A(i’i)(A(i’i)-h)-)
v()(g())-(hg()+ (A(i, i)- h)(A(i,i)- h)-)
()(h + (g())-) ()(, ).

Then the result holds, rl

Now, let us show our main result.
Proof of Theorem 1. Let A (A(i,j) i,j e I) be a nonnegative, symmetric,

strictly ultrametric matrix. We must show that it is nonsingular and that its inverse
A- (A-l(i,j): i,j e I) satisfies

(12) A-l(i,j) <_ 0 for any pair i and j with i j;

(13)
N

A-(i’i) > Z
:j--1

i.e., A-1 is strictly diagonally dominant;

(14) A-(i,j) 0 iff A(i,j) 0 for any pair i j.

From Lemma 1 there exists a strictly positive vector u (u(i)" i e I) verifying
(5). Define the probability vector #- (#(i)" i E I) by #(i) u(i)(jei v(j))-. We
have

A# pl,

where

Define the following operator A acting on

(15) (Af)(i) ’ A(i,j)f(j)#(j) for f e /N.
jI

Since A is symmetric, we see that A is selfadjoint with respect to the inner product
(, }, defined by

(16) (f, g) f(i)g(i)#(i).
iI

Let us order the set of values {A(i,j) i j} and denote them by hi < < hp.
We remark that 0 _< h. For any c 1,... ,p, define the relation i[a]k if i k or

A(i, k) > ha. Property (3) implies that the relation [a] is an equivalence relation.
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Denote by Ba(i) := {k e I i[c]k} the equivalence class of i. The partition
constituted by this set of atoms is denoted by Ba, i.e., Ba {Ba(i)}. Observe that
B, {{i}: i e I} is the finest partition.

Let us introduce the coarsest partition B0 {I}. Note that B1 is finer than
B0. The sequence of partitions B0 C B1 c c B, is strictly increasing (where C
means being strictly coarser than). Let i E I. The sequence of atoms (Ba(i) o
0,... ,p) is nondecreasing, i.e., Ba-(i)

_
Ba(i) for c 1,... ,p. We remark that if

k e Ba- (i) Ba(i), then A(i, k) ha. For k i denote by T(i, k) the unique index
c e {0,...,p}, such that k e Ba-(i)- Ba(i) (it does exist because B,(i) {i}).
Then A(i, k) hT(i,k). Thus, we deduce

(17) k e Ba- (i) implies A(i, k) hT(,k) >_ ha

and

(18) k Ba(i) implies A(i,k) hT(i,k) <_ ha.

Let us point out that (4) implies that A(i, i) > hT(i,k) for any k t i. On the other
hand from property (3), we also get that if Ba(j) Ba(g.) t Ba(i), then T(j,k)
T(, k) _< a for any k e Sa(i), so

A(j, k) A(g, k) <_ ha.

Now we shall identify a partition B of I with the field it generates. Since I is finite,
the field generated by B is {JBeg B" J c B}. We remark that a function f
B-measurable iff f(i) f(j) for any i,j belonging to the same atom of B. We say
that an operator acting on jI preserves B if it preserves the B-measurable functions.

Let us show that the operator A defined in (15) preserves the filtration of fields
{Ba a 0,...,p}. This means that for all a 0,...,p, for all f
measurable, the function Af is also Ba-measurable. For a 0 this is satisfied because
a B0-measurable function is a constant cl, and A(cl) cA# pcl. For a p the
property is also verified because B, is the finest field. Now let us show the result for
a e {1,... ,p- 1}. We remark that it suffices to prove that A1B(i) is Ba-measurable
for any i I, where 1B(i is the characteristic function of the atom Ba(i)

Then, we must show that if

(19) Ba(j) Ba(g.), then (A1B.())(j)= (A1s())(g).

First assume that Ba(j) Ba(.) t Ba(i). Then A(j, k) A(.,k) for any k Ba(i).
Thus,

(A1B.())(j) A(j,k)#(k)= (hls())(g).
k6So,(i)

Now assume Ba(j) Ba(t.) Ba(i). Since (A1B)(j) (A1B)() for any atom
S e Ba such that B t Ba(i), and (hl)(j) (A1)(g) (because A1 is constant), we
deduce

(A1B (i))(j) (A1)(j)
BEBo,--{Ba(i)}

(A1B)(j) (A1s())(g).

Then A preserves any Ba for c 0,..., p.
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Now the filtration of fields B0 C C Bp is contained in a maximal filtration of
fields 0 C C CN-1 (which is not necessarily unique). This means that {Ba a
0,..., p} c {" V 0,..., N- 1} and that if C is any field satising C C+1,
then C or +. This implies that + is formed from by splitting a
unique atom into two new atoms. This is why mimal filtrations of fields are also of
cardinality N (the cardinality of the set I).

Recall that for any e {0,..., N- 2} there exists a() e {1,... ,p}, such that

In the rest of this paper, C(i) shall denote the atom of C containing i.
Now let us show that the operator A preserves the mimal filtration of fields

( " 0,... ,N- 1}. This is evident for C0 B0 (I} and also for CN- Bp
({i}" i e I}. So e {1,..., N-2}. Denote by a() e (1,... ,p} the point veriing
Ba()_ C c Ba(). We must prove that if C(j) C(g), then (Alv(i))(j)
(hlc(,))() for any C(i) e C.

First, sume C(i) C(j) C(). Then Sa()-(j) B.()_ (g) and
Sa()(j) Ba()(i) Ba()(g). If Ba()-(j) B.()_(g) Ba()-i(i), then
A(j, k) A(e, k) for any k e Ba()_ (i) D C(i). Thus

(Alc.(i))(j)= Z A(j, k)(k) (Alc())(I).

Now, assume Ba()_l (j)- Ba(.)-I ()-- Ba()-l(i). For any k e C(i) c Ba(.)_(i)
we have Sa()(j) Ba(.)(k) Ba()() and so j, . E Ba(.)_ (k) Ba()(k). Then
A(j,k)-- A(.,k), which implies (A1c(i))(j)- (AIc(i))(g).

Now if j, g are such that C.r(j) C.r(. C.r(i), then the result follows from the
equalities

(Alv())(j) (A1)(j)-
cec-{c()}

(Alc)(j), (A1)(j)-- (A1)(g),

and Alc(j) Alc(), for C 6 C-{C(i)}. Thus h preserves {C "7 0,..., N-l}.
Let us denote by E Ec the mean expected value operator with respect to the

field C and the measure #, i.e.,

kec(i)
I(k)(k).

Since A preserves C, we have AE E.AE., and since A is selfadjoint, we also
have A(E E-i) (E E_i)A(E E-I) for any V {0,... ,N- 1, with
the convention E_ -_- 0. Since (E E_) is a one-dimensional subspace, we
conclude that (A(E E_))f p(E E_)f for certain p , for any
V (0,..., N- 1. Then the spectral decomposition of A is

N-1

(20) A= p./(E. E,),-I).
-y--o

Let us compute the eigenvalues (p ? 0,..., N- 1 of the operator A. Since
A# A1 p01, we get

-1
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where is the vector given by Lemma 1. An eigenvector associated to p0 is f0 1.
Now let us obtain the other values Pr for E (1,..., N- 1}. Recall that the

atoms of (r-1 are the same as the atoms of r, except that one atom of (Jr-1 has been
split into two new atoms of Cr, which is denoted by Cr(i and Cr(i’). These last two
atoms are disjoint and Cr_l (i) Cr_ (i’) Cr (i) t.J Cr (i’). Take

(22) fr 1c() #(Cr(i))(#(Cr-(i)))-lc._l(i).

Then

and
Afr Alv(i) #(Cr(i))(#(Cr-l(i)))-Alv_(i)

pr{1c(i) #(Cr(i))(#(Cr_(i)))-lc_(i)}.
If we evaluate both functions at the point i Cr_ (i) Cr(i), we get

Pr (ilc_(i,))(i’) tt(Cr-(i))(#(Cr(i)))-(hlc.,(i))(i’).

For any /_> 1 denote by (/) the point of {1,... ,p} satisfying &(r)-I C Cr -Ba(r). Since i Cr(i) Cr_ (i)-Cr(i), for any k Cr(i we have i S(r)_ (k)-
Ba(r)(k). Then A(i, k) ha(r), and we find

tec.(i’)

A(i’, )#() #(Cr-(i))#(Cr(i))-ha(r)#(Cr(i)).

(23)
C(i’)

Now, for t e Cr(i’ c B(r)_(i’), inequality (14) implies A(i’,g) >_ ha(r). On the
other hand, A(i, i) > ha(r); hence Pr > 0 for any / E {0,..., N- 1}. Note that
Co(i) I. Putting ((0) 0, h0 0, it is easy to verify that formula (23) also holds
for 0 because A 1.

Since Pr > 0 for any - 1,..., N- 1, we deduce that A is nonsingular; so, from
(20),

r-O

Now, let a be a diagonal matrix with a(j,j) #(j) for any j I. From the
definition of A given in (15), we get A AG, so A- GA-1. Let A-l(i,j) and
h-l(i,j) denote the (i,j) coefficients of the matrices A-1 and i-1, respectively. Then
A-l(i,j) (i)A-l(i,j).

We have A-1 G(A-1) p-l#. Thus

(24) E A-l(i’J)= P-ltt(i) > 0 for any i e I.
jI
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We shall prove now that (12) is satisfied. We have

N-1

A-l(i’J) A-l(i’J)#(i)-< A-11{j}’ 1{i} >- Z
"y--O

< (E-E-I)I{j}, 1{i} >.

Now, (E0 E-1)I{j} E01{i} #(j), and for any 7 E {1,... ,N- 1}

(E. E.-I)I{j} #(j){(#(C;(j)))-llc(j) (#(C;-l(j)))-11c_1(j)}.

Note that if we set C-I(j) for any j E I, then the last formula also holds for
7-0

If C,(j) C,-I(j), we have (E E_I)I{j} 0. When i C-I(j), we also
have i C,(j), so < (E E_I)I{j}, 1{} >= 0. Define the set

J(i,j) := {0} U {7 e {1,...,N 1}" C,(j) C,-I(j) and i

and denote its elements by 70 0 < 71 < < 7m. We remark that m > 1. Set
7-1 :- -1. Then from the definition of J(i,j), we have that the equality C,_I(j)
C(_1) (j) holds for any t 0,..., m. Hence

Therefore,

m-1

(25) A-l(i,j) #(i)#(j) P’t+ )"
t-O

From (20) we get that for any t 0,..., m 1, we have

(26) Pt Z (A(j,l,)- ha())#(g).
tEct (j)

For any g e C(j), we have A(j, ) ha() > 0. On the other hand, since C (j)
is decreasing with t and ha() is nondecreasing with t (in fact, strictly increasing,
except perhaps at t 0 when 71 1 since hi h0 0), we deduce that Pt is
nonincreasing: p0 Pro > P >"" > P. > 0. Hence p-tl is a nondecreasing
sequence, and we get (A-1)(i,j) <_ O. Now condition (24) implies A-l(i,i) > 0 and
A-i(i,i) > i]A-l(i,j)l for any/ E I, so property (13) also holds. Let us now
prove (14): A-’f(i, j) 0 iff A(i,j) 0 for i j.

We have i C_I(j)-C (j). Note that Sa(.)_l(j) C(j)

_
Ba()(j), so

Sa()-l(j)

_
C.-I(j) D C(j)

_
Ba()(j). Then i E Ba(.)-l(j)- Ba()(j).

We remark that T(i,j) (7m), so A(i,j) ha().
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If A(i,j) > 0, then ha(7) > ha(0) 0, so there must exist an index t E
{0,... ,m- 1} such that ha(7) < ha(7+l) which implies pT > p7+1 (see formula
(26)). Equality (25) implies A-l(i,j) < O.

IfA(i,j) 0, then m 7, (Tm) 1 and hi 0. Now, for any e
Co(j) C1 (j), we have T(j, ) 1, which implies that A(j, ) 0. Then

From equality (25), we conclude A-1 (i, j) 0. D
Remark. The proof also shows that any strictly ultrametric matrix is positive

definite, but this is a general property of any Stieltjes matrix [LT, p. 532].
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A LINEAR ALGEBRA PROOF THAT THE INVERSE OF A
STRICTLY ULTRAMETRIC MATRIX IS A STRICTLY
DIAGONALLY DOMINANT STIELTJES MATRIX*

REINHARD NABBENt AND RICHARD S. VARGA

Abstract. It is well known that every n n Stieltjes matrix has an inverse that is an n n
nonsingular symmetric matrix with nonnegative entries, and it is also easily seen that the converse
of this statement fails in general to be true for n > 2. In the preceding paper by Martlnez, Michon,
and San Martin [SIAM J. Matrix Anal. Appl., 15 (1994), pp. 98-106], such a converse result is in
fact shown to be true for the new class of strictly ultrametric matrices. A simpler proof of this basic
result is given here, using more familiar tools from linear algebra.

Key words. Stieltjes matrices, ultrametric matrices, inverse M-matrix problem

AMS subject classifications. 15A57, 15A48

1. Introduction. It is well known (cf. [3, p. 85l) that a Stieltjes matrix A [ai,j]
in ]Rn,n, which is defined to be a real symmetric and positive definite matrix with
ai,j <_ 0 for all i j (1 _< i,j <_ n), has the property that its inverse is a real
nonsingular and symmetric matrix, all of whose entries are nonnegative. Now, the
converse of this result is not generally true for any n _> 3, as the following simple
matrix below shows. For n 3, define the symmetric matrix B in ]p3,3 by

4 0 2]0 4 3
2 3 4

so that B possesses only nonnegative entries. As the eigenvalues of B are (4 q-
v/, 4, 4- x/), then B is positive definite. But its inverse,

7 6 -8]1
6 12 -12

12 -8 -12 16

fails to be a Stieltjes matrix since its off-diagonal entries are not all nonpositive. For
n > 3, the matrix

O In-3
and its inverse O In-3

where In-3 is the identity matrix in ]pn-3,n-3, similarly furnishes a counterexample
in ]Pt,n’n.

In the preceding paper [2, Thm. 1] by Martinez, Michon, and San Mart/n, it is
shown that a strictly ultrametric square matrix (to be defined below) is a nonsingular
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matrix, with nonnegative entries, whose inverse is a strictly diagonally dominant
Stieltjes matrix! As can be seen from their paper, their interesting result is proved
by using a variety of impressive tools from topology and real analysis, tools that
may prove useful for infinite dimensional extensions. The beauty of their result gave
us the stimulus to try to find a proof of their result that was fashioned solely from
more familiar tools from linear algebra, as such a proof might be more accessible to
numerical analysts and linear algebraists. We give such a linear algebra proof below.

With the notation that N :- {1, 2,..., n} for any positive integer n, we begin
with the following definition of [2].

DEFINITION 1.1. A matrix A [ai,j] in ]Rn,n is strictly ultrametric if

(I.i)
(i)
(ii)
(iii)

A is symmetric with nonnegative entries,
ai,j >_ min{ai,k;ak,j} for all i,j,k E N,
ai,i > max{hi,k" k e N\{i}} for all i e N,

where, if n 1, (1.1)(iii) is interpreted as a1,1 > O.
The result of [2, Thm. 1] is stated in the following theorem.
THEOREM 1.2. IfA [ai,j] in lRn’n is strictly ultrametric, then A is nonsingular

and its inverse, A-1 := [ai,j] in ]Rn,n, is a strictly diagonally dominant Stieltjes matrix
(i.e., a,

_
0 for all i # j and a, > ’n=l [a,k[, for all 1

_
i,j

_
n), with the

additional property that

(1.2) ai,j 0 if and only if ai,j O.

Our proof of Theorem 1.2 is given in 3, after some necessary constructions are
given in 2.

2. Some constructions. For notation, on setting n := (1, 1,..., 1)T in lRn,
then

(2.1) :nnT
is a rank-one matrix in Rn,n, all of whose entries are unity.

Our first result, which is independent of results or techniques in [2], is necessary
for our complete characterization of strictly dltrametric matrices.

PROPOSITION 2.1. Let A [a,] in ]Rn’n be symmetric with all its entries non-
negative, and set

-(A) := min {ai, "i, j e N}.

If n > 1, then A is strictly ultrametric if and only if A- T(A)nT is completely
reducible, i.e., there exists a positive integer r with 1

_
r < n and a permutation

matrix P in ]n,n such that

P(A T(A)T )PT [ C 0 ]0 D

where C ]Rr’r and D ]Rn-r’n-r are each strictly ultrametric.

Proof. For n > 1, assume that A is strictly ultrametric. Then, from (1.1) and
(2.2), it follows that ft. [i,] A- T(A)Tn is strictly ultrametric with T(/i) 0.
Moreover, as n > 1 and as T() 0, some off-diagonal entry of . is necessarily zero.
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Step 0 3,4,5) ul :- (1, 1,1,1, 1)T

/1,4) ,3,5)Step 1

Step 2

Step 3 (5)

u2 (i,0,0, 1,0)T;u3 := (0, i, 1,0, I)T

U4 := (1, 0, 0, 0, 0)T; u5 := (0,0,0, 1,0)T

U6 (0, 1, 0, 0, 0)T; u7 := (0,0, 1,0, 1)T

u8 (0,0, 1,0,0)T;u9 := (0,0,0,0, 1)T

Fro. 1

By a suitable permutation of indices, we may assume, without loss of generality, that
hl,n 0. Set

(2.4) S’--(jeN’I,j-0} and T:-{jeN’I,j >0}.

As 51,n 0, then n E S, and similarly, since . is strictly ultrametric, then (cf.
(1.1)(iii)) 1,1 > 0, so that 1 E T. Thus, S and T form a partition of N, i.e., S and
T are nonempty disjoint sets with S U T N. Again, by a suitable permutation of
indices, we may assume, without loss of generality, that

T-{l,2,...,r} and S-{r+l,r+2,...,n},

where 1 < r < n.
Next, consider any j T and any k S. Since A is a nonnegative matrix,

(1.1)(ii) implies that

(2.6) O--51,k >_min(lj;5j,k} >_O (j T,kS).

But as l,j > 0 from (2.4), the inequalities of (2.6) and the symmetry of give that

(2.7) 5j,k 0 5k,j (j T, k S),

which gives the desired representation of (2.3). That the block diagonal submatrices
C and D in (2.3) are each strictly ultrametric is a consequence of the fact that is
strictly ultrametric.

Conversely, if n > 1, if C ]Rr’r and if D ]Rn-r,n-r (with 1 _< r < n) are each
strictly ultrametric, and if T _> 0, then from Definition 1.1, the matrix

[co]0 D / TnT
is also strictly ultrametric.

It is evident that the steps leading to the representation (2.3) can be similarly
applied to each of the strictly ultrametric block submatrices C and D of (2.3), provided
that their orders each exceed unity. More precisely, if C lRr’r and if D E lRn-r,n-r

where 1 < r < n-1, then C-T(C)rTr and D-T(D)n_rTn_ are, from the proof of
Proposition 2.1, each completely reducible strictly ultrametric matrices. This process
can be continued until only 1 x 1 positive matrices remain. This entire reduction
procedure can be described in terms of graph theory, as follows.
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For illustration, consider an ultrametric matrix A in ]R5,5, and suppose that the
block submatrices C and D in (2.3) are of orders 2 and 3, respectively. This is shown
in (reduction) Step 1 in the rooted reduction tree of Fig. 1, where the top vertex of Step
0 is associated with the set (1,2,3,4,5). At Step 1, the set (1,2,3,4,5) is decomposed
into the two nonempty disjoint sets (1,4) and (2,3,5), giving rise to two vertices in the
tree at Step 1. This step corresponds to the complete reducibility of A- T(A)55T
in (2.3). In Step 2, each of the sets (1,4) and (2,3,5) is further decomposed into two
disjoint nonempty sets, giving rise to four vertices in the tree at Step 2, and this
procedure is continued until all remaining sets have single elements. In this way, the
5 5 ultrametric matrix A has the representation

where the sum over nine terms in (2.8) comes from the fact that there are nine vertices
in the tree of Fig. 1. The associated vectors ut are also explicitly given in Fig. 1. The
scalars {T}=I are nonnegative, with (cf. (1.1)(iii)) Ta, Th,T6,TS, and T9 necessarily
positive numbers. In fact, if the constants (T1, T2,..., 7"9 } in (2.8) are chosen to be
{ 1, 0, 0, 1, 1, 1, 2, 1, 1}, then A can be computed from (2.8) to be

2 1 1 1 1
1 2 1 1 1
1 1 4 1 3
1 1 1 2 1
1 1 3 1 4

But, it is easy to verify (by induction) that for N (1, 2,..., n), the reduction
steps, as indicated in Fig. 1 for n 5, give exactly 2n- 1 vertices for its associated
reduction tree. Hence, Proposition 2.1 gives the following representation for strictly
ultrametric matrices in ]Rn,n for all n > 1, which goes beyond the results of [2].

THEOREM 2.2. Given any strictly ultrametric matrix A in lRn,n (n _> 1), there
is an associated rooted tree for N {1,2,... ,n}, consisting of 2n- 1 vertices, such
that

2n--1

(2.9) A Z 7"tutuS’,

where the vectors ug in (2.9), determined from the vertices of the tree, are nonzero
vectors in lR having only 0 and 1 components, and, with the notation that

(2.10) X(ug) "= sum of the components of ug,

where the Tt’S in (2.9) are nonnegative with T > 0 when X(ut) 1. Conversely, given
any tree for N (1, 2,..., n}, which determines the vectors ut in ]Rn, and given any

2n--1 x--2n-- 1nonnegative constants Tt=l with 7" > 0 when X(u) 1, then 2_=1 7"uu" is
strictly ultraraetric in ]R,n.

COROLLARY 2.3. Any strictly ultrametric matrix in ]Rn,n is a real symmetric and
positive definite matrix.

Proof. From Theorem 2.2, any strictly ultrametric matrix admits a representation
(2.9) as a sum of rank-one nonnegative definite symmetric matrices. But, as the
condition that 7" be positive whenever X(u) I implies that the sum in (2.9) contains
a positive diagonal matrix, the sum (2.9) is necessarily positive definite. D
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3. Proof of Theorem 1.2. With the constructions of 2, we come to the proof
of Theorem 1.2. The proof is an induction on n. If A is an n n strictly ultrametric
matrix, then from Corollary 2.3, A is nonsingular and A-I exists. That A-1 is a
strictly diagonally dominant Stieltjes matrix that also satisfies (1.2) of Theorem 1.2
is obvious for n 1. Thus, by the inductive hypothesis, assume that Theorem 1.2 is
valid for all ultrametric matrices in ]RJ’J with 1 _< j _< n- 1 where n >_ 2, and consider
any strictly ultrametric matrix A [ai,j] in ]Rn,n. Up to a suitable permutation, we
have from (2.2) and (2.3) that

(3.1) A 0 D + T(A)nTn with "= (1,1,..., 1)T e ]pn,

where, from Proposition 2.1, C in lW, and D in lR-,n- (with 1 _< r < n) are
both strictly ultrametric and nonsingular. But as r and n- r are both less than n,
the inductive hypothesis, applied to C and D, gives that C-1 and D-1 are strictly
diagonally dominant Stieltjes matrices. Hence, if

(3.2) M’- O D so that O D-1

then M-1 is also a strictly diagonally dominant Stieltjes matrix. Next, the Sherman-
Morrison formula (cf. Golub and Van Loan [1, p. 51]), applied to (3.1), gives the
following representation for A-1 of (3.1):

(3.3) (M - T(A)n" nT) -1 A-1 M-1 T(A)M-InTnM-1
[1 + T(A)TnM-In]"

We first claim that the term in brackets in the denominator above is positive. To see
this, M-1, as previously noted, is a strictly diagonally dominant Stieltjes matrix, so
that M-I is a positive vector in lR. On writing M-I :- p > 0, this denominator
is just

(3.4) [1 + T(A)TnM-In] 1 + T(A)nTp _> 1.

Moreover, since Mp and since M is real symmetric, then the last term in (3.3)
can be expressed as the matrix

T(A)(3.5) [1 + T(A)Tn p]
ppT’

which is obviously a real nonpositive definite symmetric matrix in lR",, all of whose
terms are zero if T(A) O, or negative if T(A) > 0. But, as the matrix of (3.5) is
added in (3.3) to M-1, which as noted above is a Stieltjes matrix, then all off-diagonal
entries of A-1 are necessarily nonpositive.

To show that A-1 is strictly diagonally dominant, let

M-ln P -: (Pl,P2,... ,Pn)T > O.

For the ith row sum of A-1, it follows from the second part of (3.3) and (3.5) that

n

T(A)pi , pj

1 + T(A) pj 1 -}-T(A) pj
j=l j--1
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But, as all off-diagonal entries ai,j of A-1 are nonpositive, (3.6) succinctly and pre-
cisely gives that A-1 is strictly diagonally dominant!

Finally, we establish (cf. (1.2)) that ai,j 0 if and only if a,j 0. First, if
T(A) > 0, then the strictly ultrametric matrix A [a,j] is, up to a permutation
matrix P, given from (3.1) by the sum

(3.7) A= 0 D + T(A)T’

which has only positive entries, i.e., ai,j > 0 for all i, j in N. On the other hand, from
(3.3) and (3.4),

(3.8) A_I [ C- 0 ] T(A)ppT
O D-1 [1 + T(A)nTp]

where every entry of the last matrix is negative. As the matrices C and D in (3.7) are
strictly ultrametric from Proposition 2.1, then C-1 and D-1 are Stieltjes matrices.

Thus, from (3.8), the entries ai,j of A-1 satisfy zi,j < 0 for all i # j. Moreover, since
A-1 is a strictly diagonal dominant matrix, then czi,i > 0 for all 1 <_ i <_ n. Hence, in
this case where T(A) > 0, (1.2) of Theorem 1.2 vacuously holds.

If r(A) 0, then from (3.7) we have that

O D and A-I= O D-1

so that A and A-1 have the same off-diagonal blocks of zeros. But we can evidently
apply the inductive hypothesis to the block submatrices C and D, and we thus estab-
lish (1.2), namely, that the zero entries of A and A-1 are the same. [:]

Having established Theorem 1.2, we deduce from it the following corollary, which
appears in [2, Lemma 1] as a step in establishing proof of Theorem 1.2.

COROLLARY 3.1. Let A in ]pn,n be strictly ultrametric. If := (1, 1,..., 1)T in
IRn, then there exists a vector p in lRn, with all positive components, such that

(3.9) Ap .
Proof. From Theorem 1.2, A-1 is a strictly diagonally dominant Stieltjes matrix

in ]Rn’n. Hence A-In =’p > 0, from which (3.9) directly follows.
In conclusion, we note that the more general problem of determining which non-

singular matrices in lRn,, with nonnegative coefficients, have inverses that are M-
matrices, has been studied by a number of authors over the years. Although we know
of no overlap between the results of this paper and results from these more general in-
vestigations, we have nonetheless listed, for the benefit of interested readers, a number
of papers [4]-[8] that deal with this more general problem.

Acknowledgment. We thank Professor C. R. Johnson for stimulating discus-
sions related to this research.
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GENERALIZED DISPLACEMENT STRUCTURE FOR BLOCK-TOEPLITZ,
TOEPLITZ-BLOCK, AND TOEPLITZ-DERIVED MATRICES*

Dedicated to Gene H. Golub on the occasion ofhis 60th birthday.

T. KAILATH’[" AND J. CHUNk:I:

Abstract. The concept of displacement structure has been used to solve several problems connected with
Toeplitz matrices and with matrices obtained in some way from Toeplitz matrices (e.g., by combinations of
multiplication, inversion, and factorization). Matrices of the latter type will be called Toeplitz-derived (or
Toeplitz-like, close-to-Toeplitz). This paper introduces a generalized definition of displacement for block-Toeplitz
and Toeplitz-block arrays. It will turn out that Toeplitz-derived matrices are perhaps best regarded as particular
Schur complements obtained from suitably defined block matrices. The new displacement structure is used to
obtain a generalized Schur algorithm for fast triangular and orthogonal factorizations of all such matrices and
well-structured fast solutions of the corresponding exact and overdetermined systems of linear equations. Fur-
thermore, this approach gives a natural generalization ofthe so-called Gohberg-Semencul formulas for Toeplitz-
derived matrices.

Key words. Toeplitz matrix, displacement structure, factorization, generalized Gohberg-Semencul formulas,
Schur complements

AMS subject classifications, primary 65F05, 65F30; secondary 15A06

1. Introduction. Fast algorithms for triangular and orthogonal matrix factorization,
matrix inversions (least-squares) solutions of linear equations, and several related results
are now widely known for Toeplitz matrices. The concept ofdisplacement structure 30
was introduced to show, among other things, that fast algorithms could also be obtained
for several related matrices that do not have such structure; for example, though not
Toeplitz, matrices of the form T-{ T1T2, Tl TzT1T4, T1T2 T3T4, where the
Ti } are Toeplitz matrices, all possess fast algorithms. The reason basically is that all

these matrices have low displacement rank. The displacement of a (square) matrix A
was defined in [30] as

T(1) VA A ZnAZ,,

where Z, is the n n (lower) shift matrix with l’s on the first subdiagonal and O’s
elsewhere. For a Toeplitz matrix, T, it is easy to see that VT will be identically
zero except for the first row and first column, so that the displacement rank of T
rank VT _-< 2 no matter what the size of T. A significant fact is that, though T -1 is not
in general Toeplitz, rank VT-l _-< 2. So, also, though TIT2 is not in general Toeplitz,
rank VTIT2 =< 4. These facts have been exploited to obtain fast O(rt 2) algorithms for
factoring matrices such as T-l and T T2 and others. Nevertheless we show in this article
that matrices such as T -l, T1 TzT1T4, TIT2 T3T4, and so on may be better
studied by first trying to find an appropriate "Toeplitz-block" matrix in which these
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matrices appear as certain Schur-complement matrices and then analyzing these Toeplitz-
block matrices by introducing a suitably modified definition of displacement; the key
fact then used is that displacement structure is preserved under Schur complementation.
Besides. enabling us to solve several new problems, this procedure also provides a new
and simpler approach to many of the problems studied in 4 ]- 6 ], 9 ]- 11 ], 13 ]-
[15], [19]-[21], [23], [27], [36], [37], [41], [43], [44]. It will perhaps be clearest to
present two simple examples.

Example 1. Study of T-1 First note that T-1 is the Schur complement ofthe 1,1
block in the Toeplitz-block matrix

(2) A
O

It is a known result (see, e.g., 13 ], 37 that the displacement rank ofa Schur complement
ofA cannot exceed the displacement rank ofA, which is 4, in general, because

-to -tl
--tl

--tn-
1 tn-1
0

0

0

1

0

0 0

0
0 0

0

However, it is well known that the displacement rank of T -1 cannot exceed 2. Therefore,
though the idea of studying matrices such as T- and T T2TIT4 as Schur comple-
ments of suitable block matrices is not new (see especially the work ofDelosme 13 and
[14] and others [5], [37], [43], [44]), doing this with the definition (1) will lead to
more complex algorithms than necessary.

On the other hand, suppose we define the modified displacement rank ofA by the
rank of the matrix

Then note that

V(F,F)A A FAFr,  nO]0 Z Zn ) zn"

[ -(z.,z. T7(V F)A [ 7(Z.,Z.) I

-to
-t

--ln_
0

0

1 0 0

0

0

so that the F displacement rank ofA is 2. Now the previously mentioned result on Schur
complements will show that Vz.,z.)T- <= 2. [2
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Example 2. Displacement rank of products. In [9 ], we gave a rather uninspiring
proof of the inequality

(3) rank [V(z,,z,)(BIB2)] =< rank [Vz,,z,)Bl] + rank [V(z,,z,)B2] + 1.

An interesting proof follows by considering the block matrix

-I B 1(4) A=
Bl O

Note that B B2 is the Schur complement of-I in A and that

(F,F)A

--1

0
7(z,,z,) B1

7(z,,z.) B2

F=Zn)Zn.

Now, (3) follows from the fact that rank [V(z,,zn)(BIB2)] <- rank [7(F,F)A
On the other hand, note that if (consistent with the original definition )) we had

used Zn instead of Zn @ Zn, we would have obtained a looser bound,

rank [V(z,,z,)(AAa)] <= rank [V(z,,z,)A] + rank [V(z.,z.)A2] + 3.

Tighter bounds on the displacement rank of matrices are important because the operation
count of fast algorithms increases according to these bounds rather than to the displace-
ment rank. This is the feature made possible by using properly extended definitions of
displacement rank. Ul

An appropriate generalization of the ideas in these simple examples is introduced
in this article along with several applications. Section 2 gives the general definitions. The
heart of the article is 3, where a generalized Schur algorithm is derived. Several appli-
cations are given in 4. The concluding section reviews the main idea and makes com-
parisons with earlier approaches also using Schur complements (e.g., [5 ], [13], [37 ]).

2. Definitions and notations. Let A e R be a given matrix and let Ffand Fb be
strictly lower triangular matrices. The matrix

(5) (FT,Fb)A A FfAFbT, FbT (Fb) T

is called the displacement ofA with respect to the displacement operators Ff, Fb ). Any
matrix pair X, Y } such that

(6) V(Ff,Fb)A XY T,
is called a generator ofA (with respect to { Ff, Fb } ). The number a is called the length
of the generator (with respect to { Ff, Fb ) ). A generator ofA with the minimal possible
length is called a minimal generator. The length of the minimal generator of A (i.e.,
rank (7(Ff,Fb)A <= Or) is called the displacement rank of A (with respect to (Ff, Fb }
and is denoted as aFf,FO)(A).

If { X, Y is a generator of A with respect to { Ff, Fb}, then for any nonsingular
matrix S e R , the matrix pair XS, YS-T } is also a generator ofA because

7 Ff,rb)A XYT XSS- Y ’.
Hence, generators (even minimal ones) are not unique. For block-Toeplitz or Toeplitz-
block matrices, it is straightforward to obtain generators from the displacements by in-
spection.
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Note that the displacement of a symmetric matrix A can be written as 7(F,F)A
XZXT where Z is a diagonal matrix with or -1 along the main diagonal; we say that
A has a symmetric generator, { X, XZ}, with respect to F.

We should note that the following sum-of-products representation of a matrix A
solves 5 ),

(7) A Kn(xi, Ff)KnT(yi, Fb), A
_
RmXn,

i=1

where Kn(xi, Ff) RmXn and Kn(yi, Fb) 6 R" are the so-called Krylov matrices

Kn(xi, Ff) [Xi, UX (U) Ix/], Kn(Yi, Fb) [yi, Fbyi, (Fb) lyi ].

The strict triangularity of Fy, F is important in this result; otherwise the Krylov
matrices would have an infinite number of columns. We shall show in 4 that the
representation (7) yields generalizations of the celebrated Gohberg-Semencul formula
for the inverse of a Toeplitz matrix (see [22 ], [24 ]).

Choice ofdisplacement operators. Let { X, Y } be a generator of length a ofA with
respect to Ff and F. If the matrix-vector multiplications Ffu and F% take f(n) and
b(n) operations, respectively, then the algorithms to be presented in 3 will need
O(ang(n)) operations, where g(n) max (f(n), b(n)). Therefore, the objective is to
choose the "simplest" or sparse (to make g(n) small) strictly lower triangular matrices
Ff and F6 that also make a as small as possible. For a scalar n n Toeplitz matrix, a
natural choice of displacement operator is the n n shift matrix, Z, with l’s along the
first subdiagonal and O’s elsewhere. We give some heuristic choices for block-Toeplitz
matrices, Toeplitz-block matrices, and their combinations.

For an M N Toeplitz-block array with mi glj Toeplitz matrices Ti,j,

T,I T,2 T1,N

(8) A T2,1 T2,2 TZ,N R n,
Ta, TM,2 TM,N

we shall use the displacement operators,

M N

Ff= ] Zmi F=
i=1 i=1

where= F; denotes the concatenated direct sum, i.e., the block diagonal matrix whose
ith diagonal block is Fi.

For an M N block-Toeplitz array with r s rectangular blocks,

(9) A

Bo B_ B-N+
B Bo B-N+ 2

BM-1 BM-2 B-N+M

a natural choice is

Ff__ Z M F N
Mr Z Ns,

where Zr [Zk.r] k can be seen as a block shift matrix, i.e., a k k array with r r
identity matrices on the first block subdiagonal and O’s elsewhere.
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Example 3. Consider the matrix A,

I BO]A B7 0 I BERmn
0 I 0

If B is a Toeplitz matrix, then choosing

Ff =Fb= ZmZnZn
will give a displacement rank of 4 for A. If B is an M N block-Toeplitz array with
r s blocks, we could choose

Ff Fb ZMMr Zvs ( ZN)vs.

If B is a Toeplitz-block array, for example, B T T2], where T E Rml n and T2 e
Rm2 then we could choose

Ff Fb Zm, Zm Z Zn

We can obtain a generator ofA for each case by inspection. For example, for the case of
Toeplitz B (bi_j), the following matrix

0 0 0
0 b 0 b

0 bm- 0 bm-
bo .5 bo -.5
b-i 0 b_ 0

bl -n 0 bl 0
0 0

0 0

0 0 0 0

Z=
-1

-1

is a generator ofA with respect to Zm Z, @ Z. More systematic procedure is described
in the Appendix.

Proper generators. Let { X, Y be a generator ofa matrix A. We say that a generator
is proper (with respect to the pivoting column j) if, for a certain i, all the elements in
the th row ofX and above, except for the element [X ]i,j, are zero and all elements in
the ith row of Y and above, except the element [Y]i,j, are zero. Often we shall denote a
proper generator as Xp, Yp }. If (X, Y } is not proper, then by choosing an appropriate
S, we can obtain a proper generator { XS, YS-T } under certain conditions on the matrix
A. A procedure for doing this is described in 3.

3. Generalized Schur algorithm. A fundamental method for triangular matrix fac-
torization is the so-called Schur reduction process (see [40] and, e.g., [13], [14], [33],
34 ], 37 ], 38 ]), which successively computes the Schur complements of the leading
submatrices iteratively; displacement structure allows the computation to be speeded up.
Our fast algorithms will be based on the following theorem.

THEOREM 1. Let {X (p), Y(p) } be a proper generator of a rectangular matrix
A () Rmn with respect to {Ff, Fb}. Also assume that {Yp(), Yp()} has been made
proper with respect to a particular (pivoting) column, which we shall index as "pvt." If
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we denote the columns ofX(p) and Y) by

Xp’) [xl ’) ’) x(.’)] y(p’) ’) .,(’) y)Xpv, [Y Jpvt,

then the matrix A () defined by
A(2) A() pvt g pvt

has null first column and row, and has a generator {X(2), y(2)}, with respect to
F oft eform

]’) f(’) x,] y(Z) ’) b. (l) ,)X(z)=[x ,...,--,. =[Y ,...," Svt,...,Y ].

Remark 1. The matrix A (2) is the Schur complement of A () with respect to the
1,1 element ofA ().

Proof.
().r()T1 Ff[A() (I)v(I)T1FbTA (2) FfA(2)FbT [A () Xpvt?pvt --Xpvtapvt

A(l) FfA()FbT w(1)’r(l)TpvtJpvt @ Ffx()(’)TFbTpvtapvt

X()y(l)T w(l)pvt Y pvt(l)T T x-f)pvt Ypvt(1)TFbT
X(2)y(2) T.

The first column and row ofA (2) are null because

A(Z)e [X(2)Y(Z)]e 0, e(A (2) e[X(2)Y(2)T] O,

where we have used the fact that Ff and Fb are strictly lower triangular and
X’), Y’)] is proper.

By applying the previous theorem using such a proper generator we can obtain a
(possibly nonproper) generator ofA (2). Conveing this to proper form, we can proceed
to find a generator A (3). By repeating this process r times, we shall generate the matrices

A(2) A(l) ,(1) (l)T
pvt Y pvtl

(10)
(r-l (r-l)TA(r) A(r-1)_ Xpvtr_ Ypvtr-
(r) (r)TA(r+ ) A (r)

Xpvtrj, pvtr

It turns out that this process gives a partial triangularfactorization ofA (l), because (10)
shows that

A() X (i) r(i) T -- A (r+ )
pvti ,? pvti

i=l

,(1) (r)
"’pvh pvt

w(1)T- 1Jpvt

+ A(r+ 1)
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where

s(r+ 1)

Remark 2. The above r-step partial triangularization breaks down if and only if
there is a singular leading principal submatrix of order less than or equal to r; we shall
assume that this is not so, i.e., the matrix is assumed to be strongly nonsingular or strongly
regular. Various authors, including ourselves, however, have obtained results for the
indefinite matrices with singular leading principal submatrix case as well (see [38 ]).

The above process can be summarized in the following algorithm, which we shall
call a generalized Schur algorithm.

GENERALIZED SCHUR ALGORITHM
Input" A generator { X, Y } ofA Rmn with respect to Ff, Fb}.
Output" (i) Partial triangular factors L e R and U R n ofA.

(ii) A generator { X, Y of the Schur complement of the r r leading principal
submatrix ofA,
Procedure"

for k to r do begin
Find a proper generator of Ak);
The kth column of L Xpv The kth row of U T

Ypvt,
Replace xpt with Ffxpvt and ypvt with Fbypvt to get a generator ofA <k +);

end
return (L, U, { X, Y );

Note that the above procedure needs O(apr) operations, where p max (m, n)
and a is the length of the given generator, if the operation of making a generator proper
takes O(ap) operations. We now show how to do this.

Construction of proper generators. This can be done in various ways. We shall
describe a method using elementary matrices known as spinors; for methods using
Householder matrices, see, e.g., [7], [12], [13], [16], [32]. A spinor Sjli R is
defined as the identity matrix except for the fdllowing four entries,

[S(jli)]i, c, [S(j[i)]i, s2, [S(j[i)]j, -s1, [S(j[i)]j,j c,

where [A ]i,j denotes the (i, j)th element of the matrix A and c2 + ss2 1. The inverse
of a spinor is also a spinor, viz., S-)I i) is the identity matrix except for the following four
entries,

[S-()li)li,i C, [S-()li)]i,j -$2, [S-()li)]j,i s1, [S-(Jli)]j,j c.

Let x T R " and y r R , be row vectors. Let c, sl, and $2 be chosen as

C
xiYi ]1/2 Xj _c.yjS2 C’ S

xiYi qt_ xjyj Xi Yi

and define x’ and y’ by
T -TxtT xTS(jli), y,T y S(jli)"

Then it is easy to check that xj y) 0 and x’ Vy’ x ry. We shall call the elements xi
and Yi pivoting elements. Therefore, by repeating this process we can annihilate all ele-
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ments of x and y except the pivoting elements, resulting in

[0, O, Xi, O, 0] X T H S(jli) [0, O, Yi, 0, 0] yT H S-T(jli)"
ji ji

An arbitrary choice of pivoting element or an arbitrary ordering of annihilation
might result in [1 + (xjy/xy)] <- 0 for some j, for which real spinors do not exist. This
issue is handled by the following lemma, whose proof along with other related results
can be found in [7].

LEMMA 1. Let "Yi Xi Yi and s 7]i "Yi > 0 (<0). Ifwe choose a pivot element such
that - > 0 (<0), and ifwe annihilate all elements with 3’i > 0 (<0) before annihilating
elements with "Yi < 0 (>0), then [1 + (xx/xiyi)] > Ofor all <=j <= a,j 4: i.

Some special cases. If we are given a symmetric generator of a symmetric matrix
A, i.e., if Y X, then the updating of Y in the above procedure is redundant, because
the updated X’, Y’} after annihilating a row still remains symmetric. To see this, let

xT= yT= [Xpvt, Xj].

Then the spinor that annihilates xj will reduce to a Givens rotation,

G(jlpvt 1.
s

On the other hand, if

X T= [Xpvt, Xj], y= [Xpt,-xj],

the spinor will become a hyperbolic rotation,

ch -sh] ch 2 sh 2H(Jlpvt)
-sh ch

Notice that Givens and hyperbolic rotations preserve the symmetry of the updated gen-
erator, i.e.,

YS-T Y’ X’Z, X’ XS, S: a Givens or hyperbolic rotation.

As another special case of spinors, consider the two row vectors

XT= [Xpvt, Xj], yT= [Ypvt, 0].

For this case, the spinor that annihilates xj will reduce to the usual elimination matrix,

E(Jlpvt)
0 Xpvt

We may mention that Ahmed, Delosme, and Morf [2 showed the significance of such
elementary operations for efficient hardware implementation.

Remark 3. For a square Toeplitz-block array A e R " with Ti,j Rmi nj, we can
obtain the LU factorization of A by completing the generalized Schur algorithm with
r n. Other authors have suggested first transforming A into a block-Toeplitz matrix by
pre- and postmultiplication with permutation matrices and then applying an algorithm
for square block-Toeplitz matrix to get a row- and column-permuted triangular factoriza-
tion ofA; there is clearly a difficulty with this approach when m 4: mj. More importantly,
ifA is not positive definite, the permuted matrix is not necessarily strongly nonsingular,
for which ordinary LU factorization does not exist. Our approach does not have this
problem because it directly factorizes A without permutations.
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Remark 4. For a square block-Toeplitz array A Rnxn, with square blocks Bg 6

Rrx r, there exist several fast block triangular factorization algorithms such as the Bareiss
algorithm 4 ], the multichannel Levinson algorithm 3 ], 35 ], and the Schur algorithm
[1 and 18 ], all ofwhich require matrix (ofthe block size r X r) operations. Our approach
treats block-Toeplitz matrices in essentially the same way as scalar Toeplitz matrices
and in particular will use only elementary scalar operations. We remark that the absence
of matrix operations such as inversion may simplify the design of dedicated hardware
implementations.

4. Applications. By applying the generalized Schur algorithm in 3 to judiciously
chosen block matrices, we can obtain interesting results including fast QR factorizations
and generalized Gohberg-Semencul formulas. Generators of the block matrices used in
this section can be easily found by inspection (see Appendix). The floating operation
(flop) counts given below are confined to the number of multiplications.

Simultaneous factorization of a symmetric Toeplitz matrix and its inverse. Let
T (tg_j) Rnxn, to 1, be a strongly nonsingular symmetric Toeplitz matrix. The
matrix

(12) A
I

has a symmetric generator X, XZ } with respect to Z, (D Z,, where

tl tn- 0 0
Z,X=

0 t t,- 0 0 0 -1

After performing n steps of partial triangular factorization using the generalized Schur
algorithm, we shall have the factors L and U in

(13) A [Lr’ Url +
0 S

Now, one can check by comparing the entries ofA in (12) and 13 that

T LL r, T-1 UUr, U: upper triangular.

Recall that the classical Schur algorithm gives only the factorization T LL r,
whereas the Levinson algorithm gives the factorization T- UUr. Here we get both
simultaneously in 4n + O(n) flops (or 2n + O(n) if one uses fast rotations; see, e.g.,
9 and 25 ]). The computation only of T LL r needs just one half of the above flop

counts. If one only needs the factorization of T- the above method is slower than the
Levinson algorithm; however, the above (Schur) method does not require inner products
and therefore is better suited to parallel implementation than the Levinson algorithm.

Orthogonalization ofafully windowed Toeplitz matrix 10 ]. Let T (t;_j) R n,
m > n be afully windowed Toeplitz matrix, i.e.,

tg_=0, ifj>i, or i>m-n+j.

Then it is easy to check that B (bg_) TTT is also an (unwindowed) Toeplitz matrix.
Now assume that to 4:0 and tin-, 4: 0, and consider the following matrix

(14) A
T
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for which it can be checked that a symmetric generator with respect to Zn @ Zm is

g/

0 bl/O bn--l/O 0 1 m--n 0 O 0 --1

After performing n steps of paial triangular factofization using the generalized Schur
algothm, we shall have the factors R and Q in

(15 [ 1 +
O S

By comparing (14) and 15 ), one can easily see that

TrT R rR, T QR,

so that Q is ohogonal because R rQrQR R rR. The computation of TrT needs
nm- n + O(n) flops and the paial tfiangulafization needs additional 8m 4rim +
O(m) flops (or 4m 2rim + O(m) flops with fast rotations).

Orthogonalization ofa Toeplitz matrix. Let B e Rx be a Toeplitz, block-Toeplitz,
or Toeplitz-block matrix of full-column rank, and let us define the block matrix

(16) A Br O Br

O B I

We can easily find a generator of A with respect to Z Z Z by inspection. For
example, if B is Toeplitz, a generator ofA is given by

0 0 0
0 0

0 bm-I 0 bm-I
-bo 0 0 bo
-b_ b_ b_ b_

-b b_,, + b b_,, +
0
0 b, 0 b

0 bm-1 0 bm-1

-1
-1

2;=

where bi bi/bo. If we apply the generalized Schur algorithm with the above generator,
then after the mth step with m2 + 2nm + O(n) + O(m) flops, we shall have a generator
of

(17) A(m) [ BTBB BIT]"
After another n steps of partial triangularization with 12ran + 6n 2 + O(m) + O(n)flops
(or 6ran + 3n 2 + O(m) + O(n) flops with fast rotations), we shall have R and Q in

A (m) [R, QT] +
0 o]
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such that B QR. One can start with a generator of the block matrix (17), as in the
fully windowed case. We note that a closed-form expression for a generator of 17 for
block-Toeplitz and Toeplitz-block matrix B can be found in [7]. For a Toeplitz B, the
closed-form expression for a generator of(17) can be evaluated in mn flops, and, therefore,
it requires less computation to start with it. However, it would be necessary to work with
a generator for 16 if B is non-Toeplitz and only its generator is given.

If one wishes to find R- directly, then one can perform the (m + n) steps of partial
triangularization with the matrix

This is because

-I B O]BT 0 I
0 I 0

A (m) .[R UT] +
I O O S

and, therefore, U R- because UR I.

Removingforward elimination in square systems. If one’s primary interest in the
factorization is in solving a square symmetric Toeplitz system of equations,

(18) Bx=b, B=LL 7, B6Rnn, b0= 1,

then one might want to obtain the transformed right-side vector y L-b during the
course of the factorization process (see, e.g., [2], [25]). This can also be done using the
generalized Schur algorithm by performing the following triangular factorization of the
matrix A,

(19) A-=[B b]=L.[L T,y]

whence the solution to 18 can be obtained by solving the triangular system ofequations

(20) Lrx y.

Note that the matrix A has displacement rank three with respect to {Zn, Z @ Z },
(Z 0), and a generator is given by

b0 0 /30 b0 0 0
b -b 0

b b /3 y
bn_ -b,_ 0

b,_ b_ /3,_ 0 0

where

I1 [/0, /1,""", /n-1] T"

The triangularization in 19 needs 2n 2 + (n 2 / 2 + O(n) flops (or n + (n - / 2) + O(n)
flops with fast rotations). Note that there is no saving in computing y L-b, as above,
over the conventional forward elimination method.

Removing back substitution in square systems. From a hardware implementation
point of view, the back-substitution step in (20) can be quite cumbersome [17 ]. This
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back-substitution process can also be eliminated by performing the partial triangularization
of the matrix 20

(21) A [L T

I 0
-y] +

O s

Notice that the solution B-lb is the Schur complement of B in A. For Toeplitz B
(bo ), a generator ofA in (21) with respect to Zn (3 Zn, Zn 0 ) is given by

bo 0 /30 bo 0 0
bl bl /1 bl -b 0

X Y
b_ bn- n- b- -bn- 0
el e 0 0 0

where el [1, 0 0 ]T. After n steps of partial triangularization indicated in (21
with 5n 2 + O(n) flops (or 3n 2 + O(n) flops with fast rotations), we shall have a "generator
of the solution vector," from which we can read out the solution after certain normal-
izations; see [29] for details.

Solving least-squares problems without back substitution. To solve the weighted
least-squares problem of minimizing

B2(Bx- b) II_,
where B1 and B2 are full-rank block-Toeplitz or Toeplitz-block matrices, we form the
matrix

(22)
-B2 B -b ]A Bl O 0
O I 0

Now notice that the least-squares solution

(23) x (BlBBl)-lBfb
is the Schur complement of the submatrix

o
The displacement rank ofthe matrix A in (22) is five. After m + n steps ofthe generalized
Schur algorithm, we shall have the solution (23) [see [29] for a generator of (22)].

Regularization. If the given Toeplitz least-squares system is particularly ill condi-
tioned, it is meaningless to compute the exact (least-squares) solution, because small
perturbations of the matrix can cause very large perturbations in the solution. In such
cases, we may solve the following regularized system [19], [36], [39 ], [44]

x B E Rrn L" lower triangular banded Toeplitz matrix.
rtL

This can be done by partial triangularization of the matrix

B b
-I

nL 0
(24) A

Bv rL O 0

O I 0
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The matrix A in (24) has displacement rank five. After m + 2n steps of the generalized
Schur algorithm, we shall have the solution. We may remark that this technique of
regularization is known as the leakage method (adding white (if L I) or colored (ifL
is banded) noise with variance rt

2 to the data sample) in the signal processing literature.
Generalized Gohberg-Semencul formulas ([ 22 ], 24 ]). Generalized Gohberg-

Semencul formulas for the matrices

TrT)-, TT T2, I T( TrT)-Tr, TrT)-Tr,
can be obtained after partial triangularization of the 1,1 block of the matrices

TrTI I0] [ TTf T2]O TrTT TrI [ TrTI T9
using the generalized Schur algorithm (see 14 ], 26 ], 28 ], 31 ], 42 for related results).

5. Concluding remarks. We have generalized earlier definitions ofthe displacement
for Toeplitz-like matrices and presented a correspondingly generalized Schur algorithm
for obtaining their triangular factors and their displacement representations. Derived
matrices obtained as products and inverses of Toeplitz matrices can be nicely handled
by formulating them as Schur complements of entries in a suitably defined Toeplitz-
block matrix. The extended definition allows us to efficiently handle block-Toeplitz and
Toeplitz-block matrices and Schur complements with respect to the leading (block) entries
of such matrices. Some interesting examples were given in 4. Although the result that
displacement rank is not increased under Schur complementation has been know for
over a decade (see [5], [13], [37]), the failure to use a generalized definition of
displacement made further analysis more cumbersome; similarly cumbersome
were the efforts to find expressions for the generators of derived matrices such as
T T2T T4.

We may note that appropriate modifications of the above approach can be used to
study Hankel, Vandermonde, Hilbert, and Cauchy matrices and derived matrices
(see [8]). Among earlier studies of such matrices, we may mention [13], [23],
[26], [32]-[34].

Finally, we remark that numerical stability issues are not examined here; studies
are in progress on appropriate modifications that can improve the stability.

Appendix. Given the displacement of a matrix, we can obtain a generator of the
matrix by representing each pair of nonzero columns and rows that cross at the main
diagonal as a sum oftwo rank-one matrices. More precisely, the following procedure can
be used to find a (possibly nonminimal) generator from the given displacement with
O(mn) flops.

Finding a generator
Input" The displacement V<Fg,Fb)A
Output" A generator { X, Y ofA
Procedure"
x-:{ );r.={ );
while there is nonzero column or row

for each pair of a column u and a row v r that crosses in the th position ofthe main
diagonal of (Fg,Fb)A

if ui :/: 0 then
fi u/u]/2" fi u except t2i 0"
:= v u)/2", := v except i 0;
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else
fi := u except/i /2; fi := u except/i /2;

v except i 1/2; v except i --1/2;
end;
X:= [X, , fi]; Y:= [Y, ,-];
Remove u and v;

end;
for each an unpaired th column u
X := [X, u]; Y := [y, ei ];
Remove u and v;

end
for each an unpaired jth row v T

X’= [X, ej.]; Y’= [Y, v];
Remove u and v;

end
return ( X, Y
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Abstract. The subject of the previous article by David Carlson, B. N. Datta, and Hans Schneider SIAM
Journal on Algebraic and Discrete Methods, 5 (1984) pp. 346-350] is revisited to improve and clarify results
given there and elsewhere.
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Introduction. For notation and terminology, we refer to the previous article CDS ].
In particular, A, H, and K are n n complex matrices and H and K are hermitian. The
following basic result, due independently to Chen C and Wimmer Wi ], has had many
useful consequences (cf. CD 1979a ], CD 1979b ], D ).

THEOREM A. Suppose that K AH + HA * >= O. If (A, K) is controllable, then
6(A) 0 and H is nonsingular (and r(H) r(A), v(H) v(A)).

In particular, a search for a converse to this theorem led to [CDS]. The principal
result of that article, Theorem 4, is stated below as Theorem B.

IfA(A) I-[ i,j.= (; + b), then the map LA(H) AH + HA* is one to one ifand
only if (iff) A(A :/: 0. Note that A(A 4:0 implies that 6(A) 0 but not conversely.

We will often assume that A is a block-diagonal matrix,

A diag (Al, App), with A,..., App square.

Under ), we will assume that matrices H [Hj] and K [K] are partitioned con-
formably with A and will define diag (H,..., Hpp) and K diag (K,..., Kpp).
Observe that if LA(H) K, then also LA(121) I.

THEOREM B. Let A be a block-diagonal matrix, as in (1), and suppose that
6(A 0 and

(2) a(Agi) f3 a(Aj) , i, j 1,..., p, :/: j.

Suppose that K AH + HA * >= O. Then the following are equivalent:

(3a) (A, K) is controllable,
(3b) (A,/) is controllable,
(4a) H is nonsingular and (A *, H-K) is controllable,
(4b) is nonsingular,
(5a) x*Hx 4:0 for every eigenvector x ofA *,
(5b) x*tx :/: 0 for every eigenvector x ofA *.

We shall reprove and improve the lemmas in [CDS that lead to Theorem B. We shall
show that (3a), (3b), and (4a) are equivalent whenever K AH + HA* >= 0 (the
assumptions that i (A) 0 and thatA is written in block-diagonal form are not necessary)
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and present an alternate form of Theorem B for block-diagonal A without the general
assumption that ti(A) 0.

Given a matrix B, not necessarily square, the range of B is denoted in CDS by
Im B and the controllability space of (A, B) (the smallest A-invariant space containing
Im B) by C(A, B). We shall emphasize here common aspects of these two concepts by
denoting the range ofB by R(B) and the controllability space of (A, B) by RA(B). Note
that always R(B) c_ RA (B).

The following result appears as Corollary 11.2 of[CS ]; we shall extend it to a bound
on dim RA(K).

THEOREM C. Suppose that K AH + HA * >= O. Then
q

rank (K) _-< r(A) + v(A) + [6i/2],
i=1

where 6, 6q are the degrees of the elementary divisors associated with imaginary
eigenvalues ofA and Ix] is thefloor or greatest integerfunction.

Finally, we shall improve the following result, which appeared as Theorem 4 of CD
1979a].

THEOREM D. Suppose that AH + HA * HBB*H and that

6 ) (A *, B) is controllable.

Then thefollowing are equivalent:

(7) H is nonsingular,

8 (A, HB) is controllable.

Results on controllability slaees. In the proof of Lemma of CDS ], the role of
the critical assumption (2) is not made explicit. That role is explicit in the proof of our
Proposition 1. It is closely related to Proposition 0.4 of [Wo and provides a proof of
Exercise 1.5 of [Wo].

PROPOSITION 1. Let A be block diagonal as in and suppose that (2) holds. Let
B (Bi) be partitioned conformably with A. Then RA(B) 3= RAii(Bi ).

Proof. It is clear that RA(B)
_= RAu(Bi ). To complete the proof, it is sufficient

to show that for p,

0 0 () 0 0 =__ a().

By simultaneous permutation of the blocks of A and B, it is sufficient to show this for
i=1.

As a(A fq r(diag (A22, App)) by (2) there exists a polynomialf() over
C for whichf(A) I,f(diag (A22, App)) 0. Thus,

f(A)B
O B2 0

"o 6
so that R(B 0 q 0)

_
R(B). Similarly, for j 1, 2,

f(A)AJB 0 A2Bz 0

0 AppBp 6
so that R(AB 0 O)

_
RA(B). The result follows. El
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It is clear from Proposition that if A is block diagonal as in ), B (Bi) and
C Ci are partitioned conformably with A and R Ci

_
R(Bi), p, then

b b

RA(C) RA,,(Ci) RAii(Bi)= RA(B).
i=1 i=1

This is true even if R(C) R(B), e.g., take

A=
0

B= C
0

It is known [A] that for K (Ko) >-_ O,

R(K)
_
R(K), i,j 1, p, C j.

Let K (K,..., K Kp) and (0,..., 0, K, 0, 0) for 1, p;
then

R(Ki R(Kii) R(Ki ),

so we have R() R(K), thus completing the proof of Lemma 1, our version of
Lemma of [CDS].

LEMMA 1. Let A be block diagonal as in and suppose that (2) holds. For K
O, R() R(K), and (3a) and (3b) are equivalent.

We next show that the best possible bound on the rank of K AH + HA * 0
given in Theorem C extends to a bound on the dimension of R(K). The proof of
Theorem C in [CS extends easily to show that the bound (9) is also best possible.

THEOREM 1. Suppose that K AH + HA * O. Then
q

(9) rank K dim (R(K)) w(A) + v(A) + [6i/2].
i=1

Proof. We follow and extend the proof of Corolla II.2 in [CS]. In this proof,
A diag (A,... ,Aq+,q+), whereA,... ,Aq+,q+ are square, and, for 1,...,
q, Ai is a single upper-triangular Jordan block of order i associated with an imagina
eigenvalue ofA. With H [Hy] and K [K] paitioned conformably, for 1,
q, Kii has by Theorem II of [CS] at most [Si/2] nonzero rows; the bottom 5i [5i/2]
rows are zero.

Because K 0, this must also be true for Ki Ki ,..., Ki,q + ]. And because for
j 1, 2, A has conformable block-diagonal form, with upper-tfangular diagonal
blocks, this same statement about zero and possibly nonzero rows holds for A YKi.

Suppose K AH + HA * 0 for some H 0. As noted in the proof of Theorem
IV of [CS], there exists a nonsingular S for which

SAS_I= All A12
SHS*

0 A22 0 0

with Hl nonsingular, and then

SKS* SAS-’ S.S* + S.S* SAS-1 ). ( All + A 0 ].
0 0

It follows that (see also Lemma 3 of CL

o) R(K) R(H),

which explains in a structural way the statement in Theorem A that H is nonsingular
whenever (A, K) is controllable.
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We next explore the case of equality in (10). Suppose first that A has a single
eigenvalue, which is imaginary. Then by the argument leading to (10) and Theorem
applied to A, H, and K, if K AH + HA * >= O, then whenever H 4:0 we cannot
have RA (K) R(H). That is to say, RA (K) R(H) iffH 0.

We can now generalize Lemma 2 of CDS ]. A decomposition similar to that in our
Lemma 2 appears in Theorem 4.7 of[HS].

LEMMA 2. Let A be block diagonal as in ), with (2) and

11 either A(Aii) 4: 0, or Aii has a single eigenvalue that is imaginary, 1,..., p,

holding. Suppose K AH + HA * >= O.
Then RA(K)

_
R(I), with equality iffHii O for all 1,..., p for which A, has a

single imaginary eigenvalue.
Proof. Because K- LA(H) >= O, then also/ LA(fI) >= O, so that

RA K) R I)
_
R I)

by Lemma and (10). As
p p

RA (I) RA,(K,) and R(/-) R (H.).
i=l i=l

the statement on equality follows from Corollary 2 of CL] for Aii with A(Aii) 4 0 and
from our remarks above for Aii with a single imaginary eigenvalue. V1

Note that every square complex matrix is similar to a block-diagonal matrix as in
), with (2) and 11 holding.

Note also that Lemma 2 may be regarded as a more structural explanation ofanother
part ofTheorem A: if(A, K) is controllable, then so is (A,/), and by (10) is nonsingular,
and A can have no imaginary eigenvalue.

Results on controllability. We first strengthen Theorem D.
THEOREM 2. Suppose AH + HA * HBB *H. Then 8 A HB is controllable)

iff 6 A *, B is controllable) and 7 H is nonsingular
Proof. That (6) and (7) together imply (8) is part of Theorem D. Suppose now

that (8) holds, then also (A, HBB*H) is controllable and HBB*H >- O.
It follows from Theorem A that H is nonsingular. Now

H-A + A*H- H-(HBB*H)H-1 BB* >= 0
and, applying Theorem D again, (A *, H-(HB) B) is controllable. U]

Observe that (6) does not imply (7) or (8) (take H 0) and that (7) does not
imply (6) or (8) (take A 0 and B 0).

We may now reformulate and prove Theorem B without the assumption that
6(A) 0.

THEOREM 3. Let A be block diagonal as in ), with (2) and 11 homing. Suppose
that K= AH + HA* >= O. Thefollowing are equivalent: (3a), (3b), (4a), 6(A) 0 and
(4b), 6(A) 0 and (5a), i(A) 0 and (5b).

Proof. The proof in [CDS] that (3a) iff (5a) holds without the assumption that
it(A) 0.

Recall that (A, B) is controllable iff (A, BB * is. Now H is nonsingular if (3a) holds
(by Theorem A) or if (4a) holds (by hypothesis). From H-(AH + HA * K)H- we
obtain

A*H- + H-A H-KH,
and now (3a) and (4a) are equivalent by Theorem 2 applied to A *, H-, and K BB*.

The rest of the proof follows immediately from Theorems A and B. [3
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REDUCTION OF A TRANSFER FUNCTION
VIA AN OBSERVABILITY MATRIX*
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Abstract. An algorithm is given for reduction of a scalar transfer function g(s) to its lowest terms. The
main step is to reduce the observability matrix for a controllable canonical form state-space realization of g(s)
to a block-triangular form by row operations. No polynomial manipulations are required and only a single rank
computation is needed. As a byproduct, other properties ofthe numerator and denominator ofg(s) are obtained
with little extra effort. The method can be extended to the case when a basis of orthogonal polynomials is used.

Key words, transfer function reduction, observability matrix
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1. Introduction. Consider a given proper transfer function

b(s)
(1.1) g(s)

a(s)

bosm + blSm-1 + + bm
(1.2)

S + alSn + + an
where bo 4:0 and n m >= 1. The state-space realization of (1.2) in controllable
canonical form is

(1.3) Ax + du, y cx,

where

(1.4) d [0, 0 ,0, 1] T, C [bm, bm b0, 0 ,0 ],

and A is an n n companion matrix associated with a(s) in the form

0 I._](1.5) A
man al

where In denotes the unit matrix of order n 1. If the realization 1.3) is completely
observable, then g(s) is irreducible. If not, theia g(s) can be reduced to the form

t( S tOSm- k qt_ t1Sm- k-1 _]- -]-. 5m- k
(1.6)

a(s) Sn-k + eelS
n-k-1 + + an-k

where the greatest common divisor d(s) of a(s) and b(s) has degree k. There are, of
course, many ways of obtaining the reduced form 1.6 ): for example, determine d(s) by
constructing the Routh array associated with a(s) and b(s), and hence obtain a(s) and
/3(s) by direct division; or, to avoid polynomial manipulations, use the Hankel matrix
ofMarkov parameters 10 ]. A recent method that also avoids divisions has been suggested
by Chui and Chen [11] and involves a Sylvester-type resultant matrix. This approach is
interesting, because although it has long been known [2, p. 39 how to compute d(s)
from a Sylvester matrix, their algorithm produces the reduced form (1.6) directly by
using appropriate row operations, without actually finding d(s) itself. However, it seems
to be true that for every algorithm involving a Sylvester matrix, there is a corresponding
scheme based on using a companion matrix. The purpose of this article is to show how

Received by the editors November 26, 1990; accepted for publication (in revised form) March 23, 1992.
]" Department of Applied Mathematical Studies, University of Leeds, Leeds LS2 9JT, United Kingdom.

134



REDUCTION OF A TRANSFER FUNCTION 135

the problem of reducing g(s) in 1.1 to the form (1.6) can also be solved in a "com-
panionable" fashion.

2. The algorithm. There is no loss of generality in assuming from now on that
b0 1,/30 in (1.2) and (1.6), respectively. The algorithm is as follows.

Step 1. Construct the observability matrix M having rows c, cA, cA 2,..., cA n- 1,
where A and c are defined in 1.3 ). Notice that the first rows ofM are obtained simply
by performing repeated cyclic shifts on c, i.e.,

cA [0, 0 ,0, bm, bl, 1, 0 ,0 ], O, 1,..., 1.

t-i-1

Step 2. Apply elementary row operations to the last rn rows of the n 2n matrix

(2.1) X=[M,I,]

so as to reduce it to [X1, X2 ], where the n n matrix X1 has the block-triangular form

(2.2)

m

XI=
X2 0 rn

In (2.2) the first rows ofX1 are precisely the first rows ofM constructed in Step 1, so
in particular X12 is lower triangular and X2 is upper triangular relative to its secondary
(northeast to southwest) diagonal.

Notice that when 1, then XI is itself upper triangular in this latter sense.
Step 3. The matrix X2 is nonsingular if and only if g(s) in 1.1 is irreducible, so

ifX2 in (2.2) has no zero rows, then no reduction of g(s) is possible. Otherwise, make
the last k rows ofXz zero, and row n k + ofX2 is then by Corollary 1.2 of[3]

[Ogn-k, an-k-I al, 1, 0 ,0],

which gives the required coefficients of the denominator in (1.6).

(2.3)

Step 4. Construct the triangular Hankel matrix

0 0 1

1 W Wm_k_

W1 W2 Wm k

of order rn k + 1, where

(2.4) wj - aiwj-i,
i=1

w0 1; j= 1,2,...,m-k.

Step 5. The required coefficients of the numerator in (1.6) are given by

(2.5) [m-k, 3m-,-1 131, 1] [Olm_k, Olm_k_l, Oll, 1]WT,

where T is the triangular Hankel matrix

(2.6) T

brn-l-I b
bm-I-I bm-l-2 1

[ 11 0
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Proof. Steps 1, 2, and 3 are derived in [3 in a more general setting. The theory
behind Steps 4 and 5 is developed in detail in 7 and relies on establishing a relationship
between b(A) and a(B), where B is a companion matrix for b(s).

The procedure can in fact still be applied if the degrees of b(s) and a(s) are equal:
simply replace the numerator in 1.1 by b(s) a(s), so that the vector c in (1.4) used
in Step becomes

(2.7)

and select the appropriate value of in (2.2).

3. Illustrative examples.
Example 1. Consider the example used in [11 with n 4, namely,

(3.1) g(s)
S
4 %- S % 2S %" S %" 1/2

S4 1/2S %" 2s 2 + 1/2s +

From (2.7) we have

c [-1/2, 1/2, 0, 2],

and from 1.5 the companion matrix for the denominator in (3.1) is

0 0 0
0 0 0
0 0 0

After constructing the observability matrix M in Step 1, the matrix in (2.1) becomes

M

Using appropriate row operations, this is easily reduced to the stated form in Step 2:

(3.2)

0 0 00 2
-1/4 -- 0 -3 0 0
0 0 0 2-1 0
0 0 0 2 0

X X
Because the last two rows ofX1 in (3.2) are zero, it follows from Step 3 that k 2, and
hence row n k + 3 ofX_ gives the denominator in (1.6) as a(s) s2 s + 2.

Using (2.4), the matrix in (2.3) is easily found to be

w=o

and from (2.6)

T=
0
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Finally, from (2.5)we have

[/32,/3, 11 [2,-1, 1]WT

so that the numerator in (1.6) is /(s) s - + s + 1.
It should be noted that determination ofk from Xl is equivalent to finding the rank

ofM; in the solution of the reduction problem in 11 ], three separate rank calculations
are necessary.

Example 2. Consider

g(s)
S -- 8S 2 q- S- 42

S + 10S4 + 22S + 4S2- 23S- 14

for which n 5 and n m 2. Using A in 1.5 and Step 1, the matrix in (2.1) is
found to be

-42 8 0
0 -42 8

IsX= 14 23 -46 -21 -2
-28 -32 31 -2 -1
-14 -51 -28 53 8

M

This is reduced by row operations to the required form in Step 2 with

0-42 8
80 -42

0 0X -196 -56 -4
0 01008 144 0
0 00 0 0

g2

(3.3)

(3.4) X2

0 0 0 0
0 0 0 0

5 2 0 0
-26 -7 -4 0
-2 -3 3

It follows from Step 3 by inspection ofX that k 1, and from row n k + 5 ofX
the denominator in (1.6) is

a(S)-- S4 -1-" 3S + S2- 3s- 2.

The above part of the example is essentially as worked out in [3]. To determine/3(s),
from (2.3), (2.4), and 2.6 we have

W= 0 -10 T 8
-10 78 0

so that in (2.5)

[/2, /1, 11 [1, 3, llWT [-6, 1, 11,

whence the numerator in (1.6) is/3(s) s2 + s 6.
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For the purposes of this article, only row n k + of X2 needs to be recorded.
However, it should be pointed out that the other rows OfXl do in fact give the coefficients
of the set of Euclidean remainders associated with a(s) and b(s), as described in [6 ]. In
particular, a greatest common divisor d(s) of a(s) and b(s), if required, is given by the
last nonzero row in X1. Thus, in Example 1, from (3.2) we have

d(s) --S2 S 1/4,

and, for Example 2, (3.3) gives

(3.5) d(s) 144s + 1008.

Furthermore, without additional effort, the solution y(s) ofthe diophantine equation

(3.6) a(s)x(s) + b(s)y(s) d(s)

can be read off from row n k of X2 [4]. Thus, in Example 2, the fourth row of X2 in
(3.4) gives

y(s) s3- 4s2- 7s- 26,

where d(s) is given in (3.5). Finally, following [7], the coefficients of-x(s)in (3.6)are
obtained by multiplying the elements in columns n m + to n k + of row n k
ofX2 by W T. In Example 2, this gives

[-4, 1, O]WT [-6, 1, 01,

showing that x(s) -s + 6.

4. Discussion and conclusions. It has been shown how a given transfer function
g(s) can be reduced to its lowest terms by performing row operations on the observability
matrix ofa controllable canonical form realization so as to reduce it to the block-triangular
form (2.2). The reduction ofthe denominator ofg(s) was given in 3 ], but the complete
algorithm is detailed above for the first time.

Like the scheme proposed in 11 ], there are no polynomial manipulations, but the
algorithm in 2 seems to have several advantages.

(i) There is only a single computation of rank, that of the observability matrix M
in Step 3, whereas in [11] k + separate calculations of rank are needed.

(ii) It is more natural in a control context to use an observability matrix rather
than a Sylvester-type matrix. For example, if a minimal realization ofg(s) in state-space
form is required, then a standard method 8 is to extract the completely observable part
ofthe realization {A, d, c in (1.3) using a similarity transformation. However, recovering
the reduced transfer function then requires inversion of a characteristic matrix., and this
is difficult in general.

(iii) The procedure described in this article also produces the greatest common
divisor between the numerator and denominator of g(s), as well as the solution of a
diophantine equation, and the associated Euclidean remainders, with little extra com-
putational effort. It is interesting that the method still gives the greatest common divisor
directly, even in cases where the Routh array applies to c(s) and/3(s) requires modifi-
cations. For example, if

s3-s2+s
g(s)O

$4 2s + 2s2 s
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then the algorithm gives

-I -I
0 -1

-1 0
0 0 0

0 -1 0
0 X2= -1 0
0 0 -1

From the form ofX2 we have k 1, and n k + 4 ofX2 gives the denominator of
the reduced form of g(s) as s s2 + s 3. The last nonzero row of X1 shows that the
greatest common divisor ofthe numerator and denominator ofg(s) is s 1. The reader
can easily check that the first column element in the fourth row of the corresponding
Routh array is zero.

(iv) If the numerator and denominator of g(s) are expressed relative to a basis of
orthogonal polynomials, then the method described in 2 for finding a(s) carries over
with little modification, provided that the companion matrix is replaced by the comrade
matrix [2, p. 372 ]. However, to find/3(s), it is necessary to reverse the roles of a(s) and
b(s), since there is no analogue of Steps 4 and 5 (for details, see [3] and [5]). The
method is therefore applicable to the model-reduction problem when, for example, a
transfer function is represented as a ratio of Chebyshev polynomial series ], 9 ]. There
seems to be no corresponding generalization of the Sylvester-type matrix.
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Abstract. This article extends the classical Schur algorithm to matrix-valued functions that are bounded
on the unit circle and have a finite number of Smith-McMillan poles inside the unit disc. With each such
function this article associates two infinite sequences: one is the well-known sequence of reflection coefficients
(all less than one in magnitude), whereas the other is a sequence of signs. Under certain assumptions, the
number of negative signs equals the number of poles within the unit disc. This article shows how to solve
tangential interpolation problems using the algorithm and gives a simple proof for the connection between the
number of poles inside the unit disc of each solution to the inertia of a certain Pick matrix. Also described is a
numerically efficient procedure for carrying out the algorithm that involves only scalar operations.

Key words. Schur algorithm, tangential interpolation, fast algorithms
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1. Introduction. In 1917, Schur [1 introduced a recursive algorithm for parame-
trization of scalar functions that are analytic and bounded within the unit disc. Since
then, the algorithm has been applied in many fields of engineering and mathematics.
Among others, applications include estimation and modeling of stochastic processes 2 ],
stability checking [3 ], [4], filter design [5 ], [6 ], fast algorithms for signal processing
[7], and H control [8]. The survey article [7] contains a more detailed discussion of
several ofthese applications. Since its introduction, Schur’s algorithm, has been extended
in many directions. One such.extension is the Nevanlinna algorithm 9 ], 10]; another
is the modified Schur algorithm 11 ]-[ 13 for meromorphic functions that have a finite
number of poles inside the unit disc.

Yet another extension by Delsarte, Genin, and Kamp [14 is the block Schur al-
gorithm for analytic matrix-valued functions. This algorithm cannot be applied to func-
tions with poles, because it requires square roots and some ofthe matrices in the recursion
may become indefinite (see also 4 ], 15 ). Furthermore, this recursion is computationally
expensive because it requires matrix operations. A first step in a simplification of the
matrix algorithm was noted by Fedrina [16], who introduced the tangential or directional
Schur algorithm; in this version the operations are performed in only one "direction" at
a time, for example, row after row. This procedure is more attractive because it saves
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computations. We also note that the tangential Schur algorithm implicitly appeared in
the work ofDewilde and Dym 17 ]. One contribution ofour article is in further reducing
the operations in each direction to a set of elementary scalar operations. This process of
"scalarization" of the algorithm avoids matrix or vector arithmetic, reduces the com-
putation complexity, and provides the maximum degree of freedom in the implemen-
tation.

The main contribution of this article is the extension of the Schur algorithm to
functions that are both matrix valued and meromorphic, with a finite number of Smith-
McMillan poles inside the unit disc. We do so by combining the results of 17] on the
matrix Schur algorithm with the earlier work on scalar meromorphic functions 11 ]-
[13]. In the scalar case, functions with poles, or equivalently with reflection coefficients
greater than one in magnitude, are handled by "switching" and performing the classical
Schur algorithm on the reciprocal function 1/f(z) instead of on the original function

f (z), whenever (the ith reflection coefficient)f (0) exceeds one in magnitude. This idea
does not apply directly in the matrix case because the matrices involved might not even
be square; however, scalarization enables us to use the same idea at each scalar step of
the algorithm.
Our version of the algorithm produces a sequence of reflection coefficients { ki } o= 0

with ki < and a sequence of signs { ei o= 0. The latter contains the information on
the number of(Smith-McMillan) poles inside the unit disc ofthe given function. When-
ever the sign in the recursion is positive (ei 1), this number does not change; each
time the sign is negative (e -1 ), the number of poles decreases by one. As a result,
the total number of poles of a function is greater than or equal to the number of negative
signs in the sequence { e =0; equality of these two numbers holds under certain ad-
ditional conditions (see 2).

As an application, we show how to solve certain tangential interpolation problems
16 ], 18, ch. 18 using the Schur algorithm. We also give a simple proof of the fact that

the minimum number ofpoles inside the unit disc ofeach interpolating function is equal
to the number of negative eigenvalues of a Pick matrix that is determined by the
given data.

Finally, for computational purposes we describe an array formulation of the algo-
rithm, using coefficients ofmatrix Taylor expansions. The operations applied to the array
are (orthogonal and hyperbolic) rotations and shifts.

As in [13 ], we shall assume regularity in the’sense that no reflection coefficient has
unit magnitude; nonregular cases have to be treated by a different approach.

2. Modified Sehur algorithm. We shall base our discussion on 17 and extend the
results therein to the meromorphic case.

Let F(z) be a p X q matrix of rational functions with

[IF][o sup amax(F(eJ)) <= 1,
0_-<0<2r

where (rmax(") denotes the maximum singular value of the matrix. We can always write
F(z) as a ratio F(z) U-61(z)Vo(z), where Uo(z) and Vo(z) are left coprime matrix
polynomials of sizes p X p and p X q, respectively [19, ch. 6]. We note that this repre-
sentation is not unique; however, every such representation has the property that the
poles of F(z) are exactly the zeros of Uo(z) (including multiplicity). Define the p X
(p + q) generator matrix of F(z) as

Go(z) [U0(z) V0(z)].
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Also, choose a sequence of constant p vectors r/; and a sequence { zi of extraction
points inside the unit disc. Then the first step in the ith stage of the Schur recursion of
[17] is

Gi(z) Gi(z)i(z), O,(la)

where

(lb) Gi(z) Ui(z) Vi(z)],

(lc) Gi(z) Ui(z) Vi(z)],

(ld) xffi(z [Ip+q -[- (Bi(z) 1)Jpq?(iJpq?)-li]Wi,

(le) Bi(z) (z zi)/(1 zz),

(lf) i rliGi(zi),

and IV,. is any Jpq unitary matrix. Because i(z) is clearly analytic inside the unit disc,
the first step of each stage of the algorithm preserves the analyticity of the generator. It
can be also verified by a direct calculation that

g) thai( Zi O.

The second step of the ith stage of the Schur algorithm is given by
-1(2a) Gi+ l(Z) i (z)i(z),

where i(z) is a p p Blaschke factor defined as

bi(z) Ip + (Bi(z)(2b)

The matrix

dctl (Z) Ip q- (B[ (z) )r/i*(r/ir/i*)-Ir/i
is not analytic inside the unit disc because of the simple pole at z zi. Nevertheless, the
resulting generator Gi+ l(Z) in (2a) is analytic at z z;. To prove this, we rewrite (2a)
in the form

-1Gi+ ,(z) [Ip rl?(rhrl?)-lrhldi(z) nt- n(TliTl)-l[Bi (Z)rhdi(z)].

Now, using (lg), we can easily see that Gi+ l(Z) is finite at z zi.
Another property that is preserved by the algorithm is the boundedness ofthe norm

ofFi(z) U-[ (z)Vi(z). This follows from the fact that the matrix 9i(z) is Jpq parauni-
tary; hence, Utlgi [[oe implies that O,71 l?i Iloo -< 1. Now because

Fi+l(Z) U;I+I(Z)Vi+I(Z) [t l(z)fi(z)l--l[Tt l(z)ri(Z)]

we obtain that if Fi --< , then F; + ill --< a.
Steps and (2), which map Gi (z) to Gi + (z), form the Schur algorithm for the

matrix case. We remark that the algorithm in 17 contains a third step, which is irrelevant
to our discussion, of producing a zero in Fi / (z) at some fixed point.

It is clear from the above presentation that the algorithm preserves the following
two properties:

(i) Gi (z) is analytic inside the unit disc.
(ii) IlF/ll- IIu,: vill <= 1.

That is, if the above two properties are satisfied for the generator Gi (z), then they are
also satisfied for the generator Gi + l(z).
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Besides the analyticity of G; (z) in the unit disc and the property F/. 1, a third
property is also preserved when Fi (z) is analytic: Ui (z) is nonsingular for every z inside
the unit disc. This property is equivalent to up(F; 0, where up(. denotes the number
ofpoles ofthe function inside the unit disc. A matrix Gi (z)that has these three properties
is said to be admissible in the language of Dewilde and Dym [17 ]. Thus, the Schur
algorithm preserves the admissibility of Gi (z) when Fi (z) is analytic. We shall show
below how to extend the third property to the case of meromorphic F; (z).

We now present a different formulation of the algorithm in [17 by introducing

/i i W/,

which allows us to write a) in the form

(3) ai(z) ai(z)Wi Ipq + (Bi(z) 1)
Jpqti i
ijpq

Note that we still have complete freedom in choosing Wi. Let us now define

(4) ei sgn (t.tiJpqlZ) sgn (iJpq) sgn [rliai(zi)JpqG(zi)rl ].

It is convenient to consider separately the cases of e; + (the case ei 0 leads to a
singularity in the recursion and must be handled by different methods).

Case ei 1. This case occurs, for example, if Fi(z) is analytic and bounded by
unity inside the unit disc (see [17 ]). It is well known that every two vectors with the
same Euclidean norm can be (nonuniquely) related by an orthogonal rotation. Similarly,
every two vectors with the same J norm can be related by a J-unitary matrix. Because
i has positive J norm, there exists a J-unitary matrix IV,. such that ui is collinear with
e [1, 0 ], i.e.,

5 i Wi iJpq 1/2

This particular choice of ldi i Wi reduces to the simple form

(6a) Gi(z) Gi(z)Wi(Bi(z) Ip+q-1).

Using this representation, it is easy to see that the first step in the algorithm consists of
a multiplication of Gi (z) from the fight by a Jpq paraunitary matrix, which is a product
of a constant part W/, and a "dynamic part" Bi (z) ) Ip+ q_ .

A similar transformation can also be applied to the second step of the algorithm.
We choose a unitary matrix Ti (i.e., T; T/* I), such that

1"]i Zi 7/i

Then, (2) can be written in the form

(6b) Gi+ l(Z) Zi(B;l(z)Ip_l)Z?i(a).

We note that the choice to rotate in the direction of e was for simplification purposes
only and that one can choose other directions of rotation as well.

So far the matrix rotation W/is subject to only one constraint (5). We present here
one convenient way ofchoosing this matrix. First, we use the first entry ofthe row vector
i as a pivot element and perform p elementary orthogonal rotations that annihilate
the elements in positions 2 to p. Next, we use the last entry as a pivot element and
annihilate the entries in positions from p / to p + q using q elementary
orthogonal rotations. The combined effect of these operations is to multiply Gi (z) by a
matrix of the form Pi Qi, where Pi and Qi are unitary. Because the matrix Pi Qi is
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Jpq unitary, the resulting vector has the form [xi, O, 010 0, Yi] with iJpq
x; 2

Yi 12 > 0. As a result it follows that Yi/Xi < 1. Finally, we do a single elementary
hyperbolic rotation that annihilates the last element of the vector. This last operation
can be described as a multiplication by the matrix Oi, which is defined as

(7a) Oi -K/* Mi

where

(7b)

and

Li k7 @ Ip-1, Mi Iq- k-f, Ki kikTeeq

(7c) ki yi/xi, kf 1/1- Ikil z, k7c= 1/k.

We note that the condition i enables us to do the last operation because it guarantees
that kil < 1. The three different operations can be represented as follows:

Pi Qi
(8) i [Xi, 0,..., 010 O, Yi] [Zi, 0 010, 0].

In conclusion, our matrix IV; has the form

(9) Wi

This representation of the Schur algorithm makes it possible to extend the results
proven in the scalar case [11]-[13 to matrix-valued functions.

LEMMA 1. Let Fi(z) U (z)Vi(z) be a ratio of two left coprime matrix poly-
nomials and suppose that ]1Fi ]] =< and ei (where ’i is defined in (4)). Let
Fi+(z) UT,+(z)Vi+l(Z), where Gi+(z) [Ui+l(Z) V/+(z)] is defined by (6).
Then

(i) IIFi+,ll <= 1.
(ii) up(Fi + i) up(-; ), where up(F) denotes the number ofpoles ofF(z) inside the

unit disc. The poles here are defined using the Smith-McMillanform (see 19 ).
Proof. (i) Was already proved.
(ii) From 6 )-( 9 we obtain

(10) Ui+(z) Zi[B;(z)lp_]T[Ui(z)Piti V;(z)QiK][Bi(z)Ip_l].
Consequently,

det Ui + det Ui(z)PiLi Vi(z)QiK?- P )Pi Lidet [(Ui(z) Vi(z)QiKLi

kU det [Ui(z)- Vi(z)QiK?Li

so that

(11) z( Ui + lz( Ui ViQiKLi

where Uz(’) denotes the number of zeros of the function inside the unit disc. Now we
observe that we can write

-’ P/*I,Ui(z) Vi(z)QiKtTt P Ui(z)[I- UT, (z)Vi(z)Q.iK?ti

where
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Thus, it follows from the matrix version of the Rouch6 theorem [15], [20] that

(12) pz( Ui ViQi g? z-f- P pz( Ui ).

The last equation together with 11 imply

pz(Ui+l) pz(Ui),

which is equivalent to (ii). Actually, because KLC, kiee is a rank matrix, we
also observe that

det [I- U7, (z)Vi(z)QikieelP?] ekie? Fi(z)Qie.

Because F; --< and kl < 1, it follows from the scalar Rouch6 theorem that

,z[1 ekiP?Fi(z)Oie,] Up[1 ekiP?Fi(z)Qie],

which also implies (12). ff]

For the analytic case, Lemma provides a proof for the third property in the Dewilde
and Dym definition of admissibility. Because an analytic function Fi(z) satisfies
uz(Ui) 0 and 8i l, Lemma implies that uz(Ui+l) 0; hence, Fi + (z) is also
analytic.

Case e; 1. Because in this case i rliGi (zi) has negative J norm, we can rotate
it so that u; will be collinear with ep [0, 0, 1]. As a result, we find that (6a) is
replaced by

(13) Gi(z) Gi(z)Wi(Ip+q- Bi(z))

in complete analogy with the scalar case. Similarly, the form of Wi remains unchanged,
but now k is selected to eliminate the first element of the vector i, i.e.,

Pi ) Oi oi
(14) g;i: [xi,O,...,OlO,...,O, yi][O ,010,...,0, zi]

with ki x/y. We note that the second step in the recursion remains also unchanged
and is given by (6b). Finally, when $i --l, the number of poles of Fi(z) decreases by
one, as will be proved in the following lemma.

LZMMA 2. Let Fi(z) Ui- (z)Vi(z) be a ratio oftwo left coprime matrix polyno-
mials and suppose IIF/ll --< and ei -1 (where ei is defined in (4)). Let Fi+(z)
UC,+(z)Vi+(z), whereGi+(z)= [Ui+(z) V,.+(z)] isdefinedby(13)and(6b).
Then

(i) life/ 11 --< 1.
(ii) up(Fi/)= ,;(Fi)- 1.
Proof. (i) The proof is the same as in Lemma 1.
(ii) In this case

Ui+l(Z) Ti[B[ (z) Ip_]T?[Ui Vi(z)QiK?L[ P?]
(compare with 10 ). Thus,

Vz( Ui + Vz( Ui ViQiK Li

But the last equation and (12) from Lemma 1, which is also valid in this case, imply

pz(Ui+l)-- pz(Ui)- 1,

which is equivalent to (ii). [5]

The following theorem summarizes the results of Lemmas and 2.
THEOREM (Schur algorithm for matrix-valued meromorphic functions). Let

Fi(z) U7, (z)Vi(z) be a ratio oftwo left coprime matrixpolynomials with IIF/ll --<
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and let rti be any vector ofdimension p. Define Fi + l(z) Uv, +(z)Vi + l(z) by the
following recursion.

{
_1Ti(Bi (z) @ Ip_l)TGi(z)Wi(Bi(z) @ Ip+a_l) if ei 1,

Gi+l(Z)
Zi(Bi-I (z)) Ip-l)Z’Gi(z)Wi(lp+q-l ) Bi(z)) if ei -1,

where $i is defined in (4), IV,. is a Jpq unitary matrix defined in (9) and satisfies

I[rliGi(zi)JpqG?(zi)rl?]l/2[1, 0,..., 0] ifei 1,
rliGi zi Wi

[-iai(zi)Jpqa?(zi)rl]l/2[O, 0, 1] if ei -1,

and Ti is a unitary matrix that satisfies

Then,

(i) [IF;+ll] =< 1.

TliZi IIw;ll [, 0,..., 0].

vp(Fi if ei 1,
(ii) up(Fi+l)

up(Fi) if ei -1.

COROLLARY. The number ofSmith-McMillan poles inside the unit disc is greater
or equal to the number ofnegative signs in the sequence 8, = O.

Remarks. Unlike the scalar case, equality does not always hold in the previous
corollary. The reason for this is the poor choice of extraction directions ri, which may
not cover all possible directions of the zeros. Equality occurs when at some stage of the
algorithm the generator becomes admissible, i.e., U; (z) does not have zeros inside the
unit disc. Such a case happens, for example, when the directions of extraction are chosen
to be the standard unit vectors in a cyclic order (see 4). Another important case for
which equality holds is in interpolation problems where the algorithm terminates after
a finite number of steps with a constant or analytic (load) function. Yet, another case
of equality is discussed in the next remark.

(2) When U; (z) has a zero inside the unit disc it is possible, by choosing an ap-
propriate extraction point z and extraction direction r/i, to make t3 and to extract
this zero. Thus, by a proper choice ofthe first extraction points and extraction directions
we can extract .all the poles of U0(z) that are inside the unit disc to get an admissible
generator.

(3) Although the proofs of Lemmas and 2 use the special choice for the matrix
W/as in (9), Theorem is valid for any matrix W,. that is J unitary. This follows from
the fact that multiplication of the generator Gi(z) by a constant J-unitary matrix does
not change the number of zeros of Ui (z) inside the unit disc.

(4) Limebeer and Green 21 obtained a similar result to Theorem for the number
of poles of the interpolating function arising in model reduction problems. Their deri-
vation, however, is for functions that are meromorphic in a half plane and not in the
unit disc and it uses a different method than ours.

(5) Theorem is equivalent to a certain result of Alpay and Dym 22 on the
dimension of reproducing kernel spaces associated with the Schur algorithm.

3. Interpolation problems. As an application of the Schur algorithm we describe
how to solve the tangential Schur-Takagi problem 16 ], 18 ], which is defined as follows.
Given a set of points zi, 0 _-< _-< n inside the unit disc and a set of vectors xi, Yi,
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0 =< =< n of dimension p and q, respectively, find a matrix-valued function
F(z) of dimension p q such that

(1) IlFIl =< 1.
(2) xiF(zi) Yi, 0 <- <= n 1.
(3) F(z) has k Smith-McMillan poles inside the unit disc (k -> 0).
Remarks. For simplicity of discussion we assume that the points zi are distinct.
One solution of the problem that is described in 18, ch. 18 is as follows. We first

find a matrix-valued function

Mn( z) ( An( z) Bn( z) )C,(z) D,(z)

that is J unitary on zl and satisfies

[xiYi]M,(zi)=O fori=0 n- 1.

Then a parametrization of all the solutions to the tangential interpolation problem is
given by

(15) F(z) (A,(z)Fz(Z) Bn(z))(Dn(z) C,(z)FL(z)) -1,

where FL(z) is such that F -< and (Dn(z) C,(z)F(z) exists at the points
zi. To show that F(z) satisfies the interpolation condition (2), we write

I I

and using the fact that

we obtain

[xiYi]Mn(zi) O,

-F(zi)) O,Xi Yi I

which is condition (2).
Our results show that the matrix Mn(z) can be found using the Schur algorithm in

the following way. We define

M,(z) 0(z)"" xlIn 1(

where

qff Ip+q + (Bi(z) 1)Jpq(iJpq7)-li
(compare with )) and

X Y ffff’O Z ff Z

Then a simple calculation gives the desired condition

[XiYi]Mn(zi) ii(zi)ffffi+ l(Zi) O.

We remark that the vectors o, . can be efficiently calculated in O(n) operations.
From Theorem we also obtain information on the number k of Smith-McMillan

poles of F(z) inside the unit disc:

k vp(F)= N-(eo,..., e,_)+ vp(Fi),
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where N_(eo, e,,_ 1) is the number of negative elements in the sequence eo,
en- (ei was defined in (4)). Note that a solution with the minimum number of poles
(k N_ (eo en_ 1)) is obtained by choosing a function FL(z) that is analytic.

An alternative way to obtain the number N_(eo, e,,_ l) is from the inertia of
the Pick matrix

(16)
zizj O<=i,j<=n

One can easily check that Po is the solution of the following matrix equation

Po FPoF* GoJG,
where F diag (z0 z_ 1) and

,o)Xn- Yn’-I
Similarly, we define the matrix Pi, <= <= n to be the solution of the equation

Pi FPi F* Gi JG’[

with

where

We note that

G [xjyj] o(Zj) ql, zj).

l--ZIZ*m
z’,lr’z’m’t_ri,lttyi },(ei)l,m

and consequently

(Pi)l,m (e/+ l)/,m
ZlZ*m

G{J(GT’)*
ZIZ*

G + g Gr+ *

ZlZ*
[GJ(G’)* G qgi(Zl)J’(Zm)(G’)*]

Thus, we can write

ZIZ*

ZIZ*

Izi 12

GJ[J J’i(zt)Jq (Zm)J]J( G’ )*

GJ[ (1 [zi 12)(1 ZlZ*m) -1

(1 z[zt)(1 ziZ*m)
(iJ?) i

,
z z zZ*m

Pi Pi + iUi bli,

J(GT’)*
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where

, IZi 2 (1 ZOZ Gi Ji
ui IiJ?l (1 Zn_lZ)-la’]-lJ

Using the fact that Pn 0, repeated application ofthe last equation gives the decomposition
of the Pick matrix as

P eoUUo + ,n -lU*n- Un -1.

Assuming that P is nonsingular, we obtain that N_ (e0 en is equal to the number
of negative eigenvalues of P.

Remark. The same technique of factorization of the Pick matrix was used in [23].
A similar factorization in the half-plane case was obtained in [21], [24].

4. Array formulation. For computational purposes it is more convenient to work
with an array of coefficients rather than with functions. Here we describe the array for-
mulation for the special case that all the extraction points are at the origin, i.e., zi 0
for all i. The array Gi [Ui Vi] is built of blocks of size p (p + q), where each
block is a coefficient of a (matrix) Taylor expansion

lip, Zip, Z2Ip "]G_G_i o(Z)’" "ffi_l(Z)Gi(z) ao(z)ffo(Z) "Iti_ l(Z).

Translating the modified Schur recursion in Theorem to the array, we obtain

( Ip+q-1 1[Ip, Zip, Z2Ip "]__Gi+I [Ip, zip, zZlp "]GiWi
Ip+q-1 t zj

Consequently, one step of the algorithm is equivalent to a multiplication of the array
from the right by the matrix W/and then a downward shift ofp places of the first or last
column depending if i or i --1, respectively.

Translating the property rliGi (0) 0, which we quoted as (lg), to the array, we
can verify that the array G has left null vectors

{j(I)j_I(Z-1) "o(Z-1)[Ip, Zip, Z2Ip "]}]z=0Gi 0 forj 0,..., i- 1.

Moreover, each additional step of the algorithm pr,oduces one more null vector. Thus,
in the array domain the algorithm finds recursively an array that has a given set of left
null vectors.

We now restrict our discussion to the case where each vector i is chosen to be one
ofthe standard unit vectors ej } jP.= 1. In particular, we choose the vectors { ?]i } in a cyclic
order: r/0 el, np-l ep, r/p el, and so on. For the choice /’]i Cj, where
j mod p, the corresponding (i, which is equal to the jth row of Gi (0), is equal
to the ith row of the array Gi. Thus, for this case, the multiplication by W/performs a
special operation on the ith row of the array. Depending on whether i or i --1,
the multiplication by I/V,. annihilates all the elements in positions from 2 to p + q or
to p + q on the ith row. Then, a downward shift ofp places is done on the first or
last column, respectively. As a result, the first rows of the array G are equal to zero,
and the corresponding null vectors in this case are the first standard unit vectors.
Moreover, each cycle ofp steps annihilates one complete block in the array and, therefore,
corresponds to one step of the algorithm in block form [14].

5. Concluding remarks. In this article we present a new version of the classical
Schur algorithm that is adapted to handle meromorphic matrix-valued functions. The
new version leads to a new parametrization of matrix-valued meromorphic functions
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that reflects the number of Smith-McMillan poles inside the unit disc in a very explicit
way; it is also numerically efficient because it requires only scalar operations in contrast
to the matrix and vector operations in previous versions. We also show how to solve
tangential interpolation problems using this algorithm and we give a simple proof for
the connection between the inertia of a certain Pick matrix and the number of poles of
any interpolating function.
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REDUCIBILITY CONDITION OF A CLASS
OF RATIONAL FUNCTION MATRICES*

KAI SHENG LUg" AND JIA NING WEI*

Abstract. The reducibility condition of a class of rational function matrices is derived. It is pointed out
that the coefficient matrix ofany resistor-inductor-capacitor (RLC) network is such a rational function matrix,
which implies that the results obtained here can be applied to RLC networks and this paper has the effects on
connecting matrix algebra and electrical network theory.
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1. Introduction. Since the concepts of controllability and observability were first
introduced by Kalman [1], much has been written on the subject [2]-[7] of linear
systems theory. The linear systems over the field of real numbers were heavily studied.
A linear system is said to be the one over the field of real numbers if each entry of each
coefficient matrix ofthe system is a real number. However, uncontrollability (unobserv-
ability) is a "singular" condition in the sense that if the system AX + BU, Y
CX + DU is uncontrollable (unobservable), then almost any small perturbation of the
elements of A and B (A and C) will cause it to become controllable (observable) [8 ],
where the elements of A, B, and C are considered to be the independent parameters.
Lin [9] first proposed the concept and condition of structural controllability to analyze
these issues. Shields and Pearson 10 ], Glover and Silverman ], Davison 12 ], Hosoe
and Matsumoto [13 ], and Mayeda 14] extended them to multivariable linear systems.
In [9 ]-[ 14] a matrix is said to be a structured matrix (SM) if each entry in the matrix
is either fixed zero or free nonzero. Corfmat and Morse 15 ], Anderson and Hong 16 ],
and Willems [17 permit some dependent relationships among nonfixed entries that are
one-degree polynomials of independently variable parameters (simply, such a matrix is
called a one-degree polynomial matrix) for physical reasons. Murota [18 ]-[ 20] first
defined and studied the mixed matrices. A matrix A of the form A Q + T is called a
mixed matrix if the nonzero entries of T are algebraically independent over the field to
which the entries ofQ belong. The irreducibility condition ofmixed matrices was derived
in [19]. Yamada and Luenberger [2 l] investigated the properties of the matrices called
column-structured matrices (CSMs), which lie between SMs and the rational function
matrices (RFMs).

LetF denote the field ofall rational functions with real coefficients in q independently
variable parameters (/1, 2, q) e Rq. R is said to be a parameter space. Let
the matrix M M(). M is called an RFM or a matrix in the field F if each entry in
M is a member in Ft.

First, we establish some results on reducibility of RFMs of the form A
(C + V)-U and G C + D with C diag (, ), where 1 are n
independently variable parameters and the n n matrices D, V, and U do not contain, ,. Obviously, A and G are not the matrices over the field of real numbers, SMs
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or CSMs. Also, A is not a one-degree polynomial-matrix or a mixed matrix. But when
D is a constant matrix, G can be considered to be a matrix defined in [15 ]-[ 17]. Un-
fortunately, the reducibility problem was not studied in 15 ]-[ 17 ]. G is a mixed matrix
and so the criterion of 19 is used to prove some important results of this paper.

Second, we present the following two properties.
Let M() be an n )< n RFM. M() is said to be of property 2 if det ()0I- M(

0 over F, where ),0 is an arbitrary nonzero constant; M() is said to be of property
if its characteristic polynomial det (M- M()) in F[k] has no nonzero multiple
roots 22 ].

SMs and CSMs are of property 1, and it is not difficult to prove that they are of
property 2. The two properties have an important application to the problem of structural
controllability and observability 22 ]. The fact that the matrices A and G are also of
properties and 2 is pointed out here.

2. Lemmas and definitions. Consider a linear time-invariant structured system

(2.1) " AX + Be,

where the n n matrix A (C + V)-U has n + m independent parameters
(1, 2 n; n+ , n+m) Rn+m, Rn+m is called the (n + m)-dimensional
parameter space. F denotes the field of all rational functions of . C diag [, 2,

,]. Each element in V and U is a rational function of only , + ,+ So
matrix A is an RFM. When , + ,..., , + m are fixed, V and U become two constant
matrices.

Let R denote the real field and R[x, x2 x,] denote the ring ofall real coefficient
polynomials of n indeterminates x, x, x,. R[x, x,] can be simply written
as Rx or R[ X], X (x x2, x,). LetFdenote the quotient field ofRx. The following
lemma is a conclusion in algebraic theory [23].
L 1. If a polynomialf( in ring Rx[] can be decomposed in ring Fx[ ],

thenf( can be also decomposed in ring Rx[ ].
Whenf() Rx[ ,], the reducibility off(,) in Rx[ ,] is equivalent to the reducibility

forf(,) in Fx[ ,] by Lemma 1.
LEMMA 2. Iff())= aok" + akn- + + an- 1 + an is an n-degree polynomial

in Rx[ hi and ao 4: O, an 4: O, then f(k is reducible in Rx[ ] ifand only if (iff) g()
ao + al) + + an-kn- + an,n is reducible in Rx[)q.

Proof. This proof is obvious.
LEMMA 3. Assume that f( xl, xn) is a polynomial in Rx and the highest de-

gree term is xi.. "xn (the degree of each of the other terms is less than n). Then
f( x, xn) is a reducible polynomial in Rx ifff( x X xn ) is a reducible
polynomial in R[ ].

Proof. This proof is obvious.
DEFINITION 1. If an n n matrix exists

(2.2)

o,
’1

0 1

Q= 1..
1
0

1.
’1
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then Q is called a type elementary matrix. An n n matrix P is said to be a permutation
matrix if P is a product of some type elementary matrices. PAP-1 is said to be a
permutation transformation of the matrix A. Clearly, P-I P’.

DEFINITION 2. Let M be an n n matrix over Ft. M is then said to be reducible
under TMT- or simply to be reducible if there exists some nonsingular matrix T over

F such that

(2.3) TMT_,=(M1 O)M21 M2

whereM is an n n matrix, _-< n < n; otherwise, M is irreducible (under TMT- ).
M is said to be reducible under QMP if there exists some nonsingular matrix Q over R
and some permutation matrix P such that

(2.4) QMP
M2 M.

where M is an n n matrix, -< n < n; otherwise, M is irreducible under QMP (see
p. 287, [19 ]). M is said to be reducible under PMP’ if there exists some permutation
matrix P such that

2.5 PMP’
M21 M2

whereM is an n n matrix, -< n < n; otherwise, M is irreducible under PMP’.

3. Reducibility condition.
THEOREM 1. Let G C + D, where C diag [1, n], n are alge-

braically independent over R, and D is an n n matrix over R. G is reducible under
PGP’ ifand only if it is reducible under QGP’, where P is a permutation matrix and Q
is a nonsingular matrix over R.

Proof. The necessity of the proof is obvious.
For sufficiency, assume that G is irreducible under PGP’. Let

(3.1) A PGP’
\A21 A22 J21 J22

where P is any permutation matrix, J is any nonsingular matrix over R, Jl, and AI
are two n n matrices, -< n < n. A2 4:0 (since G is irreducible under PGP’) and
it is a matrix over R because of, , on the diagonal ofA. Then,

(3.2) J JA J2 ff2

where

(3.3) J12 JIIA12 + Jl:zA2:z.

We now prove J12 0. Conversely, suppose J’lz 0. Since A2 0 is a matrix over R,
JlA2 is also a matrix over R.

(i) If JllAI2 0, then JI2A22 -JIIAI2 0 is a matrix over R. If J12 0, JIzA22
is a matrix over F not over R and so J12 =/= 0. If Jl2 0, then J12 Jl 1AI2 =/= 0.

(ii) If JIA2 0, then JIzAz2 0. Since A22 has full rank, J12 0, which yields
that Jl and J22 are invertible. Thus, A 12 0 by JlA12 0, which is a contradiction.
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Hence, J12 : 0 from (i) and (ii). Let J QP’, where Q is any nonsingular matrix
over R. Then J JA QGP’ is not a block-triangular matrix, which means that G is
irreducible under QGP’.

THEOREM 2. Let G C + D, where C diag [1, n], , n are alge-
braically independent over R, and D is an n n matrix over R. G is reducible (under
TGT- iffG is reducible under PGP’.

Proof. It is only necessary to prove the necessity.
It can be known by Lemma 3 that the reducibility ofdet (M- G) and the reducibility

of det G are equivalent. Thus, when G is reducible, det G is a reducible polynomial in
R[]. Obviously, G is a nonsingular mixed matrix with respect to the field R. By Theo-
rem 6.2 in [19 ], G is reducible under QGP’. Then G is reducible under PGP’ by
Theorem 1.

COROLLARY 1. Let K F befields, G C + D, where C diag [, n] is a
matrix over F such that , n are algebraically independent over thefield K, andD
is an n n matrix over K. Then thefollowing propositions are equivalent.

(i) G is reducible under TGT-1 where T is a nonsingular matrix over F.
(ii) G is reducible under QGP’, where Q is a nonsingular matrix over K and P is

a permutation matrix.
(iii) G is reducible under PGP’, where P is a permutation matrix.
COROLLARY 2. Let G C d- D, where C diag [, n], , n are

algebraically independent over R, and D is a matrix over R. Then G is ofproperties
and 2.

Proof. Clearly, for any complex constant X0, det (XoI- G) is an n-degree polynomial
in ,..., n. It is impossible that the polynomial is identically zero, that is, any constant
cannot be an eigenvalue of G over F. G is of property 2.

G is of property by Theorem 26.1 of 18 ].
It is well known that the characteristic polynomial of an n n matrix A can be

written as

(3.4) det(M-A)=,n+a,n-+... +an_,+

where ak kD; D is a sum of all the principal minors of order k in the matrix A,
_-< k -< n. If ar 4 0 <= r <= n), but ar + an 0, r is a genetic order ofA. If

the generic order ofA is r, then

3.5 det M A ,n- rq(,),
where cb() 4:- a r-l + + ar- + ar, ar =it: O. dp(,) is called a nonzero part of
det (XI A).

THEOREM 3. IfA C + V)- U, where C diag , 2, n], V and U are
two n n constant matrices, U 4 O, then thefollowing propositions are equivalent.

1. The nonzero part (,) of det (M- A) is a reducible polynomial in F[ ,].
2(i). There exists some permutation matrix P such that

(3.6) P( C + V Ut)P’

G 0 tG2

G:

where Gi is an ni ni irreducible matrix, Gi Ci + Vi Uit, Ci diag [i1’ i2’
ini], 1, 2, k(k > 1), n + n2 + + nk n; and Jn; Zl,

2n_; k, knk are a permutation of 1, 2, n.
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2 (ii). In (3.6) there exist at least two submatrices Ui 4:0 and U 4: 0, 4: j, -< i,
j -< k such that det M Ci + Vi )- Ui and det I Cj + Vj)-1Uj] have, respectively,
nonzero parts that are irreducible polynomials in F[ ,].

3. There exists some permutation matrix P such that

3.7 PAP’
*

where A is a u matrix, -< g < n, and AI and A22 have, respectively, nonzero
eigenvalues.

Proof. We use the cyclic method.
2(i). Assume that the nonzero part of det (M- A) is reducible. Then

det ,I A) det ,I (C + V)- U] det (C + V)- det (C + V) U]
(3.8)

," det (C + V)- det [(C + V) Ut],

where 1/),. Suppose that the genetic order ofA is r, r _-< n. Then

(3.9) (,) , det (C + V)- det [(C + V) Ut].

By Lemma 2, (,) is reducible iff det (C + V)- det [(C + V) Ut] is a reducible
polynomial in Fdt]. Thus, o(t) & det [(C + V) Ut] is a reducible polynomial in
F[t] .o(t) o(t)o2(t) os(t), where s >_- 2, oi(t) -< -< s) is prime polynomial.
Certainly, every o(t) is a nonzero-degree polynomial of ,..., .; otherwise contra-
dicting the fact that the coefficient of the highest degree power 12""" , in o(t) is one.
Thus, det C + V- Ut] is a reducible polynomial in F(t)[ ], where F(t) denotes the
field ofall rational functions in t. Obviously, C + V Ut) is a mixed matrix with respect
to F(t). Thus, (3.6) holds by Corollary 1.

2 (ii). By the relation

(3.10) PAP’

(CI + Vl)-lu1
C: + v)-U

one can know that there exists i0 =< i0 -< k) such that U 4: 0. Suppose that the nonzero
part of det [M- (Cio + Vio)- Uio] is equal to 4(X). Then Cio + Vio Uot is reducible
by 2 (i), which is a contradiction.

2 3. This proposition is obvious from (3.10).
3 1. This proposition is obvious.
COROLLARY 3. IfA C + V)- U, where C diag 2, ], Vand U are

two n n matrices over R, and U is invertible, then det (M- A) is reducible ifand only
ifthere exists some permutation matrix P such that (3.7) holds.

Proof. It is only necessary to note that if U is invertible, the nonzero part of
det (M- A) is, itself, fight, and so det (M- A) has no zero eigenvalues. Thus, (3.7)
holds by Theorem 3, and AI and A22 have nonzero eigenvalues, respectively.

PROPOSITION 1. Let A (C + V)- U, where C diag [1, 2 ,]; V and U
are two n n matrices over R. Then A is ofproperty 2.

Proof. Conversely, suppose that there exists a complex constant ,o 4:0 such
that det (,oI- A) 0 for all the parameters , 2, ,. By (3.8) there exists to
1/,o 4:0 such that for all the parameters , 2, ,,
(3.11) det [(C + V) Uto] k det (C + V) det (0I- A) 0.
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However, the left-hand side of (3.11 is an n-degree polynomial of 1, 2 n, which
contradicts the fact that (3.11 is an identity. []

COROLLARY 4. IrA C + V)- U, where C diag g; t2, g;n], V and U are
two n n matrices over R, then A is ofproperty 1.

Proof. If, on the contrary, A has nonzero multiple eigenvalues, then the
nonzero part of det (M- A) is reducible. Then (3.10) holds and det (M- A)
I-[/g= det M Ci + Vi )-1Ui ]o But det M Ci + Vi )-1Ui has no nonzero multiple
roots for every 1, 2, k; otherwise, Ci + V Uit is reducible still. On the other
hand, each det [M- (Ci + Vi)-Ui] has no nonzero constant roots by Proposition 1.
Moreover, since Ci + V,. )-Ui and (C + V)-1U have no parameters in common, where
i, j 1, 2,..., k, 4: j, they have no nonzero roots in common, which contradicts the
assumption. Hence, this corollary is true.

The assumption of Theorem 3 is that det [M- A] has the nonzero part 4(,).
Theorem 4 and Corollary 5 indicate the condition under which deg [4()] >= 1.

Let M (mij)n , i, j n. By the definition of determinant,

(3.12) det M (-1)(J")mm...m,j,,

where 2; denotes the sum of all permutations. Equation (3.12) is called the expansion
of the determinant det M and ml’"mn, is called a term in the expansion.

LEMMA 4. Let M mo) C + D, where C diag [(,..., (n ], and D is an n n
matrix over R. Ifthe expansion ofdet M has two similar terms mg,i" mg_ ,imii, k and
m,...mj_jmlp, where {il ir} {1, n}, n >= r>_-- 3;jl, ...,L is aper-
mutation ofil irand (il ir) 4 (jl,... ,L); mibib+, 4 O, mini, 4: O, mbjb+, 4: O,
m, 4 0, b r- 1; k (l"" (/(i,ti:"" f;i, then there is some nonzero term
that contains nondiagonal entries and whose degree is greater than deg p.

Proof. Without loss generality, let i j, i j, _-< s < r 1;
i + ir) 4 (L + ’’’,Jr), whereL+, ...,jris a permutation of is + ,

ir. IfL+ 4= i.+l, then there must exist jx {L+z, L} such that jx is+l,
s + 2 < x =< r. This implies that the expansion of det M has a nonzero term

mii" m,g m . m_,m . (x- P, whose degree is greater than
deg ft.

THZO,M 4. Let 4(X) be the nonzero part of det [hi- (C + V) -1 U] and G
C + V- Ut be irreducible, where C diag [(1, ], V and U are two n n ma-
trices over R, and is a parameter independently of(, . Then deg [4(X)] >_-
iffV 4: O.

Proof. Necessity is obvious. Sufficiency will be proven. Since the coefficient of
the term , 2"" "n in o(t) det G is equal to one, o(t) 0 has no zero roots. It
is thus known by (3.9) that deg [o(t)] deg [4(,)]. It is only necessary to prove
deg [p(t)] >- 1.

Let G (gij)nn, V= ()ij)nxn, and U (lgij)nn. Then gii i 47 l)ii- ltiit, 1,
2,..., n; gi =vij-- uot, 4:j, i,j 1, 2,..., n.

Since U 4: 0, assume the entry u0 4: 0. If there exists some i, -< -< n, such that
Uii =/= O, then in the expansion of det G there is a term lgiit’’’i-li+l "’n =//= 0
that is unique and may not vanish when all the nonzero terms are added. Then, as-
sume ui 0, 1, 2 n. If the symmetric entry ’i of g(j is not zero, det G has
a nonzero term uijgjitl" "n/ij, which is unique, and so this lemma holds also for
ui 0, but i 0. Assume further that gji 0. Moreover, since any nondiagonal entry
can be placed in the position with the nth row and (n )th column by performing a
permutation transformation, without loss of generality one can assume that un- ,, 4: 0,
but g,,,_ 0.
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Now it will be proven that the cofactor ofgn 1,n, denoted by det Gn l,n, is not zero.
We have

(3.13) detGn_l,n det( Gn-2 ’)7’ 13

where Gn- 2 is an (n 2) (n 2) principal submatrix with the first n 2 rows and
the first n 2 columns of G, " (g,n-, ge,n-, gn-2,,,-)’, rl (gnu, g,,2,

gn,n- 21’- Since g,,n_ 0, G is reducible under PGP’ when " 0 or r/= 0. By Theorem
2, G is reducible, which is a contradiction. Hence, " 4:0 and n 4= 0. In the case of " 4:0and r/4: 0, if det Gn- ,n 0, which is an identity for all the parameters , then for any
parameter ), we have

M- Gn-2 ’) 0,det
/’ 0

which means that (Gn-2, ’) is uncontrollable and/or (G-2, /) is unobservable. By
duality, it is only necessary to discuss that (G,_ 2, ’) is uncontrollable. Since " 4: 0, it is
impossible that all the modes of Gn- 2 are uncontrollable. Then there must exist some
invertible matrix P over F (see 2.4.2, [24]) such that

21 2 PLY’= 2
where GI is an r r matrix, ’2 is an (n 2 r)-dimensional nonzero vector, and
((2, :) is controllable, r < n 2. There exists some permutation matrix P1 by Theorem
2 such that

(3.14) Gn-2 PG,-2P’
21 2 P’=

’2

where ( is an r r matrix whose eigenvalues are the same with the ones of (, ’ is an
(n 2 r)-dimensional nonzero vector, and (G2, ’2) is controllable, r < n 2.

Since Gn-2 is invertible, G and G2 are also invertible. We take

(P O)(3.15t P=
0

reduce (3.13), and obtain

(3.16)
G 0

det 2

Since det G 4 0,

(3.17) det
rt 0

Since (G2, ’2) is controllable, r/ 0. Then, let

(3.18) P= 0 0 I
0 11 b 0 12
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where I is a # unit matrix for each # 1, 2, r, n r. Thus,

(3.19) PGP’ n_’ g,, O_ 0
G21 x G2 ’2
x gn- l,n X gn- l.n-

which contradicts the fact that G is irreducible. Thus, det Gn- 1,n 4: 0. Thus, in the
expansion ofdet G there exists at least one nonzero term gljg2j2" "gnj, that is a nonzero
degree term of t.

Now we shall prove that the sum of all nonzero terms containing is not zero.
Let the nonzero term containing with the highest degree of n be

(3.20) gili2gi2i3" "g r-lirgiril I/,

where gfii2 l)ili2 Ufii2 t, q= i2, Uili =i& O, ( il, ir} -- { 1, n }, 3 <= r <= n, k
l2" "n/ili2" "i,.

The term (3.20) is unique by Lemma 4, otherwise it is not the term containing
with the highest degree of 1, n- [’]

COROLLARY 5. Let c()) be the nonzero part ofdet [M- (C + V)-1U], G C +
V- Ut be reducible, and so

PGP’

where C diag [1, n], V and U are two n n matrices over R, is a parameter
independently of ,, P is a permutation matrix, Gi Ci + V Uit is an n ni
irreducible submatrix k, k > 2, ni > Z i= ni n Deg [b())] >= iff
there is at least one submatrix Uio 4: O, io { 1, 2 k }.

Remark 1. For Theorem 3, in (3.6), Gi is irreducible, 1, k. Let the nonzero
part ()) 1())2())"" "s()), where 2 -< s =< k, deg [j())] >- 1, j()) is a prime
polynomial in F[)q, j 1, s. Then there are only s submatrices Ui, Ui2,..., Uis
are not zero matrices, { i, i2, is }

_
( 1, 2,..., k}.

4. Alllications to RLC networks. According to 25 ], the state equation of any
RLC network can be written in the form (the notations in Table 2 [26 will be adopted
here)

) AX + Be, Y CX + D e + D2O,(4.1)

where

(4.2)
is an n n matrix,

A =A-{*A2

A1
0 Lt 0 Q’I_.ILtQI_.L

ct diag C( ),..., Ct(n) ], Ct( ),..., Ct(n) are nc capacitor twigs; Lt diag Lt( ),
Lt(nt) ], Lt( Lt(n) are nt inductor links; n + nt n; Ct diag Ct(

C(n/) ], Cz( Ct(ncz) are nz capacitor links; L diag [Lt( ),..., L(nL,)], Lt( ),
Lt(nLt) are nc inductor twigs; and Q,. and Qcc are both constant matrices. Assume

that the network (4.1) has ng resistors. By circuit theory, each entry of the matrix A2 in
(4.2) is a rational function of only nR resistors. Thus, the network has, in number,
n + n + nl + nR independently variable parameters. Obviously, the coefficient matrix
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A of (4.1) is one of the matrices defined by (2.1). So the reducibility criteria in 3 can
be applied to RLC networks, and any RLC network expressed by eqn. (4.1) is ofproperty
and property 2.

As an illustrative example consider an RLC network as shown in Fig. 1. The network
has seven free parameters (RI, R2, CI, C2, C3, L, LI) E R7. The state equation is

" A -A2X q- bu, where

U C 0
u2 C2

X-- u A= C3
L

i 0 L

+ [0],

0 0 0 0
0 -R -R 0 0
0 -R -R 0 0
0 0 0 0 0

-1 0 0 0 -R
By direct calculation we see

RIdet (M- A]-IA2) k 2 2
_
-1 )k +

LC1
d-

R2C2C3

whose nonzero part is a reducible polynomial in F[ ].A A2t is reducible by Theorem
3. Indeed, when

0 0 0 0
0 0 0 0 1

P=- 0 0 0 0
0 0 0 0

00 0 0

where

(GP(AI A2t)P’
0

62 o),

GI
0 L -1

H1 Ut,
-R1

0 C3
G3 L Ot H3 U3t.

i
R1

C1 Ul

L1

FIG. 1. An RLC network.

C2 u2

R2

C u3
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Clearly, Gi is irreducible under PG P’, 1, 2, 3. Thus, Gi is irreducible under TGi T-1

by Corollary 1, 1, 2, 3. Since U :/: 0, Ua d: 0, but U3 0, we know by Theorem 4
that

det (M- Hi-1U) k2 -[- 1 k -[- LCI and det (M- H U2) , X + C2R2C2C3+ C3

have the irreducible nonzero parts, respectively, but det (M- H U3) , has no
nonzero part.

5. Summary. As far as we know, the coefficient matrices ofalmost all linear physical
systems can be considered to be RFMs. However, little is known about the properties of
RFMs. To explore the properties of physical systems, particularly the effects of physical
structures, it becomes necessary to investigate the properties of RFMs mathematically.

The reducibility criteria for a class of RFMs have been obtained here. What are the
reducibility conditions ofthe other RFMs? This question is complex and interesting. The
reducibility criteria will have an application to the problem of controllability and ob-
servability ofRLC networks over the field Ft. These problems are left for further research.

Acknowledgments. We are grateful to the reviewers for their thoughtful comments
that substantially improved this paper and to Prof. K. Murota ofthe University ofTokyo
for supplying relevant literature.
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FAST PLANE ROTATIONS WITH DYNAMIC SCALING*

ANDREW A. ANDA’f: AND HAESUN PARK’

Abstract. This paper presents fast plane rotations for orthogonal similarity and orthogonal one-sided trans-
formations. Fast rotations have the advantage that they reduce the number of square roots and multiplications.
The authors’ new rotations have further advantages over the existing fast rotations: they obviate the rescaling
that has been necessary to guard against underflow or overflow and they give higher efficiency, especially on
vector processors. An error analysis, in the case of the QR decomposition, and computational results that
illustrate the effects of the dynamic scaling are presented.

Key words, fast plane rotations, orthogonal transformations, scaling

AMS subject classifications. 65F25, 15A23, 15A18

1. Introduction. A plane rotation J(O, p, q) of order n through an angle 0 in a
(p, q) plane is the same as the identity matrix I,, except for the four elements at the
intersections ofthe pth and qth rows and columns. The general form ofan n n rotation
matrix J(0, p, q) in the (p, q) plane, which we will denote as J, is

(1) J= J(O,p,q)

Ip-i 0 0 0 0
0 c 0 -s 0
0 0 Iu_p_ 0 0
0 s 0 c 0
0 0 0 0 I_

where c cos 0, s sin 0. Plane rotations are used in various algorithmic contexts, e.g.,
the QR decomposition, the Jacobi and QR algorithms for eigendecompositions, the Hes-
tenes algorithm for the singular value decomposition, and reduction to Hessenberg form.
Although these algorithms differ in the purpose and range of the angles, we can classify
them largely into two cases: those that apply similarity transformations

(2) J(O, p, q)TXJ(O, p, q)

and others that apply one-sided transformations

(3) =XJ(0, p,q) or = JT(O,p,q)X.

We use the notations Xpu and Jpu to denote the 2 2 submatrices ofX and J(0, p, q) in
the (p, q) plane, respectively, i.e.,

Xpp Xpq

Xqp Xqq
and Jpq-- --S]s

Fast rotations were developed with the motivations to reduce the number of scalar-
vector multiplications and eliminate square roots from the calculation of the plane ro-
tations. Gentleman 5 first formulated a method for a fast Givens rotation. Hammarling
9 later modified that formulation into several computational schemes and pointed out
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that the method can be applied to similarity transformations. There are other types of
fast rotations that are developed for the purpose ofreducing the number ofmultiplications
in a product of plane rotations [1 or to reduce the device area on a systolic array [8].
However, a literature survey of research and production algorithms that utilize plane
rotations has shown a pronounced avoidance of the fast plane rotation. This is partly a
consequence of the fact that careful monitoring for the prevention of underflow and
overflow is not conveniently achieved wherever the standard fast plane rotation algorithm
is utilized [2], [7]. Hammarling [9] suggested that underflow can be avoided either by
storing the exponent separately, by normalizing occasionally, or by performing row (or
column) interchanges. Separate storage ofthe exponent is clearly not efficient for currently
popular high level languages. Row (or column) interchanges introduce an overhead.
Moreover, occasional normalization can be problematic to implement because a nontrivial
amount of monitoring is necessary to successfully implement fast Givens transformations.

We present a set of new fast rotations that obviate the monitoring and periodic
rescaling necessitated by the standard fast plane rotations. Our fast rotations dynamically
scale the diagonal factor matrix to be close to an identity matrix. Variations on the
standard fast rotation matrix are developed and algorithms that implement them are
offered. Issues of accuracy and efficiency are also discussed. Computational results on
the Cray-2 illustrating the effects of dynamic scaling are presented.

2. Fast rotations. Suppose one step of a one-sided transformation via a rotation
J(0, p, q) gives

(4) XJ(O, p, q)

as in the one-sided Jacobi [4], [l l] and the Hestenes [10] algorithms and in the QR
decomposition (transposed). The essential idea of a fast rotation is that the number of
multiplications is reduced by keeping the matrix X in the factored form YD, where D
is a diagonal matrix and Y is accordingly scaled, and these two factors are updated
separately. The calculation of the product of the two factors may be postponed until the
explicit result is required. The diagonal matrix D is initialized as the identity matrix. The
secondary advantage of the fast rotation is that the square roots for the computation of
cosine and sine can be eliminated [13]. IfX YD, then the rotation from the fight by
J can be represented as

(5)

where/ is a diagonal matrix and F(p, q) is defined as

11:,_ 0 0 0 0
o o o

(6) F(p, q)=- 0 0 Iq_p_ 0 0
o o fqq o
0 0 0 0

We will call F(p, q) a fast rotation if the choices offp, fpq, fq, and fqq result in halvin
the number of multiplications in applyin the rotation at. If a typical step is represented
as

(7) X( + ) X()J(),
then

(8) x(k+ ) y(k+ 1)D(k+ ) y()F()...F(k)D(k+ 1) X()j()... j(k)
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and we have

(9) j(i) D(i)-’F(i)D(i+ 1).

In the case of the two-sided transformations, ifX DYD, then

(10) , jTXj= jTDYDJ FTyFI .
If a typical step is represented as Xk+ ) J(k)rx(k)j(k), then

x(k+ ) D(k+ )y(k+ )D(k+ )

D(k+ )F(k)r...F()Ty()F()...F(k)D(k+ )

j(k) r. j(1)TX(I)j(I).., j(k)

and, again, we have

11 ji) Di)-,Fi)Di+ 1).

We discuss only column oriented one-sided transformations because we have im-
plemented the new algorithms in Fortran in which the column oriented one-sided trans-
formations give higher efficiency and our work has been motivated by one-sided Jacobi
algorithms [11]. The results for row-oriented and the two-sided transformations follow
easily.

2.1. Standard fast rotations. Suppose a fast rotation transforms X YD into
The transformation can be shown as follows:

x"’ Xq x’ xq [ cs
[y,,, y][L 0
[yp, Yq][fPP

l

where xi denotes the th column of X.
There are several ways to choose

rpq [ fqp

_s]

feel[ 0

1

-s]

and/ so that the number of multiplications is reduced by halfcompared to the standard
rotation. The two most commonly used Fpq are either of the type [ ] or [ ]. With
the first type, we have

[:e,,,Xq] [y,,,y,,] o Cdq
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thus,

(12)

where a t(dp/dq), t(dq/dp), and tan 0.
When 10[ > (), especially when [c[ << 1, successive multiplications by small

factors in D can quickly lead to underflow. To bound the maximum decrease in the
diagonal factor matrix D, one must use an alternative formulation of the fast rotation
that updates the diagonal elements ofD with sines rather than cosines:

[2p 2q] [yp, yq]l
L

thus,

(13)
aq=Sa, 

;q "= yp + OyqJ

where a (11t)(dqldp) and/3 (11t)(dpldq).
Although, for any rotation, the decrease in magnitude ofeach element ofthe diagonal

factor D can be bounded by 1/V, with the use of the above two formulations, the
diagonal elements ofD are reduced each time and may eventually cause underflow.

2.2. Modified fast rotations. In 3 ], de Rijk further developed the fast rotation for
the Hestenes algorithm for computing the singular value decomposition on vector pro-
cessors to eliminate a temporary copy ofone ofthe columns. The idea is that the expression
.p yp + Byq in (12) can be rearranged as yp :gp Byq; thus, substituting it into the
other triad, we get

yq-- yq- Oyp

yq- Ot(yp- [Jyq)- +t )(+

(yo (c)l(c-l.
Letting the diagonal element dq of D take care of the value c-, we get q q/c
dq/ c and

2p, 2q yp, yq
t3 0 0 c- dq

(14)

= y. +
yq "= yq- ayp
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where a ac cs(d)/dq) and/3 t(dq/d)). In the Hestenes algorithm for computing
the singular value decomposition, the angle can be always chosen in [-, ], thus
1/t-< I1.

The same procedures that yield expression (14) also yield a modification ofexpression
13 for angles 0 [, ] in magnitude to scale the diagonal factor:

(15)

0 0

where a cs(dq/dp) and/3 (1/t)(dp/dq).
For the fast rotations, presented in (12) and (13), the order in which the columns

are updated is inconsequential providing that the correct vector has been copied for reuse.
However, the de Rijk modified fast rotation presented in (14) requires that the pth
column be updated before the updating of the qth column. A variant of the de Rijk
rotation follows naturally from interchanging the order ofthe column updates, for angles
IOl --<

2p, 2q Yp, Yq
0 fl 0 cdq

(16)
dp<=:c--ldp

where a t(dp/dq) and/3 cs(dq/dp), and, for angles 0 [, ] in magnitude,

(17) aq=S 1
:gq :v + .:Vq|

yq- fq

where a (1/t)(dq/dp) and/3 cs(dp/dq).
We call the new fast rotations presented in 14)-(17) chained fast rotations. The

following simplified representations of three different methods for applying a plane ro-
tation, [s s], to update the two vectors, w and v n illustrate that the new fast rotations
can be chained.

Standard rotation:

(18)

(19)

[, v] [v, w] Icy + sw, -sv + cw].
s c

Standardfast rotation"

[,] [v,w] [v+Bw, w+
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Chainedfast rotation:

(20) [,vl=[v,w]
/3 0 Iv + 3w, w + c(v +/3w)].

The computational efficiency of the chained fast plane rotation over the standard fast
plane rotation results from the elimination of the temporary vector store and read that
are necessary for the standard fast plane rotation.

3. Self-scaling algorithms. Using the preceding expressions for fast plane rotations,
we now construct algorithms that dynamically scale the elements of the diagonal matrix
to be close to one. In the standard fast plane rotation, presented in (12) and (13), both
diagonal elements are diminished at each rotation. In the chained fast rotations, presented
in 14)-( 17 ), one diagonal element is augmented by the same factor as the other diagonal
element is diminished. Expressions (14) and 15 diminish the diagonal element having
the smaller index and augment the element having the larger index. This way, the smaller
the index is, the more often the corresponding diagonal element will be diminished.
Likewise, the larger the index is, the more often the corresponding diagonal element will
be augmented. The resulting distribution, after one or more cycles, tends to have the
largest diagonal entries in the highest indexed locations and the smallest diagonal entries
in the lowest indexed locations. We develop two fast plane rotation algorithms that avoid
this unbalanced diagonal element distribution by incorporating dynamic scaling: a four-
way branching algorithm and a two-way branching algorithm.

The motivation for the four-way branch algorithm is to force each diagonal element
to be close to unity. Thus, the choice of the fast rotation expression will be based on
whether each of the two diagonal elements is either greater than or less than unity in
magnitude. This allows four possibilities that yield an absolute bound /f _-< dil <=
V on the magnitude of the diagonal elements d;’s after any rotation. Table presents
the essential idea in the four-way branch algorithms.

The motivation for the two-way branch algorithm is to simplify the four-way branch
algorithm and avoid the slow rotation, while constraining the diagonal elements from
deviating far from unity. The relative sizes of the two diagonal elements, dp and dq, are
compared before each rotation in a (p, q) plane is applied, and an appropriate choice
from equations 14)-( 17 is applied to achieve tighter clustering of the diagonal elements
about unity. This idea is summarized in Table 2, where the typical fast rotation Fpq for

TABLE
Four-way branch.

Expression

Idql <I

101 > d dq/s
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TABLE 2
Two-way branch.

Expression Iol =<

Cdp

csG/G
tdgG

d. G/c

a tdp/dq
csG/G

do/s

csddd

Fpq--( --) (__ 01)
sd

dp/(td)

Fpq---(fl 10)(l0

each case is also presented. In the two-way branch algorithm, if two diagonal elements
are both greater than unity, the smaller will be augmented. Likewise, the larger of two
subunity elements will be diminished. Thus, it allows larger deviations in the diagonal
elements compared with the four-way branch algorithms. However, the results of nu-
merical tests show that the bound in the two-way branch algorithms is kept within a
small range around one.

The new fast rotations presented in relations 14)-(17) and employed in the two-
way branch algorithms have the typical form

or Fpq with its rows and/or columns permuted. Although only one element of Fpq is
unity, the total multiplications required for the transformation by Fpq is the same as
those for the standard fast rotations. This is because Fpq can be applied in two steps as
shown in 14)-( 17 ), e.g.,

fl l+ofl 0

The implementation results are obtained for the Jacobi algorithm for symmetric
eigenvalue decomposition, the Hestenes algorithm for the singular value decomposition,
and the QR decomposition. The purpose of the tests is to compare the deviations from
unity of the elements in the diagonal factor matrix in the standard fast rotation, the de
Rijk fast rotation, and the new fast rotation presented in this paper. For the eigenvalue
and singular value decompositions, the total number of sweeps was assigned to be log n,
where n is the matrix order. The test matrices were generated with random numbers in
the interval [-1, 1] having a uniform distribution. In Tables 3-5, the entries are the
average, for 32 tests, of the minimum and maximum ofthe diagonal elements throughout
each test with lOgl0 scaling. The standard deviations of the lOgl0 scaled data are within
the parentheses. For the standard fast rotation, only the minimum is shown because the
diagonal elements, which are initially 1, are only decreasing. Note that for all the tests
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TABLE 31
Symmetric eigenvalue decomposition (32 tests).

loglo (scaling)

min (standard)

min (de Rijk)

max (de Rijk)

min (new)

max (new)

N= 32

1.768 (0.2026)

-1.396 (0.1404)

1.344 (0.2209)

-0.2024 (2.27 IE-2)

0.2014 (1.135E-2)

N= 64

-2.832 (0.2487)

-2.237 (0.2538)

2.157 (0.2504)

-0.2175 (2.490E-2)

0.2183 (2.088E-2)

N 128

-4.282 (0.3253)

-3.539 (0.4733)

3.369 (0.3795)

-0.2330 (1.796E-2)

0.2332 (2.189E-2)

TABLE 41
Singular value decomposition (32 tests).

logto (scaling)

min (standard)

min (de Rijk)

max (de Rijk)

min (new)

max (new)

N= 32

1.884 (0.1984)

1.567 (0.2098)

1.410 (0.2136)

-0.2133 (2.259E-2)

0.2066 (2.739E-2)

N 64

-3.052 (0.2149)

-2.515 (0.2828)

2.455 (0.3099)

-0.2260 (1.904E-2)

0.2198 (2.272E-2)

N 128

-4.620 (0.3295)

-3.703 (0.3496)

3.733 (0.3759)

-0.2384 (1.497E-2)

0.2308 (1.585E-2)

TABLE 51
QR decomposition (32 tests).

logo (scaling)

min (standard)

min (de Rijk)

max (de Rijk)

min (new)

max (new)

N= 64

-2.692 (0.4532)

-0.8387 (8.995E-2)

1.241 (0.1949)

-0.3727 (7.762E-2)

0.3614 (7.7540E-2)

N= 128

-3.152 (0.3360)

-0.9976 (8.916E-2)

1.511 (0.1736)

-0.3943 (7.234E-2)

0.3887 (8.318E-2)

N 256

-4.258 (0.5092)

-1.141 (7.915E-2)

1.858 (0.2492)

-0.4491 (7.085E-2)

0.4404 (6.147E-2)

Each entry denotes loglo scaling of the minimum or maximum diagonal elements in the diagonal factor
matrix throughout each test. The standard deviations ofthe loglo scaled data are within the parentheses. Standard,
the standard fast rotation; de Rijk, the de Rijk fast rotation; new, the new chained fast rotation with dynamic
scaling.
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(for the matrices of order up to 128 for the symmetric eigenvalue decomposition and
the singular value decomposition and for the matrices of order up to 256 for the QR
decomposition), the averages for the extremes of the elements in the diagonal factor of
the new algorithms stay in , 3 ]. Also, the standard deviations for the new algorithms
are extremely small. The average ofthe minimum diagonal elements in the standard fast
algorithms diminished to as small as 10 -4"62, and the range of the average extremes of
the diagonal elements in the diagonal factor matrix in the de Rijk method was as large
as [10 -37, 10 3.73]. We expect that as the matrix order becomes larger, the advantage of
the new fast rotations will become more pronounced. The computational experiments
indicate that only the new chained fast rotation algorithm can control the sizes ofelements
in the diagonal factor for larger matrices.

4. Error analysis.
4.1. Standard fast rotations. We first review the error analysis of the standard fast

rotation for the QR decomposition, which is based on Parlett 12]. A rotation of two
rows, p and q, may be represented as

&
0

where

[y l y,,].0 q2 Yn Yql Yq2 Yqn

Also, let r tan 0 and w cos 2 0.
Let e, el << 1, which may be different at every instance, be a tiny number close

to machine-e. The inclusion of floating point roundoff error in a computed quantity will
be represented by the product of the exact theoretical value with + e), with the no-
tational shorthand of representing + el)( + e2) as + e) 2. We will assume that the
initial variables are exact, and computed quantities will be denoted by primes.

The computed scalars are

(21)

o’= off -I-- e) {= YollYpl },

,, (C(1 -I’- t3)3) 2.
Although we have only the squared values of dp and do in actual computation, we will
use dp and do in this analysis.

Then, after the rotation,

(22) {d dpc(1 q’-8)41
d’q dqc(1 + e)4J

and the vector equations are

’ [yq- ’yp(1 + e)l(1 + e) yq(1 + e)- ypi(1 + e)
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From (22) and (23),

dpypi dpcypi(1 -k e) -+- dpiyqi(1 -Jr- e) 9

(24)
dqyqi" dqcyqi(1 -I- e) dqoypi(1 -Jr- e)7J

and using the first order approximation, + ke + e)k, for any integer k,

(25)
dpypi dpcyp( + 5e) + dosyq( + 9

Extracting the error terms, we have the equation

(26) ["dpyPidqyqi~, I dppi + [5_7seCe 5ce9Se ]I dqYqidpYPi]
which is of exactly the same form as the equation for the errors incurred in a standard
Givens rotation 6 ]. The same analysis and conclusion holds for the large angle formulas.
Equation (26) may be reformulated as the inequality

(27)

where IAI (laigl).

<= [5ce7se 9s ]5ce [dpypidqyq

4.2. New fast rotations. To differentiate the computed scalars in the new fast ro-
tations from those ofthe standard fast rotations, we will use the hat notation (^) whenever
it is necessary. The computed scalars in the new fast rotations are the same as those in
(21) except that a is redefined as &:

(28) ’= (1 + e) {= c’o’= ao(1 + e)8}.
As before, the unsquared values of dp and dq will be used. However, the change from dq
to dq should be noted:

(29) {d= dpc(l+e)4 }d’q (dq/)(1 + )4

The chained vector equations are."

(30) { ’pi= [ypi + [3’yqi( + e)]( + e)}i [Yqi &’37,i( + e) 1( + e)

Expanding (30), we get

l
’pi= ypi(1 +e)+{3yqi(1 +e)5

(31) )3i yqi(1 -1- )- ogoa[ypi(1 + ,) -1- yqi(1 + e)5](1 + e) l

[1 ao/3(1 + e)14]yqi(1 + e)- owypi(1 + e) 11

Factoring in the diagonal elements by merging (29) and (31) with approximation
of e terms up to the first order, we have (noting that (1 aw/3( + e)14)( + e)
(c2(1 + e)- 14sZe)),

d’y~’pi dpcypi( + 5e) + dqsyqi( + 9e)
(32)

dqyqi’ " dqqi[ c( + 5e) 14sre d,s.vpi( + 15e)
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Separating out the error terms,

dpypi 9se dpypi
(33) ’ d,. +

dqyqi 15se (5 c 15sr)e dqyqi

Because 10[ N , 5c 14srl N 19c], and the following inequality may be formulated

dyqi [ dqfqi J 15Se 9 Ce

The eor analysis for the fast rotation when the qth row is updated first is procedurally
identical and yields propoional results:

() ’= d( + )10 {= ,,=( + )0),

(36) {d doc( + e 4 }d (d/c)( + )"

(37) {= [yq- ’yp( + e)]( + e)}[y ,y + ) + )

(38) fi;i=pi(1 +e)+[yqi(1 +e)-yi(1 +e)3] +e) 1

[1 (1 + e)14]pi(1 + e) + qi(1 + )3

(39) {’’ }d)p dpyp[ c( + 5e) 14sre + dqsyp( + 17e)

dq qi dqqi 5 ce 7se dqyqi
(40) dpy’’ dpfip] + 17se (5c-14sr)e dpp

Finally, (40) yields the inequality,

(41)
dpypi] dp.gpiJ 17se 9ce

As the derivations (for the error analyses of the large angle formulas) are similar to
those of the small angle formulas, we state only the results. For ]0] > and when the
qth row is updated based on the updated pth row (p < q),

(42)

(43)

dpypi]= dp.gpi 9ce 5se

" " dq;qi + -1 e 15dqyoi ] -(5s- 14c-

dqyqi

dqyqi 1’

dqyqi

and, for the counter-chained rotation (the pth row is updated based on the updated qth
row, p < q),

dqyqi dqPqi 7 C, 5S, dqyqi
(44) " dppi.]

-Jr-
dpypi (5s- 14c’-1)e 17ce dpypiJ

(45) [dpypiJ
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As we can see from (34), (41), (43), and (45), because of the chaining between
the two linked triads, there is the potential for roughly doubled error in the vector that
is updated second, compared with the standard fast rotations. However, the rotation is
still stable, as the magnitudes of the elements ofthe error matrix are bounded by a small
constant. For stability, it is important that the small angle formulas must be used when
I1 =< and the large angle formulas are required otherwise. Error analyses of other
algorithms that employ fast rotations, e.g., the Jacobi and Hestenes algorithms, would
proceed similarly and would yield similar stability results.

5. Remarks. We have presented new fast plane rotation algorithms that solve the
long-standing overflow and underflow problem that is inherent in the standard fast ro-
tations. The new fast rotation algorithms dynamically scale the elements in the diagonal
factor matrix by using a simple comparison for each rotation. An additional advantage
of the new fast rotations comes from the fact that the temporary vector copy that is
necessary in the standard fast rotations is also eliminated. Accordingly, vector updates
can be chained and higher efficiency can be achieved especially on vector processors.

It is essential, for scaling and the numerical stability of the new fast rotations, to
choose the appropriate rotation based on the relative size of the angle with +_. Certain
algorithms, such as the Jacobi algorithm for the symmetric eigenvalue decomposition,
do not require rotation angles to exceed [-, ], simplifying the choices in fast rotations.
We have shown that the scaling in the chained fast rotation is highly dependent on the
direction of the chaining, i.e., which of the two vectors uses the updated value of the
other vector for its own update. Although the four-way branch algorithm (Table can
guarantee that the diagonal elements in the diagonal factor matrix are in the range
[1/c, V] at any stage, it can be much slower than the two-way branch algorithm
because the standard slow rotations are occasionally required. The two-way branch al-
gorithm (Table 2) is simpler and more efficient. Although we do not have any rigorous
proofthat the diagonal elements stay in a constant range in the two-way branch algorithm,
it provides excellent control of scaling according to our substantial numerical tests. We
have found no instance for which the two-way branch algorithm performs poorly in
scaling of the diagonal factor. For the case of the QR decomposition, we have shown
that the chained fast rotation algorithms have stability that is essentially the same as that
of the standard fast rotations.
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POSITIVE DEFINITENESS AND STABILITY OF INTERVAL MATRICES*

JIRI ROHNf

Abstract. Characterizations of positive definiteness, positive semidefiniteness, and Hurwitz and Schur sta-
bility of interval matrices are given. First it is shown that an interval matrix has some of the four properties if
and only if this is true for a finite subset of explicitly described matrices, and some previous results of this type
are improved. Second it is proved that a symmetric interval matrix is positive definite (Hurwitz stable, Schur
stable) if and only if it contains at least one symmetric matrix with the respective property and is nonsingular
(for Schur stability, two interval matrices are to be nonsingular). As a consequence, verifiable sufficient conditions
are obtained for positive definiteness and Hurwitz and Schur stability of symmetric interval matrices.

Key words, interval matrix, positive definiteness, positive semidefiniteness, Hurwitz stability, Schur stability,
nonsingularity

AMS subjectclassifications. 15A18, 15A48, 65G10, 93D09

Introduction. In this paper we study positive definiteness, positive semidefiniteness,
and Hurwitz and Schur stability of square interval matrices defined in the following way:
an interval matrix .41 is said to be positive definite (positive semidefinite, Hurwitz stable)
if each matrix .4 e .41 is positive definite (positive semidefinite, Hurwitz stable); a slight
deviation from this definition is made for Schur stability where a symmetric interval
matrix AI is said to be Schur stable if each symmetric A AI is Schur stable. Positive
(semi)definiteness of interval matrices is studied in 2, Hurwitz stability in 3, and
Schur stability in 4. There are two main streams ofresults that run across these sections.

First, we show that for each of the four properties listed it holds that A I (assumed
to be symmetric in stability cases) has the property if and only if this is true for a finite
subset of explicitly described matrices in A i. The result for positive (semi)definiteness
is given in Theorem 2, where the respective subset is shown to be of cardinality 2 (in
the worst case) for an n n interval matrix A I; this theorem improves considerably the
earlier result by Shi and Gao [13 ], which used 2 ntn- 1)/2 test matrices. A similar result
is given in Theorem 6 for Hurwitz stability of symmetric interval matrices, which is
again characterized by a subset of matrices of cardinality 2 n-1. Hertz [6] has recently
proved that stability of this subset implies stability of each symmetric matrix in A i; our
result shows that stability of this subset already implies stability of the whole ofA i.

Second, we show that a symmetric interval matrix A i is positive definite (Hurwitz
stable, Schur stable) if and only if it contains at least one symmetric matrix with the
respective property and is regular (for Schur stability, two associated interval matrices
are to be regular; A is called regular [9] if each A A I is nonsingular). These results,
proved in Theorems 3, 8, and 1, reduce the number of test matrices to one but do not
remove exponentiality from the verification process because all the necessary and sufficient
regularity conditions known ([9], [12]) employ some subset of test matrices whose car-
dinality is exponential in the matrix size. Nevertheless, because there exists a sufficient
regularity condition due to Beeck 2 ], which is known to cover most practical examples,
employing it in the above characterizations leads to sufficient conditions for positive
definiteness and Hurwitz and Schur stability of symmetric interval matrices (Theorems
4, 9, and 12), which can be expected to work well in practical cases. In the final remark
in 5, we give a modification of the Beeck’s condition that enables us to use an approx-
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imation of the inverse of the center matrix ofA instead of the exact inverse as required
in the original formulation.

1. Notations and auxiliary results. We introduce some notations and prove a theo-
rem that sums up the basic technical results to be used later in the proofs of the main
theorems.

For a square real matrix A (a0), we denote the transpose by A r, the spectral
radius by p(A ), and we introduce its absolute value as the matrix A ai[ ). A matrix
A is called symmetric ifA A v. Symmetric matrices are known to have all eigenvalues
real; we shall denote by kmin(A and )ma(A), the minimum and maximum eigenvalue
ofA, respectively (obviously,)Xmin(-A -kmax(A )). Matrix inequalities, as A =< B or
A < B, are to be understood componentwise.

Let Ac and A be real n n matrices, A >= 0. The set of matrices

AI= [Ac- A, Ac+ A]= {A;A- A<=A<=A+ A}
is called an interval matrix. AI is said to be symmetric if both A and A are symmetric.
With each interval matrix A [A A, A + A] we shall associate the symmetric interval
matrix

where A and A’ are given by

and

’= [A’- A’, A’ + A’]AS

A’ 1/2(Ac + A)

x’= 1/2 + ).
Obviously, if A AI, then 1/2 (A + A r) A/ and A1 is symmetric if and only if
AI=AIs.

We introduce an auxiliary index set

Y= {zrR"; ]zj] forj 1,...,n),
i.e., Y is the set of all + 1-vectors; hence, its cardinality is 2 n. For each z 6 Y we shall
denote by Tz the n n diagonal matrix with diagonal vector z. Now for each z Y let
us define the matrix A by

Az=Ac TzATz.
Then for each i, j we have (Az)ig (A)o ziAigzj (A A)ig if zizg and (Az),j
(A + A)ij ifziz --1; hence, Az -A for each z Yand because A-z Az, the number
of mutually different matrices Az is at most 2 n-1 (and equal to 2 n-1 if A > 0). IfA I is
symmetric, then each A is symmetric. The matrices A z Y, will be used in 2 to
characterize positive (semi)definiteness of an interval matrix by finite means.

Let us now introduce a function f: R " --} R defined for a matrix A 6 R " by

xVAx
U(A) min r-------x#0 X

Obviously, f is well defined. In the following theorem we sum up the basic properties
of f that will be used in the proofs of the main theorems in the subsequent sections.

THEOREM 1. Thefunctionfhas thefollowing properties:
(i) f(A) =f(1/2(A + At)) for each A R"";
(ii) f( A )min (A) for each symmetric A R" ";
(iii) If(A + D) -f(A)I <- p(1/2(D + Dr)) for each A, D R"’;
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(iv) fis continuous in R n

v) for each interval matrix A i we have

min {f(A);A EA I} min {f(Az); zE Y};
(vi) for each interval matrix A we have

min {f(A);A EA I) min {f(A);A AI);
(vii) each interval matrix A I Ac A, At + A] satisfies

min {f(A);A 6AI} >- f(At)- O(A’);

(viii) ifA is symmetric andf A O, then A is singular.
Proof. (i) follows from the fact that xrAx xr( 1/2(A + Ar))x for each A Rnn

and x E R ". (ii) is well known (cf., e.g., Parlett [10]). To prove (iii), first observe that
from it follows

f(A + D) >= f(a) +U(D)
for each A and D; this inequality implies

f(A) =f((A + D) + (-D)) >= f(A + D) + f(-D),
which together gives

If(A + D)-f(A)l =< max {If(D)l, If(-D)l }
max If(1/2(D + Dr))l, If(-1/2(D + Dr))l }

max{ IXmin(1/2(D + Dr))l, IXmax(1/2(D + Dr))I

p(1/2(D + Dr)).
For (iv) take a matrix norm I1" such that A r A for each A. Then from (iii)

we obtain

If(A + D)-f(A)l =< 1/2(D + DT)I!-< IIDII
for each A and D, which proves that f is continuous in R .

To prove (v), let A A and x 4 0. Because xT(A At)xl =< xl rbl xl, we obtain
xTAx XTAcX + xr(A Ac)x >= xrAcx- xl T/Xl xl. Define a z 6 Y as follows: zj

if xj >= 0 and z -1 otherwise (j n), then xl Tzx and we have

xTAx >= xrAcx- xrTzATzx XTAzX;
hence,

which implies that

xTAx
xTx

xrAzx >= f(Az) >= min f(Az); z 6 Y },
XTX

f(A) >= min {f(Az); z Y}
holds for each A E A and because A A i for each z Y, the assertion follows.

To prove (vi), for each z 6 Y denote by A the matrix Az for A s/, i.e.,

A’z A’c- TzA’Tz 1/2(Ac + Arc) Tz(1/2( A + Ar))Tz 1/2(Az + Az).
Then employing (i) we obtain

f(Az) f(1/2(Az + Az)) =f(A);

hence, the assertion (v) implies that the minimum values of fover A t and A/ are equal.
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For (vii) let A e A I. Since A Ac =< A, using (iii) and Proposition 3.2.4 in 9
we obtain If(A) -f(A)l <= t(1/2(A A) + 1/2(A Ac) r) <= o(1/2(A + ))
which gives f( A >= f(Ac) O(N) and thus also

min {f(A);A eA r >=f(Ac)- O(/x’).

For (viii) under the assumptions, zero is an eigenvalue ofA due to (ii), hence A is
singular.

2. Positive (semi)definiteness of interval matrices. A square (not necessarily sym-
metric) matrix A is called positive semidefinite iff(A >= 0, which, in view of ), means
that xTAx >= 0 for each x (hence our definition conforms to the usual one). Similarly,
A is said to be positive definite iff(A) > 0 (i.e., xTAx > 0 for each x 4: 0). An interval
matrix A is said to be positive (semi)definite if each A A is positive (semi)definite.
As a consequence of Theorem we obtain this characterization.

THEOREM 2. Let A i be a square interval matrix. Then thefollowing assertions are
equivalent:

(a) A is positive (semi) definite,
b A is positive (semi) definite,
(c) Az is positive (semi) definitefor each z Y.
Proof. We shall prove the theorem for the case of positive definiteness of A I; the

proof for positive semidefiniteness runs quite analogously. By definition, A i is positive
definite if and only if

min {f(A); A A } > 0

holds. Then the equivalence of (a) and (b) follows from the assertion (vi) of Theorem
and that of (a) and (c) from the assertion (v) of the same theorem.

The assertion (c) shows that positive (semi)definiteness of an interval matrix can
be verified by testing 2"- matrices from A I for positive (semi)definiteness. Hence, this
theorem improves considerably the earlier result by Shi and Gao [13 ], which required
testing 2 n(n-)/2 matrices from A (the so-called vertex matrices) for positive
(semi)definiteness; moreover, their result was given for symmetric interval matrices only.
We note that BiaIas and Garloff [4] proved a similar characterization of interval P-
matrices (each A A is a P-matrix if and only if each Az, z Y is a P-matrix), although
they did not explicitly use the matrices A.

The equivalence "(a) (b)" reveals another important property, namely that
verification of positive (semi)definiteness of A always can be performed by inspecting
the associated symmetric interval matrix A i.s, hence, we can restrict our attention in the
sequel to symmetric interval matrices only. First we have this corollary.

COROLLARY. Let a symmetric interval matrix A I be positive semidefinite. Then it
is positive definite ifand only ifall the matrices A z Y are nonsingular.

Proof. The "only if" part is obvious because each positive definite matrix is non-
singular. To prove the "if" part, assume to the contrary that A I is positive semidefinite
but not positive definite. Then from the assertion (c) of Theorem 2 it follows that there
exists a matrix A that is positive semidefinite but not positive definite. Thenf(A) 0
and because Az is symmetric, we have that Az is singular (Theorem 1, (viii)), which is a
contradiction. [5]

In the next theorem we prove that positive definiteness ofsymmetric interval matrices
is closely related to regularity. Let us recall that a square interval matrix AI is called
regular 9 if each A A is nonsingular.

THEOREM 3. A symmetric interval matrix A i is positive definite ifand only if it is
regular and contains at least one positive definite matrix.
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Proof. Again, the "only if" part is obvious. In the proof of the "if" part, as-
sume to the contrary that A is regular and contains a positive definite matrix Ao but
is not positive definite, so that xTA <X 0 for some A e A i and x 4: 0. Define Ao
1/2(A0 + Ar) and A1 1/2(A + A), then both A0 and A1 are symmetric, belong to A I,
and satisfy

f(Ao) f(Ao) > 0

and

f(21) f(A1) <= O.

Now define a real function o of one real variable by

p(t) f(tA’o + (1 t)A1), te[O, 11.
Then p is continuous by the assertion (iv) of Theorem and because o(0)o(
f(A)f(Ao) <-_ O, there exists a to e [0, 1] with O(to) 0. Put

A toAo + (1 to)A,
then A is symmetric, A A andf( A 0; hence, the assertion (viii) ofTheorem gives
that A is singular, which is a contradiction. V1

The necessary and sufficient condition of Theorem 3 requires only one matrix to
be tested for positive definiteness. It bears a striking similarity with the characterization
of nonnegative invertibility of interval matrices given in [11], Theorem (each A A I

is nonnegative invertible if and only ifA I is regular and (Ac + A)- >---- 0). However, the
result is not as pleasant as it might seem because verifying regularity ofan interval matrix
is generally a difficult problem as it can be clearly seen from Theorem 5.1 in 12 ], where
a number of necessary and sufficient regularity conditions are given, all ofwhich require
computation of at least 2 n quantities ofsome sort (as evaluating determinants, solving
systems of linear equations, inverting matrices, and so on). Nevertheless, there exists an
easily verifiable sufficient regularity condition that, in this author’s experience, covers
most practical examples. Employing it in Theorem 3 leads to this sufficient condition.

THEOREM 4. Let A Ac A, Ac -t- A] be a symmetric interval matrix such that
Ac is positive definite and

(2) p(IA2’ A) <

holds. Then A is positive definite.
Proof. Because Ac is positive definite, it is invertible and the condition (2) guarantees

regularity ofA (see Beeck 2 ). Hence, Theorem 3 gives that A I is positive definite. V1

We also note that if A- A)jj >__ for some j, then A I contains a singular matrix
(assertion (iii) of Corollary 5.1 in 12 ); hence, A 1 is not positive definite.

Another sufficient condition can be derived from Theorem 1.
THEOREM 5. Let a symmetric interval matrix A I [A A, Ac + A] satisfy

(3) p(A) < kmin(Ac).

Then A is positive semidefinite. Moreover, ifthe inequality (3) holds sharply, then A i

is positive definite.
Proof. According to the assertions (vii) and (ii) ofTheorem 1, we have min {f( A );

A 6 A I } kmi (Ac) p(A) >= 0; hence, f( A >_- 0 for each A A I, SO that A I is positive
semidefinite. If (3) holds sharply, then f(A) > 0 for each A A i; hence, A I is positive
definite. V

In the next section we shall apply the results obtained to characterize stability of
symmetric interval matrices.
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3. Hurwitz stability of interval matrices. A square matrix A is called Hurwitz stable
(for the sake of brevity, we shall say only "stable") if Re < 0 for each eigenvalue , of
A (in other words, if all its eigenvalues lie in the open left half of the complex plane).
An interval matrix A is said to be stable if each A A i is stable. The problem of stability
of interval matrices arises naturally in control theory in connection with the behavior of
a linear time invariant system A(t) Ax(t) under data perturbations and has been
extensively studied recently; we refer the reader to the survey paper by Mansour 8 for
a detailed list of references. We investigate here mainly stability of symmetric interval
matrices, which turns out to be closely connected to the contents of the previous section
due to the well-known result that states a symmetric matrix A is stable if and only if -A
is positive definite (see, e.g., 5 ]). However, some care must be taken because a symmetric
interval matrix can contain nonsymmetric matrices whose eigenvalues are not real. As
an example, consider the symmetric interval matrix A [At A, At + A] with Ac 0
and

which contains the matrix

0

whose eigenvalues are +i.
In contrast to the previous section where we employed the matrices Az Ac

TzATz, here we shall characterize stability in terms of matrices

Az Ac + TzATz, z Y.

Obviously, A-z A and all Az are symmetric ifA I is symmetric.
THEOREM 6. Let A [Ac A, A + A] be a symmetric interval matrix. Then the

following assertions are equivalent"
a A is stable,

(b) [-Ac A, -A + A] is positive definite,
c A is stablefor each z Y.

Proof. We shall prove that (a) (c) (b) (a). Let us denote A0 [-Ac
A,-Ac + A]; notice that A0 {-A;A AI}.

(a) (c)" The proof is obvious because A-z e A I for each z Y.
(c) (b)" Let z Y. Because A-z is symmetric and stable, it follows that all its

eigenvalues are negative; hence, the symmetric matrix

-Az =-Ac- TzATz
has all eigenvalues positive, so that it is positive definite 5 ]. But -Az is just the matrix
A for the interval matrix A; hence, A is positive definite by the assertion (c) of
Theorem 2.

(b) (a)" Let A) be positive definite. Consider an eigenvalue of a matrix A e
A I. Due to the Bendixson theorem ([ 15 ], p. 395), we have

Re X _-< kmax(1/2(A + AT)),

where the matrix A 1/2 (A + A T) is symmetric and belongs to AI; hence, -A A0.
Thus, -A is positive definite so that all eigenvalues ofA are negative, which gives that
Re _-< Xmax() < 0. Hence, A is stable, and because it was chosen arbitrarily, A t is also
stable. U]
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There are several previous results relevant to the equivalence (a) (c). First, let
us recall that a matrix A A i is called a vertex matrix ofA if for each i, j e { 1,..., n },
either Aij (Ac A )ij or Ao (Ac + A )i9 holds. Thus, there are exactly 2 n2 vertex matrices
in the most disadvantageous case of A > 0. Clearly, Az is a vertex matrix for each z .
The first attempt to use vertex matrices for characterizing stability was made by Biaas
[3], who proved that a general interval matrix A i is stable if and only if all its vertex
matrices are stable. His result was shown, however, to be erroneous by Karl, Greschak,
and Verghese [7] and independently by Barmish and Hollot [1]. Soh [14] proved in
1990 that the conjecture is true for symmetric interval matrices in this form: if all the
symmetric vertex matrices of AI are stable, then each symmetric A AI is stable. This
result required testing 2( +1)/2 vertex matrices for stability. This bound has been essen-
tially improved recently by Hertz [6 ], who proved (using another notation) that if all
the matrices A-z are stable, then each symmetric A A I is stable; this reduced the number
oftest matrices from 2 "("+ 1)/2 to 2 i. Theorem 6 shows that under the Hertz assumption
each matrix A e A is already stable.

In Theorem 2 we showed that positive (semi)definiteness ofa general interval matrix
can be equivalently formulated in terms of the associated symmetric interval matrix
A s/. Unfortunately, this nice property does not hold for stability, where only one impli-
cation is true.

THEOREM 7. IfA is stable, then A I is also stable.
Proof. Let X be an eigenvalue of a matrix A A i. Then by the Bendixson theorem

we have Re X _-< Xmax( (A + A r)) < 0 because the symmetric matrix 1/2(A + A r) belongs
to A /and thus has all eigenvalues negative. This proves that AI is stable.

The converse implication is generally not valid. Consider the interval matrix A i

[Ac A, A + A] with

-1 -2

and A 0. Here A is stable because A is stable (Re), Re X -1/2 ), but A is not
because Xm(A) (- 1)/2 2.85"".

Finally, we give the respective versions of Theorems 3 and 4 for the case of sta-
bility. The reformulations are direct consequences of the equivalence (a) . (b) of
Theorem 6.

THEOREM 8. A symmetric interval matrix A I is stable ifand only ifit is regular and
contains at least one stable symmetric matrix.

Proof. The "only if" part follows from the fact that each stable matrix is nonsingular.
Conversely, if A is regular and contains a stable symmetric matrix J, then A/
[-Ac A, -A,. + A] {-A; A A I} is also regular and contains a positive defi-
nite matrix -; hence, A/ is positive definite by Theorem 3 and AI is stable by Theo-
rem 6.

The last result of this section follows from Theorem 4 applied to the interval matrix
[-Ac A, -A + A] and its straightforward proof is omitted.

THEOREM 9. Let A [A A, Ac + A] be a symmetric interval matrix such that
A is stable and

o(IA- A) <

holds. Then A is stable.
For a practical verification, the results of this section can be used in the following

way. Given an interval matrix A i, first form the symmetric interval matrix A Is and test
it for stability using Theorem 9. If the test is successful, then A i is stable (Theorem 7).



182 JIRI ROHN

This procedure will, however, fail whenever A i is stable, whereas A / is not, as, e.g., in
the example following Theorem 7. In such a case another condition must be tried (cf.
Mansour 8 for further results).

Example. Consider the interval matrix A I [Ac A, At + A] with

At 3 -2
-2

and Ai 0.03 for each i, j. Then for the associated symmetric interval matrix A
[A’ + A’] we haveA’, At

(-1 _!)A -2
0 -2

and A’ A. Because A is stable and O(l(A’c)- [A’) 0.9 < 1, Theorems 7 and 9 imply
that A is stable.

4. Schur stability of interval matrices. A square matrix A is called Schur stable if
p(A < 1, i.e., if xI < for each eigenvalue X ofA. We shall consider here Schur stability
ofsymmetric matrices only to avoid complex eigenvalues that seemingly cannot be easily
handled by the method used. Therefore, we shall say that a symmetric interval matrix
A is Schur stable if each symmetric matrix A A i is Schur stable; hence, we do not take
into account the nonsymmetric matrices contained in A i. This definition is in accordance
with the approach employed in [14] or [6].

A necessary and sufficient condition for Schur stability has been recently given by
Hertz 6 ], who proved that a symmetric interval matrix A i is Schur stable if and only if
all the matrices Az, Az, z Yare Schur stable. In Theorem 11 below we formulate another
necessary and sufficient condition based on the following result that links Schur stability
to Hurwitz stability.

THEOREM 10. A symmetric interval matrix A i [At A, At + A] is Schur stable
ifand only ifthe symmetric interval matrices

(4) [(Ac- I)- A, (Ac- I) + A]

and

(5) [(-Ac- I) A, (-Ac- I) + A]

are stable, where I is the unit matrix.

Proof. Only if: Denote the interval matrix (4) by At and let z (Ac I) +
TzATz A I for z e Y. Because A is symmetric and Schur stable, it has all eigen-
values in (-1, 1); therefore, all the eigenvalues of Az belong to (-2, 0); hence, Az is
stable. In view of Theorem 6 this implies that At is stable. Stability of 5 can be proved
in a similar way if we consider the matrices Az -Az I, z Y.

If: Let A AI be symmetric and let X be an eigenvalue of A. Then X is an
eigenvalue of the matrix A I that belongs to (4) and hence is stable, which gives X
< 0. In a similar way, stability of (5) implies X < 0. Hence, X[ < 1; thus, A I is

Schur stable. []

Now we have this criterion that is again formulated along the lines of Theorems 3
and 8.

THEOREM 11. A symmetric interval matrixAi is Schur stable ifand only ifit contains
at least one Schur stable symmetric matrix and both the interval matrices (4) and (5)
are regular.
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Proof. Only if: IfA is Schur stable, then both (4) and (5) are stable by Theorem
10; hence, regular. If: Let some symmetric Ao A i be Schur stable and let (4) and (5)
be regular. Then Ao I is symmetric, stable, and belongs to (4); hence, (4) is stable by
Theorem 8. Similarly, stability of (5) can be established by considering the matrix
-Ao I. Then Theorem 10 gives that A is Schur stable.

Again, using sufficient regularity condition, we obtain the following.
THEOREM 12. Let A t [At A, At + A] be a symmetric interval matrix such that

At is Schur stable and the conditions

(6) p(lAc- I[-A) <

(7) p(IAc //I-’x) <
are satisfied. Then A I is Schur stable.

Proof. This is a direct consequence of Theorem 11 because (6) and (7) are the
Beeck sufficient regularity conditions [2] for the interval matrices (4) and (5).

5. Final remark. In Theorems 4, 9, and 12 we formulated verifiable sufficient con-
ditions for positive definiteness, Hurwitz and Schur stability of symmetric interval ma-
trices. Each of them involved the sufficient condition (2) for regularity of an interval
matrix A [At A, At + A]. This condition may be seen to be inappropriate for
practical computations because the inverse matrix computed on a computer is usually
afflicted with roundoff errors. Therefore, for practical purposes we propose a modified
condition

(8) o(lI- Omcl + IQI A) <

involving an arbitrary square matrix Q, because we have:/f(8) holdsfor some Q, then
A is regular. In fact, for an arbitrary A e A i, we have

QA I- (I- QAc + Q(At- A))

and because

p(I- QA + Q(At- A)) <= o([ I- QAcl + [QIA) < 1,

it follows that QA is nonsingular; hence, A is nonsingular. Notice that (2) is a special
case of (8) for Q A-. In practical computations we recommend to set Q equal to the
computed value of A.

Acknowledgment. The author wishes to thank two anonymous referees for helpful
suggestions.
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ESPRIT DIRECTION-OF-ARRIVAL ESTIMATION IN THE PRESENCE
OF SPATIALLY CORRELATED NOISE*

HAESUN PARK

Abstract. An algorithm is presented for ESPRIT (estimation ofsignal parameters via rotational invariance
techniques) direction of arrival estimation when the expected value ofthe covariance ofthe measurement noise
is different from a constant multiple of an identity matrix. The algorithm is based on a modification of the
generalized singular value decomposition (GSVD) oftwo data matrices and requires only unitary transformations.
The modification results in a significant simplification of the GSVD-based ESPRIT algorithm and produces
more accurate solutions than prewhitening.

Key words, correlated noise, direction of arrival, generalized singular value decomposition
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1. Introduction. ESPRIT is a recently developed method for signal parameter es-
timation with applications in array signal processing such as direction ofarrival estimation
[7 ], [8]. The method is based on a sensor array consisting of two identical subarrays
separated by a known displacement vector. It provides estimates ofthe signal parameters
by exploiting the eigenstructure of the underlying rotational invariance. For other ap-
plications where similar structures arise, see [8]. We briefly describe the array geometry
and signal model assumed in ESPRIT and show how the algorithm is formulated. Since
the goal of this paper is to develop an efficient and numerically robust algorithm to
estimate the directions of arrival according to the ESPRIT method, we will state the
problem in a matrix-oriented language. For the detailed description and assumptions on
which the formulation is based, see [7 and [8]. Throughout this paper, the superscript
asterisk (*) of a matrix denotes the complex conjugate transpose of the matrix and
denotes the pure imaginary number -1.

The array considered in ESPRIT consists of m sensor pairs. The sensor array is
grouped into two subarrays, X and Y, that are assumed to be displaced by a known
translation vector. We denote the number of sources by d, which is unknown, and assume
the relation that m >= d. Let A CmXd be the unknown matrix with rank d,
whose columns are the steering vectors associated with the sources, and let
diag (ei’ eia) Cd d be the unitary diagonal matrix that relates the measurements
from subarray X to those from subarray Y. The sensor output x(t), y(t) C" is
modeled as

(1.1) x(t) As(t) + n(t), y(t) A,bs(t) + ny(t),
where s( Ca is an unknown vector of impinging signals and nx( ny(t) C
are unknown noise vectors. Combining the two equations in 1.1 ), we have

(1.2) z(t)
y(t) A

s(t) + nz(t),

where

nx(t)]nz(t)=
ny(t)
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Assuming that the signals are uncorrelated with the noise and that the expected value of
s(t)s(t)*, E(ss* ), is a positive definite covariance matrix Rss, we have

Rss + E(nn* ).E( zz*
A’ A,I

The problem is to find the unitary diagonal matrix ,I when we have the matrices Hz
Cuzxm and H Cu"m with full column rank that estimate E(zz*) and E(nzn*),
which is E(zz*) H* Hz and E(nn* ty2. trZH*nHn, with

Rss + r H(1.3) H* Hz A’ A’

For notational convenience, we replace by in (1.3) in the following. Once the
unitary diagonal matrix is found, the directions of arrival can be derived from by
simple arithmetic. For details, see [7] and [8].

There have been many numerical algorithms developed for the ESPRIT direction
of arrival methods [7], [8] where the noise is assumed to be white, i.e., the expected
value of the covariance of the measurement noise has the form E(nzn*z tr2I. In the
more general case when E(nn*z rzz, where 2 4: I is positive definite, prewhitening
of the measurement noise using 2 -/2 avoids the generalized eigenvalue problem [8 ],
11 ]. However, when prewhitening is used, numerical difficulty can occur. To avoid the

difficulty, a solution via a GSVD has been developed [13].
In this paper, we present an algorithm for the ESPRIT direction ofarrival estimation

when E(nzn*z ty2 where 2: is positive definite. The new algorithm produces numer-
ically more accurate solutions than the prewhitening method and is more efficient than
the existing GSVD-based method [13]. Our method is based on a special form of the
GSVD, computation of which relies solely upon unitary transformations applied to the
data matrices. The special form ofthe GSVD simplifies the computations in the ESPRIT
by taking advantage of the structure of an intermediate matrix. Further advantages of
the new form ofthe GSVD for ESPRIT will be discussed after the algorithm is introduced.

2. GSVD. The following theorem introduces the GSVD as was originally defined
in Van Loan 12 ].

THEOREM 1. Suppose that two matrices Hz CNzxzm with Nz >-_ 2m and H
cNn 2m are given. Then there exist unitary matrices Uz Cuz xu and U CN" x u, and
a nonsingular matrix X C2m 2m SblCh that

U*z HzX Dz diag (a, a2m) - CNz2m,(2.1)
U*HX D, diag (/3,..., 3p) CN"2m,

where p min (N, 2m), ai >- 0 for <= <- 2m, and 3 >= 0 for <- <= p. V1

We will assume throughout this paper that Nz >= 2m and N >_- 2m, thus, p 2m,
since enough samples should be taken to provide good estimates for the directions of
arrival. It is well known that a generalized eigenvalue problem for finding the scalars #’s
that satisfy det (H*z Hz #H* H,) 0 can be solved by computing the GSVD ofHz and

H since

det H*z Hz #H*H det (V* Dz #Vn* Vn det (X *X ).

This gives better numerical solutions since the explicit formation of the products
H*z Hz and H*H, is avoided.
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Although the GSVD can produce numerically more accurate solutions, computing
the GSVD is a difficult task when the matrices are ill conditioned [4 ]-[ 6 ]. If the non-
singular matrix X from the GSVD is required, then we can expect numerical difficulties
when the data matrices Hz and Hn are ill conditioned. Paige and Saunders [5] suggest
an alternative form ofthe GSVD that has better numerical properties. Paige 4 proposed
an algorithm that computes this alternative form for the GSVD. We define yet another
form of the GSVD in Theorem 2 upon which the new algorithm for the ESPRIT relies.
The new GSVD of (2.2) is identical to the GSVD introduced by Paige and Saunders
except that in 5 ], the matrix L is upper triangular. It will become clear that it is critical
to have the lower triangular matrix L for simplifying the computation of the ESPRIT
algorithm.

THEOREM 2. Suppose that two matrices Hz CNz2m and Hn CNn2m with
Nz >= 2m and N >= 2m are given. Then there exist unitary matrices Uz Cuzuz,
U, Cu"u", and Q C2mzm, and lower triangular matrices Lz CNzzm and
L, CN" 2m such that

(2.2) UHzQ Lz and U*HQ Ln,

where Lz DzL and L, D,L for a nonsingular lower triangular matrix L C2m2m

and diagonal matrices Dz diag (0/ ,0/2m) t CNz2m and Dn diag (/31 flZm) t
Cunzm with 0/i >- 0 and i >= O for 1 <-_ <= 2m. Moreover, ifeach ofHz and Hn hasfull
column rank, then the elements in Dz and D, can be ordered so that

(2.3)
0/ > 0/2 > > 0/2m

1 r2 2m

is satisfied.
Proof. Let

(2.4) U*z HzX Dz and U*, H,,X D,,

be the GSVD of Hz and H, according to Theorem 1. Consider the decomposition of
X into a unitary matrix Q C2m 2m and a lower triangular matrix L-1 C2m2m
X QL- Then we have U’ HzQ DzL and U*, H,Q D,L. The second part is obvious
since the diagonal elements of Dz and D in the decomposition (2.4) can be ordered to
satisfy the condition (2.3) via a permutation P, then the above process can be applied
to XP. [3

Although Theorem 2 introduces a modified form for the GSVD that gives a nu-
merically more robust and efficient algorithm for ESPRIT, our algorithm to compute
the GSVD of (2.2) would not follow the procedure given in the proof. A better way to
compute the new GSVD is given in Algorithm GSVD_L in 3, which is essentially the
same as the algorithm due to Paige [4 ], except that a matrix W in each step is chosen
to lower triangularize the 2 2 submatrices, whereas Paige upper triangularizes the
submatrices.

THEOREM 3. Suppose that Hz CNz 2m and Hn CNn 2m have full column rank
and that they have the GSVD as in (2.2) and Dz and D are ordered to satisfy (2.3).
Also, assume that H H [AA, RSs[AAe * + aZH Hn, where A C a has rank d, b
Caa is unitary and diagonal, and Rss is symmetric positive definite. Then

0/1 Old Old + 0/2m2.5
1 d- fld+l 2m
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and

Rss Q,L ,L,Q(2.6)
A A

where Q [Q Q2] with Q C2md, Q2 c2m(2m-d),

L=[LI 0]L2 L22

with L Cdd, and Z diag (a2 2fl, a 2fl a 2) G RdXd.
Proof. For the proof of the first pa that involves (2.5), see 13 ].

[Q Q2]
0 L2 0 0 L2 L22 Q

QL*LQ.
Dividing the matrix Q C2md fuher into two pas

Q

where Q e C x e and e C x e, we have

A A *= Qx
LINL(2.7)

AO
Rss

AO Q Q ]

Accordingly,

ARssA * XARssO*A * ARss(I X* )A * QL *
11 11( X ),

and rank (ARss(I X* )A * < d if and only if X is the same as one of the diagonal
elements of . That is, to find , we have only to find X,..., X that make

(2.8) rank (Qx 1 ll(Q XQ )) < d, i.e., rank (Q XQ < d.

The impoance of the lower triangular structure of the matrix L in the GSVD of (2.2)
is clear from Theorem 3, since only the upper left d X d submatrix Lll ofL is required
in representing the matrix [2. Rss[2 * as shown in (2.7). In fact, none ofthe elements
from L is needed: the lower triangular structure of the matrix L resulted in requiting
only Q and Q for finding the matrix as shown in (2.8). The dicult problem that
remains is that the eigenvalues of a rectangular matrix pencil Q XQ e Cx must
be computed. We can apply one of two previously developed approaches 8 ], 13 for
reducing the problem to an eigenroblem of a square pencil. From the relation in (2.7),

(2.9) null (Q) null (Q) null (A*).

Let a matrix J e Cx(-e satisfy span (J1) null (Q) and be expanded to a nonsingular
matrix J J j e C x . Then

(.10

rank (Q XQ rank ((Q XQ )J) < d, i.e., rank (QJ XQJ) < d,
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and the values X are the eigenvalues of a d d square pencil. The matrix J can be
obtained from the QR decomposition of Qx [13].

We can also reduce the rectangular matrix pencil into a square pencil by using the
total least squares (TLS) technique [2] as in TLS-ESPRIT [8]. Since

(2.11 Range (Qx) Range (Qy) Range (A)

from (2.7), there must be a unique nonsingular matrix T Cdd such that

(2.12) Qx QyT.

Since

rank (Qx* Q; rank (T*Q, Q, < d, i.e., rank (T* I) < d,

we have only to find the eigenvalues of T*. In practice, neither of the relations (2.9) or
(2.11 can hold exactly in finite precision. We estimate the matrix T using the TLS idea
as in TLS-ESPRIT, assuming that Qx and Qy are equally noisy [2], [8]. The algorithm
is summarized in 3.

3. New algorithm. In general, the matrices Hz Cuz 2m and H, Cun 2m in ESPRIT
satisfy the relations that Nz >> 2m and Nn >> 2m. The initial factorization of each
matrix into a unitary matrix and a lower triangular form (we will call it a QL factorization ),

01’
reduces the computational costs for the GSVD substantially. If the GSVD ofL and
is

(3.1) ULQ L1, UL,Q L,

where L DL and L DL, then the GSVD ofH and H can be obtained as

( IN 0])* ILl ( g2 0)*HzQ Q, H,,Q(3.2) Qz
0 I 0 0 I 0

Note that the same unitary matrix Q appears in both (3.1) and (3.2), which is the only
unitary matrix we need from the decomposition fgr our ESPRIT algorithm. Thus the
problem is reduced to computing the GSVD of two lower triangular matrices Lz, L,
cZm 2m, and there is no need to compute Qz, Q,, U, or U2. The Paige algorithm [4]
for computing the GSVD of two real matrices is similar to the Jacobi algorithm for
computing the SVD. Ifwe start with a triangular matrix and use cyclic-by-rows ordering,
the matrix will alternate between upper and lower triangular forms after each sweep.
Since the lower triangular structure of L is required in our algorithm, we can finish the
iterations after an even number ofsweeps when we start with two lower triangular matrices
Lz and L,. For parallel implementation, we can also use the odd-even ordering that
preserves the original triangular structure. For details, see [1] and [4].

The algorithm for computing our GSVD is summarized in Algorithm GSVD_L.
For a matrix X, Xpq denotes the 2 2 submatrix of X:

[ Xpp Xpq

Xqp Xqq

Similarly, for a 2 2 matrix Y, Y(p, q) denotes a matrix of proper dimension that is
like an identity matrix, except that its 2 2 submatrix in the (p, q) plane is Y.



190 HAESUN PARK

ALGORITHM GSVD_L (Hz CNz2m, On (3_ CNn2m)
O. Q:= I2m.
1. Compute the QL decomposition of Hz and Hn:

Hz=Qz
0

and Hn=Q,

2. Repeat until convergence
3. Iterate for one sweep using odd-even ordering.

/* assume that the current index pair is (p, q).
3.1. Determine 22 unitary matrices U, V, and J

so that U*ApqJ and V* BpqJ are lower triangular and
the second row of U*ApqJ is parallel to the second row of V* B,qJ.

3.2. update the matrices
A := U*(p, q)AJ(p, q),
B := V*(p, q)BJ(p, q),
Q := QJ(p, q).

The algorithm is terminated when each row of A is parallel to the corresponding
row of B. Under the assumption that Hz and Hn have full column rank, the computed
generalized singular values ai//3i can be obtained from aii/bi. For our application, none
of the left unitary transformations need to be saved. Thus, the input matrices Hz e
Cuzx2m and Hn CNnzm can be ovefitten by the lower triangular matrices Lz C2mxzm

and L Czm x 2m. The discussions from 2 are summarized in the following algorithm,
using the TLS approximation.

ALGORITHM ESPRIT_GSVD_L
1. Form the matrices Hz and H from the available measurements.
2. Compute the GSVD of Hz and H

UHzQ Lz and UH,Q L,

according to Algorithm GSVD_L.
3. Estimate the number of sources d from Lz and L.

Let

be the first d columns of Q.
4. Compute the SVD of

VII V12 ]*Qx Q), WD
Vzl V22

5 Compute the eigenvalues of V12 V -1
22,

Two existing algorithms, one based on the GSVD of form (2.2) due to Van Loan
and the other based on the TLS-ESPRIT with prewhitening, are summarized in algo-
rithms ESPRIT_GSVD and ESPRIT_PREWHITENING, respectively. For the defi-
nition of the CS decomposition used in Algorithm ESPRIT_GSVD, see Golub and
Van Loan 3 ].



ESPRIT DIRECTION-OF-ARRIVAL ESTIMATION 191

ALGORITHM ESPRIT_GSVD
1. Form the matrices Hz and Hn from the available measurements
2. Compute the QR decomposition

where Q CNzx2m, Q2 - cNn2m, and R C2m2m,
3. Compute the CS decomposition of Q and Q_"

U* QQ= C and U’ QzQ= S.

4. Estimate the number of sources d from C and S.
Let

be the first d columns ofR *Q.
5. Compute the SVD of

Vll V12 ]*[Qx Qy] WD
V2 Vz2

6 Compute the eigenvalues of V12 V -1
22

Note that the matrices Q, Q2, and R from step 2 need to be saved for steps 3 and 4.
Thus the storage requirement of Algorithm ESPRIT_GSVD is larger than that of Al-
gorithm ESPRIT_GSVD_L. Assuming that the complexity for computing the GSVD
in ESPRIT_GSVD_L and the complexity for the CS decomposition in ESPRIT_GSVD
are about the same, ESPRIT_GSVD is more costly and the control is more complicated
than that of ESPRIT_GSVD_L since Q, Q2, and R*Q should be computed.

ALGORITHM ESPRIT_PREWHITENING
1. Form the matrices Hz and Hn from the available measurements.

Measure Z such that E(nn*z) r2Z (or assume that Z is known).
2. Compute z-l/2.
3. Compute the SVD ofHZ -1/2 HzZ -1/2 UDQ*.
4. Estimate the number of sources d from D.

Let

be the first d columns of Z 1/2, Q.
5. Compute the SVD of

[Vii VI2] *
[Qx Qy] WD

V21 V22

6 Compute the eigenvalues of V12 V -1
22,

All three algorithms were coded in MATLAB on a SUN 3/80 with the machine
precision e 2.2204E- 16. Both algorithms ESPRIT_GSVD_L and ESPRIT_GSVD
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produced solutions that are essentially the same in accuracy. When the condition number
of the noise matrix Hn is large, prewhitening suffered from numerical difficulties. For
example, when the condition number of Hn 1/fe, with the directions of arrival 14
and 15 o, and signal-to-noise ratio 10, while two algorithms based on the GSVD produced
answers accurate to the ninth digit, prewhitening failed (the eigenvalues produced in step
6 have absolute values far from unit or the algorithm broke down without completion)
25 times out of 30 tests.

Remarks. We have presented a new algorithm for the ESPRIT direction of arrival
estimation in the presence of noise of which the expected value ofthe covariance is 2Z,
where E is not necessarily an identity matrix. The new algorithm has been shown to be
more efficient than the existing GSVD-based algorithm in terms ofstorage and complexity.
Also, it produces more accurate solutions than the prewhitening method. The fact that
only the unitary matrix Q is needed would make the systolic array for the new algorithm
simple. The implementation ofthe new algorithm on a two-dimensional mesh-connected
array should be straightforward from the results presented in [6 ].

One difficulty in the parallel implementation of the proposed algorithm is that the
generalized singular values need to be ordered in decreasing order. We have modified
the Paige algorithm so that the generalized singular values of the 2 2 submatrices in
each step are ordered. More research is needed regarding the relation between the ordering
of the singular values and the convergence.

Recently, Stewart [9 ], [10] introduced new decompositions of a matrix based on
two-sided unitary transformations, and they are called the URV and ULV decompositions.
These can be generalized for the triangularization of a matrix pair analogous to the
GSVD. The generalized URV and ULV decompositions have many potential applications,
especially where the solutions should adapt to changing statistics. Note that (2.2) can be
used as a starting point for such generalization of the URV and ULV decompositions.
Rank estimation and recursive updating will need to be incorporated to fully realize the
generalized URV and generalized ULV decompositions. The advantage ofthis approach
is that the solution can be recursively updated in an efficient way, which will lead to an
adaptive ESPRIT algorithm.

Acknowledgments. The author wishes to thank Professor M. Kaveh and Mr. R.
Hamza for a program to generate simulated data for the direction of arrival estimation.
She also thanks Mr. B. Drake for introducing her to the problem discussed in this paper.
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FINDING THE BEST REGRESSION SUBSET BY REDUCTION
IN NONFULL-RANK CASES*

ALAN H. FEIVESONf

Abstract. The computational problem of finding the best fitting subset of independent variables in least-
squares regression with a fixed subset size is addressed, especially in the context of the nonfull-rank case with
more variables than observations. For the full-rank case, the most efficient widely used methods work by finding
the complementary subset with minimum reduction to the total regression sum of squares; a task that can
usually be accomplished with far less computation than exhaustive evaluation of all subsets. Here, a method
using Cholesky-type factorizations (Algorithm 2) has been developed, which also takes advantage of the com-
putational savings offered by the "reduction" approach, but which can be used in nonfull-rank cases where
existing methods are not applicable. Algorithm 2 is derived by examining the asymptotic properties of a full-
rank procedure (Algorithm used on a "ridge" perturbation of the cross-product matrix. In the course of
testing, it was discovered that Algorithm 1, with the appropriate ridge parameter, usually selected the best subset
with less computation than Algorithm 2; however, if one requires mathematical certitude, use of Algorithm 2
is indicated. Also, some new approaches are proposed for developing efficient methods of identifying the best
subset directly, rather than by complement to the minimum-reduction subset.

Key words, regression, subset selection, ridge regression

AMS subject classifications. 62J05, 05A05, 65U05, 62J07

1. Introduction. Consider the standard linear regression model form

(1.1) y X/ + e,

where y is an n vector of observations, X is an n p matrix of n given values ofp
independent variables xj; j P ), B is a p vector of unknown coefficients,
and e is an error term with unspecified distribution. In the regression subset selection
problem, given an integer k < p, we wish to find the subset S* that maximizes R(S, k),
the regression sum of squares obtained by least-squares fitting of y to the k independent
variables { xjlj S }, where S is a k-subset of the integers 1, 2 p.

In this paper, we are concerned only with the computational problem of finding
S*. Reasons for subset selection are discussed extensively in the literature, many involving
minimizing estimation or prediction errors associated with a "true" underlying model,
e.g., [3 ], [8 ], and [5 ]. In the estimation/prediction scenario, in addition to R(S, k),
the stability of the k-variate estimate of should also be considered; cf. [2, p. 414 ].
Simulation results given by J. Hoed, Schuenemeyer, and A. Hoed 7 showed a tendency
for subset models to be inferior to ridge regression for purposes of estimating B. A more
efficacious application for subset selection by maximization ofR(S, k) is in the area of
empirical modeling, where we observe y and Xl, x,, where p* < p. No exact
physical model of how y relates to Xl xp, is known, but the goal is to interpolate
the response between the experimental values of Xl,..., xp,. This is done by generating
p p* new independent variables as functions ofthe originals (e.g., powers, ratios, etc.),
with the intent ofapproximately representing the unknown response function by a linear
combination of Xl, xp. No pretense is made about an unbiased estimation of/3,
since no actual underlying model of the form 1.1 is assumed. Indeed, if y is measured
with no error, e may well be nonrandom, representing only model misspecification. The
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interpolating function should be reasonable in that it fits the experimental data, and
(2) it does not have excess "wiggles." The latter requirement can be generally satisfied
by including only a limited number of terms (i.e., k) in the interpolating model; hence
the selection problem.

Let d X’y and Q X’X. For S a k-subset of 1,..., p }, let Qs be the principal
submatrix (PSM) ofQ corresponding to S. We shall assume Qs to be nonsingular although
Q may not be. Then R(S, k) dQ ds, where ds is the k subvector of d also
corresponding to S. Clearly, for large p and most values of k, it is not practical, especially
on personal computers, to compute all () values of R(S, k) to find the maximum. Let
RTOTbe the regression sum ofsquares on all p variables. We can ease the computational
problem by searching for the complementary subset S of size p k, which minimizes
L(S, p k) RTOT- R(S, k), the reduction in the regression sum of squares due to
removing xjl j }. It has been shown, e.g., 4 ], that by solving this dual problem, we
can avoid evaluating all subsets, because if a complementary subset of size less than
p k exhibits a larger reduction than the candidate for the minimum, all subsets con-
taining the smaller one will produce at least as large a reduction and hence will be
ineligible to improve on the current candidate. In the remainder of this paper, this fact
will be referred to as the monotone-reduction property.

When Q has full rank, it is well known that

bC b,(1.2) L(S, p k) -where b andC are the respective (p k) subvector and (p k) (p k) submatrix
of b Q-d and C Q-, corresponding to the elements of. Methods for computing
(1.2) through sequential modification of C have further reduced computation. The
algorithm of Furnival and Wilson [1 ], which is more general in that it finds the best
regressions for all values of k, is based on the above reasoning, and is perhaps the most
widely used procedure for subset selection today.

In the empirical-modeling problem there is no limit to the number oftransformations
of the original independent variables that can be made to define new ones. As a conse-
quence, p could exceed n, making Q singular and the reduction as given by (1.2)
undefined. In this paper, a procedure (Algorithm 2) is developed for comparing
L(S, p k) to a specified value that lends itself to sequential modification with changes
in S when Q is singular. This allows relatively efficient identification of the best subset
without evaluation of all values of L(S, p k) 6r R(S, k). The method is derived by
examining the asymptotic properties of a full-rank procedure (Algorithm used with
ridge regression.

2. Ridge selection. In the singular case, L(S, p k) cannot be evaluated by 1.2);
however, borrowing from Hoerl and Kennard [6], we may replace Q with a ridge ad-
justment Q + eM, where M is symmetric and otherwise arbitrary as long as Q(e)
Q + eM is positive definite for all e > 0. We shall refer to M as the ridge matrix. For
e > 0, let C(e) Q-(e) and b() Q-(e)d. Define L(, p k; M, e) to be (1.2)
with C#(e) and b#( e ), the corresponding submatrix ofC(e) and subvector ofb(e replacing
C and b, respectively. We use the term ridge selection to mean finding the subset that
minimizes L(S, p k; M, e).

Let q be the rank of Q. Then there exists a p q matrix V such that V’V Iq and
Q VAV ’, where A diag (kl kq), kj being the jth positive eigenvalue of Q. Let
H Ip YV ’. Then for e > 0, Q + eH has eigenvalues ,, kq, e e and is thus
positive definite. It will be shown by Theorem 2 that for e sufficiently small, the subset
chosen by ridge selection with M H is S*. To prove Theorem 2, we first need Theo-
rem 1.
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THEOREM 1. Given H defined as above, lim,-,0+ L(S, p k; H, e) L(S, p k)
for all (p k)-subsets g c 1, 2, p }.

Proof. For e > 0, the relationship between regression and reduction sums ofsquares
can be expressed by

(2.1) d’(Q + eH)-ld d(Qs + eH)-lds + b(e)[C(e)]-lb(e).

Denoting the terms in (2.1) by a(e), a2(e), and a3(e), respectively, it will be shown
that a(e) RTOT and that lim,0+ a2(e) R(S, k). It follows that lim_0+ a3(e)
must be equal to RTOT- R(S, k) L(S, p k).

Value ofa,(e). Recall Q YAV’ and H Ip VV’. The matrix H is symmetric,
idempotent and satisfies V’H 0; hence it is easily verified that

(2.2) Q-(t) [Q + ell] -1 VA-1V + H.

Since d X’y, there exists a p vector c such that d X’Xc VAV’c. (c is a
solution to the normal equations; e.g., see Searle [9 ].) Using V’V lq, V’H 0, and
(2.2) we obtain d’Q-(e)d dVAV’a a’Qc, the total regression sum of squares, or
RTOT, which does not depend on and is unique even though a is not.

Limit of a2 (e). Since Qs is positive definite, lim_. 0+ d(Qs + eH)-lds
d}Q ds R(S, k).

Using Theorem 1, we can now prove Theorem 2, which states that ridge selection
with M H is asymptotically correct.

THEOREM 2. Let be the subset that minimizes L(, p k; H, e). Then for e

sufficiently small, minimizes L(, p k).
Proof. Let * be the (p k)-subset that minimizes L(S, p k), and let i5

L(*, p k) L(’, p k), where L(’, p k) is the second-lowest reduction sum of
squares. From Theorem 1, e > 0 can be found such that L(, p k; H, e) L(,
p k)l < for all (p k)-subsets c 1, 2 p }. Then

L(o,, p k) < L(,, p k; H, e) + (from Theorem

<- L(S*, p k; H, e) + (by definition of ,)

< (s*,p-l+ from Theorem

2 a
L(*, p k) + -- L(’, p k)

3

Thus & must be S*. []

Remark. If the ridge matrix is the p p identity, it can be shown that Theo-
rem and hence Theorem 2 with I replacing H still hold. In this case, [Q + elp]-I
V(A + elq)-V + (1/2)H; hence al(e) dVA(A + elq)-lAV’oe, which has the limit
dVAV’c RTOT as e - 0. It follows that lim,_,0+ a3(e) must still be equal to
L(S,p-k).

Although ridge selection with M H is used later as a device to derive the main
result (Algorithm 2), it was found that using M I for appropriate values of e gives
surprisingly good results by itself. Ridge selection with M I can be easily implemented
by appending e /2 times the p p identity matrix as additional rows ofX and p zeros as
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additional elements of y, then using conventional software to find the best subset. The
degree of success of this subterfuge depends on how well calculations stand up on the
ill-conditioned matrix Q + el. This type of ridge selection was tested using Algorithm
in 3 on several data sets with more variables than observations (see 7). With X’X in
correlation form, it was found that e on the order of 10 -4 worked well in that the best
subset was usually identified.

3. Comparing L(S, p k) to a specified value. Despite the knowledge that for
"small" e, ridge selection theoretically identifies the best subset, we can never be assured
in practice that e was small enough or that numerical accuracy problems caused by small
values of e did not give spurious results. We therefore seek an exact method that does
not suffer these shortcomings.

For the moment, let us revert to the full-rank case. We construct a procedure (Algorithm
that finds the best subset by comparing L(S, p k) with trial minimum values. In

4, this procedure is applied to Q(e) with ridge matrix H and the limiting form as
e - 0 is derived. Because of Theorem 2, we are assured that the limiting form of the
procedure will find the best subset. To develop Algorithm we need Theorem 3.

THEOREM 3. For L* > 0, let D C /L* bb’, where C Q-1 and b Q-ld
as before. Let D be the PSM ofD corresponding to the elements ofa reduction subset S
ofsize m p k. Then L( S, m) < L * ifand only if D is positive definite.

Proof.

(3.1)

The matrix D is a rank-one perturbation of the positive-definite matrix C. It can thus
be shown (e.g., see 2, p. 270 that D has at most one negative eigenvalue (ofmultiplicity
not exceeding one). It follows that IDol > 0 if and only ifD is positive definite. Since
ICl > 0, it can be seen from (3.1) that L(S, m) < L* if and only ifDx is positive
definite.

Theorem 3 suggests the following algorithm to find the best subset.

ALGORITHM 1.
Step 1. Number the m-subsets lexicographically: S1 { 1, 2 m}, $2

{l,2,...,m- 1, m+ 1} ,SM= {p-m+ ,p},whereM=(’m).
Step 2. Find an initial candidate S* for the best subset, say, by stepwise regression.

Set 1.
Step 3. Let L * L(S*, m) and D C /L * )bb’.
Step 4. CheckD for positive definiteness by attempting the Cholesky factorization

D B/(Bi)’, where BRi is lower triangular. If the factorization fails, increment i; if
M + 1, go to Step 6, otherwise repeat Step 4. If the factorization succeeds, go to

Step 5.
Step 5. D is positive definite; hence L(Si, m) < L(S*, m). Set S* Si, increment

by 1. If M + 1, go to Step 6, otherwise go back to Step 3.
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Step 6. Stop. The best subset is S*.

Algorithm can be made to take advantage of the monotone-reduction property
by proper incrementation of in Step 4. Suppose that i { s, s2, Sm } and that
factorization failed on the fth row of D# Then any subset containing Sl, s2,..., sf}
will also have a higher reduction than L(S*, m) and need not be checked. Therefore, in
Step 4, we should increment by c, where Si / is the first reduction subset after Si that
does not contain s, s2,..., sf }. Suppose that the first g members of Si / are identical
to the first g members of Si. Then the first g rows ofB#i+ are the same as the first g rows
of B# and need not be recomputed.

4. The singular case: Algorithm 2. If Q is not of full rank, we can accept the pos-
sibility of error and implement ridge selection; e.g., with M I for some e > 0. As an
alternative, we consider the behavior of ridge selection when the ridge matrix is H and
e --* 0. By Theorem 2, for e sufficiently small (say, e < e ), this ridge selection will result
in the proper identification of S*. Let Q(e) Q + ell, and let C(e), b(e), and L(, m;
H, e) be defined as in 2, where S is a reduction subset of size rn p k. For L* > 0,
let D(e) C(e) (1/L*)b(e)b’(e), and let D#(e) be the PSM of D(e) corresponding
to S. It will be shown (Theorem 4) that there exists e2 > 0 and a matrix B that depends
on S but not on e such that all matrices Dg(e) for 0 < e < e2 are or are not positive
definite depending on whether B is or is not positive definite. In particular, the above
relationship holds for e < min (el, e2). It follows from Theorem 3 that we may ascertain
whether L(S, rn) < L* by checking for the positive definiteness of B.

For any real symmetric matrix A, let the notation A > 0 mean that A is positive
definite and let A 0 mean that A has at least one negative eigenvalue. Consider the
following theorem.

THEOREM 4. For e > O, let D be an m X m matrix oftheform

D el GG’+ A, where A
\A21 A22

is symmetric and G (G’, G)’ with All and G having dimensions r r, and with G2
being m r) r. In addition, let G be nonsingular and let T (T ’, T )’ bepartitioned
as G and satisfy

A21 U

where U is arbitrary. Let B A22 U. Then for e sufficiently small, B > 0 D > 0
and B 0 D O.

Proof. The proof of Theorem 4 is given in the Appendix. It depends on show-
ing B > 0 y’Dy > 0 for all m-vectors y :/: 0, and (2) B 0 there exists y
y’Dy < 0.

Using the fact that Q + ell)-1 VA- V’ + ()H, we obtain D(e) A + ()H,
where A V(A- 1/L*)uu’)V’ and u A-V’d. Thus the rn rn submatrix Dg(e)
is equal to Ag + ()Hg, where A and H# are corresponding submatrices of A and H.
Since H is positive semidefinite, so at least is H#. Let r be the rank of Hg and write Hg
in the form

(H H2)Hg
H2! H22

where H is r r and nonsingular. Then there exists a matrix G of the form G



FINDING THE BEST REGRESSION SUBSET 199

(G, G)’ such that GG’ H, where G is r r, nonsingular lower triangular, and G2
is (rn- r) r. Writing

A, (AI, A12)A21 A22
where A is r r, we can find a matrix T (T’, T )’ partitioned as G, such that

GT’ + TG’=
A21 U

(see the following paragraph), where U G2T + T2G. Letting B A22 U (which
does not depend on ) and applying Theorem 4, it is seen that for sufficiently small
(say, e < e2), B > 0 D(e) > 0 and B 0 D(e) 0.

From the above result, an exact algorithm is developed that can be used when Q is
singular and has the same sequential computational properties as Algorithm 1. Let (gt)
denote the i, jth element ofGT’ + TG’ and let A (air. By letting T be lower triangular,
the elements ofT can be easily obtained by sequential solution of (gt)i ai for (i, j)
(1, 1),(2, 1),(2,2) ,(r,r),(r+ 1, 1) (r+ 1, r),(r+2, 1), (r+ 2, r),

(m, r). For convenience, we call this method Procedure T. Thus we have Algo-
rithm 2.

ALGORITHM 2.
Step 1. Number the m-subsets lexicographically: S {1, 2, m}, $2

{1,2,...,m-1, m+ 1},...,SM {p--m+ 1,...,p}, whereM= (Pm).
Step 2. Find an initial candidate S* for the best subset, say, by stepwise regression.

FindV, A- H andu Seti=
Step3. LetL* L(*, m)and A V[A- (1/L*)uu’]V’.
Step 4. Use Cholesky factorization of H# to obtain r and G; use Procedure T to

obtain T.
Step 5. For j > r, continue to use Cholesky factorization and Procedure T to find

the (j r)th rows of G_, T2, and B. As each row of B is obtained, check for B > 0 by
another Cholesky factorization B WW ’. If the factorization fails, increment i; if
M + 1, go to Step 7, otherwise repeat Step 4. If the factorization succeeds, go to Step 6.

Step 6. D#i is positive definite; hence L(St., m) < L(S*, m). Set S* Si, increment
by 1. If M + 1, go to Step 7; otherwise go back to Step 3.

Step 7. Stop. The best subset is *.
As with Algorithm I, can be incremented by a number c to avoid checking subsets

known to be inferior to S*. Again, let g be the last common component of St. and Si / c.

If g >= r, then G and T remain the same for Si/c, and only the last m (g r) rows
of Gz, T2, and W need to be recomputed. Ifg < r, then the last (r- g) rows of G1 and
TI, as well as all of G2 and T2, must be recomputed.

5. Efficiency. If the singularity in Q is caused by n < p, as opposed to X having a
special structure as in analysis-of-variance models, the rank ofH is p n; hence r, the
rank ofH# is at most p n. At least r + variables must be removed from the regression
before the reduction sum of squares exceeds zero; hence a lower bound of (r) subsets of
size r + or greater must be checked before the one with minimum reduction is found.
In terms of Algorithm 2, this means all (r) G and T matrices must be computed. This
makes the method less efficient as p is increased for fixed n, thus restricting the number
oftransformations in the empirical-modeling application. On the other hand, ifp exceeds
n by only a small amount, the method is almost as efficient as a full-rank reduction
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search. The only way to circumvent this problem is to search for the best k-subset directly,
not its m-dimensional complement by reduction. A possible approach for doing so is
described in 6.

In Algorithm 2, it is necessary to find Hll which is r r and has rank r. Experiments
on randomly generated data sets with more variables than observations have shown that
not all (p n) (p n) PSMs of H have rank p n; some may have rank p
n 1. It is therefore possible to have r p n, but Hl consists of rows and columns
{ 1, 2,..., p n 1, x where x > p n. In this case, some efficiency is lost in keeping
track of the index x. The value of r can be calculated during the Cholesky factorization
of H#. If the (p n)th diagonal element ofG is less than some threshold, assume it is
zero and test subsequent rows of Hg to see if one is linearly independent of the first p
n rows. If no such row is found then take r p n 1.

6. Direct search for the best regression. When p n is large, it has been noted in
5 that any reduction search is inefficient. Let kbe the set ofall real symmetric matrices

A, such that all k k PSMs of A are positive definite or semidefinite. One may use
Theorem 3 to show that no k-variate regression sum of squares exceeds R* if and only
ifK 6 k, where K Q 1/R * )dd’. Thus, any PSM ofK having a negative eigenvalue
corresponds to a subset with a regression sum of squares that exceeds R*. For small
values of k, attempted factorization of all k k PSMs of K might actually be more
efficient than any reduction procedure; however, in most cases better methods need to
be developed for checking if K without examining all possible PSMs.

A sufficient condition for K 6 is that every k k PSM is diagonally dominant
(kDD). This condition is easy to check; merely sum the k largest absolute off-
diagonal elements on each row ofK and compare to the diagonal element. Unfortunately,
K being kDD is not necessary for K 6 ; however, it might be possible to make a series
of transformations K Ti Ki-1 , 1, 2,..., such that T;- preserves membership
in k and for some i, K; is kDD. Two such transformations are T K DKD, where
D is diagonal nonsingular; or T K } K P, where P is positive definite. Another
approach is to search for any vector x with n k zero elements such that
x’Kx < 0. If such a vector is found, then the position of the nonzero elements defines a
regression subset that beats R *.

7. Numerical results. Algorithm 1, with ridge selection (M I), and Algorithm 2
were tested on four groups of randomly generated data, where the ith group consisted
of Ni independent regression sets of (X, y)-pairs with n n, p Pi, and k k, as
shown in Table 1.

For each regression set, the rows of the n (p + matrix (Xly) were generated
independently as Np / (0, ,), where ; was itself generated as a (p + (p + sample
covariance matrix based on p + observations of N(0, Ip +1) vectors. This two-stage
process introduces many near-collinearities in the columns ofX, thus producing excellent

TABIE
Test groups.

10 15 6 24
2 14 18 6 10
3 18 24 12 10
4 24 28 8 10

Group (i) ni Pi ki Ni
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TABLE 2(a)
Simulation results: n 10, p 15, k 6.

Efficiency ratios (F)

Ridge selection

.001 .0001
Exact
method

0.08623 0.10986 0.27451
0.09072 0.15309 0.40192
0.07873 0.09756 0.26024
0.02793 0.07027 0.25124
0.05828 0.11073 0.32055
0.10735 0.11635 0.28401
0.10873 0.15565 0.40116
0.06058 0.10153 0.27425
0.05755 0.09597 0.25443
0.10753 0.13643 0.33272
0.07199 0.12952 0.36188
0.03637 0.06452 0.24260
0.05211 0.09935 0.29982
0.02991 0.08943 0.25866
0.02011 0.04577 0.21638
0.08636 0.11156 0.30204
0.06052 0.10179 0.29149
0.13624 0.16054 0.39524
0.09253 0.11278 0.27141
0.10768 0.11142 0.30007
0.09452 0.12845 0.32134
0.07180 0.09586 0.24483
0.05091 0.10170 0.26620
0.15752 0.17089 0.38740

Step-up

2-values of best subset found

Ridge selection

.001 .0001
Exact
method

0.91224 0.95552 0.95552 0.95552
0.94257 0.97945* 0.98152 0.98152
0.94882 0.99485 0.99485 0.99485
0.98841 0.99876 0.99876 0.99876
0.99550 0.99550* 0.99604 0.99604
0.94004 0.99151* 0.99457 0.99457
0.95395 0.99687* 0.99704 0.99704
0.98226 0.99677 0.99677 0.99677
0.97451 0.99075 0.99075 0.99075
0.97810 0.99061* 0.99523 0.99523
0.97657 0.99742 0.99742 0.99742
0.99250 0.99929 0.99920* 0.99929
0.99332 0.99757 0.99757 0.99757
0.99381 0.99883 0.99883 0.99883
0.98897 0.99956* 0.99965 0.99965
0.95600 0.99513 0.99513 0.99513
0.95561 0.99651 0.99651 0.99651
0.87658 0.98880 0.98880 0.98880
0.98256 0.99232* 0.99287 0.99287
0.98923 0.99331* 0.99649 0.99649
0.95980 0.99629 0.99629 0.99629
0.98200 0.99622 0.99622 0.99622
0.93971 0.98937 0.98937 0.98937
0.97799 0.99743 0.99743 0.99743

Failed to select best subset.
Ridge selection using Algorithm with M I.
Algorithm 2.

TABLE 2(b)
Simulation results: n 14, p 18, k 6.

Efficiency ratios (F)

Ridge selection

001 .0001
Exact
method

0.05746 0.07228 0.20735
0.04602 0.05129 0.14633
0.08098 0.08859 0.26968
0.12106 0.11241 0.34823
0.11620 0.11678 0.36293
0.06767 0.07534 0.21400
0.08026 0.08255 0.25763
0.03713 0.04353 0.12372
0.12280 0.13929 0.43548
0.08019 0.08541 0.26164

Step-up

2-values of best subset found

Ridge selection

001 .0001
Exact
method

0.96333 0.98478 0.98478 0.98478
0.87845 0.91219 0.91219 0.91219
0.84224 0.90962 0.90962 0.90962
0.81274 0.93069 0.93069 0.93069
0.89084 0.96111 0.96111 0.96111
0.91288 0.92999 0.92999 0.92999
0.91985 0.96124 0.96124 0.96124
0.94692 0.95210 0.95210 0.95210
0.91392 0.94192 0.94192 0.94192
0.89249 0.95354 0.95354 0.95354

Ridge selection using Algorithm with M I.
Algorithm 2.
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TABLE 2(c)
Simulation results: n 18, p 24, k 12.

Efficiency ratio (F)

Ridge selection

.001 .0001
Exact
method

0.00078 0.00285 0.01008
0.00115 0.00238 0.00896
0.00034 0.00221 0.00911
0.00149 0.00382 0.00991
0.00047 0.00205 0.00899
0.00088 0.00332 0.01003
0.00263 0.00425 0.01342
0.00067 0.00383 0.01527
0.00203 0.00317 0.01165
0.00100 0.00270 0.01028

Step-up

2-values of best subset found

Ridge selection1

.001 .0001
Exact
method

0.98910 0.99863* 0.99863* 0.99866
0.98912 0.99931* 0.99955 0.99955
0.99392 0.99819* 0.99841* 0.99873
0.99227 0.99898* 0.99979 0.99979
0.99224 0.99759* 0.99901 0.99901
0.99394 0.99787 0.99787 0.99787
0.95633 0.99527 0.99527 0.99527
0.99312 0.99585* 0.99784 0.99784
0.98580 0.99642* 0.99838 0.99838
0.98034 0.99672* 0.99711 0.99711

Failed to select best subset.
Ridge selection using Algorithm with M I.
Algorithm 2.

"nasty" test cases. All data was normalized so that X’X was in correlation form with
y’y 1. Regressions were calculated without intercept terms.

The primary standard of efficiency was taken as the number of elements in the
auxiliary matrices (B for Algorithm 1, G, T, and B for Algorithm 2) calculated in the
process of finding the best subset. In Tables 2 (a)-2(d), this number was expressed as a
ratio F to the number of elements that would have had to be computed to find the best
subset by "brute force" factorization of all () submatrices of K in 6. Algorithm was
tested with e .001 and .0001. Cases for which it failed to find the best subset are marked
with an asterisk (*). Results for Algorithm 2 are listed under the heading Exact. The

TABLE 2(d)
Simulation results’n 24, p 28, k 8.

Efficiency ratios (F)

Ridge selection

.001 .0001
Exact
method

0.00288 0.00356 0.01462
0.02022 0.02327 0.10229
0.02297 0.02516 0.12104
0.01285 0.01427 0.06227
0.00820 0.00937 0.04126
0.01255 0.01450 0.06364
0.07629 0.08135 0.41797
0.01452 0.01590 0.06916
0.01348 0.01522 0.07278
0.02299 0.02616 0.11613

R:-values of best subset found

Ridge selection1
Exact:

Step-up .001 .0001 method

0.94783 0.94783 0.94783 0.94783
0.89189 0.92462 0.92462 0.92462
0.93876 0.93876 0.93876 0.93876
0.84248 0.84248* 0.84274 0.84274
0.90499 0.94406 0.94406 0.94406
0.80411 0.90515 0.90515 0.90515
0.92954 0.95515 0.95515 0.95515
0.95050 0.96230 0.96230 0.96230
0.78169 0.89145 0.89145 0.89145
0.93577 0.94562 0.94562 0.94562

Failed to select best subset.
Ridge selection using Algorithm with M I.
Algorithm 2.
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value of R(S, k) for the subset S found to be "best" is given in the three right-hand
columns. Theoretically, the values ofR(S, k) for Algorithm 2 should be the true maxima.
For the two smaller groups (p 15 and p 18), these values were verified by the brute
force method. For comparison purposes, the value ofthe step-up regression sum ofsquares
is also given.

It can be seen that, in most cases, ridge selection found the best subset, especially
with e .0001. Generally, the efficiency of Algorithm was three to ten times better
than Algorithm 2. Some experimentation with e .00001 resulted in numerous errors
that led to spurious identification of "better" subsets. When ridge selection failed to find
the best subset, it generally came close in terms of the corresponding regression sum of
squares. For the values of n, p, and k shown here, it can be seen that if exact results are
desired, Algorithm 2 is still considerably more efficient than brute force. As discussed
previously, when k < p n, reduction-based methods are less efficient than examination
of all k-subsets.

8. Summary. The computational problem of finding the best-fitting subset of in-
dependent variables in least-squares regression with a fixed subset size has been addressed,
especially in the context of the nonfull-rank case with more variables than observations.
Generally, there is a range of n, p, and k (n < p and k > p n) for which existing
reduction-based methods cannot be used and where Algorithm 2 is able to find the best
subset more efficiently than can exhaustive enumeration. In the development ofAlgorithm
2, it was discovered that ridge selection using a ridge matrix of I as implemented in
Algorithm 1, usually finds the best subset, and that it is more efficient than Algorithm
2. The most likely circumstances of the application of Algorithm 2 are for empirical
modeling situations where measurement or other random model errors are small or
nonexistent. The region of n, p, k-space for which k is relatively small (regardless of
whether n exceeds p), remains the most challenging for developing better selection meth-
ods. Possible approaches were put forth in 6 as starting points for further investigation.

Appendix. Proof of Theorem 4. Let y (y’, y)’ be any rn vector with
]]y 2 l, where y is r and Y2 is (m r) X 1. It will first be shown that B > 0
y’Dy > 0. We make use of the following lemma.

LEMMA. Let % be the minimum eigenvalue ofGG’ and ")I’2 be the maximum ei-
genvalue ofGzG[. Then IlG’y < c [lyzl] 2 >= (’31, C)/("yr -1t- ")2).

Proof. Suppose that IlG’y[I 2 < c. We have G’y G’y- G[y2

IIG’yllt _-< IlG’yll / IIGyzll < c / IIGyzll 2

%11y1112 < c / 211y211 =
=:> "/’r( Ilyzl[ 2) < c / zlly=l[

ily211 = > ("’r C)
1._.1

(’’r "+" "/2)

Now, from the definitions of G, T, and B, we have

(A.I) ey’Dy y’(G + eT)(G + eT)’y + eyByz eZy’TT’y

where/3 is the minimum eigenvalue of B and r is the maximum eigenvalue of TT’.
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Suppose that [IG’y - < "Yr/2. Then by the above lemma, it holds that

Let 0 1/2)"rr/(r "+- "Y2). Clearly 0 > 0, since "r2 >- 0 and r > 0, G1 being nonsingular.
If B > 0, then B > 0; hence by (A.2) and (A.3), we must have y’Dy > 0 for any e > 0
if r 0, and for 0 < e </0/r, if r > 0.

Suppose now that IIG’y 2 >__ "Yr/2. Equation (A.1) may be rewritten

(A.4) ey’Dy y’GG’y + eyBy2 + ey’A*y,

where A* GT’ + TG’. Hence ey’Dy > "Yr/2 ca*, where -a* is the minimum
eigenvalue of A*. It follows that y’Dy > 0 for any e > 0 if a* 0, and for 0 < e <
"Yr/2a*, if a* > 0. This completes the first part of the proof; i.e., B > 0 y’Dy > 0.

Suppose that B 0. Then there exists z2 such that z[Bz2 < 0. Let z
-Gi-G[z2 and z (z’, z[)’. Then G’z 0; hence from (A.4) with y z and from the
definition of A*, ez’Dz ezBz2 < 0 z’Dz < 0 for e > 0. Thus B 0 D 0 for
any e > 0 and the theorem is proved. 3
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NUMERICAL SOLUTION OF THE EIGENPROBLEM FOR BANDED,
SYMMETRIC TOEPLITZ MATRICES*
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Abstract. A fast method for calculating the eigensystem ofa banded, symmetric Toeplitz matrix is presented.
The method is based on the use of rank-one updates and employs deflation to reduce problem size whenever
possible.
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1. Introduction. In this paper, we consider the problem ofcalculating the eigensystem
of an n n banded, symmetric Toeplitz (BST) matrix with bandwidth k. Recall that
the distinguishing characteristic ofa Toeplitz matrix is that its entries along any diagonal
parallel to the main diagonal are constant. Formally we have the following definition.

DEFINITION 1.1. A real, symmetric Toeplitz matrix T has theform
T (tiflT,: (Cli-jl + )7,j

where each c is real. Thus any such matrix T is oftheform

(1.2) T=

CI C2 C3
C2 Cl C2
C3 C2

We can use the notation

(1.3)

ell

c1

Cn

C2 C3

C2 C1 C2
C3 C2 Cl

T Toep,, (c, c2, c,,)

to denote the matrix given in 1.1 and (1.2).
DEFINITION 1.2. A real n n Toeplitz matrix T is said to be a BST matrix if it is

symmetric and has theform
T Toepn (Cl, c2,..., Ck, 0,..., 0)(1.4)

for some index k < n.
T is then referred to as a 2k 1-diagonal BST matrix or as a BST matrix with

bandwidth k. Let Tn,k denote the matrix T defined in (1.4).
Another class ofmatrices whose structure is very similar to that ofToeplitz matrices

is the class of Hankel matrices. Hankel matrices will play a significant role in the method
that we present for solving the symmetric eigenvalue problem for BST matrices. A matrix
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16802 (barlow@cs.psu.edu). The research of this author was supported by the National Science Foundation
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is said to be Hankel if its entries are constant along each cross-diagonal. Formally we
have the following definition.

DEFINITION 1.3. A real n n Hankel matrix has theform
H (hij)in,j=l (di+j_ 1),j= 1,

where each di is real. IfH is also persymmetric (i.e., symmetric about the main cross-
diagonal) then d2- , <= j <= n and H has theform

(1.5) H:

d, d2 d dn
d2 a’

d

As with real, symmetric Toeplitz matrices, the first row of a persymmetric Hankel
matrix completely determines the remaining entries. Thus we use the notation

(1.6) H Hankn (dl, d2,..., dn)

to denote the n n real, persymmetric Hankel matrix and Hn,k to denote the Hankel
matrix

Hn, Hankn (dl, d2 d, 0,..., 0).

A third class of matrices in which we are strongly interested is the class of "cross-
sum" matrices.

DEFINITION 1.4. Cn is said to be a cross-sum matrix if it is an element ofthe set

On { B bij) bij - R and bi ,j + bi + 1,j bi,j- + bi,j + 1, i, j 1, 2,..., n

with bo, bi,o bi,n +l b, + , O.
As with the symmetric Toeplitz and persymmetric Hankel matrices, the entries in

the first row of a cross-sum matrix are enough to completely determine the remaining
entries.

A number of other authors have developed methods for solving the symmetric,
eigenvalue problem for banded Toeplitz matrices. Arbenz [2 investigates a technique
that embeds the Toeplitz matrix into a higher-order circulant matrix, computes the ei-
gensystem of the circulant, and then solves the Toeplitz eigenproblem as a restricted
eigenvalue problem. Trench [12 calculates a formula for the characteristic polynomial
ofan nth-order Toeplitz matrix Twith bandwidth k in terms ofthe zeroes ofa kth degree
polynomial whose coefficients are independent of n. Bini and Pan 6 present algorithms
for computing p()) det (T- M) and the ratio p())/p’()) in the case where T is a
block BST matrix.

2. Numerical solution of the BST eigenproblem.

2.1. Solution of the rank-one updating problem. In this section, we will briefly sum-
marize the solution from Bunch, Nielsen, and Sorensen to the rank-one eigensystem
updating problem. (For complete details, we refer the reader to [7] and [9].) Given an
n n diagonal matrix D diag (61, 62 ,6n), z (z, z2,..., zn) T 6 Rn, and 0, a



BANDED, SYMMETRIC TOEPLITZ EIGENPROBLEM SOLUTION 207

nonzero scalar, we wish to calculate (/}, () such that

(2.1) D + pzzT= OJOr,
where/ diag (l, 2, n) and is orthogonal.

Initially, we make the assumptions that each 6i is distinct and that no zi is zero. It
is then shown that the roots of

n 2

(2.2) f(X)-= + O ]
zj.-.= - X

are exactly the eigenvalues i ofD + pzz r and that the corresponding eigenvectors i are
given by

(2.3) i ’)/’ m 1Z,

where

(2.4) Ai diag (i51 i, in- i)
and

(2.5) ")/i [[A)-1 zll=.
For each root i, the functionf(),) is separated into the sum ofpositive and negative

terms ofthe formf(X) + b(X) + if(),), and the roots off(X) are calculated iteratively
by constructing rational interpolants to 4 and b. The iteration converges quadratically
to the roots i given an appropriate starting point. (Further details are available from
Bunch, Nielsen, and Sorensen [7 ].)

In the implementation of this method by Dongarra and Sorensen, the iteration is
reformulated so that they solve for the difference between successive iterates ri Xi
X/._ rather than Xi itself. The quantities ), used in (2.4) to calculate the eigenvectors
are retained, and the iterative corrections r are applied to these quantities as well as to
the eigenvalue approximations. Cancellation in the calculation of these differences is
avoided because the corrections decrease in size and are eventually applied to the lowest-
order bits. Stringent convergence criteria are applied that ensure a small residual and
orthogonality ofthe eigenvectors to full machine accuracy. The stopping criteria employed
are I/(X)l -< .max (1611, 161) and Irl --< #.min (16i Xl, 16i/1 Xl), where ) is
the current iterate, r is the last calculated iterative correction, and # is a small tolerance
close to the machine unit. In his paper on the numerical stability of updating methods
for the symmetric eigenvalue problem, Barlow [4] discusses the use of the stopping
criterion I/(X)l/If’(x)l--< u’min (16i- X[, 16i+ --)kl).

We made two assumptions about the problem originally: all components of z are
nonzero and the eigenvalues ofD are distinct. If either ofthese conditions does not hold,
we may reduce the problem size. If zi 0 for some i, then the ith eigenvalue of D and
its corresponding eigenvector already form an eigenpair for D + pzz r. Numerically, we
accept the pair and the problem size reduces by one if ozil is small. If Ii i + 11 t?,

then, by applying an appropriately constructed Givens rotation to (2.1), we can reduce
this case to the previous one. Again the problem size can be reduced by one. Cuppen
[8 used this updating procedure to solve the symmetric tridiagonal eigenproblem.

Improvements to the Dongarra and Sorensen implementation are discussed in Barlow
[4] and in Sorensen and Tang [11].

2.2. Existence of the cross-sum representation for any BST matrix. To employ the
updating technique above, first we must show that it is always possible for us to split a
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Toeplitz matrix into the sum of a cross-sum matrix and a Hankel matrix. To show that
the splitting

Toep, dt, d2, dk, 0,..., O)

(2.6) CrossSumn (d d3 dk-2 dk, d_ 1, d, 0,..., 0)

+ Hank, (d3, d4,..., d, 0,..., 0)

is valid for any n and for any 3 =< k -< n, we must show that

C Toep, (dl, d2,..., d, 0,..., 0)
(2.7)

Hankn (d3, d4,..., dk, 0,..., 0)

satisfies the cross-sum property. Assume that dr is defined as follows:

0, k+ <=r<=n,
dr--

d2n+r-4, n --- <= r <- 2n + 1.

By definition ofthe elements ofa symmetric Toeplitz matrix and a persymmetric Hankel
matrix, we have

(2.8) cij dli+jl+l di+j+l, 0 <- i,j <= n + 1.

THEOREM 2.1. The matrix C as defined in (2.8) is an element ofthe set of cross-
sum matrices.

Proof. For C to be a cross-sum matrix, we require that c0 be 0 for or j equal to 0
or n + and that ci- 1, + ci + 1, ci,-1 + ci,+l. It is straightforward to verify that

ci 0 if either or j is 0 or n + 1. Define A0 as

mij Ci- l,j + Ci + 1,j Ci,j- Ci,j+ 1.

Then we have

Ai (dli--ll + di+) + (d.i-+11+1 di+j+2) (dli-j+ll+l di+j)

(dli-j-ll+! di+j+2) 0

for =< i, j =< n. Thus C is a cross-sum matrix. This completes the proof. V1

The class of cross-sum matrices is valuable in the context of our problem because
solution of the eigenproblem for a cross-sum matrix is fast. From Bini and Capovani
[5 ], it is known that the class of cross-sum matrices O,, defined in the previous section,
is equivalent to the algebra generated over R by the matrix

T Toep (0, 1, 0, 0)

0
0

Thus any A in O, can be expressed as

n-1

A Ci+l
i=0
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From Proposition 2.2 in 5, p. 102 ], it is shown that we may solve for the values Cl, c2,

cn by solving an upper triangular system ofthe form Sc a, where a is the first row
ofA in On and the entries of S sij] are given by the equations

Sij Si_ l,j_ .qt_ Si + l,j_ <= <= j <= n,

so=0, O<-_j<i<=n,

So,j 0, <-j<=n,

S0,o-- 1.

From [5], the eigendecomposition of T UrDU is known to be

D diag (Xl, X2,...,

where

and

where

X=2cs( rj)n+l j=l2,, n,

U [uo] i,j= 1,2 ,n,

u= +1 n+l

Thus the eigenvalues ofA in On are

Xi(A) E [Xi(T)] " c+,
j=0

as 1, 2, n. The eigenvectors ofA are exactly those of T, which are the column
vectors of U.

We have shown that we can express a BST matrix as the sum of a cross-sum matrix
(whose eigenvalues and eigenvectors can be easily calculated) and a persymmetric, "offset"
Hankel matrix. Thus we have

(2.9)

where

Tn,k-- Cn,k + On,k- 2,

(2.10)

and

Cn, CrossSumn (el C3, C2 C4,..., Ok-2 Ck, Ok-1, Ok, 0 O)

(2.11 Hn,k- Hankn (3, 4, Ck, O, 0).

If the spectral decomposition of Cn,k is given by

Cn,, UDUr,
then we have

Tn, UDUr + Hn,-2 U(D + UrHn,_2U)Ur.
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The problem of calculating the eigensystem of Tn,k reduces to that of finding the eigen-
system of

(2.12) D -I-- UTHn,k_2U,
where

and

UDU7= CrossSumn (c c3, c2 c4,..., Ck-2 Ck, Ck-1, Ck, 0,..., O)

H.._ Hank. (c3. C4,..., Ck, 0,..., 0).

The key to applying the updating procedure described above to (2.12) is in expressing
the matrix Hn,k_ 2 as a sum of rank-one updates of the form ozz T. Note that H,,_ 2,

which has the form

a3
a4

a4 ak
a5 ..

a5

ak a4

(2.13) On,k_ 2

ak

a4

a3

will be quite sparse for values of k that are small with respect to n. We also note that
Hn,_ 2 is a block diagonal matrix ifwe assume that k =< n/2. A logical way of expressing
Hn, 2 as a sum of matrices of the form Ozz is to calculate the eigensystem for the two
small k k blocks appearing in the upper left and lower fight corners of (2.13 ). We use
the EISPACK routines to solve this problem in O(k3) steps.

We express the complete process formally as Algorithm 2.1.

ALGORITHM 2.1.
Form

v [a a3, a2 a4,..., ak-2 ak, a_ 1, a, 0 ,0] T.
(2) Solve

Sc v

for the vector c R", where S [sij];,j= such that

so Si-l,9-1 + si+,-l, <= <=j <= n,

si=O, O<=j<i<=n,

So,j. 0, l<=j<=n,

S0,0 1.

(3) Form the matrix A of eigenvalues of the matrix CrossSum, (v) as follows:

A diag (,, ,2, n),

where

k 2 cos cj +
j=0 n+l

1,2 ,n.
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The eigenvectors of the cross-sum matrix are then the columns of the matrix U uo]
given by

Uij
n+l

for 1, 2 n andj 1, 2,..., n.
(4) SetM= UTandD=A.

n+l

(5) Calculate the eigensystem of the k k matrix

So we have B expressed as

a3 a4
a4 a5

BI ak

k

B1 Xiqiq’.
i=1

ak

Then the lower right corner of H,,k- 2 given by

and we have

ak

ak a4

ak

a4

k

B2 ., Xi(qi)R(qT)R
i=l

as B2 is related to Bl by a permutation.
(6) Forj to 2k:

(a) Form zj. (qj, 0, 0,..., 0) e R" ifj_-< k or zj (0, 0,..., 0, qiR) e R if
j>k.
(b) Form vj Mz.
(c) Calculate the eigensystem QjDQf of

D+ vjv
by the updating procedure.
(d) Update the eigenvector matrix M, which equals OfM.
(e) Set D D.

(7) The eigensystem of T, is then given by

MTDM T,,,..
We have not as yet discussed the stability ofthe updating procedure used in Algorithm

2.1. Barlow [4 provides a backward error analysis of Cuppen’s method for solving the
symmetric tridiagonal eigenproblem based on using the implementation by Dongarra
and Sorensen with some additional assumptions made about the details of the imple-
mentation. The analysis shows the method to be stable in the classical sense. Barlow
extends these results to general updating strategies for the symmetric eigenvalue problem
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and particularly to the technique presented in this paper. He obtains the following bound:
Let ),, k2, kn be the exact eigenvalues of a BST matrix Tn.k, and let ,, 2
,n be the computed eigenvalues obtained for Tn,,, then we have

(ki_ i)2 [n/2# + 2(n + 1)/2u]. T.,IIF + O(u2 +
i=1

where u is the machine unit and is the tolerance for the iteration. In general, should
be approximately equal to the machine unit. The numerical results in 3 support these
conclusions.

3. Numerical results and conclusions. We compare the performance of Algorithm
2.1 with that of the EISPACK routines BANDR and TQL2 that calculate the complete
set of eigenvalues and eigenvectors ofa real, symmetric, banded matrix. For k small with
respect to n, Algorithm 2.1 compares very favorably to the EISPACK routines. Our tests
were run on a Sun 4 under the UNIX operating system. All code was written in FOR-
TRAN. The updating routine was obtained from D. Sorensen.

First we generated a random set of 50 banded Toeplitz matrices with dimension
between 8 and 100, bandwidth between 3 and 7, and matrix entries in the range (-1000.0,
1000.0). For this set of problems, the average error between the answer obtained by
EISPACK and the answer obtained by the technique presented here was 2.52E-11. The
average time required by BANDR and TQL2 was 7.45 seconds. The average time required
by the update method was 4.90 seconds.

Next, we generated a set of test cases that were very sparse. In most cases, the only
nonzero entries were in the main diagonal and the kth subdiagonal and superdiagonal.
There were 25 problems in this set with dimension between 8 and 100 and bandwidth
between 3 and 7. The matrix entries were in the range (- 100.0, 100.0). For this set, the
average error was 9.20E- 13. The average time for the BANDR and TQL2 routines was
3.50 seconds and the average time used by the update method was 1.97 seconds.

We now consider some small examples showing how performance ofthe algorithms
changes as k becomes small with respect to n. All times in the examples are given in
seconds. Each ratio entry is the ratio of the time required by the updating method to the
time required by the EISPACK routines. The error column contains the two-norm of
the absolute error between the vectors of eigenvalues obtained by the two methods.

Example 3.1. Tn,k Toep,, (10.0, 5.0, 6.0, 0.0,..., 0.0).

Dim k Time for BANDR/TQL2

10 3 0.04
20 3 0.20
30 3 0.65
40 3 1.47

Time for UPDATE

0.03
0.11
0.24
0.49

Ratio

0.75
0.55
0.37
0.33

Error

1.83E-14
6.68E-14
6.81E-14
7.52E-14

Example 3.2. T,,, Toep,, (-1.0, 2.0, -3.0, 4.0, 0.0 0.0).

Dim k Time for BANDR/TQL2

10 4 0.03
14 4 0.10
18 4 0.17
22 4 0.30
26 4 0.47
30 4 0.73

Time for UPDATE

0.06
0.08
0.15
0.24
0.34
0.47

Ratio

2.00
0.80
0.88
0.80
0.72
0.64

Error

2.91E-14
2.49E-14
4.79E-14
8.02E-14
3.48E-14
4.46E- 14
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Example 3.3. Tn,k Toepn (20.0, 1.0, 3.0, 5.0, 7.0, 9.0, 0.0,..., 0.0).

Dim

20
40
60
80
100
120
140
160
180
200

k Time for BANDR/TQL2

0.26
1.66
5.19

11.97
22.15
39.45
62.61
90.88
129.39
179.44

Time for UPDATE

0.35
1.62
4.46
9.40
17.79
31.28
49.45
72.65
101.53
137.81

Ratio

1.35
0.98
0.86
0.79
0.80
0.79
0.79
0.80
0.79
0.77

Error

1.18E-13
1.99E-13
3.22E-13
4.02E-13
6.19E-13
5.54E-13
7.47E-13
7.92E-13
8.00E-13
1.15E-12

Example 3.4. T,k Toep 13.0, 0.0, 0.0, 0.0, -6.0, 0.0,..., 0.0).

Dim

20
40
60
80
100

k Time for BANDR/TQL2

5 0.06
5 0.56
5 1.78
5 3.87
5 7.87

Time for UPDATE

0.08
0.34
0.85
1.73
2.98

Ratio

1.33
0.61
0.48
0.45
0.38

Error

3.04E- 14
5.08E-14
1.09E-13
7.63E-14
1.24E-13

Finally, we give a worst-case complexity analysis of Algorithm 2.1. Assuming that
no deflation in update size occurs, we obtain the following operation counts.

Step Operation Count

n2/2
4n 2

n2+n
5k
2(k- 2)9n 2

The total operation count is approximately 18kn 2. It is clear that k must be rather small
with respect to n for Algorithm 2.1 to compete with the EISPACK routines. If deflation
occurs, it will further reduce the operation count for calculating the update’s eigenvalues.

4. Conclusions and open questions. In this section, we summarize the previous
results and examine areas in which further work can be done. The Bini and Capovani
splitting proved quite useful in developing a numerical method for calculating the ei-
gensystem ofBST matrices. The new method was based on a divide-and-conquer method
developed by Cuppen 8 and further studied by Dongarra and Sorensen 9 ]. The Cuppen
method employs a procedure due to Bunch, Nielsen, and Sorensen [7] that calculates
the eigensystem of a matrix obtained from adding a rank-one update to a diagonal matrix.
The method we derived is quite fast for BST matrices whose bandwidth is small relative
to their dimension. Other methods exist for calculating eigenvalues ofthis type ofupdate.
For example, two different techniques are discussed in Chapter 12 of Golub and Van
Loan 10 ]. These updating methods may yield faster performance or improved accuracy
and should be explored.
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It may also be possible to apply the divide-and-conquer algorithms of Cuppen to
other types of eigenvalue problems. Barlow and Demmel 3 obtained error bounds on
the computed solutions to certain matrix pencil problems that are much better than
those derived from standard algorithms. They have shown that algorithms exist that
achieve the relative accuracy promised by these bounds. One example ofsuch an algorithm
is bisection followed by inverse iteration. It may be possible to implement the divide and
conquer approaches used here in such a way as to satisfy these new error bounds as well.

A number of problems in this area have been suggested by Arbenz and Golub [1 ].
Further research in this direction should prove to be quite interesting.
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the paper.
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A NOTE ON JACOBI BEING MORE ACCURATE THAN QR*

WALTER F. MASCARENHAS’

Abstract. In [SIAM J. Matrix Anal. Appl., 13 (1992) pp. 1204-1245], Demmel and Veseli6 present a
theoretical and experimental analysis to show that the Jacobi method is more accurate than the QR method
when computing the eigenvalues of positive definite matrices. They show that the error caused by the Jacobi
method depends on the size of a factor t), which is related to the singular values of certain matrices associated
with the Jacobi iterates. Their experiments suggest that p O( ). However, in this note a family of matrices
and orderings is presented for which p O(N), where N is the dimension of the matrix.

Key words, eigenvalues, Jacobi method, accuracy

AMS subject classifications. 65F15, 65G05, 65H 15

1. Introduction. In [DV], Demmel and Veseli6 present strong evidence that the
Jacobi method for computing eigenvalues of symmetric matrices is optimally accurate
when applied to a positive definite matrix. Their work starts by showing that if H is
positive definite and P is such that PI --< n lnvl, then

ki(n) ki(n + P)I Nr/
1.1 max -<

,i(H) tr(H)

where hi denotes the ith eigenvalue and a(H) is the smallest singular value ofthe matrix
A D-HD-1 where D is a diagonal matrix and Aii 1. We note that although Demmel
and Veseli6 use the condition number A instead of / a(H) in 1.1 ), a more careful look
at their analysis shows that the sharper bound in 1.1 holds.

The bound in 1.1 is better than what can be expected from the usual perturbation
theory. The usual analysis leads to a bound of the form 1.1 ), but with a(H) replaced
by the smallest singular value of H, which can be much smaller than a(H).

The bound 1.1 is sharp, in the sense that there exists P for which equality is almost
achieved in (1.1). Therefore, the best accuracy we can hope for when using a finite
arithmetic with rounding e is obtained by replacing r/by e in 1.1 ).

To show that the Jacobi method has optimal accuracy, Demmel and Veseli6 obtain
a bound

hi(H) )i(H)l cMNe
(1.2) max <

)i(H) O(H, O)

for the relative error in the eigenvalues ) computed by the Jacobi method using an
ordering O, i.e., the order in which the rotations are performed. In this last equation c
is a constant, M is the number of rotations performed until convergence, and

1.3 0(H, O) min r(H(k)),
k

where H(k) are the iterates produced by the Jacobi method with ordering O to H.
Therefore, the ratio

a(H)
p(H, O)=

O(H, O)
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gives an idea of how the accuracy obtained by the Jacobi method compares to the best
accuracy we can expect to obtain in finite arithmetic. Demmel and Veseli6 conjecture
that p is small. In fact, their numerical experiments suggest that p O( for the ordering
by rows. The purpose of this note is to present matrices and orderings for which p
O(N), where N is the dimension of the matrix. More formally, at the end of the next
section we prove the following result.

THEOREM 1. Given N 2 n and a, 0 < a < 1/2, there exists an N N sym-
metric positive definite matrix H H(N, a) and a family of orderings 0 such that
o I-I, o) >=

We emphasize, however, that a o of order N is not enough to invalidate the claims
in [DV]. If 0 can be at most O(N), then Jacobi is more accurate than QR. Our search
for matrices and orderings with bigger o’s was unsuccessful and leads us to believe that
the growth above is maximal. As it was the case with Gaussian elimination, the use of
clever optimization techniques can lead to bigger values of o. Even if such examples are
found, they are likely to be complicated, and we believe that our example gives a nice
and simple explanation of how o can grow.

Finally, in the appendix we present a very short Matlab program that simulates the
behavior of the Jacobi method for the orderings and matrices from Theorem 1. The
experiments show that the maximum relative error in this case is asymptotically equal
to , where N is the dimension of the matrix and e is machine precision.

2. Description ofH and O. We start this section by presenting the family H(N, a)
and the orderings O. Then we present a lemma and finally a proof of Theorem 1.

The matrices H H(N, a) are rather simple. They have ones on the diagonal and
a in all the other entries. In other words

H0 aifi 4:j.

These H are positive definite and min(H) a if a < 1.
We will say that an ordering O for applying the Jacobi method is acceptable if it

can be obtained by the following recursive procedure:
ifN 2, then pivot 1, 2).
IfN 2 n, n > 1, partition the matrix as

(Hll H12)H=
HIT2 H22

where the Hij are 2 n- 2 blocks, pivot the entries on the main diagonal of H12,
then rotate the remaining entries of Hi2 and the entries in HI in any ordering. Finally,
apply an acceptable ordering to H22.

The iterates of the Jacobi method applied according to an acceptable ordering to
the matrices H(N, a) above can be simply described, provided we assume that in the
ambiguous case of repeated diagonal entries we choose the Jacobi rotation J as did, for
example, Golub and Van Loan, that leads to the example below

(2.1) J
b 0 + b

Let us call/ the matrix obtained after applying the rotations in the blocks
H2 and H ofH. We now have the following lemma.
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LEMMA 1. If the ordering 0 is acceptable and, in the case of repeated diagonal
entries, we rotate as in (2.1), then

OliNt(N, a)
0

o )(2 a)H(-, _-".)

where Ik is the k k identity matrix.

ProofofLemma 1. We analyze here the case N 4. The general case is analogous
and is left to the reader. In this case we have

H H(N, a)
1-a 1-

1-

The first rotation is at 1, 3) and leads to the matrix

a 0 0 0

H(I) /(l-a)2 ot
5( -.)

Then we pivot at (2, 4), getting

a 0 0 0

H(2) a 0 0
2-a 2(l-a)

2-a

The rest of the pivots in the block HI_, 1, 4) and (2, 3), are zero, so we do not rotate.
The only pivot in the block HI l, 1, 2), is also zero and again no rotation is performed.
To complete the proof, note that

Proof of Theorem 1. Take O to be an acceptable ordering. Lemma shows that
applying the Jacobi method to H(N, a) according to O reduces to applying the Jacobi
method to (2 a)H(, 2a_), according to another acceptable ordering O’. Since the
Jacobi method, and the smallest singular value of A D-IHD-1 are scale invariant,
this implies that

(2.2) O(H(N, a), O) <= 0 H
2- a

Therefore, if ak is given by the recurrence relation

(2.3) ao a,

O/k
(2.4) ak+

we have

( ( )0’) <O(o(2’algN-1) Ott)=alogN-1O(H(N, a) 0) 0 H ak
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Fortunately, the recurrence relation (23) has a simple closed form solution:

O/k-- 2k(1 C) + C

Thus,

O(H(N, a), O) 2og N-1( a) + a 2( c) + ce

Since we are assuming 0 < a < 1/2, this implies that

4a
O(H(N, o), O) <- ---.

Therefore, since a(H(N, a)) a,

N
o(H(N, a) O) >

4

and the proof of Theorem is complete.

3. Appendix. In this appendix we present the Matlab code to simulate the operations
realized by the Jacobi method when applied to the matrices Hand orderings O in Theorem
1. Given the special structure of these matrices and orderings, the operations performed
by the Jacobi method can be described exactly by the Matlab program.

i a=.5; d=l; ev=[] d= diagonal, ev= eigenvalues.
2 for i=l:n, N 2An is the dimension, to be given.
3 ev (i) =d-a;
4 d=d+a;
5 a=a,sqrt ( .5),sqrt( .5),4; ora= 2,a,(l+eps)
6 end
7 max(abs((ev-.5) ./.5))/(eps,2A(n-l))

In this program

k-I

a ak (1 a/c) I’[ (2 ci)
i=0

is the nonzero off-diagonal element of the matrices H, computed using the recursion in
Lemma 1, and d is the diagonal entry of H.

The expression in line 5 ofthe program above is used to update a because the exact
expression, a 2 a, would be computed exactly in most computers, and we would not
be able to see the effects of rounding. Line 5 is a good simulation of the rounding errors
that will happen ifwe apply a usual implementation ofthe Jacobi method for computing
the eigenvalues of H.

REFERENCES

[DV] J. DEMMEL AND K. VESELI(2, Jacobi’s method is more accurate than QR, in SIAM J. Matrix Anal.
Appl., 13 (1992), pp. 1204-1245.



SIAM J. MATRIX ANAL. APPL.
Vol. 15, No. 1, pp. 219-227, January 1994

(C) 1994 Society for Industrial and Applied Mathematics
019

LARGE LEAST SQUARES PROBLEMS INVOLVING
KRONECKER PRODUCTS*

DONALD W. FAUSETTf AND CHARLES T. FULTON

Abstract. The general problem considered here is the least squares solution of (A (R) B)x t, where A and
B are full rank, rectangular matrices, and A (R) B is the Kronecker product ofA and B. Equations of this form
arise in areas such as digital image and signal processing, photogrammetry, finite elements, and multidimensional
approximation. An efficient method of solution is based on QR factorizations of the original matrices A and
B. It is demonstrated how these factorizations can be used to obtain the Cholesky factorization of the least
squares coefficient matrix without explicitly forming the normal equations. A similar approach based on singular
value decomposition (SVD) factorizations also is indicated for the rank-deficient case.

Key words Kronecker product, overdetermined least squares, QR factorization, SVD factorization, matrix
algorithms

AMS subject classifications. 15A23, 65F05, 65F20, 65F30

1. Introduction. In this paper we consider primarily the least squares problem of
full rank

(1.1) (A (R) B)x t,

where A and B are real matrices that are rn p, rn > p, and n q, n > q, respectively,
with rank (A) p, rank (B) q, and where the Kronecker product 7 ], 12 ], 14 (also
tensor or direct product) is defined by

A(R)B

alB al2B alpB
az B a2. B a2pB

am 1B amzB ampB

Technically this definition is for a fight Kronecker product; the left Kronecker product
would have the matrix A multiplied by elements ofB in each block 17 ], 18 ]. Here we
make use of the notation k for the usual Euclidean vector space over the real field and
Mk,t for the vector space of k matrices over the real field, with denoting the real
numbers. Thus we have A Mm,p, B Mn,q, A (R) B Mmn,pq, x Pq, and mn.

Least squares problems involving Kronecker products of the type (1.1) arise in
several areas ofapplication including signal and image processing 18 ], photogrammetry
[17], fast transform algorithms [1], multidimensional approximation [15 ], the Lyapunov
approach to stability theory [7 ], circuits and systems [4], and stochastic matrices [2].
In image processing applications, particularly where data collected by satellites or space-
craft are involved, the size of the matrices A and B can be very large, resulting in huge
systems of linear equations of the form 1.1 involving literally hundreds of thousands,
or even millions, of variables. A problem of Heap and Lindler [10], for example, on the
algebraic restoration of astronomical images involves a linear model that gives rise to a
system on the order of250,000 linear equations with 250,000 unknowns. Similar problems
arise rather commonly in photogrammetric applications, cf. Rauhala [17].
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The most common approach to computing the least squares solution of 1.1 is to
form the normal equations

(1.2) (A (R) B)T(A (R) B)x (A (R) B)Tt.

Then the least squares solution of (1.1) (assuming A (R) B has full rank) is the exact
solution of (1.2). Using standard properties of the Kronecker product 2 ], 7 ], 11 ],
12 ], 16 ], 17 ], the exact solution of (1.2) may be obtained in the form

(1.3) x (A + (R) B+)t

or the equivalent matrix form

(1.4) X B+T(A+) T,

where

(1.5) A + (ATA)-lA T

and

B+ =(BTB)-IB T

are the Moore-Penrose pseudoinverses ofA and B, and the matrices T and X are related
to the vectors and x by

(1.6)
X Xq + X(p )q +

x= (x, x, x) )Xq XZq Xpq

and

(1.7)
tl tn+l

r (1(1), t(2),..., t(m))
in 12n

t(m .1)n + )lmn

For the details leading from (1.2) to (1.4) we refer to Rao and Mitra [16 ], Horn and
Johnson 12 ], or Rauhala 17 ].

Since the dimensions ofthe matrices A, B, X, Tare small compared to the dimensions
ofA (R) B, the operation counts for the solution (1.4) are an order of magnitude smaller
than the operation counts required for the explicit formation and solution of (1.2). In
fact, it is this tremendous reduction in the amount of work in using (1.4) vis-a-vis (1.2)
(or (1.3)) that forms the basis for Rauhala’s concept of "array algebra" [17] and its
generalizations.

The main drawback of the solution formula (1.4) is the instability associated with
the explicit formation ofA TA and B TB (which squares the condition number, cf. [6]).
In this paper we propose a new method for solving 1.1 which also completely avoids
the explicit formation of A (R) B, and at the same time ensures a numerically stable
solution. It is based on forming QR decompositions ofA and B, which, upon algebraic
simplification, give rise to a block diagonal system consisting ofp blocks ofupper triangular
square q q systems of equations. This has the particularly nice feature of being intrin-
sically parallel since the q q blocks are mutually independent. Parallel implementations
of the solution method described below are currently in progress.
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2. QR factorization of the Kronecker product. Suppose that the full-rank matrices
A and B have each been QR decomposed with column pivoting [6], so that

(2.1) BPI QIR1 QI
0(1)

and

(2.2)

where

R 2))AP2 QzR2 Q2 0(2)

Q1 Mn,n and Q_ Mm,m are orthogonal matrices,

R c= mn,q and R2 Mm,p

R(1) ( mq,q and R(2) mp,p
0 (1) mn_q,q and 0 (2) G Mm-p,p

are upper triangular matrices,

are square, upper triangular matrices,

are zero matrices,

and

P1 Mq,q and P2 e Mp,p are permutation matrices arising from the column pivoting.

Then
1) 1) /r]) r]2) (2)/r (111) r2 r(lq rip

(2) (2)(l) (1) 0 r r
(2.3) R(1)

0 r22 r2q
and R(2) 22 2p

(1) 0 0 (2)0 0 r q,q rp,p/
where the diagonal elements ofR) and R(2) are nonzero. The permutation matrices P1
and P2 are used to keep the diagonal elements as far away from zero as possible.

For the following development, we need two basic properties of Kronecker prod-
ucts [12 ].

(2.4) Property 1. (A (R) B)T A T (R) B T for any two rectangular matrices.

(2.5) Property 2. (A (R) B)(C (R) D) (AC) (R) (BD),

where the matrices must be of proper dimensions to be conformable for the matrix
multiplications indicated.

Also, the following two lemmas are readily established.
LEMMA 1. The Kronecker product of two permutation matrices is a permutation

matrix.
LEMMA 2. The Kroneckerproduct oftwo orthogonal matrices is an orthogonal matrix.
Our solution technique is based on the following two theorems.
THEOREM 1. IfA and B have the permuted QR factorizations (2.1)-(2.2), then

A (R) B has the permuted QRfactorization
(2.6) (AP2) (R) (BP) [(Q2 (R) Q1)P][P3(R2 (R) R1)],

where P3 Mmn,mn is the permutation matrix defined by the requirement

(R(2)(R)R (1))(2.7) P3(R2 (R) R1) 0(3)
with the zero matrix 0 Mmn pq,pq.
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Proof. By property (2.5) we have

(AP2) (R) (BP,) (Q2R2) (R) (Q,R,)

(Q2 (R) Q)(R2 R).

By Lemma 2, Q2 (R) Q1 is orthogonal. Now,

]21)R
0

R2 (R) R1 (R) ..
0

0

r 22)R1
(2)0r 22

0 r R

In each of the first p block rows, the last n q rows are zero because the last n q rows
ofR, are zero as indicated in (2.1). Therefore, R2 (R) R does not have the required upper
triangular form for a QR decomposition. But this defect has an easy remedy; we introduce
a permutation matrix as in (2.7), which performs the necessary row interchanges to
move the last n q rows of each block row below the first pq rows of the permuted
matrix. Then, inserting I PP3 between the Q2 (R) Q and R2 (R) R factors yields (2.6),
where P3(R2 (R) R1) is an upper triangular matrix and (Q2 (R) Q1)P is an orthogonal
matrix (being the product of two orthogonal matrices).

THEOREM 2. Let

(2.8) R R (2) (R) R ()

be the pq pq upper triangular part ofP3(R2 (R) R) as defined in (2.7). Then

RrR [(AP2) (R) (BP,)]r[(AP2) (R) BP,)];

i.e., R rR is the Choleskyfactorization of[(AP2) (R) (BP)]T[(AP2) (R) (BP)].

Proof. Using properties (2.4)-(2.5), Lemma 2, and Theorem 1, a straightforward
calculation yields

[(AP2) (R) (BP,)]V[(AP2) (R) (BP)] RrR.

3. Application to the least squares problem. We now make use ofthe results ofthe
previous section to transform the rectangular least squares problem 1.1 into a square
block upper triangular system of dimension pq pq whose exact solution is the least
squares solution of (1.1). This is the analog of the QR method for least squares for a
standard overdetermined system (cf. [9, p. 224]).

Inserting I (P2 (R) P )(P2 (R) P r into 1.1 and using property (2.5), we have

(3.1) (A (R) B)(P2 (R) P1)(P2 (R) P1)rx (AP2 (R) BP,)(Pf (R) P()x t.

Multiplying on the left by (AP2 (R) BP ), and making use of the Cholesky factorization
in Theorem 2, we obtain the normal equations associated with (3.1) as

R TRy (AP2 (R) BPI Tt

(3.2) [P3(R2 (R) R,)lr[P3(Q (R) QT[)lt

[R r (0(3))rl[P3(Q2(R) Q)]t,
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where

(3.3) y (P (R) P)x
is a permutation of the vector x. Here the last two lines make use of (2.6)-(2.7). Since
R R(21 (R) R() is pq pq and [0 (3)] T is pq (mn pq), it follows that the last
mn- pq components of the mn vector [P3(Q (R) Q)]t do not contribute to the
fight-hand side vector. We therefore define

(3.3) [P3(Of (R) QT)t]pq - pqto be the vector containing the first pq components of P3(Q (R) QT)t. Then the normal
equations become

(3.4) RTRy RT[p3(Qf (R) QT)]pq,
where R is the square matrix in (2.8). Since A and B were assumed full rank, all diagonal
elements of R() and R (21 are nonzero, so it follows that R is nonsingular. Multiplying
by (R T)-1 in (3.4) thus yields the block upper triangular system

r 12 y(1)
0 r 22 y(21 h(21

(3.5) Ry=
". ".

h,

hip)0 0 r (pp)a. (1)

where

y() yl i)

(3.6t Y (Pf (R) PT)x (y(21
(i)

with y(’ Y. for 1, p;

ky;p, y(qi)

and

h() h (i)

(3.7) h [P3(Q (R) QT)t]pq with h (i) 2
for p

(i)h (p) hq

Since R() (R) R() is upper triangular, 3.5 can be solved by block back substitution
to obtain y. The least squares solution x to the original, unpermuted problem is then
obtained by premultiplication by P2 (R) P:

(P (R) P,)y (P P,)(P P)x (PP) (P,P)x x.

The fight-hand-side vector h can be computed in a block manner as follows. Obsee
that

where the vector e N has been paitioned into m subvectors, each of length n as
indicated in (1.7). Recall that P3 is the permutation matrix such that P3(R R) is
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upper triangular. In the right-hand-side vector h, P3 performs the same interchanges on
(Q (R) Qrl)t. Therefore, the components of h [P3(Qf (R) QT)t]pq are precisely the same
as those of( Qf (R) Q)t, which are located in rows in which R2 (R) R1 has (some) nonzero
elements. Since we know in advance in which rows those nonzero elements will appear,
the permutation matrix P3 need not be formed. For example, we can compute h by
taking the first q components of

()-)Q , qkj for j p.
k=l

The rows ofR2 (R) R1 that are zero, and hence are omitted from R(2) (R) R (1), along
with the corresponding components of (Qf (R) Qrl)t on the fight-hand side, represent
p(n q) + n(m p) equations in the original linear system (A (R) B)x t. In general,
those equations will not be satisfied by the least squares solution x. The omitted com-
ponents of (Qr (R) Q)t (as defined by (3.3)) constitute the "irreducible residual" of the
least squares problem (cf. 5, p. 132 ).

4. Reduction to block diagonal form. The upper block triangular system (3.5) can
be brought into block diagonal form by computation of (R(2)) -1. This can be done in
parallel by back solving the triangular systems R2)vi ei for 1, p on different
processors, where ei is the th column of the p p identity matrix 12. Since more com-
putational effort is required to solve the triangular systems for larger values of i, < <

p, more of the systems corresponding to smaller values of can be assigned to the same
processor than for larger values. A scheme of this sort allows for the computation of
(Rt2)) -1 with a reasonably well-balanced distribution of the computational load among
the processors.

Once the inverse of R2) has been obtained, the transformation to block diagonal
form proceeds in the following manner. Starting from (3.5), we have

(R (2) (R) Rl))y h,

(4.1) ,* (R(2)I2) (R) (IiR())y h,

"=> (R (2) (R) I1)(/2 (R) R(1))Y h,

where I1 is a q q identity matrix.
Now (R (2) (R) I1)- (R(2)) -1 (R) I1, SO we can multiply both sides of (4.1) by

(R (2))- (R) II to obtain

(4.2) (/2 (R) R(1))Y ((R(2)) -1 (R) I1)h ,
which has the block diagonal form

R(1) 0

(4.3) i R()...
where

0 /y’l’ I /h(1,

(4.4) h ((R(2)) -1 (R) I1)h.

The resulting block diagonal system (4.3) is perfectly parallel, so the upper triangular
systems in each block row, R(l) y(J) u), may be solved simultaneously. On a distributed
memory computer the solution procedure for different blocks can be assigned to different
processors and the computations performed independently. If the problem matrices are
large, then each processor may have more than one block computation to perform.
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5. Computational complexities. The QR decompositions of A and B require
2p2(m p/3) flops and 2qe(n q/3) flops, respectively, cf. [6]. The formation of h
requires p[n(2m l) + q(2n 1)] flops. The computation of (Re)) -1 requires p +
p(p2 )/3 flops; and the matrix multiplications to generate require peq flops.

Finally, back substitution for each block requires qe flops; therefore the total flops
for all p blocks is pqe. Thus the total work required to solve the least squares problem is

qp2[2(m-)+q]+q2[2(n -)+p]+p[n(2m- 1)+q(2n- 1)+(pe 1)/3+
l] O(pe[2m + q ]+q2[2n+p-- + 2np(m + q)) flops.

By way ofcomparison, the computational complexity for implementing the normal
equations in the form (1.4), using Gaussian elimination for the inverses, is

p[4mp (m + p)] + q[4nq (n + q)] + 5(p + q3)/3

+ p(p- 1)(2p- 1)/6 + q(q- 1)(2q- 1)/6 + mq(2n- l)+ pq(2m- l)

O(2[pe(2m + p) + q2(2n + q) + mq(n + p)]) flops;

while the computational complexity for implementing the solution formula (1.3) by
explicitly forming A / (R) B + is much greater, namely,

p[4mp- (m + p)] + q[4nq (n + q)] + 5(p + q3)/3

+ p(p- 1)(2p 1)/6 + q(q- 1)(2q 1)/6 + pm[q(2n- l)+ n]

O(2[pe(2m + p) + q2(2n + q) + mnp(q + 1/2)]).

For any p > 0 and q > 0, p3 ft. q3 >_ pq(p + q). Therefore, the only term in the
operations count for the QR approach that could possibly be larger than the corresponding
term for (1.4) is the last one. Comparison of these terms shows that 2np[m + q] >
2mq[ n + 19] can occur only when p > q or n > m (or both). It would be very unusual
for this term to dominate over the effects of the other terms in which the QR approach
has the advantage. Thus the QR approach offers computational efficiency as well as
computational stability.

6. SVD factorization of the Kronecker product. We briefly consider the case in
which one or both ofthe matrices A and B is not full rank. In this case, the QR approach
must be modified if it is to work at all so as to take’account of rank (A) and rank (B)
being smaller than p and q, respectively, and it therefore becomes necessary to compute
the rank using a technique like that of Bischof [3], for example. Here we outline an
alternative procedure using the SVD.

Assume that the matrices A and B already have been decomposed as in (2.1) and
(2.2). It is computationally more efficient to proceed with complete orthogonal decom-
positions of R and Re than it is to return to the original matrices A and B. Now we
suppose that R1 and Re have each been SVD decomposed [6 ], so that

(6.1) R1 U2;1Vr

and

6.2 R2 U2Z2V2
,

where U e M,,n, U2 6 mm,m, VI mq,q, and V2 e M,p are orthogonal matrices, and
,1 Mn,p and 22 E Mn,p are diagonal matrices.

Then [12, p. 246]

(6.3)
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and from (2.6)we have

(6.4) (AP2) (R) (BP) [(QU) (R) (QU)]( (R) )(v (R) v),
which we premultiply on both sides by [(QzU2) ) (Q1UI)] T to obtain

(6.5) (2 Z,)(V V()[(Pf P()x] [(UQ) UQ)]t.

Letk =rank(B) andk2=rank(A);andlet) i= k’and2) i=
k denote the first k and k2 diagonal elements of Z and Z2, respectively. None of

those elements are zero, and all other elements of Z and Z2 are zero. Now we introduce
the permutation matrices P and P4 such that D P(Z2 @ Z )P4 is a diagonal matrix
with its first kk2 diagonal elements nonzero and the vector y defined by

Premultiplying both sides of (6.5) by P gives

(6.6) ny P( UfQ) UQ)t.

Finally, we introduce the vector

h [P(UQ) (U(Q)t],:
containing the first kk2 components of the fight-hand side of (6.6).

Since D is diagonal, (6.6) can be solved for each component independently of the
minimum-norm least squares solution y:

forj=
Y

0 forj > kk2.

The least squares solution to the original problem is obtained from

x (p: p)(v: v,)p,y.

For the usual rank deficient problem Cx b, it is well known that the minimum-
norm least squares solution may be represented by

(6.7) x C+b.

In the case of the onecker product least squares problem 1.1 ), it can be shown [13,
p. 474 that

(6.8) (A B) + A + U+,
whether A and/or B are full rank or rank deficient. As a consequence an alternative
approach, which can serve as a comparison for the algorithm of this paper as well as for
the above-described SVD or QR methods for the rank-deficient case, would be to use
schemes such as that of Greville ([8], [13, pp. 222-224]), a direct method, or Sen and
Prabhu ([19], [13, pp. 247-254]), an iterative method, to compute A + and B+, and
then obtain the minimum-norm least squares solution as

(6.9) x (A + U+)t.

This, of course, could also be written in the compact form of (1.4) to save operation
counts even for rank-deficient problems.

7. Conclusion. We have presented an efficient method for the solution oflarge least
squares problems involving onecker products, based on QR factofization ofthe matrices
that occur in the onecker product. This method combines the desirable stability prop-
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erties of the QR approach to least squares with a computational scheme that requires
minimal computer storage. Since the coefficient matrix can be very large in some appli-
cations, this is an essential consideration.

Acknowledgments. The authors thank Professor James Ortega for suggesting this
approach to the problem and Dr. Charles Romine for many helpful comments.

REFERENCES

H. C. ANDREWS AND J. KANE, Kronecker matrices, computer implementation, and generalized spectra,
J. Assoc. Comput. Mach., 17 (1970), pp. 260-268.

[2] R. BELLMAN, Introduction to Matrix Analysis, 2nd ed., McGraw-Hill, New York, 1970.
3 C. H. BISCHOF, A parallel QRfactorization algorithm with controlled local pivoting, SIAM J. Sci. Statist.

Comput., 12 1991 ), pp. 36-57.
[4] J. W. BREWER, Kronecker products and matrix calculus in system theory, IEEE Trans. Circuits and

Systems, 25 (1978), pp. 772-781.
5 G. H. GOLUB AND J. M. ORTEGA, Scientific Computing and Differential Equations, Academic Press, New

York, 1991.
6 G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, 2nd ed., The Johns Hopkins University Press,

Baltimore, MD, 1989.
[7] A. GRAHAM, Kronecker Products and Matrix Calculus: with Applications, Halsted Press, John Wiley and

Sons, Inc., New York, 1981.
[8] T. N. E. GREVILLE, The pseudo-inverse of a rectangular or singular matrix and its application to the

solution ofsystems oflinear equations, SIAM Rev., (1959), pp. 38-43.
9 W. W. HAGER, Applied Numerical Linear Algebra, Prentice-Hall, Englewood Cliffs, NJ, 1988.

[10] S. R. HEAP AND D. J. LINDLER, Block iterative restoration of astronomical images with the massively
parallel processor, Proc. 1st Aerospace Symp. Massively Parallel Scientific Computation, Sept. 24-
25,o1986, pp. 99-109.

Ill] H. V. HENDERSON AND S. R. SEARLE, The vec-permutation matrix, the vec operator and Kronecker
products: A review, Linear and Multilinear Algebra, 9 1981 ), pp. 271-288.

12 R.A. HORN AND C. R. JOHNSON, Topics in Matrix Analysis, Cambridge University Press, London, 1991.
13 E. V. KRISHNAMURTHY AND S. K. SEN, Numerical Algorithms, Computations in Science and Engineering,

Affiliated East-West Press PVT. LTD., New Delhi, 1986.
14] J. M. ORTEGA, Matrix Theory: A Second Course, Plenum Press, New York, 1987.
15] V. PEREYRA AND G. SCHERER, Efficient computer manipulation of tensor products with applications to

multidimensional approximation, Math. Comp., 27 (1973), pp. 595-605.
16] C. R. RAO AND S. K. MITRA, Generalized Inverse ofMatrices and its Applications, Wiley, New York,

1971.
17] U. A. RAUHALA, Introduction to array algebra, Photogrammetric Engrg. Remote Sensing, 46 (1980), pp.

177-192.
18 P.A. REGALIA AND S. K. MITRA, Kroneckerproducts, unitary matrices andsignalprocessing applications,

SIAM Rev., 31 (1989), pp. 586-613.
19] S. K. SEN AND S. S. PRABHU, Optimal iterative schemes for computing Moore-Penrose matrix inverse,

Internat. J. Systems Sci., 8 (1976), pp. 748-753.



SIAM J. MATRIX ANAL. APPL.
Vol. 15, No. 1, pp. 228-272, January 1994

() 1994 Society or Industrial and Applied Mathematics
020

A SHIFTED BLOCK LANCZOS ALGORITHM FOR SOLVING
SPARSE SYMMETRIC GENERALIZED EIGENPROBLEMS*

ROGER G. GRIMESf, JOHN G. LEWISf, AND HORST D. SIMON$

Abstract. An "industrial strength" algorithm for solving sparse symmetric generalized eigen-
problems is described. The algorithm has its foundations in known techniques in solving sparse
symmetric eigenproblems, notably the spectral transformation of Ericsson and Ruhe and the block
Lanczos algorithm. However, the combination of these two techniques is not trivial; there are many
pitfalls awaiting the unwary implementor. The focus of this paper is on identifying those pitfalls and
avoiding them, leading to a "bomb-proof" algorithm that can live as a black box eigensolver inside a
large applications code. The code that results comprises a robust shift selection strategy and a block
Lanczos algorithm that is a novel combination of new techniques and extensions of old techniques.

Key words. Lanczos algorithm, sparse eigenvalue problems, structural analysis, symmetric
generalized eigenvalue problem, orthogonalization methods

AMS subject classifications. 65F15, 15A18, 65F50, 73K99

1. Introduction. The Lanczos algorithm [22] is widely appreciated in the nu-
merical analysis community [6]-[9], [14], [15], [17], [23], [29], [30], [32], [35], [37] as a
very powerful tool for extracting some of the extreme eigenvalues of a real symmet-
ric matrix H, i.e., to find the largest and/or smallest eigenvalues and vectors of the
symmetric eigenvalue problem

Hx= Ax.

It is often believed that the algorithm can be used directly to find the eigenvalues
at both ends of the spectrum (both largest and smallest in value). In fact, many
applications result in eigenvalue distributions that only allow effectively extracting the
eigenvalues at one end of the spectrum. Typical eigenvalue distributions in structural
engineering vibration problems have small eigenvalues of order unity with separations

IAi+l-Ai also of order unity, apparently well separated. However, for physical reasons
the largest eigenvalues of these problems are very large, say, (D(101). The convergence
rates for the eigenvalues is determined by the relative separation IA/I-.A’I (0(10-1)IA,-ll
for the smallest eigenvalues. We expect and find very slow convergence to the small
eigenvalues, which are the eigenvalues of interest. The dependence of convergence on
relative separation between eigenvalues is often ignored.

It is also often believed that the Lanczos algorithm can be applied to the gener-
alized symmetric problem

Hx AMx

by using the naive reduction to standard form [16], [32]: factor M into its Cholesky
decomposition M LLT and then solve the ordinary eigenproblem L-1HL-Ty

Received by the editors May 23, 1988; accepted for publication (in revised form) March 18,
1992.

Mathematics and Engineering Analysis, Research and Technology Division, Boeing
Computer Services, Mail Stop 7L-22, P.O. Box 24346, Seattle, Washington 98124-0346
(rgrimes@espresso. ft. cs. boeing, com, jglewis@espresso, ft. cs. boeing, com).

Numerical Aerodynamic Simulation (NAS) Systems Division, National Aeronautics and
Space Administration Ames Research Center, Mail Stop TO45-1, Moffett Field, California 94035
(simon(C)nas.nasa.gov). The author is an employee of Computer Sciences Corporation. This work
was funded in part through National Aeronautics and Space Administration contract NAS 2-12961.

228



A SHIFTED BLOCK LANCZOS ALGORITHM 229

Ay. Suppose that we applied this algorithm to the vibration problem of structural
engineering,

(1) Kx AMx,

where K is the stiffness matrix and M is the mass matrix. We would fail abysmally
for three separate reasons:

M is very often semidefinite---it may admit no Cholesky factorization.
Even when M can be factored, the eigenvalues that are desired are often very
badly separated.
The eigenvectors x must be computed by a back transformation x L-Ty.
When it exists, L is usually poorly conditioned, which can lead to considerable
numerical error in the back transformation.

When K is positive definite, the vibration problem can be addressed by applying
the usual reduction to the reciprocal problem:

1 1ML_T(2) Kx Mx Mx Kx , L- y #y,

where L is the Cholesky factor of K and # 1/2. Often this is sufficient as a cure
for the first two problems in (1), because the reciprocals of the eigenvalues are well
separated. Eigenanalysis codes in structural engineering packages [24], [27] have been
built upon this transformation. But this transformation is still inadequate when:

the model has rigid body modes--K is positive semidefinite and has no
Cholesky decomposition.
a considerable number of eigenvalues are desired.
the eigenvalues wanted are not the smallest eigenvalues.

Applications with these characteristics do arise. The stiffness matrix in aerospace
applications often has a six-dimensional nullspace of rigid body modes. Detailed
analyses of structures may require more than just a few eigenvalues and vectors. One
of our test problems is an analysis of a nuclear reactor containment floor, where more
than 200 eigenpairs were needed to adequately model the response of the structure
to a simulated earthquake. Another problem we analyzed was a model of a large
industrial ventilating fan mounted on a large concrete platform, for which we needed
good approximations to the eigenvalues near the fan’s rotational rate, eigenvalues that
are in the interior of the spectrum.

There is a more elaborate transformation of the problem, the spectral transfor-
mation of Ericsson and Ruhe [14], which treats all of these difficulties. The spec-
tral transformation is discussed in detail in 2, where we discuss an extension of
the standard algorithm to buckling as well as to vibration problems. The general
idea behind the spectral transformation comes from considering the shifted problem
(g-aM)x (A-a)Mx. If we invert (K-aM), we transform the eigenvalues nearest
the shift a into the largest and well-separated eigenvalues of the reciprocal problem.
Normally we need only to choose a shift a near the eigenvalues we want. When the
number of eigenvalues is large, the reduced convergence rate of the eigenvalues far-
thest from a makes it worthwhile to choose additional shifts (and factorizations) in
order to search through the spectrum.

Formally we cannot shift at an eigenvalue of the problem, because the shifted
operator is singular. In fact, avoiding even near-singularity is an issue for the choice
of shifts, particularly the very first shift, because shifts very close to eigenvalues are
useful only for computing isolated clusters of eigenvalues.
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In general, a well-chosen shift allows us to compute tens of eigenvalues with a
single Lanczos run. There is a complicated tradeoff between the cost of a Lanczos
run, which increases nonlinearly with increasing numbers of steps, and the cost of
computing a new shift and its concomitant factorization. As an example, we consider
the oceanography model (matrix PLAT1919 in the Harwell/Boeing sparse matrix
collection [11]), with four different paradigms for choosing shifts:

the heuristic described in this paper;
a conservative modification of this heuristic;
an aggressive modification of this heuristic;
a fixed shift--compute all 200 eigenvalues with a single factorization.

All of these analyses begin with a Lanczos run using the factors of A- .0001I to
find the eigenvalues of (A- .0001I) -1. Table 1 contains the salient results for these
choices, demonstrating the complexity of the tradeoffs and, dramatically, the value of
shifting.

TABLE 1
Computing he 200 lowes eigenvalues in [.0001, .24] of PLAT1919.

Choice of shift

normal
conservative
aggressive
fixed shift

Number of
Lanczos runs

8
13
8
1

Total number of
Lanczos steps

192
243
209
318

Execution
cost
208.1
257.4
225.5

5382.2

(These results were obtained on a Sun 4/690 workstation. The code used a blocksize
of three. Execution cost is the sum of central processor (cpu) and input/output (i/o)
processor seconds.)

Shifting can provide reliability as well as efficiency. Each factorization provides
eigenvalue location information in the form of matrix inertias (see 3.1). The collected
inertias from a series of well-chosen shifts can provide an independent guarantee on
the success of the eigenvalue computation and can be used to drive the choice of
further shifts and Lanczos runs to ensure that all of the desired eigenvalues have been
computed. Our heuristic strategy for choosing shifts is discussed in 3.

Our goal is a code that can serve as a ""black-box" eigenextraction routine in
large applications codes. Eigenvalues cannot be assumed to be simple, so our shifting
strategy is prepared to continue looking at a small piece of the spectrum until it has
determined the full multiplicity of the eigenvalues therein. The shifting scheme and the
Lanczos algorithm interact to ensure that we find an orthogonal basis for the invariant
subspace for each cluster (see 4.3.3). Most importantly, we use a block version of the
Lanczos algorithm. The Lanczos algorithm usually will compute the full multiplicities
of each cluster without any intervention from the shifting strategy, provided that we
have been able to choose a blocksize as large as the largest multiplicity of any cluster
we will encounter.

The block Lanczos algorithm also confronts the problem that applications codes
often use general representations for their data, even when particular machine archi-
tectures would allow or favor alternatives. It is still common for general applications
codes to represent their matrices as "out-of-core." The block Lanczos code substi-
tutes, almost on a one-for-one basis, matrix-block multiplies and block solves for
matrix-vector products and simple solves. This decreases the i/o cost essentially by
the blocksize.
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Our production eigenextraction code is a synthesis of the ideas of the spectral
transformation and the block Lanczos algorithm. In 2 we begin to address the effects
of the generalized problem on the recurrence. We explain what modifications to the
Lanczos recurrence result from the use of shifted and inverted operators. With the
exception of the development of a spectral transformation for buckling problems, our
presentation is quite standard and is provided for the reader not already familiar with
these results.

We present our heuristic shifting strategy in 3. There are eight subsections:
a discussion of trust intervals and matrix inertias, our basic tools for robustness;
our heuristic for choosing a shift in a generic case; the idea of sentinels, a tool for
ensuring orthogonality of invariant subspaces; heuristics for choosing an initial shift;
heuristics for determining how to expand the primary trust interval; analysis of a
specified finite interval; treatment of various special and pathological cases; and, last,
the modifications needed for the buckling problem.

The special characteristics of our block Lanczos algorithm are discussed in 4.
This considers the effects due to the spectral transformation. One major problem is
that vectors must be orthonormalized with respect to an inner product defined by
a positive definite matrix M. We discuss the issues associated with implementing
M-orthonormalization of vectors in the basic block Lanczos algorithm, including the
further precautions needed to allow cases where M induces only a seminorm, in 4.1.

The block Lanczos recurrence by itself produces only a block tridiagonal matrix
T. In 4.2 we describe how to compute eigenvalue and vector approximations, and
error bounds on these approximations, from T and the Lanczos vectors. Section
4.3 contains our approach for dealing with the loss of orthogonality in the Lanczos
vectors, with a novel combination of various reorthogonalization schemes that work
effectively with the unusual distributions of eigenvalues that result from the spectral
transformation. Section 4.4 concludes with discussions of when to end and how to
start the recurrence. The integration of all of these techniques is a block Lanczos
recurrence that will effectively find a limited number of eigenvalues and corresponding
eigenvectors of a spectrally transformed operator.

We close with numerical experiments solving a small set of eigenproblems obtained
from applications codes.

2. The spectral transformation block Lanczos algorithm. The eigenvalue
problem in vibration analysis is given as

(3) Kx- AUx,

where K and M are symmetric matrices, and M is positive semidefinite. Usually only
the smallest eigenvalues of (3) are wanted, but they typically have very poor relative
separation, rarely better than (.0(10-6). A priori estimates for the rate of convergence
predict very slow convergence at the desired end of the spectrum. We can obtain
rapid convergence to the desired eigenvalues by using the spectral transformation [14],
[2] o (3).

2.1. The spectral transformation for vibration problems. Consider the
problem

(4) M(K aM)-IMx #Mx,

where a, the shift, is a real parameter. Assume for the moment that M is positive
definite. It is easy to verify that (A, x) is an eigenpair of (3) if and only if (_--, x) is
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an eigenpair of (4). Hence, the transformation of the eigenvalue problem from (3) to
(4) does not change the eigenvectors, and the eigenvalues are related by

The form of the spectral transformation is dictated by our need to be able to apply
the Lanczos algorithm even when M is semidefinite. Other advantages of this form
are well documented in [38].

The main advantage of applying the Lanczos algorithm to (4) instead of to (3)
becomes clear when the effect of the spectral transformation on the spectrum is con-
sidered. The results in Table 2 demonstrate this in detail. These are the values
obtained using the initial shift described in 3.4; the generalized eigenproblem is the
model of a nuclear reactor containment floor, given by the stiffness and mass matrices
BCSSTK26 and BCSSTM26, respectively, from the Harwell-Boeing sparse matrix
collection [11]. (We denote the generalized eigenproblem by BCSST_26.)

Relative separation is affected dramatically by the spectral transformation. The
smallest eigenvalues are transformed into eigenvalues with good relative separation,
even though their absolute separation is decreased. In addition, eigenvalues far from
the shift are transformed to poorly separated values near zero. This spread of the
eigenvalues ensures rapid convergence to the eigenvalues near a. This example clearly
demonstrates that the shift does not have to be very close in an absolute sense to
work well.

TABLE 2
Vibration spectral transformation of BCSST_26, 41 385.3.

1 4.6 103
2 1.1 104
3 1.1 104

1920 3.0 1014
1921 3.1 1014
1922 5.4 1014

2.4 x 10-4

9.4 10-5

9.2 x 10-5

3.3 x 10-15
3.3 10-15

1.8 10-15

Original
gap

6.4 103

2.5 x 102

2.5 x 102

3.6 1011
3.6 x 1011
2.4 1014

relative gap

1.2 10-11

4.6 x 10-13

4.6 x 10-13

6.7 x 10-4

6.7 x 10-4

4.4 10-1

gap
Transformed

relative gap

1.4 10-4

2.2 10-6

2.2 x 10-6

3.9 10-18

3.9 10-18

1.4 10-15

6.0 10-1

9.2 10-3

9.2 10-3

1.7 "10-14
1.7 10-14

6.0 10-12

The primary price for this rapid convergence is the cost of a factorization of
K aM. The transformation M(K aM)-IM is realized implicitly as a sequence
of operations in which we compute MQ for a block of vectors Q or solve the linear
systems (K- aM)X Q. These operations are usually realized by independent
subroutines, which allow tuning the matrix factorization and multiplication routines
to the class of problem under consideration.

We must generalize the Lanczos algorithm itself to solve the transformed gen-
eralized symmetric eigenproblem. We make this generalization in three steps. We
will first consider the ordinary block Lanczos algorithm for a symmetric matrix H.
Next we consider a direct generalization of the Lanczos algorithm for an arbitrary
generalized symmetric eigenproblem Hx AMx, where we assume temporarily that
M is positive definite. In these first two steps the issue of shifting disappears for the
moment. In a third step we consider the much more effective form that results when
H is a spectral transformation operator.
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2.2. Basic block Lanczos algorithm. Consider first the ordinary eigenvalue
problem

Hx Ax,

where H is a real symmetric linear operator. An important characteristic of the Lanc-
zos algorithm is that H is not required explicitly. All that is required is a subroutine
that computes Hy for a given vector y. The block Lanczos iteration with blocksize p
for an n n matrix H is given in Fig. 1.

Initialization:

Set Q0 0
Set B1 0
Choose R1 and orthonormalize the columns of R1 to obtain

Lanczos Loop:

For j 1,2,3... do
Set Uj HQj
Set Aj QUj
Set Rj+I Uj QjAj, the residual
Compute the orthogonal factorization

where Bj+I is upper triangular and Qj+I is orthogonal
End loop

FIG. 1. Basic block Lanczos algorithm.

The matrices Qj, Uj, Rj for j 1, 2,... are n p, whereas Aj and Bj are p p,
with Aj symmetric.

This formulation of the Lanczos loop is the one least susceptible to roundoff errors
[31] and is the form that should be used in computation. In exact arithmetic, however,
Uj and Rj+I can be eliminated from the Lanczos loop and the recurrence becomes

Qj+IBj+I HQ QAj Qj_IBT.
This three-term recurrence simplifies theoretical discussion. It is shown in [6], [17]
that the combined column vectors of the matrices Q1, Q2,..., Qj, the so-called Lanc-
zos vectors, form an orthonormal set. The computational efficiency of the Lanczos
algorithm rests on the fact that these vectors can be computed simply, with a fixed
amount of work per iteration step.

The blocks of Lanczos vectors collectively form an n jp matrix 2, where

The algorithm also defines a jp x jp block tridiagonal matrix Tj:

A1 B2T 0 0
B2 A2 B3T 0

0 Bj_I Aj-1 B"
0 0 B A
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Since the matrices Bj are upper triangular, Tj is a band matrix with half-bandwidth
p - 1 (rather than 2p, if the Bj were full). The first j instances of formula (6) can be
combined into a single formula:

(7) H :iT + Qj+IB+IE.
Here Ej is an n x p matrix whose last p x p block is the p x p identity matrix and
which is zero otherwise.

By premultiplying (7) by Q" and using the orthogonality of the Lanczos vectors,
we see that ’Hj Tj. Hence Tj is the orthogonal projection of H onto the
subspace span(j) spanned by the columns of j. It can be shown by induction that
span() span(Q1, HQ1, H2Q,..., H-Q1). From a different perspective, the
(block) Lanczos algorithm is a method for constructing an orthonormal basis for the
(block) Krylov subspace determined by H and Q1. The orthogonal projection of H
onto the (block) Krylov subspace is Tj. Hence the eigenvalues of Tj are the Rayleigh-
Ritz approximations from span(j) to the eigenvalues of H. In addition, if s is an
eigenvector of Tj, the vector y js is an approximate eigenvector of H. Viewed
in this form, the Lanczos algorithm replaces a large and difficult eigenvalue problem
involving H by a small and easy eigenvalue problem involving the block tridiagonal
matrix Tj.

How good are the approximations obtained by solving the block tridiagonal eigen-
value problem involving the matrix T? An a posteriori bound on the residual is given
by Underwood [17]: Let , s be an eigenpair for Tj, i.e., T:is sO, and let y js,
then

(8) IIHy y9112 IIBj+sjll2,

where sj are the last p components of the eigenvector s. The quantity IIB+isjll2 can
be computed without computing the approximate eigenvector y. Hence, with some
modifications described in 4.2, (8) provides an inexpensive a posteriori error bound.

Formula (8), however, does not guarantee that good approximations to eigenpairs
will appear quickly. Such a priori estimates are provided by the Kaniel-Paige-Saad
theory. Parlett [32] gives the most detailed discussion for the single vector case (p 1).
The generalizations to the block case were originally derived by Underwood [17].
Extensions to both of these presentations can be found in [36].

2.3. The spectral transformation block Lanczos algorithm. The next step
is to consider the generalized symmetric eigenproblem Hx AMx. Were we to reduce
the problem to standard form by factoring M, the three-term recurrence (6) would
become

(9) Qj+iB+ M-I/HM-/2Q QA Qj_B.

If we premultiply (9) by M/2 and make the transformation of variables (j
M-/2Qj, (9) becomes

M(+IB+ M/2M-/2HO,j MO,jAi MO,i-B
(10) HOi M(jAi M(i_B.
The matrices (j are now M-orthogonal, since QjTQj I implies Q^TMQj^ I. This
is also a property of the eigenvectors X of this generalized eigenproblem. The approx-
imate eigenvectors will eventually be computed in the subspace span(), regardless
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For j 1,2,3... do
Set Uj Hj M(j_IB"
Set A QMU^
Set W+ Uj MQA
Solve MRj+ Wj+I
Compute the M-orthogonal factorization Qj+IBj+ Rj+I

End loop

FIG. 2. Inner loop of generalized symmetric block Lanczos algorithm.

of the form used for the Lanczos recurrence. The inner loop of Lanczos recurrence in
this subspace is given in Fig. 2.

The matrix M appears in several instances to assure the M-orthogonality of the
Lanczos vectors. In particular, the last step requires computing the M-orthogonal
factorization of Rj+. Standard derivations of the orthogonality of the Lanczos vec-
tors easily generalize to show that these vectors are M-orthonormal. It appears that
M-1/2 has disappeared from the standard recurrence, only to reappear at the penul-
timate step in disguise as a solution operation. Indeed, (10) applied to the original
problem Kx AMx is merely an implicit form of the explicit reduction to stan-
dard form. This is not the case when H is taken as the operator in the spectral
transformation. Substituting M(K- aM)-M for H gives:

(11) M(j+IBj+I M(K aM)-1MQ MjAj MO,j-IB.
M now appears in all of the terms in the recurrence. Formally we can premultiply
(11) by M- to obtain a recurrence

(12) O,j+B:i+ (K aM)-IM(j O,.A:i (j_B
in which M-1 does not appear. This allows us to apply the same recurrence even
when M is semidefinite. The justification for doing so appears later in 2.4.

At this point we shall no longer put "hats" on the matrices. The actual Lanczos
recurrence for solving (4) is given in Fig. 3.

Assuming the matrix MQj+ is actually stored (at least temporarily), the algo-
rithm as written requires only one multiplication by M per step and no factorization
of M is required. The last step of the Lanczos loop, the M-orthogonalization of a set
of p vectors, is discussed in 4.1.

Our next goal is to generalize the standard eigenvalue approximation results to the
spectral transformation block Lanczos algorithm. As before, combining all j instances
of (12) into one equation yields

(13) (K aM)-Mj jTj / Qj+IBj+E,

where Qj, Tj, and Ej are defined as in (7). Premultiplying (13) by Q’M and using
the M-orthogonality of the Lanczos vectors, it follows that

QM(K aM)-Mj Tj.

Hence, Tj is the M-orthogonal projection of (K- aM)- onto the block Krylov
subspace spanned by the columns of j. The eigenvalues of Tj will approximate the
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Initialization:

Set Q0 0
Set B1 0
Choose R1 and orthonormalize the columns of R1 to obtain Q

with QT (MQ1) Ip

Lanczos Loop:

For j 1, 2, 3... do
Set Uj (g aM)-(MQj) Q_B
Set Aj U(MQ)
Set Rj+ Uj QjAj
Compute Qj+ and (MQj+I) such that

a) Qj+Bj+ R+
b) Q+(MQ+)= Ip

End loop

FIG. 3. Block Lanczos algorithm for the vibration problem.

eigenvalues of (4). If (s, 0) is an eigenpair of Tj, i.e., Tjs sO, then (y Qjs, v
a + ) will be an approximate eigenpair of (3).

The generalization of the a posteriori residual bound (8) is

(14) (K aM)-My yO Qj+Bj+Es.
For 0 0 it follows that

I
(K aM)Q:i+B+IEs.(g- vM)y --The quantity on the right is computable without explicitly computing the eigenvector

y, but only at the cost of a multiplication by K- aM, which is not desirable. In 4.2
we present a better way to obtMn a residual bound. (Note that 0 corresponds to
an infinite eigenvalue of (3), which should not appear in T, discussed below. Very
smM1 O’s correspond to eigenvalues f from the shi. These converge slowly--the
division by in the residuM bounds reflects their relative inaccuracy.)

2.4. Semidefiniteness in the matrix M. Throughout the discussion above,
we sumed that M w a positive definite matrix. The formulation of the block
Lanczos Mgorithm for the vibration problem does not require the factorization of M.
Hence the spectral transformation Lanczos algorithm can be applied formMly when
M is semidefinite without further modifications. However, the eigenproblem (3) h
infinite eigenvalues. Fortunately, we need only to make the obvious block modification
of the analysis in [29] to remove the infinite eigenpMrs from the recurrence. Following
Nour-Omid et M., the starting block for the Lanczos Mgorithm should be computed

in Fig. 4.
The eigenvectors of Kx AMx corresponding to finite eigenvalues consist of a

component orthogonal to the null vectors of M and a component in the nullspace of
M. Ericsson [13] shows that the second, nullspace component is determined by an
algebrMc constraint from the non-nullspace component. The constraint expresses the
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Choose 1
Compute R1 (K aM)-1M[I
M-orthogonalize R1 Q1B0

FIG. 4. Computation of the starting block.

fact that all of these eigenvectors lie in the range of (K- aM)-IM. It is shown in
[13], [29] that all of the Lanczos vectors lie in this subspace when the starting vectors
are chosen in this subspace, as above. With this choice of starting block, infinite
eigenvalues have no influence on the block Lanczos algorithm in exact arithmetic.
In 4.2 we add a final postprocessing step to purge the approximate eigenvectors of
components not satisfying the constraint in finite precision arithmetic.

2.5. A spectral transformation for buckling problems. The final point of
this section is the spectral transformation for the buckling problem

(15) gx- Kx,

where K is the symmetric positive semidefinite stiffness matrix and K is the symmet-
ric differential or geometric stiffness matrix. Typically only a few eigenvalues closest
to zero are wanted. A simple approach would be to interchange the roles of K and
K and to compute the largest eigenvalues of the problem

(16) Kx- #Kx,

with # - by applying the simple Lanczos algorithm without shifts [21]. This
reciprocal approach has the same drawbacks as (2). However, it is often effective
when K is positive definite because the number of eigenvalues sought is rarely large.

Shifting and particularly the semidefinite K case require an alternative form of
the spectral transformation [19]. The shifted and inverted problem

(17) K(K aK)-IKx #Kx

is solved instead of the original problem (15). The Lanczos recurrence is carried out
using K-orthogonality among the Lanczos vectors. Each multiplication by the mass
matrix M in the vibration case is replaced with a multiplication by the stiffness matrix
K in the buckling case; the rest of the recurrence remains the same.

In the buckling spectral transformation (A, x) is an eigenpair of (15) if and only if
(_--, x) is an eigenpair of (17). Hence the buckling spectral transformation does not

These resultschange the eigenvectors, and the eigenvalues are related by # _a
can be obtained directly, or by applying the vibration spectral transformation with
reciprocated shifts to the reciprocal problem (16).

The advantages of the buckling spectral transformation are essentially the same
as those of the vibration spectral transformation. Large eigenvalues of the buckling
problem are transformed to a cluster of eigenvalues near unity. Eigenvalues near the
shift a are transformed into well-separated eigenvalues, which are easily computed by
the Lanczos algorithm. The major difference is that a shift at a 0 is not allowed,
since all eigenvalues would be transformed to one. This singularity in the transforma-
tion also affects shifts close to zero; very small shifts should not be taken in this form
of the transformation. Table 3 gives details for the eigenproblem BCSST_28, treated
as if it were a buckling problem. The initial shift is negative because we ordinarily
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expect the first negative eigenvalue to be the eigenvalue of most interest in buckling
problems (see 3.8). Just as in the case of the vibration spectral transformation, we
see that the shift does not need to be close to the desired eigenvalues in any absolute
sense. Indeed, in this case the shift is on the wrong side of the origin and yet still has
the desired effect on relative separation.

TABLE 3
Buckling spectral transformation of BCSST_26, o’1 ---385.3.

Ai
1 4.6 x 103
2 I.I 104
3 1.1 104

1920 3.0 x 1014
1921 3.1 x 1014
1922 5.4 1014

9.23 10-i
9.66 I0-I

9.67 x 10-1

1.00 I0
1.00 100
1.00 100

Original
gap

6.4 x 103
2.5 x 102
2.5 x 102

3.6 x 1011
3.6 x 1011
2.4 1014

relative gap

1.2 x 10-11

4.6 10-13
4.6 x 10-13

6.7 x 10-4

6.7 x 10-4

4.4 10-1

Transformed
gap

4.3 x 10-2

7.3 x 10-4

7.3 10-4

1.6 10-15
1.6 10-15

5.5 10-13

relative gap

5.6 10-1

9.5 10-3

9.5 10-3

2.0 "10-14
2.0 10-14

7.1 10-12

Except for the different role of the stiffness matrix K, all implementation details
are the same for vibration and buckling analysis. Issues involving the M-orthogonality
of the Lanczos vectors apply equally to the K-orthogonal Lanczos vectors in the
buckling case. Since the stiffness matrix K is used in the initialization phase in
the same way as M in the vibration case, the sequence of Lanczos vectors will be
orthogonal to the space spanned by the eigenvectors corresponding to zero eigenvalues
of K. Hence Tj will contain no approximations to the exactly zero eigenvalues of K,
which are also zero eigenvalues of (15), which is desirable.

The eigenvalues of Tj approximate the eigenvalues of (17). Hence, if (s, ) is an
eigenpair of T, that is, Ts sO, then (_--, s) is an approximate eigenpair of (15).
The approximate eigenvectors form a K-orthonormal set. Bounds on the residuals of
approximate eigenpairs are derived in 4.2.

3. A strategy for choosing shifts. Let us try to find some of the eigenvalues
and eigenvectors of KX MXA or KX KXA. We emphasize the fact that we
want some, not all, of the eigenvalues, because the eigenvector matrix X is almost
always dense. The problem can be written in’its general form as:

find the p eigenvalues of smallest magnitude in [a, b] and their eigenvectors;
or
find the p eigenvalues of largest magnitude in [a, b] and their eigenvectors; or
find the p eigenvalues in [a, b] closest to and their eigenvectors; or
find all eigenvalues and eigenvectors in [a, b].

Here [a, b] is the computational interval, which can be finite (both a and b finite),
semi-infinite (only one of a and b finite), or infinite (no restrictions at all). Note
that the problem of finding the algebraically least eigenvalues in an interval can be
transformed into one of finding the eigenvalues of smallest magnitude by a suitable
shift of origin.

The purpose of the spectral transformation is to transform the original problem
into one whose dominant eigenvalues represent some of the desired eigenvalues. The
dominant eigenvalues of the transformed problem correspond to the eigenvalues of
the original problem nearest a. There are two major goals that drive our strategy
for choosing shifts. One is efficiency--we would like to choose a sequence of shifts
al,a2,... ,as so that the total cost, including the cost of the s factorizations and
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the costs of the individual Lanczos runs, is minimized. Our heuristic approach to
measuring and reducing cost is described in 3.2 nd 4.4. The second goal of our shift
selection is robustness. A paramount objective for our design was a code that would
be able to compute all of the desired eigenpairs accurately, except under extreme,
pathological conditions. Furthermore, we wanted a code that could diagnose and
report any failures. The tools we use to create robustness, trust intervals, and matrix
inertias, are an appropriate place to begin the detailed discussion of our choices of
shifts.

3.1. Trust intervals, matrix factorizations, and inertias. Suppose that
during the course of eigenanalysis, we have computed a set of eigenvalues lying be-
tween two shifts al and a2. We would like to confirm that these are, in fact, all the
eigenvalues in this interval.

Suppose that C is a real symmetric matrix, which has been decomposed as C
LDLT, where D is diagonal. The inertia of C is the triple (r, 9, ) of integers, where
r is the number of positive eigenvalues, the number of negative eigenvalues, and
the number of zero eigenvalues. Sylvester’s Inertia Theorem [32, p. 10] states that the
inertia of FTCF is the same as that of C. Sylvester’s theorem with F L-T implies
that the number of negative entries in D is the number of negative eigenvalues from
C. The number of negative terms in D from the LDLT decomposition of C-aI gives
the number of eigenvalues smaller than a. Frequently (C aI) is called the Sturm
sequence number in engineering references.

It is easy to see that (C a2I) (C -aiI) is the number of eigenvalues in the
interval [a, a2] (assuming a < a2 and the two factorizations are nonsingular). When
the number of eigenvalues expected in the interval agree with the number actually
computed, we say that the interval [a, a2] is a trust interval. We want our shifting
strategy to establish a trust interval around all of the desired eigenvalues.

However, applying these Sturm sequence results to generalized eigenproblems
requires a transformation from the ordinary eigenvalue problem CX XA to the
generalized problem KX MXA. In order to guarantee that the generalized eigen-
value problems have real solutions, we assume that the pencils are definite; a positive
definite linear combination of K and M must exist. In our code we assume that M
or K is positive semidefinite. We compute K-aM LDLT (or K-aK LDLT),
and we want to draw conclusions from (LDLT). The interpretation of (LDLT) is
given in Table 4; proofs are found in Appendix A. The major surprise in this table
of the appearance of the null space dimension dim(jf(.)) when the matrix used as a
norm is only a seminorm. This term corresponds to an assignment of signs to the
infinite eigenvalues in the vibration case and the zero eigenvalues in the buckling case.
We note that in most common vibration cases the term dim(jf(M)) does not appear,
because K is positive semidefinite. When it does appear, it is because the infinite
eigenvalues have negative signs, which adds a serious complication to the problem
of finding the algebraically smallest eigenvalues (the infinite eigenvalues are the alge-
braically smallest, but cannot be computed by the recurrence as written). However,
the problem of finding the eigenvalues of smallest magnitude is only slightly more
difficult in this case.

Semidefiniteness in buckling analysis is more significant, because the usual prob-
lem is to find the eigenvalues of smallest magnitude and the zero eigenvalues can-
not be computed directly. The problem still can be solved if dim(jf(g)) is known,
either adventitiously or by a partial eigenanalysis of K. The problem of finding
the eigenvalues of smallest magnitude in an interval bounded away from zero is still
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TABLE 4
Interpretation of u(g aM) or u(g ag).

Vibration analysis:
M positive definite
M positive semidefinite

# of eigenvalues < a

(# of eigenvalues < a) + -0 some cases- dim(.hf(M)) other cases

Buckling analysis:
K positive definite
K positive semidefinite

# of eigenvalues in (0, a) or (a, 0)
(# of eigenvalues in (0, a) or (a, 0)) +

0 a of one sign
7 dim(Af(g)) a of other sign

well posed.
The result of a successful eigenextraction is a trust interval containing all of the

desired eigenvalues. This goal drives our selection of shifts. We create, as soon as
possible, a trust interval containing some of the desired modes; thereafter, we extend
the trust interval to contain more, and eventually all, of the desired modes. The
process begins with an initial shift at some point al. The factorization is followed
by a Lanczos run with the shifted operator (K- alM)-IM (or its counterpart in
buckling analysis). We will always compute a second factorization, if only to provide
the inertia to close a trust interval. If only some of the desired eigenvalues were
computed during the first Lanczos run, we would like to make the factorization at cr2
serve both as a basis for an inertia computation and as the factorization for a new
Lanczos run. Ideally we would choose cr2 close enough to a that the second Lanczos
run finds all the remaining eigenvalues in the interval; at the same time, we would like
cr2 to be far enough away from a so that the second Lanczos run stops, for efficiency
reasons, exactly when it has computed all the missing eigenvalues. Thus, a simple
description of our shift selection is that we choose each new shift to maximally extend
an existing trust interval.

3.2. Shifting to extend a trust interval. In selecting each new shift, we try
to use as much information as we have, including any computed eigenvalues, other
knowledge about the existing trust interval, and additional information from the pre-
vious Lanczos runs. In general, each Lanczbs run creates a set of approximations
to eigenvalues, which provide a general picture of the spectrum. Figure 5 gives an
illustration of the general situation, in which the last Lanczos run was at a shift ai
that forms the right endpoint of a trust interval. The tall, thin lines denote approx-
imations that we accept as eigenvalues. The lines of medium height and width are
approximations that are not yet acceptable as eigenvalues, though they do have ac-
curacy estimates good enough to know that at least one significant digit is correct.
We call these Ritz values. (All of the Lanczos approximations are Ritz values, but we
abuse the mathematical term to describe only those approximations that are not good
enough to be accepted, and not bad enough to be meaningless.) The short, broad
lines denote approximations whose accuracy estimates are larger than their values,
which we ignore.

The shift selection assumes that the inverted spectrum as viewed from ai+ will
be similar to the inverted spectrum as viewed from ai. One view of this similarity
of inverted spectra is that if the Lanczos run from ai computed k eigenvalues to the
right of ai efficiently, we expect that an efficient run at any ai+ should compute
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k eigenvalues to its left. We use the first k Ritz values to estimate the missing
eigenvalues and place the new shift a+l between the kth and (k/ 1)st Ritz values. The
choice of the bisector is intended to avoid a choice extremely close to an eigenvalue.
Furthermore, we use a relaxed tolerance to detect "clusters" of eigenvalues and bisect
clusters rather than Ritz values.

ai a /

Trust Interval Eigenvalues Ritz Values

I!

FIG. 5. Trust intervals.

If there are fewer than k Ritz values available to the right of ai, we use a second
view of the inverted spectra based on the assumption that the "radius of convergence"
should be about the same for each shift. We define 6 to be the maximum of its
previous value and the distance between the right endpoint of the trust interval and
the rightmost computed eigenvalue (see Fig. 5). Initially, 6 is set to the problem scale
(see 3.4). Then a second choice for the next shift is a+l a / 2.6. We take
the more aggressive choice, the maximum of the two possibilities, in the case where
we still need to compute more eigenvalues than we have knowledge of Ritz values. If
more Ritz values are available than there are eigenvalues left to compute, we choose
the next shift based solely on the Ritz values, ignoring the shift based on 6.

Table 1 shows some results for normal, conservative, aggressive, and fixed shifting.
For this table, we used a 1 k, 1 6 rule for conservative shifting and a 3 k, 3 6
rule for aggressive shifting.

We have described the general rule for choosing ai+l when a+ is taken to the
right of ai. Of course, we obtain two similar views of the spectra to the left of ai,

which give another alternative for the next shift.. In general we do not know in which
direction the next shift should be taken. Indeed, when finding eigenvalues nearest
to an interior point we first move in one direction from ai and then in the other
direction. At the completion of each Lanczos run in which we attempted to extend a
trust interval, we compute, and save, the next shift that would extend the new trust
interval further in the same direction. The first shift, unless it is at a finite endpoint
of the computational interval, is treated as extending the null trust interval both to
the left and to the right. The Ritz values are then discarded.

These two views of the inverted spectra, albeit simplistic, have proven to be effec-
tive. A model based on convergence rates of the eigenvalues [36] is far too pessimistic
to be of any use here.

3.3. Sentinels. There are several aspects of our eigenanalysis code where the
shift selection mechanism and the implementation of the Lanczos algorithm are closely
tied together. For example, we do not want to recompute at later shifts eigenpairs
that have been computed from earlier shifts. Any computation spent recomputing
known eigenpairs is wasted. Even allowing accidental recomputation creates a difficult
situation in which we must determine the correct multiplicity of a computed eigenvalue
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for which several eigenvectors have been computed. We choose never to allow this
situation to arise.

In theory there is a very simple fix. If the starting block for the Lanczos re-
currence is chosen to be M-orthogonal to all previously computed eigenvectors, the
recurrence should remain M-orthogonal to all previously computed eigenvectors. This
is not sufficient in practice, as rounding errors introduce components of the excluded
eigenvectors. We reorthogonalize the recurrence to specific eigenvectors only when
necessary using external selective orthogonalization (see 4.3.3). This mechanism dra-
matically reduces the cost of preventing the reappearance of excluded eigenvectors.

A second mechanism for reducing this cost is in the purview of the shifting code.
A common situation is depicted in Fig. 6. The new shift, ai+l, has been chosen; the
nearest previous shift, aj, forms the end of a trust interval. (Figure 6 depicts the
initial case where the trust interval including aj is trivial.) Between the two shifts
lie a set of eigenvalues and Ritz values computed during the run at aj. Because the
convergence rate for the eigenvalues in the Lanczos algorithm decreases as the distance
from the shift increases, the usual pattern is that the accepted eigenvalues are those
closest to a and the Ritz values are those farther out with little or no interlacing of
the two sets.

T
8r ffi-t-1

Ritz Values Accepted Eigenvalues "
Ritz Values

I!

FIG. 6. Sentinels.

Consider in each direction the eigenvalue farthest from aj such that between it
and aj no (unaccepted) Ritz values are found. There is such an eigenvalue to the
right of a shift and similarly to the left, each being the last eigenvalue before a Ritz
value is found. We call these two eigenvalues A and A. In normal circumstances we
assume that there are no eigenvalues missing between aj and ) or A.

We define the right sentinel sr as the left endpoint of the interval of uncertainty for
), based on the required accuracy tolerance. Thus the true value ofA lies to the right
of the sentinel st. A left sentinel is defined similarly. Assume that ai+l > aj. The
eigenvectors corresponding to A and to any other eigenvalues found between sr and
ai+l are prevented from reappearing by use of external selective orthogonalization.
We allow the recurrence to recompute eigenvalues which lie to the left of s, but these
are discarded immediately. This technique allows us to trust any eigenpairs that are
computed in the region in which we expect new eigenpairs to appear, without incurring
the cost of extensive reorthogonalization. The reorthogonalization with respect to
A’s eigenvector removes any doubt that could exist about the exact location of this
eigenvalue in the shifted and inverted spectrum for the new shift. At the same time,
the eigenvector(s) most likely to reappear are suppressed.

We generalize the notion of sentinels slightly to handle clusters of eigenvalues.
Should the sentinel sr lie to the left of A_1, we move the sentinel back to the endpoint



A SHIFTED BLOCK LANCZOS ALGORITHM 243

of the uncertainty interval for A-t. We continue this process until the sentinel lies
between the intervals of uncertainty for two eigenvalues, or until the shift itself is used
as the sentinel.

3.4. The initial shift. The most difficult task is usually the first: getting
started. The selection of the first shift must be made with no information about
the spectrum other than the specification of the desired eigenvalues. We use any
location information in the specification to make an initial choice for the first
shift,

if lal _< Ibl ]
if I’ 1 > Ibl
if I’ 1 >-Ibl ]
if I’ 1 < Ibl

0

if lowest modes or all modes wanted and
min la], Ibl <
if highest modes wanted (a and b must
both be finite),
if modes nearest wanted,
otherwise.

This choice of al gives a reference point in the spectrum as to which eigenvalues are
important to the user. In cases where is not specified by the user, we define to
be at as defined above. We note that 0 is a natural choice when we have no location
information--in that common case we want the eigenvalues of least magnitude, i.e.,
closest to 0.

Unfortunately, a choice of at 0 is fraught with difficulties. A shift at zero is
not allowed in the buckling transformation and yields a singular operator in vibration
analysis when K is semidefinite. If a shift at zero were taken in the latter case, it
is unlikely that the singularity of the operator would be detected. It is more likely
that only the zero eigenvalues would be computed and no other useful information
could be extracted from the run. (The near-singularity of the operator would cause
the Lanczos recurrence to break down after computing the invariant subspace of the
zero eigenvalues.) This would leave us little better off than we were when we began,
with no information as to where the nonzero eigenvalues are located. A better initial
shift would be a shift somewhere in the vicinity of the first few nonzero eigenvalues.
Such a shift would allow computing both the zero, rigid body modes and a number
of the nonzero modes as well.

The difficulty is in getting some idea of the scale of the first nonzero eigenval-
ues. We have adopted a heuristic strategy recommended by Louis Komzsik of The
MacNeal-Schwendler Corporation. This heuristic computes the geometric mean of
the centers of the Gershgorin circles while excluding the centers smaller than 10-4.
This heuristic usually computes a reasonable problem scale X. Specifically,

Ik.I

where the summation is taken over all terms with kii 0, < 10a; is the number
of entries included in the sum. Table 5 gives an idea of the reliability of this heuristic.

We use X to correct the initial selection of at whenever latl < X. In either the
vibration problem or ordinary eigenvalue problem we adjust at as

X ifa_<x_<b,
al -X otherwise, if a <_ -X _< b,

max (lal, Ibl) otherwise.
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We adjust the initial shift in a similar fashion for the buckling problem. However,
we try al -X first and then al X second, because the most common buckling
analysis in structural analysis is computation of the smallest negative eigenvalue.

TABLE 5
Comparison of problem scale X and lowest eigenvalues.

Matrix

BCSST_08
BCSST_09
BCSST_I0
BCSST_II
BCSST_I2
BCSST_I3
BCSST_I9
BCSST_20
LUND
PLAT1919

1.8 x 10-2

1.3 x 107
3.1 x 10-3

3.0 x 102
1.5 x 103
1.2 x 102
6.6 x 100
5.5 102
2.1 101
2.1 10-6

Lowest
eigenvalue

6.9 x 100
2.9 x 107
7.9 x 10-2

1.1 x I01
3.5 x 103
1.5 x 103
2.1 x I0
6.6 x 100
2.1 x 102
1.1 x 10-13

Closest to
eigenvalue

1
1
1

12
1
1
3
7
1

315

3.5. Choosing a direction in which to expand a trust interval. The ma-
jority of vibration analyses result in a simple, monotonic expansion of the trust inter-
val from lowest to higher values. In these cases we know that there are no additional
eigenvalues of interest to the left of the trust interval; extending the interval to the
right is the only reasonable action. Cases in which we need to choose a direction
arise when a shift is taken in the interior of the spectrum by accident or by design.
For example, is a very reasonable initial shift when we want to find eigenvalues
nearest . In general, finding the eigenvalues of smallest magnitude for an ordinary
eigenproblem or for buckling analysis is also such a case.

We use the reference value , either as set in the problem description or from
the initial shift (see 3.4), to determine the direction in which to move the shift. If
multiple trust intervals exist, the trust interval including or closest to is primary;
3.7.1 describes how multiple trust intervals can exist and the logic for determining a
new shift in that case. In the most typical case we have only a single trust interval,
which we attempt to extend.

We distinguish two subcases, when the tru’st interval includes an endpoint of the
computational interval and when it does not. In the first case the trust interval can
only be extended in one direction without moving outside the computational interval,
so the choice of direction is trivial. When the trust interval includes neither endpoint,
we further distinguish between cases where is or is not in the trust interval. If the
trust interval does not include , we shift in the direction of , because that is where
the eigenvalues of most importance to the user lie.

The only remaining case is of a single trust interval that contains , but neither
endpoint of the computational interval. In this case we compute the interval [z,
that includes the entire trust interval and all computed eigenvalues, even those outside
of the trust interval. We define r min( z, zr ) to be the radius of a symmetric
umbrella about where we have some degree of confidence that we have computed all
the eigenvalues in the umbrella. Note that this confidence may not be confirmed by
inertia values. We try to enlarge this umbrella enough to include all of the eigenvalues
that the user has requested or until one end of the umbrella is an endpoint of the
computational interval. We move in whichever direction increases r. Ties are broken
by shifting to the left.
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3.6. Analysis in a finite interval. Frequently the user of the sparse eigensolver
will specify a computational interval with finite endpoints. The number of eigenval-
ues in the interval is usually valuable information to the user and the eigenanalysis
code, even when not all of these eigenvalues are actually computed. We obtain this
information at the beginning of the analysis by computing the factorization for each
endpoint. If these factorizations can be used in the eigenanalysis itself, the cost of
gaining this information would be nominal. (Note that both factorizations will be
required in any case when all eigenvalues in the interval are requested.) We save both
factorizations off-line and use them whenever it appears to be appropriate.

As discussed in the previous section, we often choose the initial shift to be one of
the endpoints. If so, one of the factorizations will be used immediately. We modify the
shift strategy slightly in order to take advantage of the second factorization. When
the natural choice of a shift would be near an otherwise unselected finite endpoint,
and when a shift at the finite endpoint would not cause a large number of extra
eigenvalues to be computed, we choose the endpoint as the shift. This may result
in some additional work during the Lanczos iteration, but it will save the cost of a
factorization. There are cases where we can extend a trust interval to a finite endpoint
without making a Lanczos run at the endpoint. These occur when the analysis at
another shift results in computation of all of the eigenvalues between the shift and
the endpoint.

3.7. Special cases. Robustness is one of our goals. It is naive to expect that
the heuristics described above will work for all problems. Here we describe a number
of special cases that can and do arise in practice and our approaches for handling
them smoothly.

3.7.1. Filling gaps. The shift selection is designed to extend the trust interval
obtained from previous Lanczos runs. Strange, asymmetric distributions of eigenval-
ues or very high multiplicities may create situations in which the shift ai+l to extend
the trust interval is taken too far from ai to allow computation of all the eigenvalues
in (a, a+l) with a single run. The inertias from a and a+l will indicate that some
eigenvalues between the two shifts have not been computed.

Our goal is to maintain a trust interval, so we find the missing eigenvalues before
we attempt to extend our knowledge beyond ai+l. We attempt to fill the gap between
the two active shifts ai and ai+l, before proceeding. We assume that the missing
eigenvalues lie between the right sentinel si for the shift ai at the left and the left
sentinel Si+l for the shift ai+l at the right, that is, in [si, si+l]. If the sentinel values
overlap we use [ai, ai+l] instead. In either case we have an interval [c, d] in which we
want to chose a shift. We choose ai+2 as

x/ if 0 < 2c < d,
ai+2= -x/ ifc<2d<0,

+d otherwise.2

The gap between two trust intervals is not always filled on the first attempt. The
shifting strategy will continue recursively, computing missing eigenvalues, until the
primary trust interval has grown large enough to contain the requested eigenvalues or
when all trust intervals have been merged into one.

3.7.2. Restart at the same shift. Economizing on the number of factoriza-
tions is also a goal. In two cases a single Lanczos run will not find all the desired
eigenvalues near a given shift. These occur when eigenvalues with multiplicity greater
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than the blocksize exist or when a shift has been taken very close to a eigenvalue. If we
suspect either case we make an additional Lanczos run at the same shift. During this
run we perform external selective reorthogonalization against all newly computed
eigenvectors and any other eigenvectors in the interval between this shift and any
neighboring shifts. We discard any use of sentinels because the assumption behind
them has probably broken down.

3.7.3. Hole in the spectrum. A particularly difficult spectrum for our selec-
tion of shifts is one with a very large disparity in the magnitudes of the desired
eigenvalues. In such cases our notion of a reasonable distance may be faulty and yet
we may have no Ritz value information to help us choose a new shift.

Our code treats as special a situation in which no new information is obtained at
consecutive shifts. That is, we compute no meaningful Ritz values and the inertias
at the two shifts ai and ai+l are identical. We suspect that there is a "hole" in
the spectrum, that the remaining eigenvalues are farther away than our notion of a
reasonable distance. We expand the notion of a reasonable distance in an attempt to
cross the hole. If the computational interval [a, b] has a finite endpoint that has not
been used previously as a shift (see 3.6), the shift strategy will select the new shift
at that endpoint. Otherwise, assuming that we are expanding a trust interval to the
right, we take the new shift a+2 ai+l + 105 (see 3.2 for a description of ). If
this Lanczos run still provides no new information, we take (ri+3 ai+2 4-1005. If we
still obtain no new information, we make a final attempt to cross the gap with a shift
(Yi+4 ri+3 4- 10005. If this run still provides no new information, we terminate on
the assumption that the remaining eigenvalues are infinite. We return the eigenvalues
already computed, together with an appropriate warning.

3.7.4. Treatment of in no-Ritz value cases. The setting of the "reasonable
distance" value, i, must be made carefully in cases in which the Lanczos algorithm
terminates abnormally. This value is not updated if no new information is available
for the next shift.

3.7.5. Overly aggressive shifts. Unusual distributions of eigenvalues or un-
usual convergence patterns may cause situations in which a shift is selected much
farther out than required for the desired eigenvalues. We determine that the shift is
too far from the current trust interval if a run at this shift will have to compute more
than 30 eigenvalues before computing eigenvalues of interest to us. (The number 30 is
a heuristic estimate of the number of eigenvalues we can profitably find with a single
run.) In such a case we record the current shift, to keep another shift from going out
too far in that direction, and select a new shift. We choose the new shift by linear
interpolation between the end of the trust interval, at, and the shift we reject, at.
The new shift is:

o" trt 4-
q

[(K arM) t(K arM)] (at at).

3.8. Modifications for buckling problems. The spectral transformation used
in the buckling problem for the Lanczos iteration is ill posed for shifts at or near zero.
The shift strategy for the buckling problem is similar to the vibration strategy except
that shifts at zero are not allowed. A shift at zero is replaced by one half the minimum
of the problem scale X, the absolute value of the shift nearest to zero, and the absolute
value of the computed eigenvalue nearest to zero.
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4. Implementation of the block Lanczos algorithm. The underpinning of
our eigenanalysis code is the block Lanczos algorithm, as specialized for the spectral
transformations (2.3 and 2.5). The use of the block Lanczos algorithm in the con-
text of the spectral transformation and within applications code necessitates careful
attention to a series of details: the implications of M-orthogonality of blocks; block
generalizations of single vector orthogonalization schemes; effect of the spectral trans-
formation on orthogonality loss; and interactions between the Lanczos algorithm and
the shifting strategy. The success of the algorithm hinges on all of these issues.

4.1. The M-orthogonal QR factorization. Each step of the block Lanczos
recurrence generates an n p matrix R, whose column vectors are to be orthogonalized
with respect to an inner product defined by a positive definite matrix, which we will
call M.

Given R, we must compute its orthogonal decomposition QB such that
R QB,
QTMQ-- I,
Qisnp,
B is p p and upper triangular.

When M is not the identity, the number of good choices for computing an orthogonal
factorization appear to be limited. In addition, we want to avoid repeated matrix-
vector multiplications with M, because we expect M, though sparse, not to be stored
in main memory; each multiplication by M may require accessing secondary storage.
We have developed a generalization of the modified Gram-Schmidt process that re-
quires only matrix-block products, never matrix-vector products. We save a set of p
auxiliary vectors that represent the product MQ throughout the process. This matrix
is initialized to MR when the matrix that will hold Q is initialized to R; thereafter,
updates made to vectors in Q are shadowed by identical updates in MQ. As a result,
M is used explicitly only in the initialization.

This way of enforcing M-orthogonality certainly suggests questions of numerical
stability. Following [10], we repeat the orthogonalization process up to 2p times,
another repetition being required whenever the norm of any of the qj vectors is less
than v/times its norm at the beginning of the iteration. When another repetition
is required we recompute the matrix MQ by an explicit multiplication by M. The
choice of //2 from [10] guarantees that the’final set of vectors is orthonormal.

In our algorithm for computing the M-orthogonal factorization (Fig. 7), the vec-
tors wj are the auxiliary vectors that represent the vectors Mq:i. The matrix/} is
the triangular matrix computed in one iteration of the algorithm; the M-orth^ogonal
triangular factor B is the product of all of the individual triangular matrices B.

It should be noted that this algorithm may encounter a rank deficient set of
vectors qj and identically zero vectors are possible. Further details can be found in
our discussion on when to terminate a Lanczos run (4.4).

We have assumed in the discussion above that M is positive definite. In the
case of M positive semidefinite, the recurrence, when properly started, generates a
sequence of blocks, all of whose columns lie in the range of (K- aM)-IM. This is
the subspace from which the eigenvectors corresponding to finite eigenvalues must be
drawn [13]. Clearly, the orthogonalization algorithm preserves this subspace. Fur-
ther, this subspace has only the trivial intersection with the nullspace of M [13],
[29]. Thus, the appearance of a nontrivial column with zero M-norm represents a
breakdown equivalent to rank deficiency, since such a vector cannot lie in the range
of (K o’M)-1M.
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Initialization:

Q=R
B=I

Factorization:

Repeat
W MQ

For i 1, 2,...p do

ii v/qwi
q q/i

For j i / 1,...p do
ij T

qi wj

qj qj bijqi
w w bijwi

End
End

B=[B

Until convergence or iteration limit exceeded

FIG. 7. M-orthogonal modified Gram-Schmidt orthogonalization.

4.2. Analysis of the block tridiagonal matrix Tj. The original eigenvalue
problem is reduced by the block Lanczos algorithm to an eigenvalue problem of the
form Tjs sO, where Tj is a block tridiagonal matrix. In 2.2 we noted the standard
result by which bounds on the accuracy of the computed eigenvalues can be com-
puted without explicit computation of the ei.genvectors. These bounds are used to
determine whether to terminate the Lanczos recurrence and to evaluate which eigen-
pairs are accurate enough to be considered to have converged. The results in 2.2
generalize to provide a bound on the accuracy of the approximate eigenvalues of the
spectrally transformed problem. However, our real interest is in the accuracy of our
approximations to the original, untransformed problem. We need to determine which
eigenpairs of the original problem have converged, and we need accuracy estimates
for all of the Ritz values for use in the shift selection process. To get these estimates
we need to unravel the effects of the spectral transformation. Throughout we must
account for possibly multiple eigenvalues.

Recall that the following relation (14) holds for vibration analysis:

(K aM)-lMy yO Qj+IBj+IES.
Therefore, because Qj+I is M-orthogonal,

lIM(K aM)-IM MyOIIM_ IIMQj+IBj+IE . SIIM- 
IIBj+IEJ’8112 =_ t j.
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For each eigenvector s the corresponding j is the Euclidean norm of the product
of the upper triangular matrix Bj+I with the last p components of s. We apply a
theorem on the error in eigenvalue approximations for the generalized eigenproblem
from [32, p. 318] to obtain:

(18) < IIM(K aM)-IMy --.oIIMYlIM- 
Thus, as in the ordinary eigenproblem,/j is a bound on how well the eigenvalue of Tj
approximates an eigenvalue of the operator to which the Lanczos algorithm is applied.
We extend this to find a bound on the error I- uI.

Ericsson and Ruhe [14] show that

This shows how the accuracy requirements are modified by the spectral transforma-
tion. When A is close to the shift a we need only a moderately small/j to guarantee
a good approximate eigenvalue u because 0 is large. Conversely, eigenvalues far from
the shift are transformed to small values of 0, requiring smaller values of/3j than
would otherwise be expected.

The bound (19) can be improved for well-separated eigenvalues. Define the gap

7 min
1 1

The gap bound theorem from [32, p. 222] then results in

(20)

Both bounds (19) and (20) are valid. In general, the first is smaller than the second for
clustered eigenvalues and larger for well-separated eigenvalues. In our implementation
we use whichever bound is smaller:

(21) ,027

The definition of -y should be modified to account for clusters of eigenvalues; the gap
between sets of multiple eigenvalues is used. In practice we have only an approxima-
tion to -y, which we derive from the shifted and inverted eigenvalues of Tj.

Similar error bounds can be derived for buckling analysis. Let (v, y) be a com-
puted eigenpair of (g, K). Then 0 and _--g -01 _< . From the fact that
v 0_-, it follows that

aO
0-I

( 1 )
1_
o o(o_1)( )(o
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The Lanczos algorithm approximates 8 by a projection onto a subspace. When the
inversion of the operator is taken into account, the computed eigenvalues of the trans-
formed problem are always closer to one than the true eigenvalues of the transformed
problem. Therefore,

The resulting simple error bound for buckling analyses is

The analogous refined gap error bound is

I,,X- ,,’1-< (e- 1)2 75,

where 75 is defined by

75 _= min
Ai -a

As in the vibration case, the lesser of the two bounds

(22) < min
(8- 1)2/j’ (8- i) %

is chosen, with the definition of 75 modified in the presence of multiple eigenvalues.
The spectral transformation preserves the eigenvectors, so there is no need to

account for the transformation vis vis the approximate eigenvectors. However, Er-
icsson and Ruhe [14] introduced a correction term that results in improved eigenvector
approximations for the untransformed problem. This was later discovered to have the
additional benefit [29] of ensuring that the computed eigenvectors lie in the proper
subspace in cases where the metric matrix is semidefinite.

Let v a q- be the computed eigenvelue. The correction step is formally one
step of inverse iteration with the computed eigenvector y; 5 is computed to satisfy
(g aM) My. By (14)

5 (K aM)-:My y8 +
The vector

1 1
z -. y + -Q+:B+:E’s

can be obtained cheaply by adding a linear combination of the vectors in the next block
of Lanczos vectors to y. This gives a better approximation to the eigenvector of the
vibration problem and ensures that the approximate eigenvectors are uncontaminated
by the effects of a semidefinite M. The corresponding correction for a semidefinite K
in buckling analysis is given by

1
z y + 8 1
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During the course of the Lanczos algorithm we need an estimate of the residual
bounds. The bounds in (21) or (22) require most of the eigenvalues and the corre-
sponding entries in the bottom block row of the matrix of eigenvectors. Parlett and
Nour-Omid [33] have a very efficient algorithm for the single vector Lanczos algo-
rithm. Block generalizations have yet to be found, so we use a more straightforward
approach. The eigenvalue problem for Tj is solved by reducing the band matrix Tj to
tridiagonal form and then by applying the tridiagonal QL algorithm. We use subrou-
tines from EISPACK [16], [41], with slight modifications, to obtain only the bottom
p entries of the eigenvectors of Tj. These modifications reduce considerably both
computation and storage requirements for each Lanczos step. Only p2j words are
needed as opposed to (pj)2 for the full eigenvector matrix. We use the corresponding
unmodified routines to obtain the full eigenvectors at the conclusion of a Lanczos run,
at which time temporary space used during the recurrence is available to store the
entirety of the eigenvector matrix for T.

4.3. (lobal loss of orthogonality and reorthogonali.ation. Up to this
point our discussion of the block Lanczos algorithm has assumed exact arithmetic,
but the various error bounds hold in finite precision as well. It is well known that
there is a global loss of orthogonality among the computed Lanczos vectors in in-
exact arithmetic. A reasonable correction is to perform limited reorthogonalization
to keep j sufficiently close to orthogonal. Our approach is twofold--we identify
mechanisms whereby orthogonality is lost and then apply a model of the loss of or-
thogonality to determine when to correct the situation. In the context of the block
shifted Lanczos recurrence, orthogonality is lost in three different ways. First, there
is a loss of orthogonality between adjacent blocks in Qj, the blocks the recurrence
should make orthogonal. This is corrected by use of local reorthogonalization. Second,
the recurrence suffers a global loss of orthogonality with respect to the blocks of j
not explicitly involved in the reorthogonalization. We correct for this with a block
version of partial reorthogonalization. Lastly, it is important that a Lanczos run at
some shift not recompute eigenvectors computed as a result of a previous Lanczos run.
We present a new reorthogonalization scheme, external selective reorthogonalization,
to ensure that this does not occur. Throughout the process our goal is to apply a
minimal amount of extra work, particularly as it requires accessing the entirety of j,
to maintain at least (.0(x/)-orthogonality in .

The fundamental approach is to model the Lanczos recurrence in finite precision.
The following recurrence is our model of what really happens:

(23) Q+IB+I (g aM)-IMQ QjA Q_B + F,

where Fy represents the roundoff error introduced at step j. Then,

T QM(K aM)-IMQj TQk MQ+IB+I QkMQA
T QMFj-Q MQ.-IBT --TFor convenience we define W, - QMQ, with which the previous equation becomes

T(24) Wi+i,aBj+l QM(K- oM)-iMQ W,A W_i,aB / Qk MFj.

This equation is nearly sufficient for our computational purposes. We can easily
find norms for the blocks A and Bi during the recurrence, and we will compute
bounds for all the other terms except for the first term on the right side of (24).
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We eliminate QM(K- aM)-IMQj from (24) by obtaining an expression for its
transpose by premultiplying the occurrence of (23) with j k by QM:

QM(K- ai)-liQk Wj,k+lBk+l Jr Wk,jAj Jr Wk-I,jB Jr QMFk.
The obvious substitution then results in

Wj+I,kBj+I T Wj,k Jr BkWj,k-1Bk+ Wj,k+l Jr Ak
(25) -Wj,kA Wj-l,kB Jr Gj,k.

T F[MQj the local roundoff error. Formula (25)Here Gj,k =-- Qk MF represents
explains the global loss of orthogonality. We will use this model to estimate and
bound the loss of orthogonality among the Lanczos vectors and thereby determine
how to correct the loss of orthogonality.

4.3.1. Monitoring the loss of orthogonality. The development of our mod-
eling procedure has two parts, both based on the bounds available by taking norms
of (25)"

IIW/+l,kll2 _< IIS-_lll2(llSk+lll211W,k+xll2
/llBkll211W,k-lll2 / IIBll211W-x,kll2
/(ll&ll / IIAkll)llW,kll / IIG,kll).

We use this equation to compute a bound w:i,k on IIW,kll2 at each step.
The first part of our development addresses the bounds w:i+l,k for k _< j- 1,

that is, for blocks that are not explicitly involved in the orthogonalization of the
Lanczos vectors within the recurrence itself. For these blocks the loss of orthogonal-
ization depends on the loss already incurred at previous steps. Bounds on that loss
of orthogonality will be available to us from previous steps of the simulation given in
Fig. 8.

Initialize:

es =-- epv/-, where e _= roundoff unit, p is the blocksize
and n number of degrees of freedom

0)2,1 s

Loop:

For j 2, 3, 4,... do
(Mj+1,j s
+,-1 Z+I(&. + (- + --1). + &-l,-)
For k- 1,...j- 2 do

+1, Z+1(+1,+ +,-1 +f-l, + (a + a),)
End

End

FIG. 8. Simulation of loss of orthogonality (w-recurrence).

The following quantities from the Lanczos recurrence are required for the simu-
lation:
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k =-- 1/ap(Bk), where ap(Bk) is the smallest singular value of Bk.

In addition, we follow [32], [37], [39] in making a standard assumption on a bound
for the error term: IIGj,kll2 <_ e8 epv/-d. We have left unstated the origin of the
two initializing terms, Wj+l,j and Wj+l,j-1. In examining them we will uncover a
particular artifact of the block Lanczos algorithm. By (25),

By reason of the care with which we compute the QR factorization, we assume that
TQj MQ I+E, where I is the identity matrix and IIEII2 <_ eB. For reasons discussed

below, we can assume that IIW,j_IlI2 _< e. From this it follows that

(26) [lW/1,-1[[2 _< j-i-l (2j.s + (Olj -- Olj--1)s -- j--lOJj,j--2).

Notice from (26) that (Mj_bl,j_ > j-t-ljs. At the next step this term will ap-
pear as/j+2/jWj+l,j-1; in the following step it will be one of the contributions to
/j+3/j+lwj+2,j. Both/j+l and/j+l appear in this last product. The growth of the
bound occurs as fast as a(B) fj+l/j+l, the condition number of Bj. The anal-
ysis of the ordinary Lanczos algorithm has unity corresponding to the term a(Bj),
because the condition number of a nonzero 1 x 1 matrix is always one. The loss of
orthogonality occurs more rapidly in the block Lanczos algorithm, particularly when
a(Bj) is significantly larger than one, but also in general.

A different, but related, analysis can be used to show that the term a(Bj) appears
in the bound for Wj+lh. This was first observed in [23], where this growth was also
actually observed in the Lanczos recurrence. An inexpensive correction is needed to
make the recurrence useful: at each step a local reorthogonalization between Qj+I
and Qj is performed. Because the Lanczos recurrence is itself just a special form of
Gram-Schmidt orthogonalization, local reorthogonalization can be seen as a simple
generalization of the reorthogonalization required in computing the M-orthogonal fac-
torization of a single block. Local reorthogonalization ensures that e-orthogonality
holds between successive blocks of Lanczos vectors. Note that a local orthogonaliza-
tion step is also performed on completion of a partial reorthogonalization. If storage
is not an issue, a local reorthogonalization between Qj+I and Q-I should also be
performed, in which the obvious modification should be made to the algorithm for
computing the w-recurrence.

4.3.2. Partial reorthogonalization. The global loss of orthogonality modeled
by the w-recurrence can be corrected by two different schemes. These are the selective
orthogonalization scheme of Parlett and Scott [35] and the partial reorthogonalization
scheme of Simon [40]. Selective orthogonalization takes advantage of the fact that
orthogonality is lost exactly in the direction of eigenvectors that have become well
represented in j. Selective orthogonalization is implemented in two steps. In the
first, the Lanczos recurrence is "interrupted" when an eigenvector converges. The
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eigenvector is computed, which requires access to all previous blocks in Qj. The
second step occurs whenever the model indicates orthogonality is lost again in the
direction of the eigenvector. The second step requires that the latest two Lanczos
blocks be reorthogonalized against the computed eigenvector, but does not require
access to preceding blocks of j.

Partial reorthogonalization interrupts the recurrence to reorthogonalize Q and
Qj+I against all preceding blocks whenever the simulation indicates too great a loss
of orthogonality. Each reorthogonalization step requires access to all of j. For this
reason partial reorthogonalization has previously been recommended for situations in
which the eigenvectors were not of any interest (as in solving sparse linear equations
[40]). The extra cost in an application of partial reorthogonalization does have an
extra payoff; orthogonality is restored against all converged and nearly converged
eigenvectors simultaneously.

TABLE 6
Comparison o] partial and selective reorthogonalization.

Matrix Eigen- Block Partial
values steps reorthog.

steps
BCSST_26 211 181 51
PLAT1919b 636 579 143

Selective
orthog.
steps
98
291

blocksize 3, lowest 200 modes.
b blocksize 3, all modes in [.000025, .24].

Shifting and the block recurrence each accelerate the convergence of eigenpairs;
together they cause eigenpairs to converge very rapidly. Frequently one or more
eigenpairs converge at each block step, once the recurrence is established. In this cir-
cumstance selective orthogonalization has possibly greater requirements for accessing

than does partial reorthogonalization. Selective orthogonalization will require an
eigenvector computation at almost each step; partial reorthogonalization will occur
only every three to four steps in typical problems. It would be possible to combine
the two schemes--to carry out partial reorthogonalization during the computation of
an eigenvector for selective orthogonalization, but it is not clear that the combination
would be more effective than partial reorthogonalization alone. (See [34] for a dis-
cussion of these issues for the ordinary Lanczos recurrence.) Table 6 summarizes the
reorthogonalization requirements of two extensive eigencomputations. The number
of selective orthogonalization steps given in this table is the number of block steps
at which one or more eigenvalues converge; the number of partial reorthogonalization
steps is the number of block steps at which partial reorthogonalization was performed.

Our implementation of the Lanczos recurrence uses the block generalization of
partial reorthogonalization, based on the block w-recurrence presented above. The
single vector version of this simulation has been shown previously [40] to provide a
good order of magnitude estimate of growth of the loss of orthogonality, as well as a
bound. We use the block version to estimate the loss of orthogonality to determine
when reorthogonalization is necessary. Previous work [32], [35], [39] indicates that
reorthogonalization is needed whenever

k

The reorthogonalization should be carried out with both of the last two block of
vectors Qj and Qj+I, in order that the next block generated by the recurrence, Qj+2,
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be strictly orthogonal to all of its predecessors. This leads to the following partial
reorthogonalization [40] algorithm (Fig. 9) for maintaining orthogonality:

At each Lanczos step, after computing Qj+I and Sj/l, do:

Update the w-recurrence as above

(Mmax maxk wj+1,k
If 03max

_
then

For k- 1,...,j- 1 do
Orthogonalize Qj against Qk
Orthogonalize Qj+I against Qk

End
Orthogonalize Q+I against Q
Reinitialize w-recurrence:

j+l,k w,k es, k 1,..., j
End if

FIG. 9. Partial reorthogonalization.

Note that the orthogonalization of Qj and Qj+ involves M-inner products. This
requires the storage of both the Lanczos vectors and their product with M in sec-
ondary storage, or, alternatively, reapplying M to the Lanczos vectors. The appro-
priate form depends on cost.

4.3.3. External selective orthogonalization. A different type of loss of or-
thogonality occurs in the context of the shifted and inverted Lanczos algorithm. It is
possible that, after computing some eigenvalues with shift al, the same eigenvalues
and vectors are computed again with shift (2. External selective orthogonalization
is an efficient way of keeping the current sequence of Lanczos vectors orthogonal to
previously computed eigenvectors, and thereby avoiding the recomputation of eigen-
values that are already known. External selective orthogonalization is motivated by
the classical selective orthogonalization algorithm [35], but the development here is
entirely new.

In theory it would be sufficient to orthogonalize the starting block against known
eigenvectors, because all subsequent Lanczos vectors would be orthogonal as well. Of
course, this does not hold in practice. A global loss of orthogonality occurs, similar to
the one among the Lanczos vectors themselves; in addition, the computed eigenvector
is not exact. The contribution of both sources of error to the recomputation of
eigenvalues and vectors is analyzed below.

Let (u, y) be an approximate eigenpair of (g, M). For clarity, denote the current
shift as anew. The relationship between the eigenvector y and the Lanczos vectors
obtained with the shift anew is found by premultiplying the finite precision recurrence
(23) by yTM to obtain

yTMQj+IBj+ yTM(K anewM)-lMQj yTMQjAj
+

We assume that Bj+I is nonsingular. Then we can obtain a bound on the loss of
orthogonality between y and Qj by taking norms of both 8ides of (27):

IlyTMQ + II < II ;-_  II (IlyTM(K awM)-MQj yTM  &II 
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As with partial reorthogonalization, we can define a recurrence relation for a quantity
Tj to bound the loss of orthogonality between y and the Lanczos vectors. Assuming
that Ti >_ IlyTMQilI2 for/-- 1,... ,j, we obtain

IIB_IlI(IlyTM(K a.ewM)-lMQj yTMQ&II / T-IWBII2 + IlyTMFII)
as a bound for the right-hand side of the j / 1st step. Of the three terms on the right-
hand side of this equation, the second is easily computed and we have a standard
assumption for a bound on the third: IIFjlI2

_
epv/-d. We need then only to bound

the first term IlyTM(K anewM)-IMQ:i yTMQ.A.ill2. The spectral transforma-
tions preserve eigenvectors, so y is also an approximate eigenvector of the spectrally
transformed problem. Define the transformed residual vector Znew by

(K anewM)-My
Then

yTM(K anewM)-MQ:i

/2 qnew

1
/2 (Tnew

Y Znew.

TyTMQ+ZnwMQ,

from which it follows that

IlyTM(K_anewM)_IMQ:i_yTMQjA:ilI2
_

II ( 1
/2 O’new

ZnewMQ.l[2.
2

But

Thus, the following simple recurrence for T gives a bound for the loss of orthogonality
observed in (27)"

(28)

( ]1( 1 I_Aj)I @Tj_l,,U[12Tllznewl[M@ep.)
The same analysis applies to the buckling spectra] transformation, where the

eigenvector orthogona]ity error (27) becomes:

yTKQj+B:i+ yTK(K anewK,)-lKQj yTKQjAj
+

The transformed residual vector Znew is

K anewK, Ky
/2

Y Znew.
/2 O’new

By the same analysis as above, the recurrence for - in the buckling context is

(29)

-r.+- IIB-_IlI=
/2

I- A.)/2 (Tnew
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The recurrences in (28) and (29) provide a mechanism for estimating the loss
of orthogonality to externally computed eigenvectors, regardless of the source. Each
requires computing the transformed residual vector, Znew, and its norm, but the recur-
rence applies to situations where eigenvectors are known adventitiously. For example,
in the vibration analysis of structures where K is singular, the so-called rigid body
modes, the zero eigenvalues and vectors, often can be computed at much less cost
than a factorization. Typically, the cost of computing the residual norms for all of
the vectors involved in external selective orthogonalization is less than the cost of one
additional step of the Lanczos recurrence.

In the context of a Lanczos code within a larger shifting strategy, it would be
attractive to use the information from the Lanczos recurrence to bound the errors in
the computed eigenvectors and thereby avoid having to compute IlZnewl]M. In [20] we
provide an analysis for the case where the approximate eigenpair (, y) was computed
by the Lanczos code at a previous shift rold. However, we use the more general form
exclusively in our code.

As with partial reorthogonalization, we define a recurrence relation for a quantity
Tj that estimates the loss of orthogonality of the Lanczos vectors with respect to y.
In the recurrence, Tj is defined be:

(30) +

which we initialize with TO 0 and T1 epv/-d. The terms j and/j+l are defined as
in the w-recurrence. The term cvj -= I1( - A II2,

An external selective orthogonalization is performed whenever Tj+I > VC. A
relatively large residual for the computed eigenvector will cause frequent reorthog-
onalization, but, as noted below, usually only a very small number of vectors are
actually involved. External selective orthogonalization is implemented as in Fig. 10.

Before the Lanczos iteration:
Determine the set of SO-vectors (eigenvectors for selective orthogonalization)
Orthogonalize Q1 against the SO-vectors.
Orthogonalize Q2 against the SO-vectors.

At each Lanczos step j 3, 4,... do:
Update the T-recurrence according to (30) for each SO-vector;
If (Tj has been greater than / or T+I _> V/ then

Orthogonalize Qj+ against y
Set Tj+ es

End if

FIef. 10. External selective orthogonalization.

It is unnecessary to perform external selective orthogonalization against all pre-
viously computed eigenvectors. From (28) and (29) it is evident that one of the main
driving forces in the loss of orthogonality is (- a)-. It would appear that loss
of orthogonality should mostly occur in the direction of eigenvectors corresponding
to eigenvalues close to the new shift. Furthermore, as discussed in 3.3, only a few
eigenvectors, again usually those close to the new shift, need be considered in order
to avoid confusing new eigenvectors with the old. In our implementation, we use sen-
tinels to reduce the cost of maintaining orthogonality. The set of eigenvectors used
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for external selective orthogonalization is usually the eigenvectors corresponding to
any known eigenvalues closer to the shift than the sentinels. Eigenvalues beyond the
sentinels are discarded in the analysis of the block tridiagonal system.

The effect of using sentinels on the work required for external selective orthogonal-
ization is more dramatic than is suggested by the analysis above. Although proximity
to the shift is the driving force in the growth of T, neither recurrence (28) nor (29)
begins at e. The term IlZnewllM is usually near v/. The eigenvalues themselves are
only good to the convergence tolerance (usually e2/3 in our code). Furthermore, the
spectral transformations preserve eigenvectors, but do not preserve the property of
being the best minimizers for approximate eigenvalues (see [14] for a discussion of
the need to modify the approximate eigenvectors). As a result, external selective or-
thogonalization happens more often than we might expect, often at every step for the
eigenpairs nearest the sentinels, which frequently are simultaneously least accurate
and nearest the new shit.

Experimental results are shown for two examples in Table 7. The results shown
as "with sentinels" refers to the selection described in 3.3; the results shown as
"without sentinels" uses as SO-vectors all eigenvectors in the intervals between the
current shift and any neighboring trust intervals. The figure given as "cpu cost"
includes both cpu time and i/o processor time. The difference between the costs for
the two variations gives only a rough idea of the added cost for complete selective
orthogonalization because the difference in cost affects the termination decision for
each run and thereby changes the choice of shifts.

TABLE 7
External selective orthogonalization.

Matrix

BCSST_26

PLAT1919b

With sentinels
Average
number of

S.O. Vectors

Total
number of
S.O. Steps

313
2776

cpu
cost
174.2
668.2

Without sentinels
Average
number of

S.O. Vectors
15.7
28.1

Total
number of
S.O. Steps

2265
8692

cpu
cost
222.7
801.5

blocksize 3, lowest 200 modes.
b blocksize 3, all modes in [.000025, .24].

The orthogonalizations involve again both y and My. In order to avoid the
repeated computation of My, all selective orthogonalization vectors are premultiplied
by M and the result is stored on the same random access file as the eigenvectors y.
This computation is performed before the actual Lanczos run begins.

4.3.4. Summary of reorthogonalization schemes. We now present in sum-
mary form the reorthogonalized block Lanczos algorithm we use in our production
code. Our scheme consists of applying, in turn, external selective, partial, and local
reorthogonalization to the result of a single block Lanczos step. The first two schemes
are applied only when the respective model signals a need; each should be applied
before orthogonality is lost badly enough that repeated orthogonalizations are needed.
The local reorthogonalization is applied at each step. It may be applied repeatedly,
but this normally occurs only when the recurrence has broken down, which will cause
termination. The integration of these is indicated in Fig. 11.

4.4. Cost analysis and termination of a Lanczos run. The block Lanczos
algorithm exists as part of a larger code, in which each Lanczos run solves only a
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Initialization:

Set Q0 0
Set B1 0
Choose R1 and orthonormalize the columns of R1 to obtain

with QT(MQ1) In.

Lanczos Loop:

For j 1,2,3... do

Set Uj (K aM)-I(MQj) Qj_B
Set A:i U](MQj)
Set R:i+ U Q:iA
Compute Q+ and (MQj+I) such that

a) Q:i+S:i+
b) Q+(MQi+)= I,

Evaluate 9,-recurrence for each SO vector and perform selective
orthogonalization if necessary

Evaluate w-recurrence and perform partial reorthogonalization
if necessary

Repeat up to 2p times:
Reorthogonalize Qj+I to Qj
Recompute M-orthogonal factor of Qj+

Until orthogonal factorization occurs in one step

End loop

FIG. 11. Spectral transformation block Lanczos algorithm preserving semi-orthogonality.

subproblem. In this environment there are three ways in which a given Lanczos run
can terminate:

1. All eigenvalues required for this subproblem have converged.
2. The Bj+l-block is ill conditioned or singular. In this case a continuation of

the Lanczos run is either numerically difficult or impossible. Singular or ill
conditioned B+l-blocks can be encountered for the following reasons:

The shift is very close to an eigenvalue.
The effective space of Lanczos vectors is exhausted--we cannot compute
more orthogonal vectors than the problem has finite eigenvalues.
Dependencies within the starting block cause a singular B+ at some
later stage.

3. Eigenvalues farther from the shift appear to be converging slowly. The esti-
mated cost for computing them in the current Lanczos run is great enough
that a new shift should be chosen.

The first of these is easy to detect in most cases. There is a minor complication when
we want the eigenvalues closest to some specified value because we do not know in
advance how many eigenvalues are required on each side of . At a given shift our
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conservative code looks for as many eigenvalues as are required to complete the total,
even if these may represent more than what is needed on one side of . As a result,
we may not terminate as early as we might with hindsight.

Breakdown in the recurrence is perhaps more likely than might otherwise be
expected. The first of the causes we try to avoid during the shift selection process; the
second occurs primarily during user evaluation of the code, when it is not uncommon
to be faced with problems like finding all of the eigenvalues of 7 7 matrices using a
blocksize of 5. The third we have never seen. Breakdown is detected by one of two
mechanisms--the norm of the residual block is very small compared to the norm of the
diagonal block or the off-diagonal block is ill conditioned and presumed rank-deficient.
We use a relative norm of 1/x/ for the first case. For the second we compute, at each
step, the extreme singular values of the off-diagonal block B; we terminate if the
condition number of B >_ . We really want only the condition number of B, but
the cost of a singular value decomposition of a p p matrix is trivial compared to the
cost of an n n sparse block solve.

The most common reason for termination is that computing more eigenvalues in
the current run is inefficient. Normally, eigenvalues far from the shift converge slowly
and require a large number of steps. Usually the fastest convergence occurs early,
with the number of eigenvalues converging per step tapering off as the length of the
run increases. Initially the cost per eigenvalue decreases rapidly, as the cost of the
factorization is amortized over several eigenvalues. Later, as the convergence rate
slows and the other costs increase, the average cost also increases. Our goal is to stop
at the minimum average cost.

The cost of a Lanczos run depends on a number of parameters, each a function
of the number of steps taken. The factorization typically represents the largest single
cost, but it occurs once. There is a large constant cost per step, comprising the
matrix-block solve and multiplication and other operations in the recurrence. The
cost of the eigenanalysis of Tj increases quadratically in the number of block steps.
Inasmuch as the eigenvalue nearest the shift is usually the first to converge, and
dominates the reappearance of banished subspaces, the frequency with which partial
reorthogonalization is needed is generally independent of the number of eigenvalues
that have converged and so represents another quadratic term. Terminating the run
by computing the converged eigenvectors from the Lanczos vectors is a cubic term.

We determine when to terminate a given Lanczos run by modeling the cost of
continuing the recurrence beyond the current step. The residual bounds estimating
the accuracy of yet unconverged eigenvalues are monitored step by step; the observed
changes are used to estimate future convergence. We attempt to locate a point in an
individual run where the average cost per eigenvalue is minimized. This is itself a
heuristic attempt to minimize the average cost for all eigenvalues. The effectiveness
of the heuristic is demonstrated for a particular example in Table 8.

TABLE 8
Comparison o. variations on termination model.

Standard Strategy Termination Early
Matrix Shifts Block cpu Shifts Block cpu

steps cost steps cost
]CSST_26a 9 181 177.2 10 209 200.5
PLAT1919b 21 595 706.5 33 735 736.i

Termination Late
Shifts Block cpu

steps cost
7 182 206.8
19 696 956.3

blocksize 3, lowest 200 modes.
b blocksize 3, all modes in [.000025, .24].
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We assume that a measure of the real user cost, including i/o, is available. We
use this in a cubic model of cost, from which we obtain a least squares fit to the real
cost over the preceding ten steps. From this model we predict the real cost over the
next few steps. The cost of the final step, computing the eigenvectors, is estimated
from measurements of components of the computation as they appear elsewhere in
the recurrence. To start the process, we require that a certain minimum number
of steps be taken. The number required is a function of blocksize and the type of
problem, as indicated in Table 9. (The values in Table 9 are heuristic values derived
from extensive empirical testing.)

The rate of convergence for the as yet unconverged eigenvalues is estimated by
taking a weighted geometric average of the change in accuracy of the first uncon-
verged Ritz value over the previous five steps. From this, we extrapolate to estimate
the accuracy of the unconverged eigenvalues over a small number of additional steps.
The number of extrapolated steps is also a function of blocksize and the type of prob-
lem; the actual values used are given in Table 9. We continue the Lanczos run if the
estimated average cost per eigenvalue decreases for any of the steps over which we ex-
trapolate convergence. In addition, if we predict that all of the eigenvalues remaining
to be computed will converge in the steps corresponding to twice the number of steps
given in Table 9, we continue the recurrence to avoid computing another factorization.

TABLE 9
Steps to initialize cost model and over which convergence is extrapolated.

Vibration Buckling
> 10 modes< 10 modes

Initial Extrapolation Initial
Blocksize steps steps steps

1 35 6 15
2 20 4 15
3 20 2 10
> 4 15 2 10

Initial
steps
30
25
25
10

Extrapolation
steps

Our experience with this scheme is that the cost curve is relatively flat near its
minimum, making the choice of where to stop appear to be flexible. This is misleading;
the global minimum is quite sensitive to the local choice. To demonstrate the value of
a well-tuned dynamic scheme for evaluating cost, we include some simple experiments
here. We modified our standard scheme to make it terminate early and to force it to
run ten steps beyond where it would normally stop. The results are given in Table 8
and show some sensitivity to small changes in the stopping procedure.

4.5. Choice of blocksize and starting block. The two largest benefits of the
block algorithm are in i/o cost reduction and in treating multiple eigenvalues. How-
ever, the costs of obtaining the M-orthogonal factorization and of the eigenanalysis
of Tj increase quadratically with the blocksize p. In general, it is best to choose a
blocksize as large as the largest expected multiplicity if eigenvalues of moderate mul-
tiplicities are expected. This is particularly important if many clusters of eigenvalues
are expected (Table 12). A blocksize of 6 or 7 works well in problems with rigid body
modes. We rarely find that p > 10 is cost-effective.

The effect of input/output cost is considerable. Within the MacNeal-Schwendler
NASTRAN product, which runs on a variety of commercial systems, extensive testing
resulted in a default blocksize of 7 on all systems. Input and output is particularly
expensive within NASTRAN. In an environment in which input/output cost is less
costly, a blocksize of 3 was found to be more effective. We provide our results on a
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small number of experiments in 5; it is likely that the optimal blocksize would change
on other systems.

One would like to start the Lanczos algorithm with a good guess at a solution. We
begin the first Lanczos run with a randomly generated starting block. Thereafter, the
approximate eigenvectors (Ritz vectors) from unconverged Ritz values are available
as estimates of the next eigenvectors tobe found. At the time that the eigenvectors
of T are available, we do not know where the next shift will be taken. Therefore, we
take a starting block built from all of these Ritz vectors. If t vectors are available,
each column in the starting block is taken to be the sum of tip Ritz vectors. We
fill the block out randomly when t < p. We adopted this approach after extensive
experiments comparing various choices of starting blocks, including mixtures of Ritz
vectors and random components. We did not find a significant change in the overall
cost of the eigensolution with any of the approaches.

5. Experimental results. The algorithm described in the paper was developed
as a general purpose eigensolver for the MacNeal-Schwendler Corporation’s structural
engineering package NASTRAN [18]. One of the goals in the software design was
to make the eigensolver independent of the form of the sparse matrix operations
representing the matrices involved: the matrix-block products, triangular block solves,
and sparse factorizations. The eigensolver has been used in MSC NASTRAN with
two different approaches to the sparse linear equations involved, a profile and a sparse
multifrontal factorization. In both cases the factorization and solve modules are
the standard operations of MSC NASTRAN, used directly by the eigensolver. The
code has also been incorporated in four other structural engineering packages and in
mathematics libraries supplied by Boeing Computer Services (BCSLIB-EXT) [1] and
Convex Computer Corporation (Veclib). In all of these implementations the sparse
linear equations are solved with vectorized multifrontal codes based on the work in
[2]-[4]. The multifrontal code computes a stable symmetric indefinite factorization,
as described in [26].

In this section we report on experiments using our standard eigensolver from
BCSLIB-EXT. The experiments were all performed on a Sun 4/690 workstation with
64 megabytes of main memory. The codes are all written in Fortran 77, and were
run with the "-O" optimization option of th.e Sun Fortran compiler, which is quite
effective with the inner loops of the numerical operations. We note that our code is
always a block code, even when run with blocksize 1. This results in greater costs for
the analysis of the tridiagonal system, where the results of Parlett and Nour-Omid
would be available [33]. However, the cost of the tridiagonal analysis is less than 1%
in general.

The test problems are drawn from the symmetric eigenproblems from the Harwell-
Boeing test collection [11]. Our code has been used to solve eigenproblems with
more than a million degrees of freedom, but the largest problem in the current test
collection is of order 15,439 and most of the problems are much smaller. As a result,
the order independent costs of the Lanczos algorithm, primarily the analysis of the
block tridiagonal systems, are more important than they would be in large production
problems. For most of the examples, we report the costs of the required eigenanalysis
as a function of blocksize. For the largest problem we also report the breakdown of
the cost in terms of the functional operations of the code.

BCSLIB-EXT is available at no cost on all Cray Research, Inc. computers.
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5.1. Some empirical examples. Throughout this paper we have used some of
the problems from the Harwell-Boeing test collection [11] to demonstrate particular
aspects of our algorithms. We close by using a small subset to illustrate some of the
global behavior of the code, particularly as it concerns aspects over which the user
exercises control. We chose four test problems, listed in Table 10, which were collected
from actual industrial or research applications.

TABLE 10
Test problems.

Nonzeros in
Matrix order K M

BCSST_08 1074 7017 1074
BCSST_25 15439 133840 15439
BCSST_26 1992 16129 1922
PLAT1919 1919 17159 ma

Description
television station
76-story skyscraper
nuclear reactor containment floor
Atlantic and Indian Oceans

ordinary eigenvalue problem.

Two of the problems have been used as the primary examples in this paper.
They are BCSST_26, a model of a nuclear reactor containment floor used for seismic
analysis, and PLAT1919, a finite difference model of tidal currents. These models
were included in the test collection because of the large number of eigenpairs that
were required of each. In both cases the number of modes is large because the analysis
depended on knowing all of the modes in specified intervals.

Details of the eigenanalysis of the nuclear reactor containment floor problem, as a
function of blocksize, are given in Table 11. These results exhibit a pattern common to
all of the problems: The number of factorizations and Lanczos runs decrease rapidly
as the blocksize increases; the cost of the eigenanalysis initially decreases as well, but
then increases. This reflects the fact that as the blocksize increases, the length of the
Lanczos runs increase in terms of the dimension of j. Longer runs involve greater
costs, particularly for maintaining semi-orthogonality and for the back transformation
of the eigenvectors. For these relatively small matrices, the costs of longer runs begin
rather early to dominate the costs of factoring and applying the matrix operators.
For reference, an analysis with a single Lanczos run with a blocksize of 3 had a cost
of 543.4 for this problem, nearly three times the cost of the analysis with shifting.

TABLE 11
Computation of 200 eigenvalues from BCSST_26 (shift statistics).

Block-
size

cpu
cost
131.1
143.3
188.5
272.8
346.3
301.2

Factor-
izations

12
11
9
8
7
4

Runs

12
10
8
8
7
4

steps
440
254
181
182
162
93

Block
solves
475
283
204
205
182
104

The desired eigenvalues in the oceanography problem are very much in the interior
of the spectrum. There are 818 eigenvalues above and 465 eigenvalues below the values
we want. This problem was analyzed without the use of the spectral transformation
in [5], [23]. Without shifting, it was barely possible to compute the eigenvalues in
the interval [.0001, .24]; the eigenvalues in [.000025, .0001] were also of interest, but



264 R.G. GRIMES, J. G. LEWIS, AND H. D. SIMON

were impossible to compute. Secondly, all the eigenvalues, except a singleton at zero,
are positive and occur in pairs. These multiple eigenvalues can play havoc with an
ordinary, point Lanczos algorithm. With either a blocksize of I or 2, it is difficult for
a code to be sure that it has exhibited the full multiplicities of the eigenvalues--the
shifting strategy must be prepared to assist. Even with shifting, the single vector
code of Ericsson and Ruhe [12], [15] was unable to cope with the multiplicities of the
eigenvalues [25].

Table 12 shows the difficulty that arises with rank determination when the block-
size is the same as the multiplicity of the eigenvalues. When we use a blocksize of 2,
we cannot distinguish between doubletons that are truly doubletons and those that
are only two of a larger number of copies of a multiple eigenvalue. As a result, our
code makes a large number of reruns to ensure that we have the full multiplicities of
eigenvalues. This is shown by the discrepancy between the number of factorizations
and the number of runs. Although the reruns incur no new cost for factorizations, they
do require more extensive use of external selective orthogonalization than would an
ordinary run. Surprisingly, the point version of the code is able to cope well with this
problem. As expected, blocksize larger than the multiplicity of 2 have no difficulties.

TABLE 12
Computation of 636 eigenvalues from PLAT1919 (shi]t statistics).

Block-
size

cpu
cost
659.6

1101.9
696.0
825.2
953.8
1043.6

Factor-
izations

33
19
21
16
15
12

Puns

33
35
22
16
14
12

steps
1461
1068
595
427
362
291

Block
solves
1526
1137
638
458
389
314

BCSST_08 is a model of a building housing a television studio. Its claim to fame is
the presence of isolated double and near triple eigenvalues. The lowest 24 eigenvalues
are given in Table 13. The close eigenvalues cause relatively slow convergence, which
causes our code to make more runs than we might expect. This problem can be
solved easily enough with a single run, but at increased cost. We note that the
multiple eigenvalues provide some challenges for blocksizes of 1 or 2. Details are given
in Table 14.

TABLE 13
Lowest 26 eigenvalues of BCSST_08.

hi
1 6.900
2 18.14206
3 18.1423664462086
4 18.1423664462086
5 84.78615
6 84.7864335537914
7 84.7864335537914
8 85.54

9 91.05
10 93.45
11 130.9
12 131.5
13 132.9
14 136.2
15 137.2
16 138.4

17
18
19
20
21
22
23
24

138.7
139.6
140.6
141.1
141.566
141.638
142.19
142.642

BCSST_25 is an incomplete seismic model of the Columbia Center, a 76-story
skyscraper in Seattle, Washington. The spectrum of this model is pathologically
difficult--the lowest 132 eigenvalues are listed in Table 15. For reference, the largest
eigenvalue of this structure is 1.51 10s.



A SHIFTED BLOCK LANCZOS ALGORITHM 265

TABLE 14
Computation of lowest 20 eigenvalues from BCSST_08 (shift statistics).

Block-
size

1 9.6140 10-4

2 9.7948 10-4

3 9.7961 10-4

4 9.8380 10-4

cpu
cost
37.6
26.0
22.2
34.3
33.4
37.9

Factor-
izations

Runs
steps
179
63
39
46
31
29

Block
solves
193
71
44
54
36
34

TABLE 15
Lowest 132 eigenvalues of BCSST-25.

Ai
5 9.85801 10-a

68 9.85803 10-4

69 9.86240 10-4

132 9.86243 10-4

The smallest eigenvalues are nearly negligible when compared to the largest eigen-
value and they are very close to one another. Our code determines clusters of eigenval-
ues based on its accuracy tolerance, which defaults to 2.31 x 10-11 in IEEE arithmetic.
We apply this tolerance to the transformed eigenvalues, which are not close enough
to be treated as a cluster or even as two clusters and four isolated values. (Note that
if we applied the tolerance to the untransformed eigenvalues, all of these values would
be a cluster, which is not appropriate.) As a result, this problem counters our usual
shifting strategy--in this case we must take a shift very close to the eigenvalues in
order to overcome the very poor separation and slow convergence. This distribution,
eigenvalues almost, but not quite, in a cluster represents a worst case. Table 16 docu-
ments the performance of our code on this problem. We see that for this problem the
costs of larger blocksizes are more than offset by the additional power they provide in
attacking the very close and large clusters of eigenvalues. In Table 17 we present the
breakdown of cost by function within the algorithm for this, the largest of our test
problems. This breakdown is typical of larger problems in that neither the cost of
analyzing T nor of choosing shifts is significant. It is atypical in that the startup cost
is high, a result of there being a large number of vectors involved in external selective
orthogonalization.

TABLE 16
Computation of 132 eigenvalues from BCSST_25 (shift statistics).

Block-
size

cpu
cost

6372.8
5451.8
3683.3
3935.4
4063.3
2743.3

Factor-
izations

Runs
steps
586
293
158
126
108
56

Block
solves
606
320
172
140
122
61

5.2. Summary. The results in the previous section illustrate some of the char-
acteristics of the shifted block Lanczos algorithm. Only BCSST_25 is large enough
to begin to demonstrate the behavior of the algorithm on large problems. For larger
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TABLE 17
Computation of lowest 132 eigenvalues from BCSST_25 (cost breakdown).

Percent of Cost
Block-
size

Recur-
rence
25
28
33
33
34
32

Factor-
ization

15
22
18
16
16
10

ae-
orthog.

44
30
33
35
35
4O

Block
tridiag.

Eigen-
vector

4
5
10
10
10
16

Start
up
12
15
4
4
5
1

Shift
select.

problems we expect to see the cost of the factorization and linear equation solutions
to increase faster than linearly. Assuming that the eigenvalue distributions do not
change, the cost of reorthogonalization, of generating the starting block, and of the
eigenvector computation will increase linearly with the change in problem size. The
block tridiagonal eigenanalysis and the shift selection should remain constant and
their contributions to cost will become even smaller. We note that the cost of the
necessary reorthogonalizations is an important fraction of the cost--this is a strong
argument for preserving only semi-orthogonality rather than complete orthogonal-
ity. We remind the reader that our cost measures include a factor for i/o traffic, an
essential ingredient in preserving semi-orthogonality.

The reader will see the difficulty in making an a priori choice of blocksize. The
advantages and disadvantages of the block algorithm are clearly demonstrated, but we
see no optimal choice for blocksize. A choice of three is always good on these problems
on our Sun workstation, but is likely to be less than optimal for a vibration problem
with six rigid body modes. Systems that impose higher costs for i/o will make higher
blocksizes more effective, particularly when the problems are large enough that the
factored matrices must reside on secondary storage.

These issues should be kept in the perspective of the power of the spectral trans-
formation. None of the problems described here is solvable in any practical sense
using the naive reduction to standard form. For example, the oceanography problem,
PLAT1919, was analyzed in [5], [23] without any transformationmthe desired eigen-
values were not close to appearing after N steps. (In unreported experiments, 3N
steps had resulted in little improvement.) Although it is possible to solve some of
the simpler problems by inverting the problem, as in (2), this is clearly not sufficient
for all of the problems. The oceanography problem, PLAT1919, is singular, so some
nontrivial shift is required. Even with a shift at the lower endpoint, .000025, a single
Lanczos run to compute the lowest 200 eigenvalues above this point had a cost of 5382
for blocksize 3. In contrast, our standard shifted code with the same blocksize had
a cost of 696 for computing all 636 desired eigenvalues. The Columbia Center model
has the same characteristics. The naive reduction would result in a problem with
separations of 10-13 for the "well-separated" eigenvalues; the simple reciprocal trans-
formation would be clearly inadequate to begin to solve this problem. It is only with
the combined power of the block Lanczos algorithm and the spectral transformation
that we can solve these problems in a reasonable amount of time.

A. Matrix inertias. We need to interpret the number of negative eigenvalues
of K- aM and K- aK in terms of the eigenvalues of the original vibration or
buckling problems. The result we want to prove follows in Table 18. We use this
result to conclude that

u(K a2M) u(K aiM) number of eigenvalues in (al, a2),
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where we assume that a2 > al. In the case of buckling analyses we further assume
that both al and a2 have the same sign.

TABLE 18
Interpretation of v(K aM) or v(K aK).

M positive definite
M positive semidefinite

Vibration analysis:
# of eigenvalues < a
(# of eigenvalues < a) + -0 some cases
"/= dim(Af(M)) other cases

K positive definite
K positive semidefinite

Buckling analysis:
# of eigenvalues in (0, a) or (a, O)
(# of eigenvalues in (0, a) or (a, 0)) q-

0 a of one sign

" dim(Af(K)) of other sign

There are four cases, which will be considered in pairs. In all cases we assume
that the problem is a definite generalized symmetric eigenproblem, i.e., that there
exists some linear combination aK + tiM that is positive definite.

A.1. Kx AMx with M positive definite. We can apply the obvious reduc-
tion to standard form. The eigenvalues of Kx AMx are the same as the eigenvalues
of C LKLT, where LM is the Cholesky factor of M. It follows that the number
of eigenvalues of C less than a is the same as the number of eigenvalues of Kx AMx
less than a. But C- aI is congruent to LM(C- aI)L and this is simply K- aM.
Thus, the decomposition of K-aM gives the number of eigenvalues less than a. Ob-
viously, the interpretation of the inertia has the same meaning here as in the ordinary
eigenvalue problem.

A.2. Kx AMx with M positive semidefinite. Signs must be assigned to
the infinite eigenvalues when M is singular. Assume that M is positive semidefinite,
with p zero eigenvalues. Then there exists a nonsingular matrix W so that WMWT

is the two-by-two block-partitioned matrix

WMWT
0 I

where I is an (n- p) x (n- p) idengity matrix. Parigion WKW 6’ conformally

WKWT
C21 622

Some linear combination (K +M is positive definite, from which it follows that
c(WKWT) + (WMWT) is positive definite. But a positive definite matrix has
positive definite principal minors, which implies that aCt is positive definite. Let y
satisfy (WKWT)y A(WMWT)y and partition y conformally as [yt, y2]T. Then

(31) Cttyt + Cy2 0

and

(32) C21Yl @ C22Y2 Ay2.
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Equation (31) then implies that

Substituting in (32), we obtain

(c:: c5
Thus, the finite eigenvalues of Kx )Mx are the eigenvalues of the Schur complement
of Cll in C.

By Sylvester’s theorem the inertia of (K- aM) is the same as the inertia of
WKWT- aWMWT. But the partitioned form of the LDLT decomposition of
WKWT- aWMWT has as its (1,1) block the decomposition of C1, and as its
(2,2) block the decomposition of (C22 -C2C1C1) -hi. The inertia for the entire
matrix is offset by the inertia of the (1,1) block. The offset is constant--it describes
the sign given to the infinite eigenvalues. That all of the infinite eigenvalues have
the same sign is due to the fact that a positive definite linear combination of K and
M exists, that is, that the problem is a definite generalized symmetric eigenproblem
[13]. The difference between ,(g- aiM) and ,(g- a2M) will still be the number
of eigenvalues in [a, a2), since the constant term cancels.

Furthermore, in vibration analysis, we know that both K and M are positive
semidefinite. It follows that both and/ will be positive when M is only semidefinite.
The positive semidefiniteness of K then implies that Cll is a positive definite matrix,
so (C1) 0. Thus, the inertia of the factored matrix retains exactly the same
meaning for the positive semidefinite vibration case as for the positive definite case.

A.3. Kx- Kx with K positive definite. In buckling analysis, only K has
any definiteness properties. We can invert the problem when K is positive definite.
Thus

implies

Kx AK,x

1
K,x Kx #Kx,

and all the eigenvalues # in the second equation are finite. This transformed problem
is in the standard (K, K) form in which the right-hand side matrix, K, is positive
definite. We will determine the number of eigenvalues of (K, K) that lie in the image
of the interval of interest in the original problem. Thus, to determine the number
of eigenvalues of Kx )Kx less than a, we find the number of eigenvalues of the
inverted problem (K, K) in the interval(s) in the variable #- 1/2 that corresponds to
the interval (-, a) in the variable A.

There are three subcases that must be considered. The first is the case a 0.
The interval (-c, 0) for A is mapped to the interval (-oc, 0) in 1/2. Thus, the number
of negative eigenvalues of Kx ,kK,x is the same as the number of eigenvalues of
(K, K) less than 0. This is simply the number of negative eigenvalues of K, (K).

The second case is the case a < 0. The transformation from A to 1/2 transforms a
to . The number of eigenvalues in (-(x), a) is the same as the number of eigenvalues
of (K, K)in the interval (, 0). This is

(K) , (K -al K)
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which, because a is negative, is the same as

u(K,) ,(K aK,).

Note that the number of eigenvalues between a and 0 is simply ,(K aK).
The third case is a > 0. In this case, the interval (-c, a) in A must be treated as

the union of the interval (-c, 0) and the interval [0, a). There are u(K) eigenvalues
/c). Thein the first subinterval. The second subinterval is transformed into (,

union has

u(K) + r IK -al K)
or

v(K,) + v(K aK)

eigenvalues. Even in this case v(K- aK) is the number of eigenvalues between 0
and a.

The buckling problem will have infinite eigenvalues ifK is singular. However, the
signs of these eigenvalues are irrelevant to the interpretation of the inertias because
the interpretation always considers only finite subintervals.

A.4. Kx AKx with K positive semidefinite. The most general case we
consider is a buckling analysis in which K is only positive semidefinite. We combine
the analysis for the semidefinite vibration case with the positive definite buckling case
to assign signs to the zero eigenvalues.

We assume K is.semidefinite, with P zero eigenvalues. As before, there exists a
nonsingular matrix W such that

0 I"

Partition Ke E conformally

E21 E22

The eigenvalues of KX KXA are those ofKTy KTyA. Let y be an
eigenvector, partitioned conformally [y, y2]T. Then

(33) Ely + Ey2 0

A(E21Yl q- E22)Y2 Y2.

As before the (1,1) block of the transformed linear combination, Ell, is a positive
definite matrix. Equation (33) then implies that

Yl -E1E2T1Y2,

or

-1 TA(E22 E21EI E21)Y2 Y2-



270 R. G. GRIMES, J. G. LEWIS, AND H. D. SIMON

Thus, the finite, nonzero eigenvalues of Kx AKx are the reciprocals of the nonzero
eigenvalues of the Schur complement of El in E.

The partitioned form of the LDLT decomposition ofgT-aKT has as
its (1,1) block the decomposition of-aE, and as its (2,2) block the decomposition
of I a(E22 -1 TE2Ell E). The Schur complement block is in the form of A.3,
taking the identity matrix as M. Again, the inertia of the full matrix is the inertia
of I a(E22 -1 TE2Ell EI) offset by the inertia of the (1,1) block. Notice that the
offset depends on the sign of the shift--it describes the signs of the eigenvalues of
-aEl. Because E is definite, either all the eigenvalues of -cEll are positive or
all are negative. Thus, the offset will be zero for shifts of one sign and nonzero for
shifts of the other sign. Still, the difference between (g- aK) and (g- a2K)
will still be the number of eigenvalues in [al, a2), as long as both shifts have the same
sign. The dimension of the nullspace of K, (Ell), is oten known adventitiously; if
not, it can be estimated by factoring K- pI, where p is chosen smaller than the least
nonzero eigenvalue of K, but large enough so that the factorization is stable.
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FACTORING SYMMETRIC INDEFINITE MATRICES ON
HIGH-PERFORMANCE ARCHITECTURES*
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Abstract. The Bunch-Kaufman algorithm is the method of choice for factoring symmetric
indefinite matrices in many applications. However, the Bunch-Kaufman algorithm uses matrix-
vector operations and, therefore, may not take full advantage of high-performance architectures with
a memory hierarchy. It is possible to modify the Bunch-Kaufman algorithm so that it uses rank-k
updates. However, this straightforward modification allows unrestricted row/column interchanges
during the algorithm, thus making it unsuitable for banded and sparse matrix factorization. A new
algorithm, based on Bunch-Kaufman factorization, is described that uses rank-k updates to take
advantage of high-performance architectures while limiting the number of row/column interchanges.
Results from implementations on the CRAY Y-MP and the Alliant FX/8 are presented.

Key words. Bunch-Kaufman factorization algorithm, symmetric indefinite matrices, block
algorithms

AMS subject classification. 65F05

1. Introduction. The Bunch-Kaufman algorithm is considered to be one of
the best stable methods for factoring full, symmetric, indefinite matrices [3], [4]. A
modified version has been successfully used to factor sparse, indefinite matrices [7].
Recently, Bunch-Kaufman factorization has been shown to be the method of choice
for a subset of banded, symmetric indefinite matrices [11]. The Bunch-Kaufman
algorithm maintains the symmetry of the matrix during factorization and yields the
inertia of the matrix essentially for free, an important consideration for eigenvalue
calculations [9].

Much of the recent work in numerical linear algebra has focused on constructing
algorithms appropriate for execution on high-performance architectures. Many of
these algorithms utilize matrix-matrix operations to exploit the memory hierarchies
used in many high-performance architectures [8]. The Bunch-Kaufman algorithm, as
formulated in [4], uses matrix-vector operations. For dense matrices, the ratio

(i)
floating point operations

memory references
is often higher for algorithms that rely on matrix-matrix operations rather than for
those that rely on matrix-vector operations. As a result, algorithms that use matrix-
matrix operations can better exploit memory hierarchies. For sparse matrix factor-
ization, it has been shown that by using matrix-matrix operations, the ratio

floating point operations
memory references and other overhead
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is much smaller than when matrix-vector operations are used and that excellent per-
formance can be achieved on a vector processor [2].

In the LAPACK project a simple modification to the Bunch-Kaufman algorithm
allows the use of matrix-matrix operations [1]. However, this algorithm may require
up to n- 1 row/column interchanges during the algorithm. This could result in a
large amount of fill-in during banded or sparse factorization.

Version D of the Bunch-Kaufman algorithm, however, can be implemented such
that the number of row/column interchanges is bounded by the number of negative
eigenvalues [4].2 We shall give a modification to version D that uses rank-k updates
while maintaining the bound on the number of row/column interchanges. This al-
gorithm could be used to factor banded or sparse matrices for which the number of
negative eigenvalues is small relative to n.

Block algorithms are briefly discussed in 2. In 3, one of several variations of the
Bunch-Kaufman algorithm is reviewed. We describe a new algorithm that uses rank-
k updates while minimizing the number of row/column interchanges in 4. Results
from implementations of the algorithm are given in 5. Finally, a summary is given
in 6.

2. Block algorithms. Linear algebra kernel computations can be placed in
three categories: (1) vector operations, e.g., vector inner product; (2) matrix-vector
operations, e.g., multiplication of a matrix by a vector; and (3) matrix-matrix op-
erations, e.g., rank-p update of a matrix. These three categories correspond to the
three linear algebra subroutine collections: Level 1 BLAS, Level 2 BLAS, and Level 3
BLAS [5], [6], [15]. The computation rates that can be achieved on high-performance
architectures are higher for the higher-level BLAS. Two benefits of matrix-matrix op-
erations are (1) better use of the memory hierarchy via the reuse of data in closer, fast
memory, and (2) increased flexibility in the way the computation can be structured,
allowing for more efficient use of computational units. For example, on the CRAY Y-
MP, a register-to-register machine with independent segmented computational units
capable of being chained together, the use of matrix-matrix operations allows an in-
creased ability to reuse data that have been loaded into the vector registers and an
increased ability to structure the computations to enable maximum chaining between
computational units and thus achieve better parallelism among the computational
units.

As an example, consider the LDLT decomposition of a symmetric positive defi-
nite full matrix. In the outer product version of LDLT decomposition given in Fig. 1,
the computation of a single pivot column in the loop in steps 2-5 is a vector operation,
and the updating of the remaining submatrix in the nested loops in steps 6-10 is a
matrix-vector operation. Because each iteration of the outer loop depends on results
of previous iterations, if we wish to change the algorithm to use matrix-matrix oper-
ations, we must restructure it as a block algorithm [8]. Instead of computing a single
pivot column, we compute a block of pivot columns and use this block to update the
remaining submatrix. Such an algorithm is given in Fig. 2, where the block size is
p. The block pivots are computed by using matrix-matrix operations involving p p
and p (n- ip) matrices. The updating of the remaining submatrix is accomplished
with matrix-matrix operations involving p (n- ip) and (n- ip) (n- ip) matrices.

Four variants, A-D, of the Bunch-Kaufman algorithm were presented in [4].
2 In many applications, the number of negative eigenvalues is much less than the order of the

matrix.
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1)

2)
3)
4)

6)
7)
8)
9)
o)
11)

c

c

DOI-1, N
Solve for the pivot column

DOJ-I/I,N
V(J)-A(J,I)
A(J, I) A(J, I)/A(I,I)

ENDDO
Use the pivot column to update the remaining submatrix
DO J-I+I,N

DO K- J,N
A(J, K) A(J, K) V(K) A(J, I)

ENDDO
ENDDO

ENDDO

FIG. 1. The LDLT algorithm.

C Code assumes that N is divisible by p
1) DO I- 1, N,p

C Ai,i is the ith p p diagonal block of A
2) Factor: A,i L,D,LT.. and store into A,

C V is a (n- ip) p matrix
C Ai,2 is the (n- ip) p matrix beneath Ai,i

3) Solve: Li,iViT AT Di,iT ViTi,2 i,2
C A2,2 is the (n- ip) (n- ip) matrix in the bottom right corner of A

4) Update: A2,2 A2,2 i,2VT
5) ENDDO

FIG. 2. The block LDLT algorithm.

The partitioning of A at Step i of the block algorithm is given in Fig. 3. Such a
restructuring is what we desire for the Bunch-Kaufman algorithm.

3. The Bunch-Kaufman algorithm. The Bunch-Kaufman algorithm factors
A, an n n real symmetric indefinite matrix, into MDMT while doing symmetric
permutations on A to maintain stability, resulting in

(3) PAPT- MDMT,

where P is a permutation matrix, M is a lower triangular matrix and D is a symmetric
block diagonal matrix where the blocks are 1 1 or 2 2. Although several variations
of the algorithm exist, the focus here is on Algorithm D from [4] because it is the one
for which the number of row/column interchanges is restricted.

The Bunch-Kaufman algorithm maintains stability by using a 2 2 pivot com-
bined with a symmetric permutation on A if a 1 1 pivot is not stable. Because this
paper will focus on 1 1 pivots, only stability for these pivots will be discussed in
detail. A 1 1 pivot operation for element ai,j at step k takes the form

(4) ai,./-- ai,.
ai,kaj,k

ak,k
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Eliminated Columns

Ai,2 Solve

.’._.." A2,2 Update

U Ai,i Factor

FIG. 3. Partitioning of A at step i.

Let #k be the maximum of the absolute values of the uneliminated elements at step
k. Step 2 of the algorithm, shown in Fig. 4, finds the maximum element, Ak, in the
pivot column. By substituting # and into (4), the bound on ttk+l becomes

Step 4 ensures that a i x I pivot operation occurs if c < where the parameter c
has been chosen to be 0.525 to maximize stability for Algorithm D [4]. By substituting
c into (5),

(6) #+1

Therefore, the bound on the growth of an element resulting from a 1 1 pivot is 2.905.
If the test in step 4 fails, then a subsequent row search and another stability

test determines whether a 2 2 pivot and a permutation are necessary. The stabil-
ity checks and possible permutation at each step of the Bunch-Kaufman algorithm
prevent the use of the same straightforward blocking that was used for LDLT decom-
position. Because the stability checks and permutation must be completed before a
pivot column is computed, pivot columns cannot be grouped as they were in Fig. 2
without invalidating the bounds on element growth. In the 1 1 pivot case, solving
for the pivot columns is a vector operation, and updating the remaining submatrix is
a rank-1 update. The situation is slightly better for the 2 2 case for which solving
for the two pivot columns is a matrix-matrix operation where the dimensions of the
matrices are 2 2 and 2 (n- i- 1). Updating the remaining submatrix is a rank-2
update.

Two approaches have been taken to implement the Bunch-Kaufman algorithm on
high-performance architectures. Kaufman has implemented Algorithm B, an inner-
product formulation that uses matrix-vector products, and found that it performs
much better than the outer-product formulations on machines like the Alliant and
Convex but not on the CRAY X-MP [14]. The inner-product formulation works on
rectangular matrices rather than triangular matrices; this is a significant advantage
on the Alliant and Convex. Algorithm B, however, has unrestricted row/column
interchanges and is, therefore, as formulated, not suitable for band or sparse matrices.
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1)
e)
a)
a)

7)
s)

lO)
11)
12)
13)
14)
15)
16)

DOk=l,n
Ak max.i=k+l,n aj,k
set r to the row number of Ak
IF Ak( <1 ak, THEN

perform a 1 1 pivot operation
ELSE

a mj=k+,n ]ar,j
IF aA < ff]ak,k THEN

perform a 1 1 pivot operation
ELSE

exchange rows and columns r d k + 1
perform a 2 2 pivot operation
k=k+l

ENDIF
ENDIF

ENDDO

Fro. 4. The Bunch-Kaufman ]actorization Algorithm D.

In the LAPACK project, the Bunch-Kaufman algorithm has been restructured
so that matrix-matrix operations can be used.3 The LAPACK block algorithm, an
outline of which is given in Fig. 5, requires a row/column interchange at every step and
is therefore not suitable for band or sparse matrices. The LAPACK implementation
allows a specific block size, p, to be specified. The LAPACK implementation requires
a scratch space of size n p, however, if one is willing to slightly degrade performance,
it is possible to implement the algorithm with a scratch space of p p / 2n [14].

To compare the structural damage that occurs during factorization of a banded
matrix when the LAPACK block algorithm and version D of the Bunch-Kaufman
algorithm are used, we factored a 256 256 matrix with a semi-bandwidth of 50. The
structure of the resulting factors is shown in Fig. 6.

An alternative to using the Bunch-Kaufman algorithm for symmetric banded
matrices is to use LU factorization and ignore the symmetry of the matrix. Ignoring
the symmetry can cost up to mn, where m is the semi-bandwidth, storage locations,
and increase the operation count by a factor of 4. In addition, the inertia of the matrix
cannot be determined by using LU factorization, making this an unacceptable choice
for some applications. These disadvantages make LU factorization a poor choice for
the factorization of symmetric indefinite matrices with a small number of negative
eigenvalues.

4. New algorithm. In this section, a modification to the Bunch-Kaufman al-
gorithm is developed that allows pivot columns to be put into a block without
row/column interchanges and without updating each column as it is put into the
block. The algorithm described in this sectiona is a variant of Algorithm D from [4],
and therefore the number of row/column interchanges is bounded by the number of
negative eigenvalues of the matrix being factored. Unlike the LAPACK block algo-
rithm, the block sizes vary throughout the execution of the algorithm. The general

3 The algorithm and code referenced in this paper are from preliminary release 2 of LAPACK.
4 The authors give three other block algorithms in [10] and have determined that the algorithm

described here is the most practical.
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e)

a)

s)

10)
11)
12)
3)
14)
5)
16)
17)
18)
19)
2o)
21)

DOk- 1, n
bs 0
WHILE bs <_ p and k / bs <_ n DO

Update column k + bs using the previous bs columns
Find the largest element in column k + bs, i.e., row r
IF stability tests dictate THEN

Copy row/column r into a work vector
Update this work vector using the previous bs columns
IF stability tests dictate THEN

ignore this work vector
ELSE IF further tests dictate THEN

copy this work vector into A as a 1 x 1 pivot
ELSE

combine column k / bs and the work vector into a 2 x 2 pivot
ENDIF

ENDIF
Increment bs by 1 or 2 (depending on the pivot step)

ENDWHILE
update the remaining submatrix using the block pivot
increment k by bs

ENDDO

FIG. 5. The Bunch-Kau3Cman block variant in LAPACK.

FI(. 6. Structure o] ]actored matrix for version D and LAPACK algorithms.

strategy is to try to group several 1 x 1 pivots into a single step in a stable fashion.
Because 2 x 2 pivots involve a permutation of A, they are not candidates for inclusion
in a block.

The new algorithm uses an a priori error bound approach to maintain stabil-
ity. The algorithm computes a bound on the maximum element growth if the next
p columns are grouped into a pivot block. The bound is computed without actually
computing the pivot block or performing any row/column interchanges. If the com-
puted bound is small enough, then the p columns can be used as a pivot block. The
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bound can be computed incrementally; if the bound is computed for p columns, then
computing it for p + 1 columns is cheap.

From (6), for p successive 1 1 pivots to maintain stability, the maximum element
growth must be bounded by

((7) 1 /

We have from (5) that the growth for a 1 x 1 pivot at step k is

(8) k-I-1 -< #k 1+

Therefore, if one had a bound for #k+l and Ak+l, and knew what ak/l,k+l was, then
a bound for k+2 could be computed.

By factoring the 2 x 2 diagonal block, denoted Ai,i in Fig. 3, ak,k and ak/l,k can

be computed. The bound on Ak+, denoted k+l, after a 1 x 1 pivot at step k, is

Akak+l,k
ak,k

The bound on element growth for two columns becomes

(10) #k+2<_#k+l 1+
ak+l,k+l

To compute an element growth bound for p columns, one must factor the p p
submatrix, Ai,i, and search each of the p columns for its largest element. The new

algorithm is given in Fig. 7.
The algorithm uses matrix-matrix operations for the computation of the pivot

columns and the updating of the remaining submatrix. Like the LAPACK block
algorithm implementation, our implementation currently requires n p scratch space.
However, the same technique used in [14] could be used here to reduce the scratch
space. Also, it is possible to search for the A values of several columns simultaneously.
However, if the growth bound becomes large before all the A’s are examined, then
some of the searches could be wasted. It is also possible to continue the combination
of pivot columns (steps 5-14) beyond the step in which the growth bound becomes
too large, in the hope that it will become acceptable again at a future step.

5. Results.

5.1. Uniprocessor implementation. A version of the algorithm described in

4 suitable for matrices with a variable bandwidth was implemented on a CRAY Y-
MP. This implementation allows block sizes of up to 5. The matrix-matrix operations
are implemented by using loop unrolling, because the structure of the matrices the
authors are interested in do not allow for the efficient use of higher-level BLAS. When
the maximum block size is fixed at 1, this implementation is identical to the Bunch-
Kaufman algorithm.

The CRAY Y-MP is a register-to-register parallel/vector computer with up to
eight processors. Each processor has independent, segmented functional units. To
demonstrate the benefits of the new algorithm on the CRAY Y-MP, we factored three
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1)
e)
a)
a)
)
)
7)
s)
)
0)
1)
12)
13)
4)
15)
6)
17)
18)
9)
20)
21)
22)
23)
24)

DOk= 1, n
bs 0
#= 1.0
max_growth 1.0
WHILE (bs <_ Pmax) and (# _< max_growth) DO

Update the factor of the diagonal block Ak,k
;+ max=++l, a,+
DO i O, bs- 1

+ ++ a+,+
ENDDO
# #(1.0 + {k+,.,+.
max_growth max_growth 1 + -5
IF (/z _< max_growth) THEN bs bs + 1

ENDWHILE
IF (bs O) THEN

a maxj=k+l,n a,
depending on a and Ak perform a 1 x 1 or 2 x 2 pivot operation
k=k + 1 ork=k + 2

ELSE
Solve for the pivot block using the factored Ak,k
Updating the remaining submatrix using the pivot block
k=k+bs

ENDIF
ENDDO

FIG. 7. New block variant of Bunch-Kaufman ]actorization.

indefinite matrices that arise from an application in structural engineering.5 Each
matrix has ten negative eigenvalues. Results from these computations showing a
significant reduction in factorization time as the block size increases, are plotted in
Fig. 8. The average block size used during each factorization was very close to the
maximum block size specified.

5.2. Multiprocessor implementation. The algorithm in 4 also provides ben-
efits for parallel implementation. The major benefit is a reduction in the number of
synchronizations that are necessary because of the use of block operations.

The variable band matrix factorization implementation described in the preceding
subsection was explicitly parallelized using the Force [13], a Fortran-based parallel
programming language that has been shown to be useful for implementing parallel
linear algebra algorithms [12]. The primary source of parallelism is the updating of
the reduced matrix. The implementation was run on a four-processor CRAY Y-MP
for block sizes 1-5. An examination of the results in Table 1 show that good speedup
is maintained as the maximum block size increases for a matrix of order 12,054 and
an average semi-bandwidth of 328. At the same time, the new algorithm achieves
increased computational efficiency; reduction in the computation time is offset by the
reduction in the amount of synchronization needed.

5 The matrix being factored was actually the difference of two matrices, K and M. The factor-
ization times reported include the cost of computing K aM.
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Maximum Block Size

FIG. 8. Uniprocessor factorization times on the CRAY Y-MP.

TABLE 1
Effects of different maximum block sizes on parallel performance.

Block
Size

1
2
3
4
5

1 Processor 2 Processors 3 Processors 4 Processors
Time (sec) Time (sec) Time (sec) Time (sec)

10.65 5.63 3.94 3.10

7.50 3.94 2.76 2.17
6.70 3.54 2.46 1.92
6.54 3.45 2.39 1.87

5.3. Comparison with other methods. The algorithm presented in this pa-
per is designed for factoring matrices with sonie structure that must be preserved,
but it can, of course, be used to factor full, dense matrices. A comparison with other
variants of the Bunch-Kaufman algorithm for factoring full, dense matrices is, there-
fore, of interest. Such a comparison will give some idea of how much more expensive
this algorithm is than an algorithm that can specify the same block size every step,
such as the LAPACK version, or how much better the block algorithms can do than
algorithms that utilize matrix-vector operations only.

Four codes were used in the comparison: (1) an outer product variant using Level
2 BLAS from LAPACK, (2) the Level 3 BLAS variant from LAPACK described in
3, (3) the inner product variant using Level 2 BLAS described in 3, and (4) the
Level 3 BLAS algorithm described in 4. The codes were run in double precision
using eight processors on an Alliant FX/8 and compiled6 using the Alliant Fortran
compiler with optimization flags "-O -DAS -alt." Matrices of size 512 and 2,048
were used with 10 and 20 negative eigenvalues, respectively. The block size for the
LAPACK Level 3 BLAS code was varied from 32 to 128, and the maximum block

6 Optimized versions of the BLAS provided by Alliant were used.
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TABLE 2
Comparison of performance of different algorithms.

Algorithm

LAPACK-2
LAPACK-3
LAPACK-3
LAPACK-3
LAPACK-3
New Method
New Method
New Method
New Method
Inner Product

n--512
Block Size Time (sec)

n--2048
Block Size Time (sec)

n/a 5.57 n/a 367.62
4 13.83 4 376.46

32 2.46 32 95.82
64 1.99 64 89.49
128 1.87 128 91.17

4(3.6) 2.41 4(3.8) 139.56
32(18) 2.45 32(21) 126.97
64(31) 2.37 64(41) 99.89

128(31) 2.32 128(84) 95.78
n/a 2.34 n/a 122.95

TABLE 3
Comparison o] accuracy of different algorithms.

Algorithm ]] n--512 Norm of the n--2048 Norm of the
Block Size Residual Block Size Residual

LAPACK-2 n/a 8.2E-11 n/a 4.9E-9
LAPACK-3 4 1.4E-10 4 9.5E-9
LAPACK-3 32 8.2E-11 32 3.4E-9
LAPACK-3 64 1.8E-10 64 2.9E-9
LAPACK-3 128 9.6E-11 128 3.3E-9
New Method 4(3.6) 4.6E-10 4(3.8) 3.9E-9
New Method 32(18) 1.3E-9 32(21) 5.6E-9
New Method 64(31) 7.8E-10 64(41) 2.1E-8
New Method 128(31) 9.0E-10 128(84) 7.2E-9
Inner Product n/a 3.9E-11 n/a 8.8E-10

size for the new algorithm was varied over the same range. The performance results
are given in Table 2. In the "Block Size" column the numbers in parentheses for
the new method are the average block size used. From the results, we can see that
for realistic block sizes: (1) the LAPACK block algorithm has a slight edge over the
new block algorithm, (2) the inner-product algorithm is slightly slower than the block
algorithms, and (3) the Level 2 BLAS LAPACK algorithm is much worse than the
other algorithms. Another interesting aspect of these results is that for very small
block sizes, the LAPACK block algorithm performs very poorly. However, one should
note that the LAPACK block algorithm will default to the unblocked algorithm if the
unblocked algorithm will be faster. In Table 3, we give the norms of the residuals
for each of the experiments in Table 2. We see that, as we might expect, the new
block algorithm has a slightly larger residual than the other methods because of its
somewhat relaxed stability test. At a sacrifice of some speed7 the accuracy can be
made comparable to that of the other algorithms by requiring the growth factor at
each individual pivot to be less than (1 / ) rather than requiring the growth factor

)of p pivots to be bounded by (1 +
6. Summary. A block algorithm, based on the Bunch-Kaufman algorithm, suit-

able for factoring symmetric indefinite matrices on high-performance architectures was
given. The algorithm, unlike other high-performance variants of Bunch-Kaufman fac-
torization, limits the number of row/column interchanges to the number of negative

7 In experiments on the Alliant, we found increases in execution time of approximately 10%.
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eigenvalues in the matrix. Therefore, this algorithm does not destroy, to a large
extent, the structure of a matrix and can be used for factoring banded or sparse ma-
trices. The block algorithm was shown to be faster than its nonblocked counterpart
for factoring banded matrices on a multivector computer. It was also shown to be
only slightly more expensive than the block algorithm used in LAPACK for factoring
indefinite dense matrices.
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COMPUTATION OF STABLE INVARIANT SUBSPACES OF
HAMILTONIAN MATRICES*
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Abstract. This paper addresses some numerical issues that arise in computing a basis for the
stable invariant subspace of a Hamiltonian matrix. Such a basis is required in solving the alge-
braic Riccati equation using the well-known method due to Laub. Two algorithms based on certain
properties of Hamiltonian matrices are proposed as viable alternatives to the conventional approach.
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1. Introduction. A matrix Z E T2n2n is called a Hamiltonian matrix if

(1.1) JZJT -ZT,

where

(1.2) J--In On

In (1.2), In denotes the n n identity matrix and On denotes the n n null matrix. In
this paper we consider some numerical issues related to the problem of finding a basis
for the invariant subspace of a Hamiltonian matrix corresponding to a certain subset
of its eigenvalues. Such a problem arises in one of the more commonly used methods
[1] for solving the well-known continuous-time algebraic Riccati equation (ARE):

ca(x) ATX -t- XA- XGX + F O,

where A Tin n; G BBT @ Tn n and F CTC "]’n n are positive semidefinite
matrices. If (A, B) is a stabilizable pair and (A, C) is a detectable pair [2], then (1.3)
has a unique positive semidefinite solution X XT Tnn, which is a stabilizing
solution, i.e., A- GX has all its eigenvalues in the open left half-plane. Numerical
solutions of equations of the form (1.3) are required in several control system appli-
cations, e.g., the linear quadratic optimal control problem, Kalman filtering, and H
robust control. It is not surprising, therefore, that many methods have been proposed
for solving the ARE, e.g., see [3], [4] for an extensive bibliography. In this paper, we
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shall concentrate on one of the more reliable and elegant methods for solving (1.3).
The Hamiltonian matrix corresponding to (1.3) is given by

[AZ- F -AT

The method proposed by Laub [1] is based on the following results concerning
the matrix Z:

(a) If A E C is an eigenvalue of Z, then so is -A.
(b) A symmetric matrix X is the desired stabilizing solution of (1.3) if and only

if X -U21U1, where the columns of [U u2T1]T span the n-dimensional invariant
subspace of Z corresponding to its stable eigenvalues.

The algorithm proposed by Laub for computing X involves the following steps:

Algorithm I
Step 1. Reduce Z to a real Schur form (RSF), / E T2nX2n.

thogonal transformations in a matrix U T2n2n, i.e.,
Accumulate the or-

(1.4)

Comment: This step can be performed by first reducing Z to upper Hes-
senberg form and then using the QR Algorithm [5]. The reduction to upper
Hessenberg form requires approximately (2n)3 flops (floating point opera-
tions) and the reduction of the resulting upper Hessenberg matrix to an RSF
requires approximately 4a(2n)3 flops, where a represents the average number
of QR steps required per eigenvalue ( 1.5).

Step 2. Rearrange the eigenvalues of R so that the n stable eigenvalues are in the
top left corner.
Comment: This can be achieved by means of orthogonal transformations on
/ using the subroutines EXCHNG and HQRa [6] (also note the corrections in
[7]) and requires more than 4a(2n)3 flops. Let this eigenvalue rearrangement
operation be represented by

(1.5) -- Tl,where the orthogonal transformations resulting from using EXCHNG and
HQR3 are accumulated in , and the submatrix/11 Tnn is in RSF with
all its eigen_values in the open left half-plane.

Step 3. Set U UU and let

U121 where Ull, U21 ( T,nn
U22 j

Step 4. Solve XUll =-V21 for X.
Comment: This step can be performed using the appropriate subroutines
from LINPACK and requires approximately n3 flops.

The above approach (also called the Schur vector approach) can be regarded as a
generalization, and a numerically much more robust implementation, of the eigenvec-
tor approach of MacFarlane [8]. In the rest of this paper, we concentrate on Steps 1

By a real Schur form, we mean an upper quasi-triangular real matrix with a scalar along the
diagonal for each real eigenvalue and a 2 x 2 block for each pair of complex-conjugate eigenvalues.
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and 2, and more specifically on the problem of numerically computing the columns of
[U U]T that span the n-dimensional invariant subspace of Z corresponding to its
stable eigenvalues. Our intention is to suggest some ways of improving the efficiency
and accuracy of the computations that are required in these steps.

2. Computing the eigenvalues of a Hamiltonian matrix. The method
proposed by Laub uses an algorithm for reduction of a general matrix to upper Hes-
senberg form and the QR Algorithm to find the eigenvMues of Hessenberg matrices.
Therefore, it does not take into account the special structure of Z, so that the trans-
formations employed in this algorithm destroy the Hamiltonian structure of Z. On
the other hand, if similarity transformations on Z are carried out using symplectic
matrices, then its Hamiltonian structure will be preserved. In other words, the matrix
Zo V-ZV will be a Hamiltonian matrix if V is a symplectic matrix. A matrix
V 72n2n is symplectic if VTJV J, where J is defined by (1.2). From the point
of view of numerical reduction of Z to a condensed form, such as a block upper tri-
angular form, it is desirable to perform the required transformations using orthogonal
symplectic matrices. The following result shows the existence of one such condensed
form.

THEOREM 2.1. I Z has no eigenvalues on the imaginary axis, then there exists
an orthogonal symplectic matrix

VII V21 ](2.1) V=-V21 VII

with Vi, V2 E Tnxn, such that

(2.2) VTZV On -RT - 2,

where T E Tnxn, and R E Tnxn is in RSF with eigenvalues in the open left
half-plane.

Proof. See [9].
There are two types of orthogonal symplectic matrices that are particularly useful

in performing reductions on Hamiltonian matrices. The first type consists of House-
holder symplectic matrices defined by

(2.3) p(k,u)= [/
where

(2.4a) /5 In
2uuT

uTu

and

(2.4b) UT [0, ...,0, Uk, ..., Un] 0T.

The second type consists of Givens symplectic matrices defined by

[cs s] c, sen.x.J(k,c,s) C
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where

(2.6)

C diag{, c, 1,..., 1},
k-1

S diag{, s, 0,..., 0},
k-1

and c2 + s2 1. Algorithms are given in [12] for computing P(k, u) and J(k, c, s) to
zero specific entries in a vector.

Theorem 2.1 and its proof in [9] show that it is possible to reduce Z using the
structure-preserving orthogonal symplectic transformations to the block upper trian-
gular form (2.2), but no algorithm for doing so is provided. In fact, so far success in
developing an efficient QR-type algorithm for this reduction has been reported only
for a special case [10], [17], namely, when rank(G) 1 or rank(F) 1. In this case,
Byers has provided an extension of the implicitly shifted QR algorithm that uses or-
thogonal symplectic transformations. However, because the method is only applicable
for a special case, we shall not consider it further in this paper. It suffices to mention
that in the algorithm proposed by Byers, a reordering of the eigenvalues is required
to ensure that R is a stable matrix. This reordering is performed using EXCHNG
and HQR3 to bring an unstable eigenvalue of R to its (n, n)th position followed by
a Givens symplectic transformation, J(n, c,s), to interchange the (n, n)th entry of
R with that of -RT. Also, it is worth mentioning that reduction of Z to a block
triangular condensed form has been achieved in the general case using nonorthogonal
symplectic similarity transformations [11]. However, the use of such transformations
may cause numerical instability.

An elegant method that uses orthogonal symplectic matrices to "approximate"
the eigenvalues of a Hamiltonian matrix has been proposed by Van Loan [12]. The
algorithm given in [12] computes the eigenvalues of Z2, i.e., of

(2.7) M=
M21 M22 =- F -AT

where

MI A2 + GF M2T2,

(2.8b) M12 AG GAT -M,

and

(2.8c) M2 FA- ATF -M.
Note that M12 and M21 are skew-symmetric matrices. Also, it can be easily shown
that the structure of M is preserved under symplectic similarity transformations [12].
Furthermore, if Z has eigenvalues {)1, -1,. ., An, --An}, then the eigenvalues of M
are {A, ,k,... ,,k2n,,k2n}. The eigenvalues of Z can, therefore, be easily obtained from
those of M. However, it should be noted that the algorithm in [12] does not give us
an RSF of Z, nor does it enable us to compute the stable invariant subspace of Z.
The eigenvalues of M can be computed using the following steps:
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Algorithm II

Stepl’FrmM-[ AF -AT
Step 2. Compute an orthogonal symplectic matrix Q such that

QTMQ= On -HT
where U is in upper Hessenberg form (see Algorithm SR in [12]).

Step 3. Compute the eigenvalues of H (#i, i 1,..., n) using the QR Algorithm.
Step 4. Compute Ai V, i 1,..., n. Set An+i -Ai, i 1,..., n.

The symplectic orthogonal matrix Q in Step 2 is a product of symplectic House-
holder and Givens transformation matrices and is structure-preserving. The complete
algorithm for the reduction is given in [12] with implementation details and numeri-
cal properties. It suffices to mention here that the algorithm requires approximately
53n3/3 flops which is about 25-30% of the computation required by the QR Algorithm
applied to Z. Furthermore, if floating point arithmetic with base b and precision t is
used, then it can be shown that the computed eigenvalues of Z obtained using Algo-
rithm II are the exact eigenvalues of a matrix Z + ms, where E T2nx2n satisfies

(2.9)

As a comparison, if the eigenvalues of Z are computed using the QR Algorithm
(as is done in [1]), then the computed eigenvalues are the exact eigenvalues of a matrix
Z -t- EQ, where EQ E T2n2n satisfies

(2.10) IIEQ[[U b-lIZll.
This implies that the error in computing the eigenvalues of Z using Algorithm II
may be up to 7 times as large as that using the QR Algorithm. Also, in general,
Algorithm II gives better accuracy for eigenvalues with larger magnitudes than those
with smaller magnitudes.

The fact that Algorithm II computes the eigenvalues of Z less accurately than
the QR Algorithm is not a matter of concern in our application. It is sufficient at
this point to know approximately the set of n stable or unstable eigenvalues of Z.
More accurate values of these will be obtained and at the same time reordered to get
a stabilizing solution of the ARE.

3. Condensed forms for Z with specified eigenvalue ordering. We now
consider the problem of reducing Z to condensed forms in which the eigenvalues of Z
are separated into sets of stable and unstable eigenvalues, i.e., Z is reduced to a block
triangular form

(3.1) Z-
0, Z22

where Z and Z22 E T{.nxn and have only stable and unstable eigenvalues, respec-
tively. In this section, we show how two such condensed forms can be computed. Our
approach uses a modification of the QR Algorithm. The algorithms described in this
section can be regarded as alternatives to using the EXCHNG and HQR3 subroutines
[6]. In this context, it is worth mentioning that since no interchanging of eigenvalues
is done in our approach, we avoid the numerical difficulties that may be encountered
in attempting to exchange nearly equal eigenvalues using EXCHNG and HQR3 [13].
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We start by showing how a specified eigenvalue of Z can be made to appear in
the bottom right (Algorithm QR-down) or top left (Algorithm QR-up) position. For
the sake of brevity, we shall present only Algorithm QR-down in detail. Algorithm
QR-up can be stated in an analogous manner. We assume that Z is in unreduced
upper Hessenberg form and the eigenvalue to be positioned is given.

Algorithm QR-down(Z, n, A, D)
Step 1. If the eigenvalue to be shifted (A) is complex, go to Step 4.
Step 2. Form a real shift corresponding to : Z := Z- AI2n
Step 3. For k 1, 2,..., 2n- 1, determine a Householder matrix k E T22 such

that

Z := DZD, where D diag{I_l, ,
D:= DD

end
Z := Z +
exit

Step 4. Form an implicit double shi corresponding to the complex-conjugate pair

Pl := Zl Zll (A T A*) T AA* T z12z21
ql :: z21[z11 + z22 (A +
rl := z21z32

Determine a Householder matrix 0 ax3 such that

Do q 0
r 0

Z’= DoZOO, where Do diag{o, I2-3}
D := DoD

Step 5. For k 1, 2,..., 2n- 3, determine a Householder matrix k 3x3 such
that

z+a, 0

Z := DZD, where D diag{I, D,
D:= DD

end
Deermine a Householder magrix n- x such

Z := D_ZD_, where D_ diag{h-, D-}
D := Dn-D

exit

Remark a.1. Algorithm QR-up (Z, n, , U) can be defined in
the way in which QR-downw defined. In this ce, ghe eigenvalue(s) corresponding
o the shi are made o appear in he op lefg corner of Z.
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Remark 3.2. Algorithms QR-down and QR-up perform one step (single for a
real eigenvalue and double for a complex-conjugate pair of eigenvalues) of the QR
Algorithm [5]. Explicit single shifts are used for real eigenvalues and implicit double
shifts for complex-conjugate pairs of eigenvalues. The implicit shifts introduce nonzero
terms in certain locations below the subdiagonal of the upper Hessenberg matrix.
Algorithm QR-down uses row operations to "chase" these nonzero terms to the bottom
right corner, whereas Algorithm QR-up uses column operations to "chase" the terms
to the top left.

Remark 3.3. If a shift is an accurately computed eigenvalue of Z, then Algorithm
QR-down will transform the matrix Z to the form

for a real single shift A, or to the form

211

where (I) E T2x2 for a double shift. Similarly, Algorithm QR-up will position A and
(I) in the top left corner of a quasi-triangular matrix. Now, if a shift is not equal to
an accurately computed eigenvalue of Z, then the subdiagonal element(s) next to A
((I)) (or below A ((I)) in the case of QR-up) may not become zero after one iteration, in
which case two or more iterations of the algorithm may be required. In this case the
shifts for the second and subsequent iterations would correspond to the scalar (for a
real eigenvalue) or the 2 x 2 matrix (for a complex-conjugate pair of eigenvalues) in
the bottom right corner (Algorithm QR-down) or top left corner (Algorithm QR-up).
The effect of performing these additional iterations would be to reduce the appropriate
subdiagonal term(s) to zero and yield more accurate value(s) for the eigenvalue(s).

Remark 3.4. The orthogonal similarity transformations on Z are accumulated in
D E 72n2n for Algorithm QR-down and in U T2nx2n for Algorithm QR-up.

Remark 3.5. It has been assumed in algorithms QR-down and QR-up that the
upper Hessenberg matrix Z is unreduced. If this is not the case, then the sequence of
transformations Ok (in QR-down) and Uk (in QR-up) cannot be completed. However,
this is not a limitation because, if Z is not unreduced, then it can be made unreduced
by applying an arbitrary QR shift to introduce coupling between the corresponding
blocks [6].

3.1. A real Schur form with eigenvalue rearrangement. In this section we
show how the algorithms QR-down and QR-up can be used to obtain the condensed
form (3.1), in which Zll 7n n and Z22 7n are in RSF and have only stable
and unstable eigenvalues, respectively.

Algorithm III (RSF)
Input: A Hamiltonian matrix Z T2nx2n

Output: An orthogonal matrix E 2nx2n such that

(3.4) ffTZff [ Rill2R2
where R1 Tnn and R2 @ 7nxn are in RSF with stable and unstable
eigenvalues, respectively.

Step 1. Reduce Z to an upper Hessenberg form ZI:
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:=
nl :--n
p:=O

Sep 2. For k 1,2,... ,n, compute an eigenvalue A of Z (using one or more
ieraions of Algorithm QR-down); accumulate he ransformaions in .

If Re(Ak) > 0,
Call QR-up (Zk, nk, --Ak, Uk)

else
Call QR-down (Zk, nk, Ak, U[)
Call QR-up (Zk, nk, --Ak, Uk)

end
2 := 2 diag{Ip, Uk,
If Ak is real,

Zk+t := Zk(2 2nk 1,2:2nk 1)
Tk+l :: nk 1

p:=p+l
else

Zk+t := Zk(3 2nk 2, 3:2nk 2)
k+l :’-- nk 2

p:=p+2
end

end
Step 3. t2

Remark 3.6. Algorithm III computes only n eigenvalues of Z. After an eigenvalue
Ak has been determined using Algorithm QR-down, if Ak is an unstable eigenvalue,
then a shift --Ak is applied using Algorithm QR-up to position the stable eigenvalue
--Ak in the top left corner. On the other hand, if Ak is a stable eigenvalue, then a
shift -Ak using Algorithm QR-down and another shift Ak using Algorithm QR-up are

applied to position the unstable eigenvalue (--Ak) in the bottom right corner and the
stable eigenvalue (Ak) in the top left corner, respectively. As an illustration, let us
consider the case k 2, n 4, with computed real eigenvalues At > 0 and A2 > 0.
Then the structure of the resulting matrix would be

"--,kt x x x x x x x
0 -A2 x x x x x x
0 0 x x x x x x
0 0 x x x x x x
0 0 0 x x x x x
0 0 0 0 x x x x
0 0 0 0 0 0 A2 x
0 0 0 0 0 0 0 At

Thus, as k increases by 1, the eigenvalue problem deflates by 2. Therefore, since we

compute only n eigenvalues of Z, the amount of computation required is approximately
!(4)(2n)3 flops, where represents the average number of QR steps required per
2
eigenvalue and is usually overestimated by a factor of 1.5. Also, once Ak has been
determined, a shift of --Ak normally yields the eigenvalue --Ak in the appropriate
location in one sweep of the QR Algorithm ( 1). Therefore, the remaining n
eigenvalues require approximately 16n3 operations. The complete reduction of the
upper Hessenberg matrix Zt to an RSF can thus be achieved using approximately 40n3
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flops. For comparison, we note that the reduction of a 2n 2n upper Hessenberg matrix
to RSF using the QR Algorithm requires approximately 4a(2n)3 operations. Using a
1.5, this amounts to approximately 48n3 operations. If the ordering of the eigenvalues
in the RSF requires about 25% additional operations, then we have approximately
60n3 operations for computing all 2n eigenvalues of an upper Hessenberg matrix and
rearranging them in groups of stable and unstable eigenvalues using EXCHNG and
HQR3.

Remark 3.7. Further speedup in Algorithm III may be achieved by first using
Algorithm II to compute the eigenvalues of Z. The approach would then be reduced
to performing shifts corresponding to these eigenvalues to position them in the appro-
priate blocks on the diagonal. However, as we shall see in the next section, we need
only apply shifts corresponding to the unstable eigenvalues, thereby further reducing
the computational effort required.

3.2. A Hessenberg-Schur form. We now describe the reduction of Z to a
block upper triangular form (3.1) in which Zll E Tn n is in upper Hessenberg form
and Z22 E Tn n is in real Schur form. Furthermore, ZI will have all its eigenvalues in
the open left half of the complex plane. The corresponding columns of the accumulated
transformation matrix will then immediately give us a basis for the stable invariant
subspace of Z. The stabilizing solution of the ARE can then be obtained as mentioned
in 1.
Algorithm IV (Hessenberg-Schur Form)
Input: A Hamiltonian matrix Z T2nx2n

Output: An orthogonal matrix U T2n2n such that

u zu= R
where H Tn n is an upper Hessenberg matrix with only stable eigenvalues
and R Tnn is in an RSF with only unstable eig_envalues.

Step 1. Compute the "approximate" unstable eigenvalues, Ai, i 1,..., n of Z using
Algorithm II.

Step 2. Reduce Z to upper Hessenberg form" Z :-- uTzu, and
nl ::n, p’=0, U2 :-- I2n.

Step 3. For k 1,2,...,n,
Call QR-down (Zk, nk, k UkT

.:

If Ak is real

else

Zk+ :-- Zk(l 2nk- 1, l 2nk- 1)
nk+l :-- nk 1

p:---p+l

Zk/l Zk(1 2nk 2, 1 2nk 2)
k-I Irk 2

p’-p+2
end

end
Step 4. U U1U2

Remark 3.8. By partitioning U as

U= U
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where Ull, U21 e nnn, it is easy to see that [U U]T is a basis for the invariant
subspace corresponding to the stable eigenvalues of Z. Therefore, a stabilizing solution
of the ARE is X -U21U.

Remark 3.9. It should be noted that only n shifts are applied to Z1 using the
QR Algorithm and these shifts correspond to the unstable eigenvalues of Z. If the
transformations that are accumulated in U1 and U2 are performed on Z (via Algorithm
QR-down), then the result will be a real Schur matrix R with the unstable eigenvalues
of Z in the bottom right corner, leaving an upper Hessenberg matrix H with the
stable eigenvalues of Z in the top left corner. However, if we are only interested in
the solution X of the ARE, we do not need to store the matrix resulting from the
operations on Z, since X can be computed from the first n columns of U.

Remark 3.10. If the eigenvalues , i 1,..., n, computed using Algorithm II are
accurate, then the process of reducing Z to the Hessenberg-Schur form becomes finite
because the required shifts are known a priori. In this case Algorithm IV will be slightly
faster than Algorithm III. On the other hand, if the eigenvalues A, i 1,..., n are not
computed accurately, then it may be necessy to perform two or more iterations of
Algorithm QR-down with updated values of A to provide more accurate shifts. This
will result in finer tuning of the shifts yielding more accurate values for the unstable
eigenvalues, which in turn will improve the accuracy of H and U.

Remark 3.11. As mentioned in 2, computation of the eigenvalues of Z using
Van Loan’s method [12] requires approximately 53n3/3 operations. The ordering of
n unstable eigenvalues to get the Hessenberg-Schur structure involves approximately
4(2n)3/2 operations. We can use 1, since the shifts employed are the eigenvalues
computed using Van Loan’s method and, in general, one iteration per eigenvalue
should suffice to "fine tune" the eigenvalues to the accuracy of the QR Algorithm.
This results in an operations count of approximately 33.7n3 flops for the reduction of
the upper Hessenberg matrix Z1 to the Hessenberg-Schur form (3.5).

Remark 3.12. It is worth mentioning here that in a recent report [14], an algo-
rithm has been proposed that uses the "approximate" eigenvalues computed using
Van Loan’s method to implement block shifts (of n eigenvalues at a time) on a con-
densed form of Z obtained by Paige and Van Loan [9] using orthogonal symplectic
transformations. The algorithm in [14], therefore, uses only orthogonal symplectic
transformations to obtain the RSF in (2.2); but no analysis or numerical experiments
are given to show the efficiency or accuracy of the algorithm. As mentioned in [9],
performing orthogonal symplectic updates of the condensed form destroys its nice zero
structure. Consequently, carrying out implicit double shifts in this case becomes com-
putationally expensive, so that no advantage is gained even though only orthogonal
symplectic transformations are used. The use of implicit n simultaneous (block) shifts
overcomes this problem, especially if the shifts are the "approximate" eigenvalues of Z.
However, the buildup of rounding errors in implementing a large number of shifts si-
multaneously can cause difficulties with convergence of this symplectic block QR-type
algorithm, particularly if one or more of the eigenvalues are badly conditioned.

4. Numerical examples. In this section, we illustrate the numerical perfor-
mance and properties of the algorithms proposed in the preceding sections. All com-
putations were performed on a SUN 4/370 computer using the f77 compiler.

Example 1. In this example, we use the model for the high-speed vehicle control
problem described in [1]. State matrices of orders 9, 19, 29, 39, and 49 were considered
and, with appropriate choice of matrices G and F, Hamiltonian matrices of orders 18,
38, 58, 78, and 98, respectively, were obtained. The eigenvalue problems for these
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matrices are quite well conditioned. For each Hamiltonian matrix, the comparisons
were performed for the following computations:

(a) Computing the eigenvalues and separating them into groups of stable and
unstable eigenvalues.

(b) Computing the positive semidefinite solution of the corresponding ARE from
the stable invariant subspace.

The above computations were done for three cases:
1. The QR Algorithm and the EXCHNG subroutine [6] were used to compute

the eigenvalues and order them into groups of stable and unstable eigenvalues. The
computations were performed using both single and double precision arithmetic.

2. Algorithm III was used in single precision to obtain the RSF in (3.4).
3. Algorithm IV was used in single precision to reduce the Hamiltonian matrix

to the Hessenberg-Schur form in (3.5).
Note that case 3 requires the use of Van Loan’s method [12] (Algorithm II) to

"approximate" the unstable eigenvalues of the Hamiltonian matrix. In fact, since the
Hamiltonian matrices in this example are well conditioned, the eigenvalues computed
using Van Loan’s method are almost as accurate as those obtained using the QR
Algorithm (case 1). The accuracies of the unstable eigenvalues obtained using single
precision arithmetic (as compared with the double precision results obtained in case
1) are shown in Table 4.1 for the three cases and the five Hamiltonian matrices.

TABLE 4.1

Maximum relative error in A(Z).

Size of Z HQR3-EXCHNG Algorithm III Algorithm IV
18x18 9.68 x 10-7 4.37 x 10-7 2.76 x 10-7

38x38 1.68 10-6 6.97 10-7 5.96 x 10-7

58x58 2.29 x 10-6 8.29 x 10-7 1.43 x 10-6

78x78 2.48 x 10-6 4.53 x 10-6 3.59 10-6

98x98 3.14 x 10-6 6.70 x 10-6 2.35 x 10-6

In this table and elsewhere, the "relative error" in the eigenvalues is the value
IA/d A[/]A/dl, where A and A/d denote the ith eigenvalue computed using single and
double precision arithmetic, respectively. The maximum is taken over all the eigen-
values of Z. It is clear from Table 4.1 that the accuracy obtained using Algorithms III
and IV is comparable to or better than that obtained using the conventional approach
(with the HQR3 and EXCHNG subroutines).

For the three cases and the five Hamiltonian matrices, we obtained bases for the
stable invariant subspaces from the accumulated transformations and computed the
positive semidefinite solutions of the corresponding AREs. All the computations were
performed in single precision. For comparison, we also obtained the solution of each
ARE in double precision for case 1. We used this to compute the relative errors in
the single precision solutions of the AREs in the three cases, i.e., I]Xd Xsll2/llXdll2,
where Xd is the double precision solution of the ARE using Algorithm I with EXCHNG
and HQR3 (case 1) and X8 is the single precision solution of the ARE computed
using Algorithm I (case 1), Algorithm III (case 2), and Algorithm IV (case 3). The
relative errors in the solutions are shown in Table 4.2 for the three cases and the five
Hamiltonian matrices.

Example 2. In this example, we generated random matrices of orders 9, 19, 29,
39, and 49 for A. Also, the matrices G and F were constructed as G BBT and
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TABLE 4.2

Relative error in X.

Size of Z HQR3-EXCHNG Algorithm III Algorithm IV
18x 18 7.46x 10-7 7.29x 10-7 6.73x 10-7

38 x38 1.61 x 10-6 1.39x 10-6 1.37x 10-6

58 x 58 2.22 x 10-6 2.25 x 10-6 1.63x 10-6

78x 78 2.86 10-6 2.31 10-6 2.29x 10-6

98x98 3.72x 10-6 2.71x 10-6 2.89x 10-6

F CTC, where B and C were random matrices. Therefore, once again we have
Hamiltonian matrices of orders 18, 38, 58, 78, and 98, respectively. The computations
(a) and (b) for the three cases (1-3) mentioned in Example 1 were performed on these
matrices. The corresponding results are shown in Tables 4.3 and 4.4.

TABLE 4.3
Maximum relative error in A(Z).

Size of Z HQR3-EXCHNG Algorithm III Algorithm IV
18x18 2.97 x 10-6 1.05 x 10-6 6.78 x 10-7

38x38 3.49 10-6 2.08 10-6 1.74 10-6

58x58 1.31 x 10-5 1.11 x 10-5 1.26 x 10-5

78x78 4.44 x 10-6 3.43 10-6 2.05 10-6

98x98 1.89 x 10-5 1.90 x 10-5 7.75 10-6

In this example, we note again that the accuracy obtained using Algorithms III
and IV is comparable to or better than that obtained using the conventional approach
(with the HQR3 and EXCHNG subroutines).

TABLE 4.4

Relative error in X.

Size of Z HQR3-EXCHNG Algorithm III Algorithm IV
18x 18 4.82x 10-6 5.54 10-6 3.26x 10-6

38x38 3.23x 10-6 3.15 10-6 2.47x 10-6

58x 58 7.91 x 10-6 6.84x 10-6 7.87x 10-6

78x 78 5.99 x 10-6 5.55x 10-6 5.24x 10-6

98x98 6.79x 10-6 6.20x 10-6 5.03x 10-6

Example 3. This is an example of a Hamiltonian matrix of order 24 with some
very ill-conditioned eigenvalues. The example is the same as that used by Van Loan
[12], and the matrix A and its eigenvalues are given in [15]. The latter were used
in obtaining the relative errors in the computed eigenvalues. The computations in
Example 1 (a) were carried out for cases 1-3 in double precision. The results for the
four most ill-conditioned eigenvalues are shown in Table 4.5, where the quantity s(Ai)
is the cosine of the angle between the left and right eigenvectors associated with the
eigenvalue Ai. The reciprocal of s(A) denotes the conditioning of A [15].

In this example, because of the ill conditioning, only double precision arithmetic
was used. For the ill-conditioned eigenvalues, Van Loan’s method (Algorithm II) was
significantly less accurate than the QR Algorithm (case 1). Therefore, two or more
QR steps (QR-down) are needed in Algorithm IV to improve the accuracy and to
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TABLE 4.5
Relative error.

A i s(Ai) . HQR3-EXCHNG Algorithm III Algorithm IV

0.1436 10-7 5.54 x 10-8 4.61 x 10-8 6.44 x 10-8

0.0812 10-8 4.73 x 10-7 4.13 10-7 5.08 10-7

0.0495 10-8 1.21 10-6 1.08 10-6 1.26 10-6

0.0310 10-8 9.49 x 10-7 8.49 x 10-7 9.72 x 10-7

isolate the unstable eigenvalues in the matrix R in (3.5). Table 4.6 shows the relative
errors in the ill-conditioned eigenvalues computed using Van Loan’s method and those
obtained using Algorithm IV.

TABLE 4.6
Relative error.

Algorithm II Algorithm IV

0.1436 4.74 x 10-6 6.44 x 10-8

0.0812 5.66 x 10-5 5.08 x 10-7

0.0495 2.16 x 10-4 1.26 x 10-6

0.0310 2.55 x 10-4 9.72 10-7

Example 4. Here we tested the algorithms for two scenarios: when some of the
eigenvalues of the Hamiltonian matrices as well as the corresponding AREs are poorly
conditioned, and when there are multiple eigenvalues. The computations (a) and (b)
for the three cases (1-3) mentioned in Example 1 were performed for five Hamiltonian
matrices. The relative errors in the eigenvalues and in the solutions of the AREs are
shown in Tables 4.7 and 4.8, respectively. The three poorly conditioned examples
correspond to Hamiltonian matrices, which were generated using the Frank matrix,
the data for the boiler model [16], and an example given by Byers [17]. It should
be noted that the values of min(s(A)} in Tables 4.7 and 4.8 are for the closed-loop
eigenvalues, i.e., for the eigenvalues of the Hamiltonian matrices with nonzero F and
G matrices, whereas in Table 4.5, the values of s(Ai) are for the open-loop case, i.e.,
for the Frank matrix. The term an in Table 4.8 denotes the "condition number" of
the ARE [17] corresponding to a given Hamiltonian matrix, and is given by

(1 + IIXll)= IIZll
[IxIIsEP [(A GX),-(A GX)T]

where SEP[N,-NT] min(]lPN 4- NTpII]][P]I- 1}. A large value of an implies
an ill-conditioned ARE.

From Tables 4.7 and 4.8, we note that the eigenvalues and the AREs correspond-
ing to the Hamiltonian matrices with multiple eigenvalues are well conditioned. As
expected, for these two cases the three algorithms give very good and comparable
accuracy. In the first case, the Hamiltonian matrix has eigenvalues at 4-20, 4-30,
4-40, and 4-50 with multiplicity 3; in the second case, the eigenvalues are at 4-4 with
multiplicity 6, and at 4-10, 4-20, and 4-30 each with multiplicity 2.

The three other Hamiltonian matrices considered in Tables 4.7 and 4.8 are rela-
tively poorly conditioned. The boiler problem has the worst conditioning of the three
cases, both with respect to the eigenvalues of the Hamiltonian matrix as well as the
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TABLE 4.7
Maximum relative error in A(Z).

Examples min(s(A)} HQR3-EXCHNG Algorithm III Algorithm IV
Boiler problem (18 x 18)
Frank matrix (24 x 24)
Byers’s example (10 x 10)
Multiple case 1 (24 x 24)
Multiple case 2 (24 x 24)

10-8 1.80 10-3 1.04 10-3 6.40 10-3

10-4 8.62 10-4 7.05 10-4 7.16 10-4

10-3 1.64 x 10-5 1.52 x 10-5 3.99 x 10-6

10-1 1.24 x 10-6 9.53 x 10-7 6.86 x 10-7

10-1 1.20 10-6 1.04 10-6 1.40 10-6

TABLE 4.8
Relative error in X.

Examples ’OR HQR3-EXCHNG Algorithm III Algorithm IV
Boiler problem (18 18) 1015
Frank matrix (24 24) 107
Byers’s example (10 10) 109
Multiple case 1 (24 24) 20

Multiple case 2 (24 x 24) 40

1.20 x 10-3 1.20 10-3 5.90 10-3

1.10 x 10-3 9.71 10-4 9.01 10-4

4.01 x 10-6 4.14 x 10-6 4.03 x 10-6

4.99 x 10-8 3.99 x 10-8 3.94 x 10-8

5.10 x 10-8 4.46 x 10-8 5.89 x 10-8

corresponding ARE. This results in slightly lower accuracy for the computed closed-
loop eigenvalues and the solution of the ARE than in the other two cases, for which
the measures of conditioning have similar orders of magnitude.

From Tables 4.7 and 4.8, we note that both Algorithms III and IV perform as
well as or slightly better than the conventional approach (HQR3-EXCHNG) in all
cases except one. The exception corresponds to the results obtained using Algorithm
IV for the boiler model, which is the most ill conditioned of the examples considered
in Tables 4.7 and 4.8. The slightly lower accuracy in this case can be explained as
follows: For a Hamiltonian matrix with some ill-conditioned eigenvalues, there is a
significant loss of accuracy in computing the corresponding eigenvalues of the square
of the Hamiltonian matrix using Van Loan’s method [12]. Consequently, the shifts
used in Algorithm IV for very ill-conditioned eigenvalues will have poor accuracy.

5. Concluding remarks. In this paper, some numerical issues in computing a
basis for the stable invariant subspace of a Hamilt’onian matrix have been discussed.
In particular, two alternatives to the use of the EXCHNG subroutine for reordering
eigenvalues of a Hamiltonian matrix have been proposed. These were derived using
certain properties of Hamiltonian matrices and were shown to require significantly
less computation than the conventional approach (using the HQR3 and EXCHNG
subroutines). Numerical experiments that have been carried out suggest that the
proposed algorithms give accuracy that is often comparable to or better than that
obtained using the conventional approach.

Acknowledgments. The authors wish to thank the referees and the review
editor for their helpful comments and suggestions.
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SPARSITY PATTERNS WITH HIGH RANK EXTREMAL POSITIVE
SEMIDEFINITE MATRICES*

J. WILLIAM HELTONi$, DANIEL LAMi, AND HUGO J. WOERDEMAN

Abstract. This article concerns the positive semidefinite matrices M+(G) with zero entries in
prescribed locations; that is, matrices with given sparsity graph G. The issue here is the rank of
the extremals of the cone M+(G). It was shown in [J. Agler, J. W. Helton, S. McCullough, and
L. Rodman, Linear Algebra Appl., 107 (1988), pp. 101-149] that the key in constructing high rank
extreme points resides in certain atomic graphs G called blocks and superblocks. The k-superblocks
are defined to be sparsity graphs G that contain an extreme point of rank k while containing (in an
extremely strong sense) no graph with the same property. The goal of this article is to write down
all graphs that are superblocks. The article succeeds completely for k

_
4 and it lists necessary

conditions in general as well as sufficient conditions. The subject is closely related to orthogonal
representations of graphs as studied earlier in [L. Lovsz, M. Saks, and A. Schrijver, Linear Algebra
Appl., 114/115 (1989), pp. 439-454] and in the previously mentioned paper by Alger et al. Indeed,
the paper is an extension of the findings of Alger et al.

Key words, extremal matrix, order of a graph, superblocks, orthogonal representation

AMS subject classifications, primary 05C50; secondary 05B20, 15A57

Introduction. Let G be an undirected graph without multiple edges or loops.
Let V(G) (= {1,..., n)) denote the set of vertices of G and E(G) c V(G) V(G) the
set of edges. Note that the absence of loops means that (i, i) E(G), i 1,..., n.
Define M+(G) to be the closed cone of all positive semidefinite n n real symmetric
matrices whose (i, j) entry is zero whenever (i, j) E E(G). (Note the difference in
definition compared to preceding papers on the subject ([AHMR], [HPR]); in those
papers the zero entries would correspond to edges in the complementary graph.)

A matrix A in M+(G) is called an extremal when each additive decomposition of
A in M+(G) is a trivial one, i.e., A is an extremal when A B/C with B, C E M+(G)
yields that B, C span {A}. We say that G has order k if k is the maximum of the
ranks of extremals in M+(G).

We are interested in determining the order of a given graph. The graphs of order 1
have a very elegant characterization (see [AHMR], [PPS]) based on the main result in
[GJSW]. The general case turns out to be very hard, and, therefore, some reductions
must be made. Recall from [AHMR] the following definitions. A graph G is called a
k-block if G has order k but no induced subgraph has order k. (The aph ( is an
induced subgraph of G if Y(() c V(G) and E(() E(G)f (Y() V(G)).) In terms
of matrices this means that for a k-block G any rank k extremal in M+(G) does not
have zero rows or columns. A full description of k-blocks, k 1, 2,..., would give a
solution to our problem, since the order of a graph equals the maximal k for which
the graph has a k-block as an induced subgraph ([AHMR, Whm. 1.2]). Classifying
k-blocks is based on the study of much better behaved objects called k-superblocks.
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A graph G is called a k-superblock when it is a k-block that does not properly contain
another k-block. (In this paper "( is contained in G" always means Y() c V(G)
and E() c E(G).) In terms of matrices, this means that as soon as you allow some
of the zero entries prescribed by G to be nonzero there are no extremals of rank k
anymore. It is true (see [AHMR]) that any k-block (or any order k graph, for that
matter) contains a k-superblock. However, to obtain all k-blocks assuming one knows
how to characterize k-superblocks still requires work.

The following theorem gives necessary conditions for a sparsity pattern to be a
k-superblock.

THEOREM 0.1. Let G be a k-superblock. Then the following are true:
(i) #E(G) 1/2 (k + 2)(k- 1);
(ii) G contains no Kp,q, p + q > k + 1;
(iii) For all il,...,im 6 V(G) with 1 <_ m < k we have that

(0.1) #((i,j) e E(G) i or j e {il,...,im}}
1
m(2k + 1 m)<1 (k + 2)(k 1) 1 (k m + 2)(k m 1)

Conversely, when k 1, 2, 3, or 4 these conditions imply that G is a k-superblock.
Here Kp,q denotes the bipartite graph described by

V(Kp,q) {1,... ,p -F q}, E(Kp,q) ((i,j) 1 <_ i <_ p, p 4- 1 <_ j <_ p -F q}.

The necessary conditions (i) and (ii) were established earlier in [AHMR]. Condi-
tion (iii) is implied by (i) and (ii) when k 1, 2, 3 but not when k _> 4. For k- 1, 2, 3
the k-superblocks were described earlier in [AHMR], and indeed they are precisely the
graphs which satisfy the necessary conditions in Theorem 0.1. For k 4 this is also
true (as stated in Theorem 0.1). This follows from the description of 4-superblocks
given in the next theorem, which is the second main result in this paper.

THEOREM 0.2. Let G be a graph with nine edges. The following are equivalent"
(i) G is a 4-superblock;
(ii) G cannot be obtained from

by identifying vertices;1
(iii) G is a graph which, after identifying vertices, is one of the following 28

graphs:

A

See the definition of a collapse of a graph in 2.
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GlO Gll G12=

G15

G22= G23

G28 -Note that (ii) in Theorem 0.2 is a restatement of the necessary conditions in
Theorem 0.1 for k- 4.

In 2 we develop some results which give sufficient conditions for a graph to be
a k-superblock. Unfortunately these conditions do not equal the necessary conditions
in Theorem 0.1. In the case when k 4, for instance, 17 of the 28 graphs in Theorem
0.2(iii) meet the necessary conditions of Theorem 0.1, but not our general sufficient
conditions. To prove that these 17 graphs are 4-superblocks, we used a computer pro-
gram employing Mathematica (using integer arithmetic). It is natural to ask whether
this gap in the theory can be dissolved in the following way.

SPECULATION 0.3. Let G be a graph satisfying (i), (ii), and (iii) in Theorem 0.1.
Then G is a k-superblock.

We shall point out in the end of 1 what remains to be done in order to prove
this speculation. We used our Mathematica program to check some likely candidates
for counterexamples (with k 5 and 6), but so far we have been unsuccessful (partly
because the program is very slow when k is large).

1. Making extremals in M+ (G). From [AHMR] one can deduce the following
recipe for making all extremals in M+(G) of rank k.

Let G be a graph, and let k <_ #V(G).
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(Step I)

(Step II)

Find an assignment f: V(a)= {1,..., n} k such that
(a) (f(i), f(j)) O, (i,j) e E(G);
(b) span {f(j)[j e V(G)} k.
Check if all M MT E ]kxk satisfying

(1.1) (Mr(i), f(j)) O, (i,j) e E(G)

(Step III)
are multipliers of the k x k identity matrix Ik.
If so, then

f(1)T
(f(1) f(n))

T

is an extremal of rank k in M+(G).
An assignment f: V(G) -- k such that (a) in Step I holds is called an orthogonal

representation of G. Such representations were introduced and studied independently
in [LSS] and [AHMR] (for quite different reasons).

Example. Let

Then

1

G=
6

5 4

1 1 0
0 0 1
0 (100110) 1 1 (11 1 -1 0
1 0 0
0 5 7

0 1 1 0
1 1 -1 0 7

are extremals in M+(G) of ranks 1 and 2, respectively. There are no extremals of
rank _> 3 because of dimension counting. Indeed, if k 3, either f(5) 0 or span
{f(2), f(3), f(6) } has dimension of at most 2. This results in at most four constraints,
appearing in (1.1), on M. This can never force M to be a scalar multiple of I3.
Furthermore, when k > 3, the five constraints (1.1) on M are too few to force M to
be a scalar multiple of Ik.

The type of arguments used in the example led in [AHMR] to the following result.
Let G be a graph. If order G k, then #E(G) > 1/2 (k + 2)(k 1). Furthermore,

if order G k and #E(G) 1/2 (k + 2)(k- 1), then G contains no Kp,q, p+q > k + 1.
Let us now prove that a k-superblock must satisfy the conditions (i), (ii), and

(iii) in Theorem 0.1.
Proof of the necessary part of Theorem 0.1. Let G be a k-superblock. In par-

ticular, order G k, and thus the recipe works for a representation f, say. Let
il,...,ik V(G) be such that f(ij), j 1,... ,ik, span ]1(k. Furthermore, choose
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distinct ik+l,...,i such that each edge in E(G) has an endpoint in (i,...,i} and
write

k

f(ip) ).P) f(ij) p k + 1,... ,1.
j--1

Let M be a k k matrix, and put wj Mf(ij), j 1 k. Let uj) u(j) denote... ..., pj

the vertices adjacent to ij that are not in the set i1,..., ij_. Put

Uj [f(uj)) ()f(Upj )], j= 1,...,/.

Put

and

"--f(i2) --f(i3) 0 f(ik 0 0
f(il) 0 --f(i3) 0 --f(ik) 0
0 f(il) f(i2) 0 0 0

0 0 0 0 0 f(ik)
0 0 0 f(i) f(i2) f(ik-1)

That is to say, if 1/2 j(j- 1) < p < 1/2 (j + 1)j then column p in has on the p- 1/2 j(j- 1)
row the entry -f(ij+l) and on the (j+l) row the entry f(ip-j(_)/2) (j 1,..., k-l).
Note that W is of size k #E(G) and of size k 1/2 k(k- 1). The equations (1.1)
are equivalent to

col (wi)k= E cokernel W

and the symmetry of M is ensured by

col (wi)ik= E cokernel .
Checking Step II in the recipe now comes down to checking that

(1.2) cokernel [W, ] span {col (f(ij))=l)

Note that the inclusion D in (1.2) is always fulfilled since f is an orthogonal repre-
sentation. We assume that the recipe works, and therefore (1.2) holds. Suppose that
#E(G) > 1/2 (k + 2)(k 1), then the number of columns in [W, ] is _> k2. Since the
columns in are linearly independent, and because of (1.2), we can remove a column
in W without changing the cokernel of [W, ]. But removing a column in W corre-
sponds to removing an edge in G, yielding that G properly contains a k-block. Thus
#E(G) 1/2 (k + 2)(k- 1).

Now it follows from the quoted result before the proof that (ii) holds. It remains
to prove (iii). First note that if the recipe works for f, it also works for an orthogonal
representation f with the property that Ill(i)- f(i)ll is small enough. Indeed, such a
perturbation will not destroy the invertibility of a (k2-1) (k2-1) invertible submatrix
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of [W, ]. Since the graph does not contain any Kp,q’s, p / q > k + 1, we know from
[LSS] that in any neighborhood of f we can find an orthogonal representation ] that
has the property that_ any set of k representing vectors are linearly independent (in
the terms of [LSS]: f is in general position). Thus without loss of generality we
may assume that f has the latter property. Choose now il,..., ira E V(G), m < k,
arbitrary. Then f(il),..., f(ira) are linearly independent. Choosing the i,..., ira as
the first m vertices in il,... ,ik,ik+,it} we can set up the matrix W and as before.
After permutation of columns of the matrix [W, ] we obtain the matrix

(1.3) [All A12]0 A:

where

I(i ) o o
I(i ) o o
0 0 0 0

0 0 0 --f(ira_)
0 f(il) f(i2) f(ira-)

Note that
col (f(ij))r=i coker All.

But then, since the cokernel of (1.3) should have dimension exactly equal to 1, the
matrix A22 should have at least as many columns as rows. Since A22 is of size

(k2-mk) X (k2-1)- #{(i,j) eE(G)liorje{il,...,ira})+-

this inequality precisely yields (0.1). r]

In order to prove Speculation 0.3, it remains to prove that for a graph satisfying
(i), (ii), and (iii) there is an orthogonal representation f such that the matrix [W, ],
constructed in the proof of Theorem 0.1, has a one-dimensional cokernel.

2. A sufficiency result. For a vertex v V(G) the degree is defined to be the
number of adjacent vertices.

THEOREM 2.1. Let P be a graph with an induced subgraph G that satisfies
(i) #E(G) > 1/2 (k + 2)(k- 1);
(ii) G contains no Kp,q ’s, p + q >_ k + 1;
(iii) for any {i,..., ira} C V(G) with 1 <_ m <_ k- 1,

#((i,j) e E(G) i orj e (i,...,ira)}
1
(k- m + 2)(k- m- 1)< #E(G)- -(iv) G has k- 1 vertices {Ul,..., Uk-1} Of degree k- 1 such that one of the

vertices uj (1 _< j _< k 1) is not adjacent to any ui, j 7 i {1,..., k- 1}.
Then order P > k.
The conclusion remains true when (iv) is replaced by
(v) G has at least k vertices of degree k-1, and, after deleting m of these vertices,

the remaining graph always contains a Kp,q, p + q > k m + 1, m 1,..., k 2.
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It should be noted that it follows from the last part of the proof of Theorem 0.1
that (iii) is a necessary condition for G to be of order > k.

Before proving the theorem, let us make some remarks. Condition (iv) is a very
stringent one since it requires the subgraph G to be fairly condensed. However, com-
bined with the next result from [AHMR] the theorem shows that a substantial number
of graphs have order _> k.

We introduce~ the following partial ord.ering on graphs. We say that G _<c G (G is
a collapse of G) if G can be obtained from G by identifying vertices without identifying
edges. For example,

10 8=9

1=12
2" 2=-5 3

1 5 9

4 7 8 11 12

PROPOSITION 2.2. Let G and G be graphs satisfying G <_e G. Then

order G < order (.

This is a restatement of Theorem 4.7 in [AHMR].
Example. Theorem 2.1 and Proposition 2.2 together prove that the order of

is _> 4. Indeed, the graph

has order > 4 by Theorem 2.1, and (2.4) is a collapse of (2.3). Therefore, (2.3) has
order > 4. In fact, (2.3) has precisely order 4 since, by Theorem 0.1, a graph of order
>_ 5 should at least have 14 edges, the number of edges of a 5-superblock.

In order to prove Theorem 2.1, we need some attxiliaxy results. Recall that an
orthogonal representation f V(G) I:tk is in general position if any set of k repre-
senting vectors is linearly independent.

LEMMA 2.3. Let G be a graph that does not contain Kp,q’s p + q > k + 1, and
let f: V(G) -. Rk be an orthogonal representation in general position. IfM MT

xk satisfies (1.1), then for any v V(G) with degree equal to k- 1 the vector f(v)
is an eigenvector of M.

Proof. Both f(v) and Mr(v) belong to the orthogonal complement of span {f(u)
(u, v) e E(G)}. Since deg v k- 1, the vectors Mr(v) and f(v) both belong to a

one-dimensional space.
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Recall from [LSS] that an orthogonal representation f of a graph G is called
faithful if (f(u), f(v)) 0 if and only if (u, v) E E(G).

LEMMA 2.4. Let G be a graph that contains no Kp,q ’s, p + q >_ k + 1. Further,
suppose that u is a vertex of degree k- 1 that has r nonadjacent vertices of degree
k- 1. Then for any faithful orthogonal representation f ofG in Rk in general position
the set of symmetric matrices M satisfying (1.1) is either span (Ik or contains an
element of rank < k r.

Proof. Let M be symmetric such that (1.1) holds. Since f(u) is an eigenvector of
M (at/0, say), which is not orthogonal to r other eigenvectors, the dimension of the
eigenspace of M at/0 is at least the dimension of the span of f(u) and these other r
eigenvectors. Since f is in general position we obtain that

rank (M-/0I) _< max {0, k- (r + 1)}.

Since M-/0I is symmetric and satisfies (1.1), the lemma is proved.
PROPOSITION 2.5. Let G be a graph that contains no Kp,q ’s, p+q >_ k + 1. Then

.for every orthogonal representation f: V(G) -- Rk there exists a symmetric matrix M
of rank 1 satisfying (1.1) if and only if there is a set V of at most k 1 vertices in G
such that any edge in G has an endpoint in V.

Proof. Suppose such a set Y exists. Choose 0 w e Rk such that (w, f(v)) 0
for any v V. It is easy to check that M:-- wwT satisfies (1.1).

In order to prove the only i.:part, let f be an orthogonal representation in general
position (such an f exists: Theorem 1.1 in [LSS]). Also let M wwT with w 0
satisfy (1.1). Then for all edges (i,j) e E(G)

l(J)) 0,

thus w is orthogonal to one of the endpoints of each edge in G. Since w can be
orthogonal to at most k- 1 linearly independent vectors we obtain the proposition
above. D

We are now ready to prove Theorem 2.1.
Proof of Theorem 2.1. Suppose (i)-(iv) hold. We have to prove that order G _> k.

Let f: V(G) -- Rk be in general position and faithful (existence is assured by Theorem
1.1 and (the proof of) Corollary 1.4 in [LSS]). Lemma 2.4 yields, because G satisfies
(iv), that either the set of symmetric matrices M satisfying (1.1) is span {Ik} or has an
element of rank 1. Since G satisfies condition (iii) in the theorem, the latter possibility
is ruled out. (Since, if M is symmetric of rank 1 satisfying (1.1), then Proposition 2.5
yields that (2.1) is violated (for m- k- 1).)

Now suppose that (i), (ii), (iii), and (v) hold. Let f: V(G) --. Rk be an orthogonal
representation in general position. Further suppose that M is positive semidefinite,
satisfies (1.1) and has rank d, with 1 < d < k. (We can always assume that M is
positive semidefinite, since if M satisfies (1.1) then any linear combination of M and
Ik satisfies (1.1) also.) Since G has k vertices of degree k- 1, the representing vectors
corresponding to these vertices are a basis of eigenvectors of M. But then k d of
these vertices represent the kernel. Delete those vertices. Then from (1.1) it easily
follows that M1/2f, defined by

(M1/2f)(v) M/2(f(v)),

is an orthogonal representation in general position of the remaining graph. Since (v)
holds, this is impossible by Theorem 1.1 in [LSS]. As before, a symmetric M satisfying
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(1.1) cannot have rank 1. But then all symmetric M satisfying (1.1) must be in span
D

3. 4-superblocks. In this section we prove Theorem 0.2.
Proof of Theorem 0.2. The implication (i) = (ii) is merely a restatement of the

necessary conditions in Theorem 0.1 in this special case.
For the proof of (ii) (iii) we determine the _<c-minimal elements in the set of

graphs described under (ii) in Theorem 0.1, i.e., is the set of graphs with nine
edges that are not a collapse of one of the three graphs under (ii). The result is given
in the following proposition.

PROPOSITION 3.1. The <_c-minimal elements in q are the graphs Gi, i 1,..., 28,
defined in Theorem 0.1 (iii).

The proof requires a lemma.
LEMMA 3.2. Let G E 5 be <_c-minimal. Then G does not have a vertex u of

degree 1 and a vertex v of degree <_ 2 such that the distance d(u, v) between u and v
is larger than 2.

Proof. Suppose that G has vertices u and v with deg u 1, deg v _< 2 and
d(u, v) > 2. By identifying u and v we do not create a degree-4 node. Suppose we
create a K2,3. Then we must have had

(e)

with three other edges. In case (1) these three other edges do not form a subgraph
K1,3; otherwise G _<c 3 K1,3, which contradicts G E {5. Here 3 gl,3 denotes the
graph on the right-hand side of (2.2). But then G must be disconnected. This yields
that we can identify one of the vertices in a connected component of G not containing
u with u and obtain a graph in G that is _<c-smaller than G. For the second possibility
(2), the reasoning is similar.

Suppose that by identifying u and v we create a graph that is <_c-smaller than
3 K1,3. Since G has no vertices of degree 4, G must, in this case, have vertices of
degree <_ 2 besides u and v. But then u may be identified with one of these other
vertices and stay in the class . D

Proof of Proposition 3.1. In the reasoning to follow we shall quite frequently use
the fact that a nine-edge graph satisfies

(3.1) Z deg (u) 18.
ev(a)

Let us now determine the <_c-minimal elements G in {5.

Case 1. G has a vertex u of degree 1.
Let v denote the vertex adjacent to u. When deg v 1 the remaining vertices

should have degree 3 (Lemma 3.2). This is impossible by (3.1). Consider now the
case when deg v 2, and let w u be the other neighbor of v. The cases, deg w 1
and deg w 2, are quickly disregarded again by using Lemma 3.2 and (3.1). When
deg w 3, the only graph one obtains by requiring that all other vertices have degree
3 (which must be the case because of Lemma 3.2) contains a K2,3 and is therefore
not in . Consequently, we are left with the case that deg v 3. Let {u, wl, w2}
denote the adjacency set of v. When deg wl deg w2 1 we obtain G2 as the
only possibility. The cases {deg w 1, deg w2 2}, {deg w deg w2 2}, and
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{deg wl deg w2 3} are quickly discarded, leaving the case {deg wl 2, deg w2

3}. From this we obtain G as the only possibility.
Case 2. All vertices of G have degree 2.
Then G must have nine vertices and consist of circuits. The only possibilities are

G3, G4, Gh, and G6.
We are left with the cases that G has some vertices of degree 3 and some of degree

2. Because of (3.1), the number of degree-3 vertices must be even.
Case 3. G has two vertices of degree 3 and six of degree 2.
First we consider the case when the vertices of degree 3 are adjacent. Disconnected

graphs with these requirements are easily recognized to be G7 and Gs. Considering
the possible paths between the vertices of degree-3 nodes, one obtains the graphs Gg,
G0, and G in case there are three different paths; when there is only one path, the
graphs G12 and G13 are obtained (note that two paths between the degree-3 nodes
is impossible). In a similar way, one obtains the graphs G4-Gs for the case when
vertices of the degree 3 have distance 2 or 3.

Case 4. G has four vertices of degree 3 and three of degree 2.
Since G c 3 gl,3, there should be no three vertices of degree 3 that are all

nonadjacent. Let ul, u2, u3, and u4 denote the vertices of degree 3. When u,..., u4
are all adjacent to one another, one obtains the only possibility, G26. When they form

Ul

u3

u2

u4

one obtains G25. When Ul,..., ua form a square (K2,2), one obtains G23. When
?1 U4 form

3

u u2

one obtains G9 and G2. The case when u,..., u4 form a connected line gives
possibilities G20, G22, and G28. The last case is when ul,..., u4 form a line of three
vertices and an isolated vertex. This gives as the only possibility, G24.

Case 5. G only has vertices of degree 3.
Here G27 is the only possibility.
This proves Proposition 3.1.
This concludes the proof of (ii) (iii).
To prove (iii) (i) we need to show that for the graphs G1-G28 we can find a

rank-4 extremal in M+(G). Then Proposition 2.2 yields that all graphs under (iii)
have a rank-4 extremal. The graphs G, G2, G9, G20, G2, G22, G24, G27, and
G28 have a vertex of degree 3 that is not adjacent to two other vertices of degree 3.
Therefore, by Theorem 2.1 (i)-(iv), the order of these graphs is > 4. But then, since
the numbers of edges is smaller than 14 we obtain that the order is at most 4, giving
equality. The graph G26 has as its complement the graph K3,4. Consequently, G26
has order 4, by Theorem 6.1 in [HPR]. The graphs G23 and G28 are recognized to
have order > 4 by Theorem 2.1 using (i)-(iii) and (v).
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The remaining graphs G3-Gls and G25 are dealt with by "brute force." A pro-
gram using Mathematica (using integer arithmetic) produced for us the following
rank-4 extremals in M+(G) for G in G3-Gls, G25. For each Gi this rank-4 extremal
is given by ATAi, where Ai, i- 3,..., 18, 25, is given by

1 0 0 2 -2 -2 _9 3_7 32
22 4 45

0 2 -2 5 9 -3 s -3 3s6

0 -3 3 -2 -1 -3 1 1 2

0 1 2 -I -3 -2 -3 -2 2

1

A4-
0

0

0

1

0
A=

0

0

1

0
A6=

0

0

1

0
AT=

0

0

1

0
As=

0

0

1

0
Ag:

0

0

1

0
AlO

0

0

2 -3 0 0 -3 -5 -6

1 3 2 4 3 -5 -1

3 2 2 -1 3 3 -3

2 -3 -3 2 -3 3 3
2 --12 0 0 63 -1 2 -I 2 -2 1/2 3

-2 3 -2 3 3 2 -3

1 3 -1 -3 1 1 -1

0 -2 1 1/2 0-3-6

-2 -I -3 1 1 -9 -2 --3 3 -I 2 2 5 -i 3

3 2 1 -2 1 -1 -I -i

2 3 0 0 3_ -I2 2

-I 1 3 2_ -i i
3 2

1 -i -2 2 -2 -2

1 -I i 2 -2 1

0 0 -i 2 -14 16

-3 -i 3 _8_ -9 23

-3 -I 2 2 3 3

-2 3 2 1 -2 2

0 0 1 1 15 _2_
2 5

2 6 11 5 -i 32 2

-3 3 -3 -3 -2 1

-i 3 -2 -2 2 1

0 0 2 1 2 7

-1 -3 -2 0 -3

1 1 -I 1 1 -i

-I 3 1 1 -3 -2

1 0 0 -2 59 io 6__
6 3 59

0 -3 1 _5 7 -2 13

0 -2 -I 1 1 -I -3

0 1 -2 -3 3 3 -I

-1
9
11

1

lO
150

1

2

8

2

2

-1
1062
277
2324
277

-2

-2
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A12

1 0 1 -3 0 0 9

0 -1 5 2 -2 4 -2 1/4
0 -3 -3 -2 2 1 1 -3

0 2 -2 -2 -2 -3 -2 2

1

0

0

0

180 0 0 -1 -2 -1 Yi
2 753 3 1 4 2-

32 -3 3 -3 1 --2 3 -I 3 2 -1 -i

1

0

0

0

0 0 -1 3 2 7

2 -3 -4 0 4_ 13

2 -1 3 -I -2 3

-2 1 -1 -i 2 -2

16

1

0

0

0

0 0 0 1 27 24

2 2 2 __3 11 5
2 2 2

-3 -1 -2 3 3 2

1 3 -3 -3 -2 -1

48
223
140
223

2

2

1

0

0

0

0 2 0 0 25 4 8
2 2 11

-1 12 -3 -5 -3 -3 48

-2 -3 3 -3 -3 3 -2

3 2 -2 3 1 -1 -2

1

0

0

0

0 -2 -- 0 0 _6_
2 5

2 -3 3 -3 _5_ -i3

-3 -3 -2 2 2 -3

3 -i 2 -3 3 -3

80
61

96

2

-2

1

0

0

0

0 0 0 -3 -1 3

-1 -3 1 12 10 --33 1 3 -2 2 1

-2 -3 2 -3 -2 2

29_4
151
99
302
117
302

-3

1 0 -2 0 _2 3{}
3 7

0 3 -- -i 2 27
3 14

0 -1 2 -3 3 1

0 3 2 3 -1 2

81
20

-9

2

-1
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Here the numbering of the nodes is basically from top to bottom and from left to
right, or, more explicitly, given by the following.

2

5
4 5 6 7 $ 9 6 7 $ 9

2 3 )t 2 3

G6= 5 G7 4,"/ ’ 5 ] G8 2L3= A4
6 7 8 9 8 6 7 5 678

2 2 2 3

G9 5 G10 4 Gll 4 5

6
7 87 8

2

G12 d7 G13 3 6

5 6 8
7 8

2 2 3

G15 6 G16 6 7
4 5

7 8
8

8

G14=46

7 8

2 4 7

G18 6
G25

7 8 5 6

It is easy to check by hand that the representations of G3-Gls and G25, indicated by
A3-Als and A25, respectively, satisfy the conditions in Step I of the recipe. In order
to check that Step II is satisfied, one has to go through more elaborate calculations.
These checks were made using the Mathematica program.

Acknowledgments. We wish to thank Leiba Rodman for attracting our atten-
tion to the reference [LSS] and Neola Crimmins for her masterful production of this
manuscript.
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NORMS OF HADAMARD MULTIPLIERS*
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Abstract. For B a fixed matrix, the authors consider the problem of finding the norm of the

map X XoB, where is the Hadamard or entrywise product of matrices and the norm of a matrix
is its spectral norm. Using techniques from the theory of Kren spaces, the problem is rewritten for
Hermitian matrices as a minimization problem whose solution, for small matrices, can be obtained
from standard optimization software. The Hadamard multiplier norm for an arbitrary matrix is given
in terms of a Hermitian extension. The results are applied to refute a conjecture of R. V. McEachin
concerning the value of a constant in an operator inequality.

Key words. Hadamard product, Schur product, Kren space, operator inequality
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1. Introduction and definitions. By the Hadamard product, also called the
Schur product, we mean the entry-wise product of matrices: if A and B are m n
matrices, their Hadamard product, AoB is the m n matrix whose entries are ajkbjk.
In this paper, we study the norm of the operator on the set An of n n matrices given
by X -, XoB, for a fixed B. Throughout, /’, ") will denote the standard Euclidean
inner product on Cn and by the norm of a vector, we will mean the Euclidean norm.
The norm of a matrix is its norm as an operator on this Hilbert space (i.e., the spectral
norm), and the norm KB of the Hadamard multiplier is its norm as a linear map on
the operators in Jn. If A is in An, we will denote its (Hilbert space) adjoint by A*.
For A an n n matrix with columns A1, A2,..., An, let

c(A) max{llAll, IIA211,...,

Haagerup [3] (or see [8, pp. 110-116] or [6]) showed that if B is an n n matrix, then
the norm of B as a Hadamard multiplier is

KB min(c(S)c(R) S*R B}.

We show that when B is Hermitian, there is a Kren space (defined below) associated
with B and an optimal factorization for which "S* is R the Kreln space adjoint of
R. We then obtain Ks as a minimum of c(UR0)2 over the set of Kren unitaries,
U, where B RR0 is a particular factorization of B. In addition, we show that
KB is the value at all local minima of this function, so we can use this factorization
and standard software to approximate KB, confident that the minimizing sequence
generated is not approaching an uninteresting local minimum. We can restrict our
attention to Hermitian matrices because if A is any matrix, it is easily seen that KA
is the same as KB, where B is the Hermitian matrix

AO* 0
B=

A vector space/C with a scalar product [., "1 is a Kren space if there is an inner
product (., .) ha makes C a Hilbert space so that [x, ] (Jx, ), where J is self-
adjoin and unitary, tha is, J J* J-1. The matrix J is called
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symmetry of the Kren space. The prototypic example of a finite dimensional Kren
space is the vector space Cn, together with the scalar product obtained from the
diagonal matrix whose first diagonal entries are l’s and whose remaining diagonal
entries are -l’s. If J I, the resulting Kren space is the Euclidean (Hilbert) space.

If/C1 and/C2 are Kren spaces with fundamental symmetries J1 and J2, respec-
tively, and A:/C --. /C2 is a linear map, its Kren space adjoint, denoted A, is

JA*J2. Indeed,

[Ax, yl (g2Ax, y) (x,A*gy) (Jx, gA*g2y) [x, gIA*g2y].

We will need to use the fact that if K:,/C, and/C2 are Kren spaces with funda-
mental symmetries J, J, and J2 and R:/C ---/C and S K: K:2 are invertible
and satisfy R R S S, then there is a Kren unitary U K:I ---+ K:2 so that S UR.
Indeed, the invertibility of R and S shows that for v and w in/C, if v Rx and
w- Ry, then U SR- is Kren unitary:

IF=, In P=, ISx

(An infinite dimensional version of this fact is addressed by Theorem 2.12 of [2].)
In particular, this means that/E and K:2 are equivalent as Kren spaces. For maps
between Kren spaces, J-selfadjoint, J-unitary, and so forth, will have the obvious
meanings.

2. The results. We begin by showing that when the Hadamard multiplier is
Hermitian, there is a solution of the Haagerup extremal problem that has a special
symmetry. (This is an extension of Theorem 3 of [1] and its proof.)

THEOREM 2.1. Let B be a Hermitian matrix. There is a fundamental symmetry
J and an n x n matrix R (regarded as a map from Euclidean space to the Kren space
determined by J) so that

Ks=c(R)2 and B Rx R.

Proof. We first assume that B is invertible.
Paulsen, Power, and Smith prove [9, p. 161] that among all positive matrices of

the form

P= B Y

K is the smallest max{:, j 1,..., n} that can occur (see also [6, Thin.
.1]). If P0 is a matrix of this form with K max{xj,} and

then J0 is selfadjoint and

(0I)J= I 0

JPJ B X

is positive. Now, P1 (P0 4- JoPoJo)/2 is positive and

P= B W
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where W (X + Y)/2. Moreover,

11
max{xjj} + max{yjj} < KB,Ks <_ max{wjj} _<

so P1 is also an extension of B that gives KB.
Let

__{p= (ZB B) "Ppsitiveand

From the above symmetrization argument, the set is nonempty and it is clearly
closed. Therefore, contains minimal elements with respect to the usual order on
positive matrices. We claim that any minimal element has rank n.

To this end, suppose P is a minimal element of . Let

be the Cholesky factorization of P (see, for example, [5, pp. 114 and 407]) in which
Q, R, and S are n n matrices with Q and S upper triangular having nonnegative
diagonal entries. This means

B* Z R*S R*R + Q*Q

Since B S*R has rank n, each diagonal entry of S is positive, and it is easi_ly seen
that the rank of P is n if and only if Q 0. If Q were not zero, then define P by

(1) _(S R)’(S R) (S’S0 0 0 0 R*S R*R

and let/5o (/5 T g0Pg0)/2. Since the diagonal entries of n*n are no more than
those of R*R + Q*Q Z, the largest diagonal entry of/5o is no more than KB. On
the other hand, since P0 is a positive matrix with B in the upper right corner, the
largest diagonal entry of/5o is at least Ks. Thus,/5o is in t. Since

l ( O*OP=P0+. o Q*Q

/50 is strictly less than P unless Q 0. The minimality of P in implies Q 0 and
rank P is n.

Therefore, a minimal element of has the form (1), and there are n n matrices
R and S satisfying B S*R with S*S R*R and Ks c(S)c(R). Since the
diagonal entries of R*R and S*S are the squares of the column norms of R and S,
respectively, it follows that c(R) c(S) and Ks c(R)2. The equality S*S R*R
implies that there is a unitary matrix J so that S JR. Since B is Hermitian, we
find

R*JR R*S B* B S*R R*J*R.

The invertibility of B implies R is invertible, so the above equality means J J*.
Thus, J is a fundamental symmetry. Now the equality S JRI gives S* IR*J
R, as we were to show.
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Now if B is not invertible, we can find a sequence Bk of invertible Hermitian
matrices so that lim Bk B. Continuity gives limKs KB. For each k, there are
fundamental symmetries Jk and matrices Rk so that Bk RRk, that is, J J-1
J and Bk RJR, and Ks c(R)2. Since all matrices are finite and their
entries are uniformly bounded (the Jk’s are Euclidean unitary and lim c(Rk)2 Ks),
we can find subsequences converging to J and R, respectively, and by continuity,

J* J- J, B R’JR RR,

and KB limKB lim c(Rk)2 c(R)2. Thus, the conclusion holds in this case as
well. D

This theorem is an extension of Schur’s theorem on the norm of a Hadamard
multiplier of a positive matrix. To see this, note that if B is positive, then J is
the identity and the theorem reduces to KB c(R)2, where R*R B. Since the
diagonal entries of B are just the squares of the norms of the columns of R, as Schur
proved [10], KB is the largest entry on the diagonal of B. (This is not a new proof
of the Schur theorem as the Schur theorem was one of the ingredients of the Paulsen,
Power, and Smith result.)

Theorem 2.1, together with the observation that B R R RRo implies R
UR0 for some Kren unitary map, means we can reformulate the extremal problem of
Haagerup.

COROLLARY 2.2. If B is Hermitian and J is a fundamental symmetry so that
B RRo, then

Ks min(c(UR0)2" U is J-unitary}.

Moreover, if B is Hermitian, it is easy to find R0 satisfying B RR0. There is a

unitary U so that UBU* is diagonal. Now if J is the sign of the diagonal matrix and
E is the positive diagonal matrix so that E2j UBU*, then we may take Ro EU
viewed as an operator from Euclidean space to the Kren space K: determined by J.
In this case,

RRo (EU)*JEU U*EJEU U*E2JV B.

If J and J are unitarily equivalent, say W*JW J, then we can use [o WEU,
viewed as an operator from Euclidean space to , the Kren space determined by J.
The remarks made at the end of the introduction show that all such factorizations of
B arise in this way.

Theorem 2.1 can be extended trivially to a slightly more general setting: if J0 is
a fundamental symmetry whose entries are l’s, O’s, and -l’s and B is Jo-selfadjoint,
instead ofjust Euclidean Hermitian (I-selfadjoint), then the conclusion of the theorem
holds. This is easily seen to be true since in this case JoB is Hermitian and KB
KJoB. An important example of such a fundamental symmetry is the matrix J0
whose nonzero entries are l’s on the cross diagonal, that is, ui,n-i+l 1 and uij 0
otherwise. In [1], the triangular truncation matrix was viewed as a J0-selfadjoint
matrix and the other Kren space of the factorization R R was also taken to be the
space with J J0.

If we define the function "), on the group G of Kren unitaries by (U) c(UR0)2,
Corollary 2.2 shows that KB is the minimum of on G. In most cases, the minimum
is attained on a set that includes a nontrivial subgroup of G, so it is not attained at
a unique point. It is computationally important to know whether has uninteresting
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local minima, that is, local minima at which the value is larger than the value at the
absolute minimum. We prove that it does not!

It is well known, and easily shown by taking second derivatives, that if H is
nermitian and v is a vector in Cn with Hv O, then t [[etHv][ 2 is strictly convex.

The following lemma is the particular case of the Cartan decomposition of a
semisimple Lie group that applies to our situation (see, for example, [11, p. 162]).
We give an elementary proof for the sake of completeness.

LEMMA 2.3. If U is Kren unitary, then U may be written uniquely as U
VP, where V is Kren and Euclidean unitary and P is Kren unitary and Euclidean
positive.

Proof. Let U be Kren unitary and let U VP be the unique (Euclidean) polar
decomposition of U, where V is Euclidean unitary and P is Euclidean positive. Since
U is invertible, so are V and P and

V (Vx)-I (Vx)-I (px
Since P is positive and since congruence preserves positivity, px jp.j j.pj
is positive, and this implies (px)-1 is positive. Since V and J are Euclidean unitary
and the Euclidean unitaries are a group,

(VX)-1 (JY*J)-1 J-I(v*)-Ij-1 JVJ

is also Euclidean unitary. This means U (VX)-l(px)-1 is a (Euclidean) polar
decomposition of U also. Since the polar decomposition is unique, we find V (Vx )-1
and P (px)-l, which means that V and P are Kren unitary. D

COROLLARY 2.4. If U is Kren unitary, U can be factored as U VeH, where
V is Kren and Euclidean unitary and H H* -Hx

Proof. We need only prove that P eH where H has the required properties.
Since P is Euclidean positive, P has a unique Hermitian logarithm, H. The fact
that P is Krein unitary means eHx px p-1 e-H from which it follows that
H -Hx. D

We are now ready to prove that no uninteresting local minima exist.
THEOREM 2.5. Let R be an n n matrix and let / be the function on the group

of green unitaries given by "y(V) c(VR)2. If’ has a local minimum at U1 then

"y(U1) min{’y(V)" V e G}.

Proof. Let U0 be a Kren unitary so that "(U0) is the minimum value of /on G.
Replacing R by UoR in the definition of 7 if necessary, we see that, without loss of
generality, we may assume U0 I.

Suppose 7 has a local minimum at the Kren unitary U1. By Corollary 2.4,
U1 can be factored as VeH, where V is both Kren and Euclidean unitary and H
satisfies H* H -H Let f be defined by f(t) .r(yetH), that is, f(t) is the
maximum of ]]VeHRj]I2 ]]eHRj]]2, where R1, R2, Rn are the columns of R.
We noted above that each of the functions []eHRj [[2 is convex. Since the maximum
of convex functions is convex, it follows that f is convex. Now V is Euclidean unitary
so 7(Y) "r(I) is the global minimum, and

f(0) 7(V) _< 7(U1) 7(VeH) f(1).

If 7(U1) > 7(I), the convexity of f implies

7(VetH) f(t) < (1 t)f(O) + t/(1) < f(1) 7(U1)
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for 0 < t < 1. In particular, this is true for t arbitrarily close to 1, so (U1) cannot
be a local minimum.

Thus, the only local minima of -y are those points at which -y achieves a global
minimum. 0

These results may be used for calculating the Hadamard multiplier norm of Hermi-
tian matrices. We begin by factoring B as B RR0. Lemma 2.3 permits expressing
Ks as the solution of the minimization problem

Ks min{c(PR0)2" P is Euclidean positive and Kreln unitary},

and Corollary 2.4 permits expressing Ks as the solution of the minimization problem

(3) Ks min{c(eHRo)2" H* H- -HX}.

These minimization problems can be approached with standard software since if J is
the fundamental symmetry

then P is Euclidean positive and J-unitary if and only if there is a matrix X so that

p= [ v/I + XX*
\ X*

and H* H -Hx if and only if there is a matrix Y so that

H- Y* 0

We have used both methods to approximate Ks for some small matrices B. Our
limited experience suggests that using (3) gives slightly better results and that the
minimum is relatively shallow, which causes difficulty with the convergence.

Equations (2) and (3) express KB as minimization problems that can be para-
metrized as above by matrix variables X and Y. Using X0 Y0 (1, 0) and X1
Y1 (0, 1), examples of matrices R0 can be found to show that these functions are
not necessarily convex in the variables X and Y, so the convexity property in the
proof of Theorem 2.5 is not the restriction of uch a broader convexity property.

We believe the results above form the theoretical basis of an approach for finding
the norms of matrices as Hadamard multipliers on An.

3. Application to the conjecture of McEachin. In the analysis of a pertur-
bation problem of interest in operator theory, McEachin [7] needed to estimate the
Hadamard multiplier norm of matrices such as

! ! ! 17 5 3
i i 1 -15 3

1/2 I --i --1/2
1 11 -1 - -g

McEachin conjectured that

/
KM t/410 +

864V
> 1.37770223779394.
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We used MATLAB on a Macintosh II, with the function minimax from MATLAB’s
Optimization Toolbox. We factored M through the Kren space whose fundamental
symmetry is the matrix with l’s on the cross diagonal and used the minimization
problem from (3). We found that if

0.29345772706387
-0.82107382515359
-0.78049759723731
0.09080760857704

-0.87151443181904
-0.30980696295447
0.17648441164311
-0.70074080677351

-0.38760407738941
-0.19650488973146
0.47999514387418
0.97900753539208

0.75646065056181
-0.12891228276962
0.82208465702786
-0.33619623611316

and J is the fundamental symmetry with diagonal 1, 1, -1, and -1, then M
RR R*JR and the corresponding estimate for KM is 1.37770218499455. Of
course, in the absence of error estimates, this calculation does not really mean a great
deal. However, using the calculated value for R and exact arithmetic with MAPLE
on a Macintosh II to find S satisfying S*R M, the Haagerup result shows that

KM <_ c(S)c(R) < 1.37770218499457,

from which it follows that McEachin’s conjectured value for KM is too large.
While the above calculations do prove McEachin’s conjecture is incorrect, they

do not really show that our estimate for KM is close to correct. Because the unitary
matrices are the extreme points of the unit ball in the space of matrices, there is
a unitary U0 at which KM is achieved, that is, IIMoUoll KM. After a slight
modification, Corollary 7 of [1] applies to this case and the discussion there indicates
how a maximizing unitary may be computed from an optimal factorization M
R R0. We will use this construction to get a lower bound for KM.

In [1], the important fundamental symmetry is the matrix with l’s on the cross
diagonal, denoted J’, and the relation T* J’TJ’ replaces selfadjointness. Since
M and J’ each have two positive eigenvalues, the Kren space induced by J’ can be
used for the Kren space occurring in the factorization of M so that Corollary 7 of [1]
applies to T J’M. Suppose M R R0 is an optimal factorization of M so that
J’M J’R Ro SRo is an optimal factorization of J’M where S J’R. It
was shown that, in this case, there is a positive diagonal matrix D so that U0
D-1SIRoJ’DJ is a maximizing unitary and U J’UoJ’. Writing W for S-IR0
and dj for the jth diagonal entry of D, the symmetry relation for U0 implies

d- win d.
Wl,n-j+l

Since we may choose dl 1, the optimal factorization leads to D and to U0. Using
our approximate optimal factorization, we computed what we expected to be approx-
imately an optimal unitary. This calculation (using MATLAB on a Macintosh II)
produces a matrix U that is close to unitary, and we computed a lower bound for KM
from U. Interestingly, however, better results are achieved by using the unitary V
from the polar factorization, U VP where P P*, of our approximate unitary:

V
0.52557371154599
0.29440955823111
0.31639397962744
0.73279610766532

0.29440955823111
0.28352110536812
0.67353109047329
-0.61586903234281

0.31639397962744
0.67353109047329
-0.62858513101496
-0.22612265010007

0.73279610766532
-0.61586903234281
-0.22612265010007
-0.18050968589915
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From this unitary, we get the estimate

KM >_ 1.37770218499280.

Combining the two estimates, we find that KM 1.37770218499 to 11 decimal digits.
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S. BONDELIt AND W. GANDERt
Dedicated to G. H. Golub, on the occasion of his 60th birthday.

Abstract. The solution of linear, tridiagonal systems having real, symmetric, diagonally dom-
inant coefficient matrices with constant diagonals is considered. Details of cyclic reduction to solve
such systems are discussed. It is proved that the sequence of the diagonal elements produced by the
reduction phase of cyclic reduction converges quadratically. This fact is exploited to reduce the num-
ber of steps of the reduction phase (special cyclic reduction). An estimate of the rate of convergence
of the diagonal elements will be proved, which can be used to determine the number of steps of the
reduction phase.

Several possibilities to compute the diagonal elements are discussed and compared.

Key words, cyclic reduction, diagonally dominant matrices, direct methods, symmetric matri-
ces, Toeplitz matrices, tridiagonal matrices
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1. Introduction. In this paper we study linear systems of n equations of the
form

a 1
1 a 1

(1) Tx= 1 "’. "’.

*, a
1

Xl dl
x2 d2

1 x,_ d,_
a Xn dn

=d E]Ftn,

lal >_ 2. The coefficient matrix T has a very special form: it is tridiagonal, symmetric,
and a Toeplitz matrix. Such systems arise, for example, when using finite difference
methods to solve linear constant-coefficient boundary-value problems in various con-
texts [8], [12], [17] or in cubic spline interpolation problems with equidistant knots
[7], [16].

A number of methods have been proposed fdr solving such systems: Toeplitz fac-
torization [1], [2], [5], [6], [15]; cyclic reduction [2], [11], [14], [17], [18]; and specialized
variants of Gaussian elimination [7], [13], [18]. Each of these requires O(n) scalar
operations. Such systems may also be solved using Fourier transforms, but this leads
to an O(n log n) algorithm [2].

In Toeplitz factorization methods one seeks an LU factorization of T in which L
is a lower bidiagonal Toeplitz matrix and U is an upper bidiagonal Toeplitz matrix:
T=LU. The diagonal elements of U form a sequence that converges linearly [7], [13]
to

u [a- sign(a)v/a2 -4] / 2,

assuming lal > 2. This allows the factorization to be terminated early.
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Another form of early convergence has been observed for cyclic reduction [9]: in
the case where T is a block tridiagonal matrix, the norms of the matrix of the off-
diagonal elements decrease quadratically with each reduction step. When this norm
is less than the machine precision, then the system can be considered diagonal and
back-substitution can be started immediately.

In this paper, however, we prove that the diagonal elements a form a sequence
that converges quadratically to

lim a sign(a)v/a2 -4

for lal>2; furthermore, we give an explicit formula for a.
The major goal of this paper is an analysis of cyclic reduction and, consequently,

a better understanding of this widely used method. The paper is arranged as follows.
First, we will present cyclic reduction. Then we discuss a special cyclic reduction
that reduces the number of reduction steps. In a third part, different algorithms
to compute the sequence of diagonal elements are discussed. Finally, we give some
concluding remarks.

2. Cyclic reduction. The two fundamental operations of cyclic reduction (cyclic
odd-even reduction [9]) are the elimination of odd-indexed unknowns and their even-
tual recovery through back-substitution.

For simplicity we assume that n=2m- 1. (Only a simple modification is necessary
to generalize cyclic reduction to any n. For more details see [2].)

We multiply equation 1,3, ..., n of (1) by -1/a. If we add to each even-numbered
equation the two adjacent equations, the result is

al bl x2 d2,1
bl al bl xa d4,1

(2) bl "’. "’- E t(n-1)/2,
"’. al bl Xn-3 dn-3,1

bl a xn- dn-l,1

where al a 2/a, bl -1/a and dj, dj (dj-1 -t- dj/l)/a (j--2,4,...,n-1).
This first reduction step decoupled the even-numbered equations from the odd ones,
yielding a reduced system of order (n-1)/2. The reduced equations have the same
form as the original ones: the coefficient matrix is a tridiagonal, symmetric, Toeplitz
matrix. Therefore, analogously to the elimination above, the reduction process may
be applied on (2). We multiply equation 1,3, ,(n-l)/2 of (2) by --bi/al aild add
adjacent equations. Again a tridiagonal, symmetric Toeplitz system of order (n-3)/4
results with diagonal elements a2 al-2b/a and off-diagonal elements b2 -b2/al.
Thus, the reduction process may be applied recursively: after m-1 reduction steps,
only one equation in the unknown x(+1)/2 is left.

The reduction phase may be summarized as follows.

ALGORITHM 2.1. Cyclic reduction: Reduction phase
s--1

fori 1,2,...,m- 1
b -b_/a_
ai ai_ 2b_ /ai_1

t----s
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8=28
]or k s, 2s, 3s,..., (2n2- 1)s n + 1 s

dk, dk,{-1 b-l(dk-,-I + dk+,-l)/a-
end

end

(Here we have taken a0 a, b0 1, and dk,o d}.)
The back-substitution phase begins by computing x(n+z)/2. All the other un-

knowns may then be determined by applying back-substitution recursively.

ALGORITHM 2.2. Cyclic reduction: Back substitution
s--(n/l)/2
xs ds,m-1/am-1
for i m- 2, m 3,...,0

s=s/2
for k s,s + t,s / 2t,...,n + 1- s

+
end

end

(Note xo Xn+l 0.) Algorithms 2.1 and 2.2 require O(8n) floating-point
operations.

Since ai occurs only in the denominator in the reduction as well as in the back-
substitution phase we compute the inverse of a. Furthermore, since the sequence ai
converges rapidly in the reduction phase, scalar overhead can be saved by using a
special cyclic reduction.

3. Special cyclic reduction.
THEOREM 3.1. Suppose lal > 2. Then the sequence o.f the diagonal elements ai

produced by the reduction phase (Algorithm 2.1) converges quadratically to

(3) sign(a) v/a2 4.

2Proof. Using the identity b -b_i/a_ (see Algorithm 2.1), it follows for the
computation of the diagonal elements

ai ai-1 2bi_ /ai_ ai_ + 2bi,
(4/

(ai ai-1)/2 bi.
2Substituting (4) into bi -bi_/i_, we obtain

ai a-1)12 a- a_2 /ai-1,2
2 2

ai-1 -- 2ai_ ai_2 ai_2
ai

2ai_

a,_ l
gi-1

2_

Thus we transform (5) into

(6) a2 a22aa_ 2a_ a_2
_

-t- _2 0,
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which is a nonlinear homogeneous difference equation of order-two with initial condi-
tions

We define for 1, 2,...

a0 a, al
a2 2

2
ri 2aiai_ ai-

and substituting (7)into (6) gives

(8) ri-ri_: --0.

This linear homogeneous difference equation (8) has constant solutions: i 1, 2,...

(9) ri r.

The initial conditions yield

(10) r r: 2aoa a 2a
a2 2

a

Substituting (9) into (7) and rearranging gives

2r 2aiai-1 ai_1,

ai-1 r
(ii) ai 2 2ai_1

a2 a2 4.

Iteration (11) is Newton’s method [10, p. 81] to solve the equation F(x) x2- r O.
Since F(x/) 2x/ 0, the sequence ai defined by (11) converges quadratically to

V x/a2 4.
For every choice of la01 > 2, the sequence is monotone and thus

(12) lim a, sign(a) v/a2 4. D

Table 1 shows some sequences for different" initial values co--a>2. The last value
of each column is equivalent to lim__,o a x/a2 4 of each sequence. The values a
converge very fast to the limit as lal moves away from 2 (see Table 1).

TABLE 1
Sequences ai ]or some initial values ao--a.

a=3.8
0 3.8000000000000
1 3.2736842105263
2 3.2313758673210
3 3.2310988961517
4
5
6
7

a--3.2 a--2.5 a----2.1 a--2.02
3.2000000000000
2.5750000000000
2.4991504854369
2.4979994645414
2.4979991993594

2.5000000000000
1.7000000000000
1.5117647058824
1.5000457770657
1.5000000006985
1.5000000000000

2.1000000000000
1.1476190476190
0.7524402292037
0.6486670041268
0.6403662256270
0.6403124260035
0.6403124237433

2.0200000000000
1.0299009900991
0.5539833733421
0.3495570413991
0.2897812105012
0.2836159557675
0.2835489454933
0.2835489375752

Before we discuss special cyclic reduction in detail, we show an explicit formula
for ai.
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LEMMA 3.2. Suppose lal>2. Then the diagonal elements produced by the reduc-
tion phase (Algorithm 2.1) are given by

(13) ai sign(a)v/a2 4 coth

where

In (x/’a2 4 + a) In 2 if a > 2,
Yo -In (4a2 4 a) -]- In 2 if a < -2.

2, th, th (k 2,...)

(14) bk -sign(a)/2k,
(15) ak= sign(a)/2k-

Proof. Equations (14) and (15) follow by induction using the formula for the
computation of the diagonal elements ai and off-diagonal elements bi in the reduction
phase (see Algorithm 2.1). For details see [3, pp. llTff].

We discuss the case lal>2. Using the identity

coth (2a)
coth (a)2 + 1
2 coth (a)

and substituting ai x/coth (yi) into (11), we obtain

(16)
v/7 coth (y) v/7 coth (Y-I) +

r

2 2Vcoth (yi-1)
coth (yi) coth (2y-1).

Since coth (x) is an injective function for xe]R\{0}, (16) implies

(17) yi 2y_1,

which is a first-order linear homogeneous difference equation with solution

(18) yi y02.
The initial value Y0 of (18) is given by

Using the identity

coth (Y0) a0/v,

y0 arctanh( v/a2
a 4).

arctanh(a) In if a[ < 1,

and taking into consideration the sign of the initial value ao=a, it follows that

ln(v/a2-4+a)-ln2 if a>2,
y0= -ln(v/2-4-a)+In2 if a<-2.
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Finally, we obtain the explicit formula

(19) ai sign(a)v/a2 4 coth (ly012’).
LEMMA 3.3. Suppose la0[>2. On a computer with precision e, the sequence

becomes constant for i >_ ka, where

(9.0) a plO(lO(/ + ’))- lO (lO (1<’1 + V’<’- l)- lO()) ,]
log (2) /I

Here log denotes the logarithm to the base 10 and a ao.
Proof. We will assume that ao-a>2, since if ai is the sequence corresponding to

the initial value a, then -ai is the sequence corresponding to a0 -a.
We know that the sequence ai is monotone and converges quadratically to

(21) lim ai V/a2 -4.

Therefore, the sequence has converged numerically if

(22) ai limi-,oo ai < e.
limi--,oo ai

Using the identity

xp () 1
tanh (a)

exp (2a) + 1

and formula (13), we obtain

(23) ai=V/a2-4zi+1 with

Using (21) we see that

2i/I

via2 41zi 2t- 1

ai limi_oo ai zi 1

limi-,oo ai a2 4
2

zi-1

and to guarantee inequality (22), we must have

(24) zi >_ 2

Using definition (23), some elementary computations give

(25) i >_
log (log (2/e + 1)) log (log ( + v/a2 4) log (2))

log (2)

where log denotes the logarithm to the base 10.
Table 2 shows ka for the same initial values a0 a that are used in Table 1.
This leads to the following algorithm for the solution to (1) with
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TABLE 2
Values of the convergence index ka for e=l.0e-15.

a=3.8 a--3.2 a=2.5 a--2.1 a=2.02
> 3.81 4.08 4.67 5.81 6.97

ka 4 5 5 6 7

ALGORITHM 3.4. Special cyclic reduction

z log (log(2/e + 1.0)) log (log(la + v/a2 4) log(2))
ka min{m 1, [z/log (2)] 1}
b0=l
(o 1/a
s-1

for i 1, 2, ka
bi --Oli- b_-1/(1 + 2bi

_
1

t--s
8-28
for k s, 2s, 3s,..., (2n2-i 1)s n + 1 s

dki dk,i-1 ai-lbi_l (dk-,i-1 + dk+t,i-1)
end

end

for k s, 2s, 3s, n + 1- s Xk Okds,k

for i ka 1, ka 2,...,0
-8
s s/2
for k s,s + t,s + 2t,...,n + 1- s

xk , (dki b,(xk-8 + Xk+8))
end

end

Note that we put x0 xn+l 0, and to save operations we set ai 1/ai. The
operation count of this method is reduced to O((8- 4/2k.)n). Significant savings are
obtained only when la[ is so large that ka is small. This means that the reduction
process may stop after a few steps. The reason for this is that since the work is
reduced by a factor of two at each step in the reduction phase, most of the work is
done in the first few steps.

4. Sequence ai. In this section we discuss and compare several possibilities to
compute the diagonal elements of each reduction step of cyclic reduction and present
the results of some time measurements.

Table 3 gives two possibilities to compute the sequence ai using a nonlinear re-
currence of order-two or order-one, respectively (see also (5) and (11)). For
and i large ai ai-1. Therefore, by computing ai-ai-1 in the numerator of (5),
cancellation will occur. For that reason the computation of ai using the recurrence of
order-two is unstable.

However, the nonlinear recurrence of order-one (see Algorithm 2 of Table 3) is
stable.
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TABLE 3
Computation o the sequence ai using nonlinear recurrences.

Algorithm 1:
Nonlinear recurrence of order 2

a0 --a

al a- 2/a
for i 2,3,...,m

ai ai-1 (ai-1 ai-2)2/(2ai_1)
end

Algorithm 2:
Nonlinear recurrence of order 1

r--a2--4
ao a
for i 1,2,...,m

ai (r/a,_i + _)/2
end

TABLE 4
Explicit Sormulas Sot the sequence ai.

Algorithm 3:
Explicit formula using tanh

Algorithm 4:
Explicit formula

q= v/a2 --4 q= v/a2 --4
y log la + ql log 2 c (a + q)/2
ao a if Icl > 1 then
t tanh y c 1.OIc
for i 1,2,...,m q -q

t 2t/(1 + t2) end
ai q/t for i 0, 1,...,m

end c c2

ai q(c + 1)/(c- 1)
end

In Table 4, two different explicit formulas for ai are shown. Equation (19) leads
to Algorithm 3 of Table 4, where the identity

2 tanh ()
tanh (2)

1 + tanh2

is used.
Using (23) we derive the second explicit formula for ai. If a0 a > 2, then

c (a/q)/2> 1, and hence formula (23) presents the danger of floating-point overflow.
However, this can be turned to our advantage by using the identity

(c+l) 1/c+l
(c- 1) 1/c- 1

Note, with the fact that the sequence ai is monotone for every initial value
the computation of ai by each algorithm in Tables 3 and 4 can be stopped machine
independently when the monotonicity is violated.

4.1. Comparison of methods. Table 5 summarizes the floating-point opera-
tion counts for the methods shown in Tables 3 and 4. Since the scalar overhead of
Algorithm 2 is smaller than the other ones, this method is the fastest on a scalar
machine.

On a vector computer, such as the CRAY Y/MP, both algorithms using explicit
formulas (Table 4) can be vectorized. Therefore, these two methods are faster on a
vector machine than the two others using a nonlinear recurrence (see Fig. 1).
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TABLE 5
Operation counts.

Algorithm Scalar operations

Nonlinear recurrence of order 2
Nonlinear recurrence of order 1
Explicit formula using tanh
Explicit formula

6m 4
3m+2
5m+5
5m+ 10

/// .....-" of order

explicit using tanh

.-"" ...-’"" explicit formula

10 1’5 20 25 3’0

FIG. 1. Time measurements on a CRAY Y/MP.

5. Conclusions. For the solution of linear tridiagonal linear symmetric Toeplitz
systems we have presented the details of cyclic reduction. We have proved that
the sequence of the diagonal elements of the tridiagonal matrices, produced by the
reduction phase of cyclic reduction, converge quadratically. This is exploited to reduce
the number of steps of the reduction phase of cyclic reduction. In addition, we have
developed a formula to compute an a priori estimation of the number of steps of the
reduction phase and to compute the diagonal elements to full floating-point precision.
Furthermore, we have discussed several algorithms to compute the sequence of the
diagonal elements: nonlinear recurrences and two different explicit formulas. On a
vector computer the explicit formulas are much faster than the nonlinear recurrences.
Without vector facilities, nonlinear recurrence of order-one is the fastest.

Acknowledgment. The authors would like to thank G. H. Golub, one of the
inventors of cyclic reduction, for many helpful suggestions.
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DYNAMIC CONDITION ESTIMATION
AND RAYLEIGH-RITZ APPROXIMATION*

PING TAK PETER TANG?

Abstract. It is shown here that the well-known Rayleigh-Ritz approximation method is ap-
plicable in dynamic condition estimation. In fact, it can be used as a common framework from
which many recently proposed dynamic condition estimators can be viewed and understood. This
framework leads to natural generalizations of some existing dynamic condition estimators as well as
more convenient alternatives. Numerical examples are also provided to illustrate these claims.

Key words, condition number, singular values, incremental condition estimation
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1. Introduction. Recently a number of dynamic condition estimation schemes
have been proposed for a variety of computational situations [1], [9], [6], [10]. These
schemes all try to estimate the condition numbers of a sequence of matrices as they
evolve in time in some computational process such as QR factorization or recursive
least-squares calculations. These estimation schemes are mostly heuristic, and re-
searchers have little theoretical insight on why the schemes work so well in practice.
Moreover, although the schemes look alike and are applied to closely related problems,
no common framework has been formulated to explain them. Thus, each scheme has
been regarded as a different method: incremental condition estimation (ICE), adap-
tive condition estimation (ACE), adaptive Lanczos estimation (ALE), and ACE for
general rank-1 updates (GRACE).

In this paper, we show that many of these dynamic condition-estimation schemes
can be viewed from a common and, in fact, well-known framework of Rayleigh-Ritz
approximation. This framework provides a number of advantages. The details of the
various condition estimators can now be derived naturally and therefore need not be
memorized; many known properties of Rayleigh-Ritz approximations can be used di-
rectly and thus help in understanding these estimators. The common framework often
allows natural generalization of the estimation schemes, and this framework will likely
allow relatively easy construction of different estimators for different computational
situations.

The rest of the paper is organized as follows. Section 2 discusses the application of
Rayleigh-Ritz approximation to condition estimation in general. Section 3 discusses
some of the eigenvalue problems that arise from Rayleigh-Ritz approximation; these
problems will appear again in subsequent dynamic condition estimators. Section 4
presents the general connection between Rayleigh-Ritz approximations and dynamic
condition estimations, and also illustrates how the Rayleigh-Ritz framework can in-
deed lead to the various dynamic condition estimators. Explanations and generaliza-
tions of the various schemes are discussed whenever appropriate. Section 5 presents
numerical experiments that illustrate the various points raised in 4. Section 6 offers
some concluding remarks.
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2. Condition estimation by Rayleigh-Ritz approximation. The condition
number we are concerned with is

;2(R) - IIRIIIIR-111-- (all I1" are 2-norms, unless otherwise stated),amin(R)
where R is n-by-n upper triangular. In our context, R is always the triangular factor
in the QR factorization of an m-by-n matrix A, m >_ n; thus ATA RTR. Hence,
amax(R) amax(A) and amin(R) amin(A). We shall concentrate on estimating the
two extreme singular values of A. This task, in turn, can be related to estimating
the two extreme eigenvalues of ATA or the extreme eigenvalues of AAT (provided the
m- n zero eigenvalues are disregarded). It is for these estimations that we employ
the Rayleigh-Ritz approximation.

Let the singular value decomposition of A be A UVT, where

V= [ul,u,...,Un], Y-- [v,v2,...,vn], I2,--diag(a,a2,...,an),
and al _> a2 >_... _> an.

Let F [xl,x2,... ,xk] for some k _< n be a matrix of k orthonormal vectors; thus
FTF I. The Rayleigh-Ritz approximation is obtained by calculating the eigensys-
tem

(FTAATF)W Wdiag(T2, T22,..., T), T
2 _> T22 _>-.-_> T.

The Cauchy interlace theorem tells us that a] _> Tj2, j 1, 2,..., k. The matrix

FT(AAT)F is a Rayleigh quotient of AAT; the vectors xj Fwj are known as Ritz
vectors, and the (T], xj)’S are known as Ritz pairs. If span(F) span(U(k)), U(k)

[u, u2,..., uk], then the (Tj, Xj)’S are reasonable estimates of (aj, uj). In particular,
we have a reasonable estimate of al. Here we use the convenient notation span(.) to
denote the space spanned by the columns of the matrix inside the parentheses.

Similarly, we can estimate an if we have a corresponding F approximating
[un, Un-,..., un-k+]. The inequalities a _< T], j n, n 1,..., n k + 1, would
hold as long as m n, or span(F) is orthorgonal to span(U) +/-. Analogous estimation
can be performed by approximations of V and by the Rayleigh quotients of ATA.

Various a priori bounds can be derived relating the quality of aj’s estimates to the
closeness of the subspaces span(F) and span(U(k)). These bounds are not useful in the
quantitative sense, however, because we seldom know the closeness of the subspaces.
Moreover, even in the case where span(F) is far from span(U(k)), good approximations
to aj are still possible. For an extreme example, consider A with equal singular values
rl a2 an. On the other hand, the kind of analysis giving those bounds
is sometimes useful in explaining why specific condition estimators are effective and
in identifying situations where they may perform poorly. We shall carry out such
analyses whenever they are appropriate. We refer the interested reader to Chapter 11
of [8] for a lucid discussion on Rayleigh-Ritz approximation.

3. Eigenproblems related to Rayleigh quotients. Consider A UFVT,
U [Ul, u2,..., Un], and

U(k) [Ul, u2,..., Uk] or V(k) [Un, n--1,..., Un-k+l]

as before. Computations involved in determining the Ritz pairs differ depending on
the information determining the space " span(U(k)). (The situation where we have
G span(V(k)) is analogous, and its discussion is omitted in the rest of this section.)
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3.1. Orthonormal basis. The orthornormal basis is the simplest case. " is
given as span(F), where FTF I. The Ritz pairs are (T],X:), X. Fwj, where

(T], Wj) are the eigenpairs of the Rayleigh quotient FT(AAT)F.
3.2. General basis. In some situations, " is given as span(F) but FTF =I, although F has full rank. There are two approaches. One is to perform a QR

factorization of F:

F QR, Q is n-by-k and QTQ I.

The Ritz pairs are then (T], Xj), where xj Qwj and the (T], Wj) are the eigenpairs
of QT(AAT)Q.

At times, however, the matrix FT(AAT)F is readily available. Thus,

QT(AAT)Q R-TFT(AAT)FR-1.

Then, the Ritz pairs are (T], xj), where xj Fwj and the (T], wj) are the eigenpairs
of the generalized eigenvalue problem

FT(AAT)Fw T
2(RTR)w T

2(FTF)w.

3.3. General basis and a projection. In certain situations, we may know of
an "undesirable" subspace (: given by an orthonormal basis C [c,c2,... ,c]. For
example, we may be estimating small singular values and span(C) span(U) +/- (in
particular m-n). It is quite natural, then, to use the space " span(F) projected
to (+/-. If we assume that (I cCT)F has full rank, the Ritz pairs (according to the
previous subsection) are obtained either from the eigenpairs of QT(AAT)Q, where

(I cCT)F QR, Q is n-by-k and QTQ_. I,

or from the eigenpairs of the generalized eigenvalue problem

IFT (I ccT)(AAT)(I cCT)F] w T
2 IFT(I cCT)F] w.

3.4. Krylov subspace. The Krylov subspace is the best-known subspace asso-
ciated with Rayleigh-Ritz approximation. Here, the subspace is

"- span{q, (AAT)ql,..., (AAT)k-lq },
span{q, q2, qk }, QTQ I.

Moreover, the tridiagonal Rayleigh quotient T QT(AAT)Q is generated by the
Lanczos tridiagonalization procedure. The Ritz pairs are obtained easily from T’s
eigenpairs.

4. Dynamic condition estimation. In practice, using the Rayleigh-Ritz meth-
od for condition estimation is especially attractive when the Ritz pairs can be com-
puted economically. This is indeed often the case in the so-called dynamic condition
estimation. A typical scenario is the following. At a certain stage, we have a matrix
A and Ritz pairs (T, X), such that

XT(AAT)X diag(T2, T22,..., T).
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The Tj’S approximate A’s largest or smallest singular values, or both. (It may also be
the case that the Ritz pairs are (#, yj)’s where

yT(ATA)Y diag(#, #2
2 2,...,#),

but we shall concentrate on AAT, in general.)
At the next stage, which usually corresponds to new data coming in or a new

iteration of some iterative process, we wish to obtain new Ritz pairs for a new matrix
A. The situation in question usually suggests a convenient basis F [&l,&2,... ,&]
( need not be k, and in fact ~- k + 1 frequently) such that the Ritz pairs for .
corresponding to the subspace " span(F) can be computed economically, usually
with the help of A’s Ritz pairs. (/ is usually closely related to X.) Then, k appropriate
Ritz pairs (], &j) of with respect to are chosen, and we have

As pointed out earlier, depending on the nature of ." and/, the computation may
involve an eigenvalue problem or a generalized eigenvalue problem.

We now show that a number of different dynamic condition estimation schemes
are in fact Rayleigh-Ritz methods. This view not only allows us to better understand
these schemes, but also suggests generalizations or alternatives.

4.1. ICE. In his paper on ICE [1], Bischof considers the condition number of the
growing upper triangular factor in a QR factorization. At a given stage, the subject
is an n-by-n upper triangular matrix A. The estimate of A’s smallest singular value is
given by a large norm solution p to a unit norm right-hand side r, pTA rT, Ilrll 1.
Thus, T --Ilpl1-1 is an estimate for (:rmin(A). At the next stage, one more column of
the triangular factor is generated:

To obtain a large norm solution i5 to a new unit norm right-hand side for , Bischof
tries to

maximize I[spT ]l[ subject to I[spT 1 fill 1.

Let [spT ]. [spTA c]. The constraint becomes s2 +c2 1. Algebraic manipulation
gives

II[ pT  111 = wTMw, wT [s cl,

where M is a positive definite matrix given in terms of pTa, a, and T. Consequently,
the maximum is attained at M’s largest eigenvalue, andT [pT/] can be computed
from the corresponding eigenvector [ 5]T. The estimate for amin() is given by/5
and IIl[ -1.

We now show that the above process is really a Rayleigh-Ritz method. The
estimation of amin(A) is given by the Ritz pair~(T2,X), where x P/IIPlI, of the
Rayleigh quotient xT(AAT)z. To estimate amid(A), we simply use the subspace

=span(/), /= [x O]0 1
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Clearly, /T/ I, and the two Ritz pairs are (2, j =/j), where (, j) are the
eigenpairs of

T(/T) diag(T2 0) + zzT, z

The new estimate (, &l) is derived from the small Ritz pair (, &).
To show that ICE is equivalent to the Rayleigh-Ritz method just described, we

first show that :
1 ]]T]]., IV1 V21, and ]]01]] 1

Thus,

1 I1[ ( rl/ xllpli)pT

giving

]][ (’x/cx llpll)pT

Consequently, l > . On the other hand,

II[ llpll

implies IIwT rAII, [llpll normalized. Thus > i. Thus, we have
l. We omit the proof that l  /1 11, which is straightforward. Similar

arguments show that the estimation of amax(A) in [1] is also a Rayleigh-Ritz method
2with an initial Ritz pair (T2, X) where T2 xT(AAT)x amax(A). The Ritz pair for

A is obtained by using the subspace

Indeed, viewing ICE as a Rayleigh-Ritz method leads to convenient generalizations
(some of which were explored in [2]). At a given stage, we have Ritz pairs (T],X:i)
such that

XT(AAT)X diag(T2, T,..., T), T1 >_ 7"2 >’’" > Tk > O,

where T1 tmax(A), Tk ffmin (A), and the interlacing property

j 1,2,...,kffmax-j+l (A) > T > O’min+k-j(A),

holds. At the next stage, we have

The subspace is chosen to be the k + 1 dimensional

" span(), / 0T
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Clearly, T I, and the problem becomes that of determining the eigensystem of
the Rayleigh quotient

IT(T)/ diag(T12 T T 0) + ZZT, Z

Thus, both the Rayleigh quotient and its eigensystem can be determined economically
(see [4] and [11]). Note that if we were to formulate this generalization following the
approach in [1] as a maximization problem in terms of k / 1 parameters and try to
realize the objective function as a quadratic form, the algebraic manipulation would
have been quite involved.

Understanding ICE as a Rayleigh-Ritz method sheds some light on its effec-
tiveness as well as its ineffectiveness. The analysis usually assumes that some of
the extreme left singular vectors of A (or, equivalently, the extreme eigenvectors of
AAT) are close to " span(X); thus /(uj,’) /j is small for j 1, 2,... , or
j n, n 1,..., n- g / 1, or both, for some g. We then try to identify situations
where /(fij, ’) will also be small, where

1? and 2T .2.T.
Since the nature of these analyses is more qualitative than quantitative, we shall not
call the results theorems or lemmas.

PHENOMENON 1. Suppose amin(A) an is not small (say, an >_ 1) and that there
is a drastic drop of the smallest singular value of (say, amin(-) 5n+1 _< V/, where

is the machine precision). Furthermore, assume that the vector a has a moderate
norm (say, [[a[[ <_ 2). Then, ICE is effective in tracking 5n+1.

Explanation. Let M be the matrix

Then,

T--MTT’ 5-- [a]"O
Let U be the le singular vectors of A. Therefore, the eigenvalues of .T are the
eigenvalues of

0r 1 (M + aa
0 1

2 O) + bbT,diag(al2, a,..., an,

Thus, #n+ satisfies the equation (see [7])

c2

-2
(Tn+l

bT -[//2""" n+]--[aTU hi.

=l+j 2
"= 0" O’n+

-<I+E 1 -’2
j--1 (Tn+l

_< 1 + 1 -2 an+l
ffn+l

-24a.+1.
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Now, since ICE applies Rayleigh-Ritz method to /T with span(/) that contains
[0 1]T, we have

Tin < [0 1]TT

2
-2< 4an+1.

Moreover, we may even say something about the direction of the corresponding left
singular vector by invoking well-known results in [5] on rotation of eigenvectors by
perturbation. Now,

and the residual

[01]TM[ 011 --0,

(M + ,,T) [ 0
has norm less than 5v. Furthermore, M + ,T has a large separation between the
smallest and the next smallest eigenvalue. We have, therefore, by the "sin 0" theorem
in [5]

sin 0 _< 5 /(1 e),

where 0 is the angle between//T’s smallest eigenvector and [0 1]T.
Thus ICE is effective in tracking 5min whenever there is a sudden big drop of

the smallest singular value from A to , regardless of the quality of the estimate of
(Tmin (A). This phenomenon can be generalized.

PHENOMENON 2. Suppose (min-t(A) (:rn-t >_ 1; aj < X/ for j > n-- for some
g < k, the dimension of the space ’. Let / (uj, ’) <_ 0, j n, n 1,..., n g + 1 for
some small (say, 0 < v/). If 5n-t+1 is also small (say, 5n-t+1 < v/), ICE is effective
in tracking 5n+l, , n-t+i and the corresponding singular vectors in+1, fin-t+1.

The analysis is similar to the preceding one, and the crux is to show that
n-j=n-+l/3 is small where bT [VTa c]. Note that the direction of the vector

a, where

0 + [aT

does not play any direct role in the above phenomena. Moreover, the analyses so
far indicate that ICE is reasonably effective in general in tracking small singular
values when a large gap separates them from the large singular values. But we must
emphasize the phrase "in general" because our analyses assume that k is large enough
to cover all the values on the left of the gap, and that a gap in the singular values of
a triangular matrix does not necessarily give existence of similar well-defined gaps in
the singular value spectra of its principal submatrices.

The analysis above also suggests that the problem is likely to arise when [[a[] is
disproportionately large. This observation is confirmed in Experiment 1 in 5.

What about the effectiveness of ICE in estimating large singular values? Since
the Rayleigh-Ritz method is known to be effective in tracking large eigenvalues, ICE
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is generally effective in tracking large singular values. This fact is illustrated by the
many experiments in [1]. We must, however, be aware that the Rayleigh-Ritz method
need not give a good approximation to the corresponding large eigenvectors. Consider,
for example, a matrix AAT with one small eigenvalue close to v/, while all the rest
of the eigenvalues are large, but all within a factor of four to each other. Then any
space " with dimension two or more will give a reasonable estimate to the maximum
eigenvalue, but the corresponding Ritz vector may be even orthogonal to the exact
largest eigenvector. Along this line, we also point out an obviously bad situation for
ICE in estimating large singular values. Suppose dim(’) k is close to the k largest
eigenvectors of AAT. Furthermore, amax(A) 1. Now, if we have

as usual, but /(a, span([ulu2""uk])) 90, uj’s being A’s exact singular vectors,
Ilall 105, and Icl 1, then ICE will estimate o-max() poorly. One can argue, of
course, that this is a rare case from a probablistic point of view.

Before discussing the next condition estimation scheme, we mention that the
simple choice of c2 as an (upper) estimate of )min(T) 2O’man() is also a Rayleigh-
Ritz method. The subspace is simply span([0 1IT). This is the estimation used
implicitly in the QR factorization with column pivoting. In particular, because the
subspace used in ICE always contains [0 1]T, the estimate of ICE is always better
than a2.

4.2. ACE. ACE was designed by Pierce and Plemmons [9] to track the condition
number of the information matrix (or, equivalently, that of the covariance matrix)
in recursive least-squares problems using a forgetting factor. At a certain stage,
one has an n-by-n upper triangular matrix A, which is the Cholesky factor of the
information matrix. An estimate of o-rain(A) is given by a unit norm vector x such
that IIxTAII ,. o-rain(A). At the next stage, a row is added to A:

where/ is the Cholesky factor for /T. The goal is to estimate o-min(.), and the
means is by minimizing IIzTII/Ilzll over some convenient choices of z. The choice
used in [9] is

z first n component of Q [
To solve this minimization problem requires some algebra. Since the last row

of Q is zero, it is obvious that the last row of Q must be qT [_cT.y ], where

"7 (1 + cTc)-1/2 and cTA aT. (Computing c requires O(n) operations and is
relatively inexpensive.) Because Q is orthogonal and Ilxll 1, we have

O/X O2 ]2.Q
f +

Thus,
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Finally,

=[a f] aTb aTb

[c ]M

Thus, the minimization problem is equivalent to

[]
minimizes,

[a fllN

which is the minimum eigenpair of the generalized eigenvalue problem Mw ANw.
(Note that N is positive definite whenever a is not a multiple of b, cf. [9].) To
estimate amax(), one simply starts with x such that [[xTA[[ ,. amax(A) and carries
out the algebra. The result is the problem of determining the maximum eigenpair of

We now show that this method is also a Rayleigh-Ritz method. First, consider
the estimation of amin()- A convenient space for z]T is

=span(/), /= [x 0]0 1

The (n + 1)th eigenvalue An+l (A]T) 0 may cause a gross underestimate of a().
An obvious remedy is to further project " onto the orthogonal complement of the
eigenspace of An+I(T). Recall the vector q, qT [_cT7 7] in the preceding
discussion, where qT. 0. Clearly,

and the desired subspace is thus " projected onto span(q) +/-. From 3.3, this results
in the generalized eigenvalue problem

T(I qqT)(T)(I qqT)w A(I qqT)w.

But qT. 0, and we have

T(I qqT)(.;t.T)(I qqT)_ T(.T)

_[ bTb bTa]aTb aTa
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and

T(I qqT) I (Tq)(qT_)
1 2(cTx)2

2cTx
The derivation for estimating O’max(/) is exactly the same.

Using the Rayleigh-Ritz framework, we can easily combine the estimations of
largest and smallest singular values and also generalize them. At any given stage, we
have k Ritz pairs (T, x), j 1, 2,..., k, such that

XT(AAT)X BTB diag(T2, T22,..., T),
where some of the T approximates A’s large singular values, while the others approx-
imate A’s small singular values. At the next stage, we have

A aT

and we use the subspace " projected to span(q) +/-, where

" span(/), F 0T 1

The corresponding generalized eigenvalue problem is Mw ANw, where

aTB aTa 7
2CTX 1 7

2

The problem is that, unlike the generalization of ICE, which leads to an eigenproblem
of rank-1 perturbed diagonal matrices, computational schemes that can exploit the
structure of the matrix pencil here seem to be lacking.

There is, however, a rather natural alternative in view of the Rayleigh-Ritz ap-
proximation. If we use the space 7-/- span[F q], we will have (0, q) as the smallest
Ritz pairwhich can be discarded because it corresponds to the spurious zero sin-
gular value of A. Moreover, because the remaining Ritz vectors are orthogonal to q,
they will be reduced back to n-vectors from (d + 1)-vectors after a transformation by
Q, where

R

Let us now consider he calculation of these Ritz pairs. A sequence of k + 2 House-
holder transformations can be used o determine a vector 9 such that [/ 9] forms an
orthonormal basis of 7-/. This requires only order n+ 1 amount of work. The Rayleigh
quotient is thus

The eigensysem can be determined by an efficient (order k work) rank-1 update
method as follows. First,

T(T)._ [diag(T,T,...,T) BTa]aTB aTa
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Let E diag(T1, T2,..., Tk) and let z E-IBTa. Since -BTBE- Ik, z is an
othorgonal projection of a to a k-dimension subspace. Thus, aTa >_ zTz and we can
define (2 aTa zTz. Then,

E r(A ir) zTz
The eigensystem of the first matrix on the right can be solved efficiently by the method
given in [3]. In particular, when all the Tj’S are distinct, the k / 1 eigenvalues Aj are
zero and the k roots of a secular equation

1 q- E T] __,’
j=l

The eigenvectors are given by

[ (E- AI)--I

where [2... k] zT.

The case of Tj Tj+I for some j can be handled easily by deflation techniques de-
scribed in [3]. Once these quantities are computed, the eigensystem of/T(T)/
U.2UT can be determined by applying another round of rank-1 update technique.
Finally,

-T VTgT] (.T)[F g]_[U 1][32 32

where U9. The rank-1 update method in he preceding discussions is clearly
applicable here, too.

We see wo advantages of this alternative ha do hog require solving a general-
ied eigenvalue problem. First, exploiting he structure of he resulting eigenvalue
problem as suggesged above leads go an order k compuagion, as opposed to an order
ka computation for the generalized eigenvalue problem. This advantage is likely o be
minor since k is usually very small. The second advantage, however, is more signifi-
cant. The original scheme that requires solving Mw )Nw is quite complicated in
its additional processing when N is ill conditioned. In fact, i is unclear if this pro-
cessing can be generalized when N has dimension higher han two. Our alternative
here, however, is free from such complications. The reason is as follows. Even under
condigions that would lead o an ill-conditioned N, our computation hag ries o find
an orhonormal basis for span([F, q]) would still produce a set of orthonormal vectors.
This set is all that is required for our Rayleigh-Rit method to be valid numerically.
Thus, he proposed alternative does not have numerical breakdown.

4.g. ALE. ALE is a condition estimation scheme proposed recently by Ferng,
Golub, and Plemmons [6]. A a given sage, he subject is an upper triangular matrix
A (the Cholesky factor of a covariance matrix). Estimages of A’s larges singular
values are given by approximate lef and right singular vectors ,x,...,x and
1, ,...,, respectively, satisfying

XrAY diag(-r’, T,..., Tk), T1 _> T... _> T,

where

X [xx2""Xk], Y [YY2""Yk], XTX yTy I.



342 PING TAK PETER TANG

Estimates on A’s smallest singular values are given by A-l’s approximate largest
singular vectors satisfying analogous conditions.

At the next stage, is the Cholesky factorization of ATATaaT or ATA-aaT. To
obtain new estimates of s largest singular values, we apply k steps of the Lanczos
algorithm to the matrix B with the starting vector ql"

ql
Yl

It is therefore abundantly clear that ALE is a Rayleigh-Ritz method using the Krylov
subspace span{ql,Bql,...,Bk-lql} given by an orthonormal basis. Because the
Krylov subspaces are used, this method is effective onl_y in estimating B’s extreme
eigenvalues. Because B’s eigenvalues are (al (),-t-a2(A),..., =t=an()}, this method
on A is effective only in estimating A’s largest singular values. To estimate the small-
est singular values, Ferng, Golub, and Plemmons apply the Lanczos method to -1
(using a back-solve involving instead of -1 explicitly).

The generalization of this scheme is obvious. In fact, the discussion in [6] is for
a general k, although its implementation restricts k to two so that eigenproblems of
the Rayleigh quotients are reduced to finding roots of quadratic equations.

The advantages of this method are several. Many well-established a priori or a
posterori bounds can be obtained (see [8] for an excellent discussion on the Lanczos
algorithm) if one cares to pay the price for them. Since estimation of small singular
values is achieved by estimating the large singular values of -1, this method generally
yields the best estimate compared to other condition estimation schemes discussed so
far. Furthermore, by suitably applying a posterori bounds on the large and small
singular values, rather reliable upper and lower bounds on .’s condition number can
be obtained.

The main disadvantage of this method is obviously its cost: while the preceding
schemes require order n amount of work, ALE requires order n2. Judging the price
one must pay for this estimation, it seems natural that one should increase the value
of k to at least three or four. The resulting eigenproblem can be readily solved by
standard QR iteration, or using rank-1 update techniques as the (implicit) tridiagonal
Rayleigh quotient (or the explicit bidiagonal) is being built column by column.

4.4. GRACE. GRACE is developed by Shroff and Bischof in [10] to estimate
the condition of QR + wvT. The method essentially combines two ICE steps and one
ACE step. Consequently, we can also use our Rayleigh-Ritz framework to understand
GRACE. It is worthwhile, however, to investigate if one Rayleigh-Ritz step can be
applied to obtain condition estimate for QR + wvT.

5. Numerical experiments. We present a number of experiments that illus-
trate the preceding discussions.

Experiment 1. This experiment relates to the direction and scaling of the added
column a in ICE. Here, ICE is applied to a sequence of updates: A1 E l,

A:= 0AT A+I:=A, =1,2,...,n-1.

We noted previously that as long as Ilall remains moderate compared to IIAII, the
directions of those vectors do not, in general, affect the quality of the ICE estimates.
But if Ilall is large, it is crucial that the subspace used in the approximation not be
far away from Ilall. To illustrate this point, we do the following. An, n 30, is an
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upper triangular matrix generated by applying a QR factorization to UVT, where
U and V are random orthogonal matrices generated by the method described in [12],
and is a diagonal matrix with entries chosen randomly in [0, 1].

We apply ICE with k 2 (that is, one vector to estimate rmax and one vector to
estimate amin). After the estimate is obtained for An-l, we modify an by

an :-- normalize ((I 0.999xXT)an)
where X [XlX2] are the two approximate vectors generated by ICE to estimate A’s
extreme singular values. We denote the resulting matrix B. This way, the last added
column is nearly orthogonal to the subspace to be used in B’s estimate. Because
[[an[[ 1 is moderate, we do not expect great degradation in the ICE estimate.
Indeed,

O’max(B)/Tmax 1.3 and Tmin/O’min(B)-- 2.6.

Next, we scale an up by a factor of 103. We call the resulting matrix B(8):

B(8) JAn-1 103an J0T Otn

The result of ICE is drastically changed:

rmax(B(S))/Tmax=1100 and Tmin/rmin(B(S))=480.

Finally, we increase the dimension of the subspace used by two; that is, we use two
vectors to estimate the maximum singular values and two vectors to estimate the
minimum singular values. The quality of the ICE estimates are restored:

max(B(S))/Tmax 3.4 and Tmin/O’min(B(s)) 1.3.

Experiment 2. We apply ACE and our alternative to track the condition numbers
of a sequence of Cholesky factors produced by recursive least-squares computations
employing an exponential window. The process is initiated .by a 30-by-30 identity
matrix, and the forgetting factor used is 0.95. Three condition estimators are used.
The first one is ACE. The second one is our alternative with k 2: one vector for
amax and one vector for rmin. The third one is our alternative with k 3: one vector
for arnax but two vectors for amin-

We test two cases. In the first test case, 60 steps of updates are performed where
the 60 rows of data are numbers chosen randomly in [-1, 1] with outliers of magnitude
104 added to six random places. In the second test case, 30 steps of updates are
performed where 30 rows of data are sja, where aj’s entries are randomly chosen
from [-1, 1] and sj 104j/30. One can consider the incoming data as exponentially
scaled. The results are summarized in Fig. 1 by the ratios of

actual condition number
estimated condition number"

The experiment illustrates that our alternative is comparable to ACE. Moreover,
by increasing k--which is made practical by not having to solve a generalized eigen-
value problemmthe estimates can become more reliable.
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Ratios of Actual / Estimate

ACE
Outliers

J ... k=3
___/_,i..:....---...--- k= 2,
20 40 6O
Update Numbers

Ratios of Actual / Estimate

Scaled

10 20 30
Update Numbers

FIG. 1. ACE on random matrices with outliers added or exponentially scaled.

Experiment 3. As pointed out earlier, ALE is generally accurate. This experiment
illustrates the benefit of increasing the number of Lanczos iterations k (which is the
dimension of the Krylov subspace). Here, ALE is applied to estimate the condition
numbers of a sequence of Cholesky factors generated by recursive least-squares com-
putations employing a sliding window. Hence, both up and downdatings are involved.
The process is initiated by a 20-by-20 identity matrix, and the up and downdatings are
performed on 20 rows of data composed of numbers chosen randomly in [-1, 1] with
outliers of magnitude 10a added to six random places. The results are summarized in
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Ratios of Actual / Estimate

1
0

k min- 2

k max-2

10 20 30 40
Up/Downdate Numbers

Ratios of Actual / Estimate

1
0

k min- 2

k max- 3

10 20 30 40
Up/Downdate Numbers

FIG. 2. ALE on random matrices with outliers added.

Fig. 2 by the ratios of

actual condition number
estimated condition number"

6. Conclusions. We have shown that the Rayleigh-Ritz approximation is ap-
plicable to dynamic condition estimations. Viewing many existing dynamic condition
estimators as Rayleigh-Ritz approximation allows better understanding of, and nat-
ural generalization to, such estimators. Moreover, this viewpoint is likely to lead to
other condition estimators tailored to other specific situations.
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ON THE STRUCTURE OF GENERALIZED SINGULAR VALUE AND
QR DECOMPOSITIONS*
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Abstract. This paper analyzes in detail the structure of generalizations of the singular value
decomposition and the QR decomposition for any number of matrices. The structure is completely
determined as a function of the ranks of the matrices or their products and concatenations.

Key words, ordinary, product, quotient, restricted singular value decomposition, QR decom-
position, complete orthogonal factorization
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1. Introduction. In a previous paper [4], we introduced an infinite tree of gen-
eralizations of the ordinary singular value decomposition (OSVD) and we derived a
constructive proof of it. All decompositions in this tree are considered as generalized
singular value decompositions (GSVDs) and it was shown in [4] how all of them can
be labeled with a sequence of the letters P and Q, where P stands for product and
Q stands for quotient. In [5], we introduced a corresponding set of generalizations of
the QR decomposition, which could be denoted by appropriate enumerations of the
letters L (lower) and U (upper). It is the purpose of this paper to discuss in more
detail the structure of these generalizations. In particular, we shall derive formulas
for the dimensions of the blocks in the quasi-diagonal matrices of the GSVDs of [4]
(Theorem 1.1 of this paper), or the triangular matrices in the GQRDs (generalized
QR decompositions) of [5] (Theorem 1.2 of this paper), in terms of the ranks of the
matrices involved and concatenations and products of these matrices.

This paper is organized as follows. In the remainder of this section, we summarize
the main results on generalized SVDs and QRDs obtained in [4] and [5]. Since there
is a one-to-one correspondence between these two generalizations, we will concentrate
on the generalizations of the SVD, while the results will apply for the GQRDs as well.
In 2, we analyze in detail the structure of a GSVD that only consists of P-steps.
In 3, we analyze GSVDs that only contain Q-steps. In 4, we discuss the general
case where we exploit the obtained insights from 2 and 3. Instead of providing
rigorous proofs, we have chosen to indicate our methods of deriving these results with
illustrative examples.

Let us first state the main result of [4] in the following theorem.
THEOREM 1.1 (GSVDs for k matrices). Consider a set of k matrices with compat-

ible dimensions: A1 (no nl),A2 (n x n2),..., Ak-1 (nk-2 nk-1),Ak (nk-1 nk).
Then there exist

unitary matrices U (no no) and Vk (nk nk);
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matrices Dj, j 1, 2,..., (k 1) of the form

r_l --rj
2r

I 0 0 0 0
0 0 0 0 0
0 I 0 0 0
0 0 0 0 0
0 0 I 0 0
0 0 0

0 I 0

0 0 0 0

where the integers rj are the ranks of the matrices Aj, satis]ying

r rank(A) y. r.;
a matrix Sk of the form

Sk
nk-1 x nk

r_l rk
3

rk

rk

0
0
0
0
0

r 0
k- rk- rk

2 3 krk rk rk tk rk
0 0 0 0
0 0 0 0

S 0 0 0
0 0 0 0
0 S 0 0

0 0

0 0 0

The rk X rk matrices S are diagonal with positive diagonal elements.
Noia,x( ) dZ, 1, ,..., (k- ), h Z i

iZ X;* o iaZ X i.., oo aoi),
such that the given matrices can be factorized as

A1 UID1X1,
A2 Z1D2X1,
A3 Z2D3X1,

Ai Zi-lDiX-1,

Ak Zk- SkV;

Expressions for the integers rj are given below; they are ranks of certain matrices in
the constructive proof of this theorem [4].

Observe that the matrices Dj and Sk are generally not diagonal. Their only
nonzero blocks however are diagonal block matrices. Observe that we always take the
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last factor in every factorization as the inverse of a nonsingular matrix, which is only
a matter of convention. (Another convention would result in a modified definition
of the matrices Zi.) As to the name of a certain GSVD, we propose to adopt the
following convention.

DEFINITION 1 (Nomenclature for GSVDs). If k 1 in Theorem 1.1, then the
corresponding factorization of the matrix A will be called the OSVD. If for a matrix
pair Ai, Ai+, 1 <_ <_ k- 1 in Theorem 1.1, we have that Zi Xi then, the factor-
ization of the pair will be said to be of P-type. If, on the other hand, for a matrix
pair Ai, Ai+, 1 _< i _< k- 1 in Theorem 1.1, we have that Zi X-* the factorization
of the pair will be said to be of Q-type. The name of a GSVD of the matrices Ai,
i 1, 2,..., k > 1 as in Theorem 1.1, is then obtained by simply enumerating the
different factorization types.

We now give some examples.
Example 1. Consider two matrices A1 (no El) and A2 (n n2). Then, we have

the following two possible GSVDs.
P-type Q-type

A UDX UDX
A2 XS2V* X*S2V*

The P-type factorization corresponds to the PSVD (product singular value decompo-
sition) as in [9] (called HSVD there) and in [1] and [3], while the Q-type factorization
is nothing else than the QSVD (quotient singular value decomposition) in [8], [10],
and [11] (called generalized SVD there). A P-type factorization is precisely the kind
of transformation that occurs in the PSVD while a Q-type factorization occurs in the
QSVD.

Example 2. Let us write down the PQQP-SVD for five matrices:

A UDX,
A2 XD2X,

--* 1A3 X2 D3X
A4 X*D4X
A5 XSV*.

In [5], we derived the following generalization of the QR decomposition for a chain of
k matrices.

THEOREM 1.2 (Generalized QR decompositions for k matrices). Given k complex
matrices A (no El), A2 (n n2)_, ..., Ak (nk- nk). There always exist unitary
matrices Qo, Q, Qk such that Ti Q* AQ where is a lower triangular or’’ i--1

upper triangular matrix (both cases are always possible) with the following structure.
Lower triangular (which will be denoted by a superscript/):

2r ri r r+
ri-1 ,1 0 0 0

Ri, 0 0ri-1

0ri_ * * ,i

and R,j is a square nonsingular lower triangular matrix.
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Upper triangular (which will be denoted by a superscript u):

r+l i-1r r r
1 0 Ri,1 * *ri_l

r_12 0 0 R,2
where R,j

0 0 0 Ri,ri_

and R is a square nonsingular upper triangular matrix. The block dimensions r$,3

coincide with those of Theorem 1.1.
As to the nomenclature of these GQRDs, we propose the following definition.
DEFINITION 2 (Nomenclature for GQRD). The name of a GQRD of k matrices of

compatible dimensions is generated by enumerating the letters L (for lower) and U (for
upper), according to the lower or upper triangularity of the matrices Ti, i 1,..., k
in the decomposition of Theorem 1.2.

For k matrices, there are 2k different sequences with two letters. For instance, for
k 3, there are eight GQRDs (LLL, LLU, LUL, LLU, ULL, ULU, UUL, UUU).

The relation between the two generalizations, the GSVDs and the GQRDs, is the
following:

(i) A pair of identical letters, i.e., L-L or U-U that occurs in the factorization of
A, A+I corresponds to a P-type factorization of the pair;

(ii) A pair of alternating letters, i.e., L-U or U-L that occurs in the factorization
of Ai, Ai+l corresponds to a Q-type factorization of the pair.

As an example, for a PQP-SVD of four matrices, there are two possible corre-
sponding GQRDs, namely, an LLUL decomposition and an UULU decomposition. As
with the GSVD, we can also introduce the convention to use powers of (a sequence
of) letters. For instance, for a p3Q2-SVD (which is short for a PPPQQ-SVD), there
are two QR decompositions, namely, an LaUL-QR and an UaLU-QR.

2. Structure of a GSVD with only P-steps. The main purpose of this sec-
tion is to derive expressions for the block dimensions rq when all steps in the GSVD
are P-steps. These block dimensions will be expressed as a function of the ranks of
products of the form

rank(AA+l,..., Aj_IA),
which will be denoted by ri(i+l)...(j-1)j. This will be done in two steps. First, we
derive an implicit characterization of the block dimensions. This leads directly to an
explicit determination of these block dimensions.

LEMMA 2.1. The rank of the product of the matrices Di, Di+I, Dj that appears
in a Pk-I-SVD (or the rank of the product AA+I,... ,Aj in an Lk-QR or a Uk-QR)
is given by

2rank(DiDi+l... D) r()(i+)...() r + rj +-.. + r.
As the examples will reveal, the following theorem follows directly from this

lemma.
THEOREM 2.2. Consider a Pk-I-SVD of the matrices A, A2,..., Ak. Then, the

block dimensions r, p 1,..., k, q 1,...,p are given by

rj r(1)(2)...(j)

rj r(+l)...(j) r(-l)()...(),
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with r(i)...(j) ri if i j.
Let us analyze an example from which we will see the general result.
Example 3 (p3-SVD). Let us derive expressions for the block dimensions r, r, ra3, r44

of the matrix Sa in terms of rl, r2, r3, r(3)(4), r(2)(3)(4), r(1)(2)(3)(4). The matrices D1,
D2, D3, $4 have the following structure:

r nl -r
no r 0 0

r r22 n2 r2

r I 0 0
o o o

D2- r 0 I 0
n r r 0 0 0

I 0 0 0

0 I 0 0
D3---r 000 0

r33 0 0 I 0
n2 r2 r33 0 0 0 0

rr -r
ra2

r
n3 r3 r44

s o o o o
0 0 0 0 0
0 S 0 0 0
0 0 0 0 0
0 0 S 0 0
0 0 0 0 0
0 0 0 $44 0
0 0 0 0 0

From the structure and dimensions of these matrices, we see that (we only show block
dimensions that are relevant)

r -r
r2 -r3r

D3Sa r rr rrr r
n2 r2 r

s o o o o
0 0 0 0 0
0 0 0 0 0
0 St 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 $34 0 0
0 0 0 0 0
0 0 000/

D2D3S4

0
0
0

0
0

0

0000’
0 0 0 0
0 000
0000
S3t 000
0 000
0 000
0 000

D1D2D3Sa

r
0
0
0
0

000
000
000
000
000

0
0
0
0
0
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We see by inspection that

from which it follows that

r(1)(2)(a)(a) r,
r()()() r + r,

r(3)(4) r + ra2 + ra3,
r4 r + r + ra3 + raa,

r r(1)(2)(3)(4),

r42 r(2)(3)(4) r(1)(2)(3)(4),

ra r(a)()

raa ra r(a)().

The same expressions apply for the blocks in the corresponding U4- or La-QR.
Observe that in the product D3 and $4, only the diagonal blocks of $4 with

dimensions r, r, ra3 survive. In the product D203S4 only the blocks with dimensions

r and r survive, and in 010203S4 only the block with dimension ra survives. This
observation can easily be generalized to the following survival rule for a pure PSVD,
which is the essence of the proof of Lemma 2.1.

In a product of matrices Di, Di+l,..., Dj (or Sk) only the blocks with block
dimensions rJ, r,..., r. survive.

Once this observation has been established, a proof of Theorem 3.2 is straightfor-

3. A GSVD with only Q-steps. Let us now look closer at the structure of a
GSVD with only Q-steps. We will see that we can derive expressions for the block
dimensions rqp,p 1,... ,k, q 1,... ,p in two steps. First, we obtain an implicit
formula where the required block dimensions are unknowns in a set of linear equations.
In a second step, these are solved to obtain an expression for the block dimensions rpq
in terms of the ranks of the block matrices

Ai
Ai*+I
0

0 0 0 0 0

Ai+2 0 0 0 0

Ai*+3 Ai+4 0 0 0

A_ Aj_ 0
0 A_I A

Their rank is denoted by rili+ll...ij_llj.
We will proceed in the same way as in 2. Instead of proving our results rigorously,

we prefer to reveal the mechanisms by some clarifying examples. First, we obtain the
following implicit characterization.

LEMMA 3.1. Consider a Qk-_SVD of the matrices A1, A2,..., Ak. Then
if j i even

if j i odd
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As will be shown, this lemma leads to the following theorem.
THEOREM 3.2. Consider a Qk-I-SVD of the matrices At, A2,..., Ak. Then

r (--1)k+(rl...ik rl...ik_ r21...Ik + r21...Ik-1),
rk (--1)J+k+(r(j+)l...ik r(j+)l...ik_ r(j_)l...lk + r(j-)l...Ik-)

:for 2<_j<_k-2,
k-1

rk rk rk-2[k-llk -f- rk-2[k-1,

r rk_llk rk-1.

Observe that in all cases, no more than four ranks ril...Ij are involved. Also, the third
case may be recognized as Grassman’s dimension theorem, giving the dimension of
the intersection of the column spaces of the matrices

0

A_

Let us derive the result of Theorem 3.2 by an example.
Example 4 (QQ-SVD). A QQ-SVD of three matrices A1 (no x n), A2(nl n2),

and A3 (n2 n3) takes the form

AI UDX
A2 X* -1D2X2

A3 X* *

where

no r 0 0

r r n2 r2

r I 0 0

r r 0 0 0
D2 r 0 I 0

nl r r 0 0 0

Observe that

r r r n3 r3

r S 0 0 0

-d o o o o
s= o s o o- o o o o

o o s o
n3 r2 r33 0 0 0 0

0) 0 0)A A3 0 X-* Dt $3 0 V3*

A complete detailed analysis of the QQ-SVD (which is also called the restricted singular value
decomposition (RSVD)) together with numerous applications can be found in [2].
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The left and right factors are nonsingular. Hence, we can obtain expressions for all
dimensions involved by analyzing the block bidiagonal matrix

D1 0

rl r21
no rl

n2 r2 r

(I00
0 I 0
00 I
000
I 0 0
0 I 0

I 0 0
0 I 0

S 0 0 0
0 0 0 0
0 S 0 0
0 0 0 0
0 0 S3 0
0 0 0 0

where we have used the finest possible subdivision of matrices (i.e., a partitioning
based upon the block dimensions r, r, r33). All nonzero blocks are diagonal. Elements
not shown are zero. First, it is straightforward to see that r3 r +r +r. Next, we
concentrate on the submatrix D $3 ). In this matrix, the block columns with the
matrices S and S are linearly dependent on the previous ones. The block column
with $33 is linearly independent. Hence rank( Dt $3 r213 r2 + r33. Next, we will

relate the rank rll2 rank (D D2) to

D1 0 )rl1213 rank D $3

It can be seen that when the block column with S is appended to (Dt
rank will increase with

D2)t, the

1 0 1rx [rank (1 1 )-rank( 1 )] =r.
If the block column with $32 is appended to (Dt D2)t, the rank will not increase.
Finally, if the block column with $3 is appended, then the rank will increase with

r [rank( 0 1 rank(0)] r33. Hence

[ (1 0 )_rank( 1 )]r1[213 rl[2 A- r X rank
1 1 1

+ r32 x [rank(1 1) rank(l)]
+ r x [rank(0 1) rank(0)] rll2 + r + r.

We can now set up a set of linear equations as

0 0 1 r r2[3 r2
1 0 1 r33 rll213 rll2

which can be solved as

r32 1 0
r33 0 1

-1 r213 r2
0 rll213 -rl12

r11213 rl12 -b r2 r213
r3 q- rll2 rll213 )r213 r2
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The same expressions will appear in the ULU- or LUL-QR.
Example 5 (QT-SVD). The courageous reader may wish to verify that for k 7,

the following set of linear equations needs to be solved:

( r7

r617 -r6
r51617 -r516
r4151617 --r41516
r314151617 --r3141516

0 0 0 0 0 0 1
1 1 1 1 1 0 1
0 0 0 0 1 0 1
1 1 1 0 1 0 1
0 0 1 0 1 0 1

\i 0 1 0 1 0 1

rr
re
r76
r77 j

This set of equations can be solved as

( rr
r73re

r

fO 0 0 0 0 -1 1
0 0 0 0 1 0 -i
0 0 0 -1 0 1 0
0 0 1 0 -I 0 0
0 -i 0 1 0 0 0
1 0 -i 0 0 0 0

\0 1 0 0 0 0 O

( r7

r617 -r6

r4151617 --r41516
r314151617 --r3141516

\ r1121314151617 --r11213141516

The pattern of the inverse matrix now becomes clear. We have a triantidiagonal
matrix with a sequence of alternating 1 and -1, ending in a 1 in the top right-hand
corner. As a matter of fact, this observation constitutes the essence of a proof of
Theorem 3.2.

4. On the structure of a GSVD. For the analysis of the structure of a com-
pletely general GSVD, in which the letters P and Q can appear in any order, we need
a mixture of the two preceding notations for block bidiagonal matrices, the blocks of
which can be products of matrices, such as

AioAio+1 Ail-
(All.. ":i2-1)*

0

0 0 0

Ai2 A3-1 0 0
(A3 A,_I)* A4 A5_1 0

As, Aj

where 1 _< io < il < i2 < i3 < < il _< j _< k. Their rank will be denoted by

For instance, the rank of the matrix

A2A3 0 0 )A ADA6A7 0
0 (AsAg)* Ao

will be represented by r(2)(3)]4](5)(6)(7)1(8)(9)1(10).
In the following theorem, we derive an implicit expression of the block dimensions

rqp,p- 1,... ,k,q- 1,...,p of a GSVD of A,A2,...,Ak. We proceed in two steps.
The first part of the theorem is based on the survival rule described in Lemma 2.1,
and the second part is then an application of the pure Q-step SVD in Lemma 3.1.
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THEOREM 4.1 (On the structure of a GSVD or GQRD). The rank

r(io)(io+ )... (Q )[il... (i2-1)[... [Q ...j

can be expressed as follows:
i:1,2,... /+1.1. Calculate the + 1 integers sj,

2 rOsj -r +rj +...+
2 r)O+l ./oT2 rlsj +-,j +...+

^lT1 il-lT1 Q-1+2 r;+...+

2. Depending on even or odd there are two cases.
even:

odd:

r(io)...(il-)l(il )...(i2-1)l...l(Q )...j
1 3

r(io)...(il_l)l(il)...(i2_l)[...l(i_l)...(i_l -I- Sj -I- Sj +’’’-I" j

r(io)... (iI- ]-)l(il )... (i2 1)I’"l (Q).--J
2 4

r(io)...(il-1)[(il)...(i2-1)[...l(i_l)...(i-i -I- 8j -I- 8j +’’’-t- j

Again, we will not give an unreadable algebraic proof of this theorem, but instead
we illustrate it with an example.

Example 6 (QPPQ-SVD). A QPPQ-SVD of five matrices A1, A2, A3, A4, A5 can
be analyzed in terms of the ranks of the matrices

D1 O) ((D2D3Da) $5) ((D3Da) $5) (Di $5)(D2D3Da) $5

Let us first consider the first matrix

(D2D3D4) II
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

1 0 0 0 0
0 1 0 0 0

1 0 0 0 0
0 1 0 0 0

1 0 0 0
0 0 0 0
0 1 0
0 0 0

0 0
0 0

0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

0 0 1 0 0 0
0 0 0 0 0 0

0 0 0
0 0 0
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Elements not shown are represented by 0 while 1 represents a nonzero square diagonal
matrix. Obviously, r5 r 2 3 a 5 (r5+r5+r5)./r5 +r5+r+r. Also, r(2)(3)(4)15 r(2)(3)(4)

_
3 4 5

Using the notation of Theorem 4.1, we have s r / r and s r53 -t- r5
a -t- r55, so

that indeed r(2)(3)(a)15 r(2)3)(a) / s. Also,

r1,(2)(3)(a),5--r1,(2)(3)(a)+r [rank( 11 0)-rank(I)]11

+ r x [rank(1 1) rank(I)] + (r53 + r54 + r551.
With the notation of Theorem 4.1, we have for this case s r5, s r, s53
r53 +r5a +r55, so that indeed r1123415 r11234 --8--8. Up to now, we have three implicit
equations for the five unknowns r, r, r53, r5a, r55. The remaining two are found from
the matrix (D $5) as ral5 ra + r and from

((D3D4) $5)-
rg

-rg

1100
0 1 0

1 0 0
0 1 0

1 0 0
0 1 0

100000
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 00/

From this we find that

r3a15 r31a + (r + r + r53) x [rank(1 1) rank(l)] + r + r55 r31a + (r5a + r55)
With the notation of Theorem 4.1 we have s r +r + r53 and si r + r55, so that
indeed r(3)(a)15 r31a + s. From these equations we now find

1 1 1 1 1 r r5
0 0 1 1 1 r r23415 r234
1 0 1 1 1 r53 rl]23415 rl]234
0 0 0 0 1 r r415 ra
0 0 0 1 1 r55 r34]5 r34

which, upon solution, results in

r r1123415 r11234 r23415 T r234,

r52 r5 r1123415 -/’11234,
r53 r23415 -/’234 r3415 - r34,

r5
a

r3415 r34 r415 + r4,

r r415 r4.

5. Conclusions. In this paper, we have analyzed in detail the structure of some
recently introduced generalizations of the singular value and the QR decomposition.
The structure is completely determined in terms of the ranks of the involved matrices
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and other matrices that are formed from products and concatenations of these ma-
trices. Some more examples and details can be found in the technical report [6] and
the papers [2]-[5], and [7].
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STRONG HALL MATRICES*

RICHARD A. BRUALDIt AND BRYAN L. SHADERS

Abstract. The authors develop an inductive structure for nonsquare strong Hall matrices that
is quite analogous to the well-known inductive structure of square strong Hall (i.e., fully indecom-
posable) matrices. Other properties of strong Hall matrices are also discussed.

Key words. Hall matrices, trees, matchings, bipartite graphs
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1. Introduction. Let M be an rn by n matrix with m _> n. Then M is a
Hall matrix provided there does not exist a zero submatrix of M of size r by s with
r + s > m. If in addition there does not exist a zero matrix with 1 < s < n- 1 and
r + s m, then M is a strong Hall matrix. For example, each of the matrices

110

[ 1 1 i] [ 1 ] 0 1 1
0 1 1 and

0 0
1 0 0

1 0

is a strong Hall matrix. Replacing any 1 in the first matrix with a 0 gives a Hall
matrix that is not a strong Hall matrix. A square strong Hall matrix is usually called
a fully indecomposable matrix. Strong Hall matrices are important in sparse matrix
analysis. For instance, in [4] an algorithm is given that correctly predicts the nonzero
structure of the upper triangular factor R in the QR factorization of a strong Hall
matrix. In [5] and [7], the nonzero structure of Q is correctly computed. Strong Hall
matrices also arise in computing the fill in the Cholesky factorization [3].

Since whether or not a matrix is a Hall matrix or strong Hall matrix depends
only on the locations of its O’s, we henceforth consider only (0,1)-matrices.

Let M be an m by n (0,1)-matrix with m _> n. A k-diagonal of M is a collection
of k ones of M with no two in the same row or column. An n-diagonal contains a
unique one from each column of M and is also called a column-diagonal. A cover of
M is a set of rows and columns of M that contain all the ones of M. A minimum
cover of M is a cover of smallest cardinality. A proper cover is a cover with at least
one row and at least one column. The next two lemmas follow from the well-known
theorem of Hall(see, e.g., [2]) and the above definitions.

LEMMA 1.1. Let M be an rn by n (0, 1)-matrix. Then the following are equivalent:
(i) M is a Hall matrix;
(ii) M has a column-diagonal;
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(iii) Every cover of M has cardinality at least n;
(iv) For each k with 1 <_ k

_
n, every set of k columns of M contain 1 ’s in at

least k different rows.
If n 1, then M is a strong Hall matrix if and only if M is a Hall matrix.
LEMMA 1.2. Let M be an m by n (0, 1)-matrix with n >_ 2. Then the following

are equivalent:
(i) M is a strong Hall matrix;
(ii) Every m- 1 by n- 1 submatrix ofM is a Hall matrix;
(iii) M is a Hall matrix and no minimum cover is proper;
(iv) For each k with 1

_
k <_ n- 1, every set of k columns of M contain 1 ’s in

at least k + 1 different rows.
An immediate consequence of (ii) in Lemma 1.2 is that every 1 of a strong Hall

matrix belongs to at least one column-diagonal.
Let M be an m by n (0,1)-matrix with no zero rows. Then it follows from Lemmas

1.1 and 1.2 that if m n, then M is a strong Hall matrix if and only if the cover
consisting of all the rows and the cover consisting of all the columns are the only
minimum covers of M, and if m > n, then M is a strong Hall matrix if and only if
the cover consisting of all the columns is the only minimum cover of M. This implies
that the direct sum of two strong Hall matrices neither of which has a zero row is a
strong Hall matrix if and only if neither is a square matrix.

We now define the usual bipartite graph associated with a matrix. Let M [mij]
be an m by n (0,1)-matrix. Let G G(M) be the bipartite graph with vertices
X {Xi,... ,Xm} and Y {yl,... ,Yn} and an edge joining xi and yj if and only if
mij 1 (1 _<

_
m, 1

_
j _< n). We call the vertices in X the row vertices and the

vertices in Y the column vertices of G. Note that there is a one-to-one correspondence
between the k-diagonals of M and matchings of G with k edges. A column-matching
of G is a matching with n edges and hence corresponds to a column-diagonal of M.
If M is a Hall matrix, respectively, a strong Hall matrix, then we say that G(M) is a
Hall graph, respectively, strong Hall graph. Let S be a subset of the edges of G and
let S denote the set of edges of G not in S. A path from a vertex v to a vertex w
is an S-alternating path provided that the first, third, edges belong to S and the
second, fourth, edges belong to S. Thus if v is a row vertex and w is a column
vertex (or the other way around) the last edge of an S-alternating path belongs to
S. If both v and w are row vertices or both are column vertices, the last edge of an
S-alternating path belongs to S.

A square strong Hall matrix is also known as a fully indecomposable matrix. A
square matrix M is fully indecomposable if and only if the graph G(M) is elementary,
where a bipartite graph is elementary provided it is connected and each edge is in a
column matching. There is a well-known inductive structure for fully indecomposable
matrices M (see, e.g., [2]). This inductive structure is equivalent to an ear decomposi-
tion of G(M) as defined in [6]. Our main purpose is to develop an inductive structure
for nonsquare strong Hall matrices M. This inductive structure could be derived
from either the inductive structure of M or an ear decomposition of G(M), but we
have taken a more revealing approach using the concept of a strong Hall tree defined

Because of (iv) in Lemma 1.2, our definition of a strong Hall matrix is equivalent to the original
definition given in [3]. There is another definition of a strong Hall matrix that is used in the
literature[4],[5],[7],[8]. It is that property (iv) holds for each k with 1 <_ k < m. The only difference
is that an m by n matrix with m n, which has m n zero rows and is a strong Hall matrix by our
definition, is not a strong Hall matrix by the other definition. All of the results in 2 and 3 hold
regardless of which definition is used.
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in this paper. As an application, we strengthen and make more transparent some
results of Gilbert [4] concerning S-alternating paths where S is a column-matching of
a bipartite graph with the strong Hall property.2

In 2 we study strong Hall matrices whose graphs are trees and characterize them
in three ways. In 3 we use strong Hall trees to obtain two charaterizations of strong
Hall matrices. We also obtain an upper bound on the number of l’s in strong Hall
matrices with n columns that are minimal in a sense to be made precise later. We
assume that the reader is familiar with standard graph theory terminology.

2. Strong Hall trees. In this section we study strong Hall matrices whose as-
sociated bipartite graphs are trees, that is, strong Hall trees. Our first result gives a
simple characterization of strong Hall trees. Recall that a leaf (pendant vertex) of a
tree is a vertex that belongs to exactly one edge.

THEOREM 2.1. Let M be an m by n (0, 1)-matrix with m + n >_ 3, and assume
that the bipartite graph G(M) is a tree. Then G(M) is a strong Hall graph if and only
if no column vertex of G(M) is a leaf.

Proof. If some column vertex of G(M) is a leaf, then M has a minimum cover
that is proper, and hence by Lemma 1.2 G(M) is not strong Hall. Now assume that
G(M) is not a strong Hall graph. It follows from Lemma 1.2 that after row and
column permutations,

where M3 is a square matrix of order b >_ 1. The bipartite graph G(M3) is an induced
subgraph of G(M) and hence has no cycles. Since G(M3) has 25 vertices, it has at
most 2b- 1 edges and hence some column of M3 and the corresponding column of M
contains a unique 1. Therefore some column vertex of G(M) is a leaf. D

Note that the theorem implies that if M is an m by n strong Hall matrix with
m + n _> 3 such that G(M) is a tree, then m > n. Using Theorem 2.1 we now obtain
an inductive structure for strong Hall trees. This inductive structure is a consequence
of being able to carry out the algorithm described below.

ALGORITHM

Let M be an m by n (0, 1)-matrix such that G(M) is a tree.
(0) Seti=0.
(1) Choose a path 0 joining two row vertices and let To be the subgraph of G(M)

determined by 0.
(2) While there exists a row vertex not in Ti, do: Choose a path i+1 joining a

row vertex not in Ti to a vertex in Ti, all of whose intermediate vertices are
not in T, and let Ti+l be the graph obtained by adjoining /+1 to Ti. Replace
ibyi+l.

(3) Let k i.

THEOREM 2.2. Let M be an m by n strong Hall (0, 1)-matrix with m + n >_ 3
and assume that G(M) is a tree. Then each of the trees To, TI,..., Tk constructed in
the above algorithm is a strong Hall tree and Tk G(M).

Proof. Since m / n _> 3, there is a path 0 joining two row vertices. It follows
inductively that each Ti is a tree in which no column vertex is a leaf and hence by

This was our original motivation for considering strong Hall matrices.
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Theorem 2.1 each is a strong Hall tree. Suppose that Tk 7 G(M). Then there exists
at least one vertex y of G(M) that is not a vertex of Tk and all such vertices are
column vertices. Since G(M) is a tree, this implies that y is a leaf, contradicting
Theorem 2.1. [:]

COROLLARY 2.3. Let M be an m by n strong Hall (0, 1)-matrix such that G(M)
is a tree. Let 9/0 be any path from a row vertex v to a row vertex w. Then there exists
a column matching F such that 9/0 is an F-alternating path.

Proof. We refer to the above algorithm. Let F be the set of edges consisting of
the first, third, edges of the paths 9/i of even length and the second, fourth,
edges t)f the paths 9/i of odd length. The result now follows by induction. D

We now obtain two more characterizations of strong Hall trees.
THEOREM 2.4. Let M be an m by n (0, 1)-matrix with m + n >_ 3 and assume

that G(M) is a tree. Then the following are equivalent"
(i) M is a strong Hall matrix;
(ii) Given any two distinct vertices v and w there exist column-matchings F1

and F2 such that the path from v to w in G(M) is F-alternating and F2-alternating.
(iii) Every edge of G(M) is in a column-matching.
Proof. We first suppose that (i) holds and prove (ii). Let v and w be distinct

row vertices. By Corollary 2.3 F exists, and by interchanging the roles of v and w
we see that F2 also exists. By Theorem 2.1, no column vertex of G(M) is a leaf and
this implies that each path of G(M) is a subpath of a path joining two row vertices.
Hence (ii) holds. Clearly (ii) implies (iii). We now suppose that (iii) holds and prove
that M is a strong Hall matrix. Let O be an r by s zero submatrix of M. Since G(M)
is connected, the submatrix complementary to O contains a 1. By (iii) the m- 1 by
n- 1 matrix obtained from M by deleting the row and column of this 1 is a Hall
matrix. By Lemma 1.1, r + s _< m- 1, and hence by Lemma 1.2, M is a strong Hall
matrix. [:]

We conclude this section with the following observation about extremal strong
Hall trees. The identity matrix of order k is denoted by Ik.

THEOREM 2.5. Let M be an m by n strong Hall (0, 1)-matrix with n >_ 3.
Assume that G(M) is a tree and that each matrix obtained from M by deleting a row
is not a strong Hall matrix. Then m <_ 2n-- 2 with equality if and only if there exist
permutation matrices P and Q so that

(1) PMQ

Proof. By Theorem 2.1 no column vertex of G(M) is a leaf. A simple calculation
shows that the number k of row vertices of G(M) that are leaves satisfies k > m-n+1.
Let x be a row vertex that is a leaf and let y be the unique column vertex adjacent
to x. If the degree of y is greater than 2, then it follows from Theorem 2.1 that the
matrix obtained from M by deleting the row corresponding to x is a a strong Hall
matrix. Since n > 2, we conclude that the degree of y equals 2 and no column vertex
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is adjacent to two leaves and hence k < n. Therefore m <_ 2n- 1. Suppose that
m 2n- 1. Then k n and the degree of each column vertex equals 2, implying
that the number of edges of G(M) equals 2n. Since the number of edges of G(M) also
equals 3n- 2, we contradict our assumption that n > 3. Hence m < 2n- 2. Assume
that m 2n 2. Then k n 1 and the column sums of M are 2,..., 2, n 1. The
column vertex with degree equal to n- 1 is adjacent to the n- 1 row vertices that
are not leaves, and it is easy to see that there exist permutation matrices P and Q
such that (1) holds. Since the matrix in (1) satisfies the assumptions in the theorem
when n _> 3, the theorem now follows. D

3. Strong Hall matrices with connected graphs. Let M be an m by n
strong Hall (0,1)-matrix with m > n. We show that if the graph G(M) is connected,
then G(M) has a strong Hall spanning tree and this enables us to apply many of the
results of the previous section. We first review a special form for strong Hall matrices
given in [1] and [2; Exer. 1, p. 117] (although not called strong Hall matrices in these
references).

By Lemma 1.2, M has a column diagonal and after row and column permutations,
we may assume that M has the form

F B
O FI

where B1 and B are square matrices and have only l’s on their main diagonals, and
where F1 is a nonvacuous matrix with at least one 1 in each column. By Lemma 1.2,
M has no minimum cover, which is proper and hence the matrix F, if not vacuous,
contains at least one 1. Hence we may further permute the rows and columns of M
so that M has the form

B
F B2 *
O F2 B1
0 0 F1

where B2 and B are square matrices and have only l’s on their main diagonals, and
where F2 is a nonvacuous matrix with at least one 1 in each column. If the matrix

F is not vacuous, then it contains at least one 1. We may continue like this and
eventually obtain, after row and column permutations, a matrix of the form

Bk * * * *
Fk Bk-1 * *
0 Fk-1 Bk-2 * *

0 0 0 B2 *
0 0 0 F2 B1
0 0 0 0 F1

where k is a positive integer, the square matrices B1,B2,...,Bk have only l’s on
their main diagonals, and the matrices F1, F2,..., Fk are nonvacuous matrices with
at least one 1 in each column. Conversely, a matrix of the form (2) satisfying these



364 RICHARD A. BRUALDI AND BRYAN L. SHADER

conditions is a strong Hall matrix. This implies that any matrix M obtained from M
by replacing all the off-diagonM l’s of each B with O’s, all but exactly one 1 in each
column of each F with O’s, and all submatrices marked with a with zero matrices
is a strong Hall matrix. Such a matrix M has exactly two l’s in each column.

An almost immediate corollary of the form (2) is the following theorem in [5,Thm.

COROLLARY 3.1. Let M be an m by n strong Hall (0, 1)-matrix with m > n. Let
k be an integer with 1 < p < n and assume that column p ofM contains at least three
l’s. Then for all but at most one 1 in column p of M, the matrix obtained from M
by replacing the 1 with 0 is a strong Hall matrix.

Proof. Without loss of generality we assume that M has the form (2). Let M
be any matrix as defined above. Then M is a strong Hall matrix and hence all but
at most two l’s in column p of M have the property stated in the corollary. Consider
a 1 in column p of M that is not a 1 of M. By Lemma 1.2, this 1 belongs to some
column diagonal of M. Taking the form (2) with respect to this column diagonal we
now see that at most one 1 in column p does not have the property stated in the
corollary.

THEOREM 3.2. Let M be an m by n strong Hall (0, 1)-matrix with m > n and
assume that the graph G(M) is connected. Then there exists a (O, 1)-matrix M*
obtained from M by replacing certain l’s by 0 ’s such that M* is a strong Hall matrix
and the graph G(M*) is a tree.

Proof. We may assume that M has the form (2), and we let M be a matrix as
defined above. Then M’ is a strong Hall matrix and the graph G(M) is a spanning
forest of G(M). Since G(M) is connected, it is possible to replace certain O’s of M’
by l’s so that the bipartite graph of the resulting matrix M* is a spanning tree of
G(M). Since M’ is a strong Hall matrix, so is M*.

Theorems 2.2 and 3.2 provide an inductive structure for any nonsquare strong
Hall matrix with a connected graph that is quite analogous to that of a square strong
Hall (i.e., fully indecomposable) matrix. The role of cycles in the square case is played
by paths in the nonsquare case.

Theorems 2.4 and 3.2 immediately imply the following result.
COROLLARY 3.3. Let M be an rn by .n strong Hall (0, 1)-matrix with m > n

and assume that G(M) is connected. Then given any two distinct vertices v and w
there exist column matchings F and F and a path from v to w in G(M) that is both
F-alternating and F-alternating.

We now obtain two new characterizations of strong Hall matrices whose graphs
are connected. The fact that (ii) below is a property of such matrices is equivalent to
Lemma 2.5 in [4].

THEOREM 3.4. Let M be an m by n (0, 1)-matrix with m > n and assume that
G(M) is connected. Then the following are equivalent"

(i) M is a strong Hall matrix;
(ii) Given any column vertex v and row vertex w there exists a column matching

F and a path /from v to w in G(M) that is F-alternating.
(iii) Every edge of G(M) is in a column-matching.

Proof. We first assume that (i) holds and prove that (ii) holds. If m > n, then
(ii) follows from Corollary 3.3. Now assume that m n. Let M’ be the n + 1 by n
matrix obtained from M by appending a new row whose only nonzero entry is a 1
in the column corresponding to v. Then M’ is a strong Hall matrix and the graph
G(M’) is the connected graph obtained from G(M) by adjoining a new row vertex
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u and a new edge joining u and v. By Corollary 3.3 there is column-matching F of
G(M) and an F-alternating path in G(M) from v to w. Since the first edge of
belongs to F, F is a column-matching of G(M). Since u is a leaf of G(M’), /is a
path of G(M). Thus (iN) holds.

We now assume that (iN) holds and show that (iii) also holds. Let be an edge
joining a column vertex v to a row vertex w. Let and F be as guaranteed by
(iN). If is the only edge of -, then is in F. Otherwise, "7 and a form a cycle,
and by interchanging matching and nonmatching edges on this cycle, we obtain a
column-matching containing . Hence (iii) holds.

Just as in the proof of Theorem 2.4, (iii) implies (iN).
The implication (i) implies that (iN) in Theorem 3.4 is equivalent to Lemma 2.5 in

[4]. The fact that (i) and (iii) are equivalent has also been noted by Gilbert (private
communication).

We conclude with the following result.
THEOREM 3.5. Let M be an m by n strong Hall matrix with n >_ 3. Then there

exists an m by n strong Hall submatrix M ofM with m <_ 2n. If G(M) is connected,
then M can be chosen so that G(M) is connected and m <_ 2n- 2.

Proof. The first assertion is trivial if m does not exceed 2n. We may assume that
M has the special form (2), where B1 has order p _< n. There exists a submatrix F
of F1 of order p that has at least one 1 in each of its columns. The matrix obtained
from M by deleting the m n p rows that intersect F, but not F, is a strong Hall
matrix with n -t-p _< 2n rows. The second conclusion of the theorem follows from
Theorems 2.5 and 3.2.

Direct sums of matrices, each of which equals the 2 by 1 matrix of all l’s, show
that the first-inequality in Theorem 3.5 is best possible.
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Abstract. In this paper, the authors propose a method for computing the singular value
decomposition (SVD) of a product of two 2 2 triangular matrices. The method shown is numerically
desirable in that all relevant residual elements will be numerically small.
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1. Introduction. The problem of computing the SVD of a product of two ma-
trices has many applications; see, e.g., [4] and [5]. The problem is also closely related
to finding a generalized SVD of two matrices (cf. [6]). A crucial step in either the
product SVD (PSVD) or the generalized SVD (GSVD) problem is the accurate com-
putation of the PSVD of two 2 2 triangular matrices.

We wish to achieve two objectives: first, to ensure that the transformations ap-
plied to the triangular matrices must leave the matrices triangular and, second, to
ensure that the SVD of the product is computed accurately. As discussed in a recent
paper by Bai and Demmel [1], these two properties are essential to guarantee the
stability of the GSVD method [6]. Several strategies have been proposed to preserve
these two properties. In [1], examples are presented where these strategies can fail
and a new method that overcomes the exposed drawbacks is then proposed.

In this paper we propose an alternative approach. Our new method, which we will
call a half-recursive method, is a slight variation of the fully recursive method proposed
in [2] for computing the SVD of a product of several matrices. An alternative method
for the SVD of several matrices appears in [7]. We show that our algorithm is simpler
to implement and enjoys the same nice numerical properties as the method in [1].

Our paper is organized as follows. In 2 we describe the PSVD of two 2 2 upper
triangular matrices. A criterion for numerical stability is given in 3. We present our
new algorithm in 4, and an error analysis in 5. Finally, some detailed proofs can be
found in Appendices A and B and a numerical example in Appendix C.

2. Problem definition. Given two upper triangular matrices:

Al_(al bl)"and A2- ( a2 b2)0 d 0 d2

we call the product A

A=AA2
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and let

0 d

Our objective is to find three orthogonal matrices Q1, Q2, Q3, such that

(2.1)

and

A’=Q1AQ=( a’O d’O)

(’ ’)A QiAiQT
a bi

i+ 0 d
for i-- 1,2. Equations (2.1) and (2.2)imply that

A’ AA2

In other words, we would like to find three transformations Q, Q2, and Q3 to zero out
four elements, namely, the off-diagonal elements of A and the subdiagonal elements
of A and A2. The extra requirement, although mathematically feasible, may cause
numerical difficulty if not treated with care; see examples in [1] and [2]. Our goal is
to develop an algorithm so that properties (2.1) and (2.2) will be satisfied except for
very small numerical errors. In this paper, we use the vector and matrix 2-norms

2.1. Relationship with GSVD. The basic step in a GSVD of two 2 2 trian-
gular matrices A and A2 is to compute the SVD of the product A1 adj(A2), where
adj denotes the adjoint of a matrix. We have

adj(A2) (d2 -b2)0 a.

It is therefore obvious that our two-by-two PSVD method can also be applied to the
two-by-two GSVD problem.

3. Criterion for numerical stability. For the purpose of this analysis, an
overbar (-) denotes a computed quantity that is perturbed as the result of inexact
arithmetic. We assume that exact arithmetic may be performed using these perturbed
values. The tilde symbol (~) is used to denote conceptual values computed exactly
from perturbed data. For example, let be the exactly computed A using quantities
fi and 2. Let (, (2, and Q3 be transformations computed with floating point
arithmetic. Recall that A, A, and A denote the three matrices A, A2, and A,
respectively, after the equivalence transformations as defined in (2.1) and (2.2) have
been performed. Define

(3.1)

and

(3.2)
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Let e denote the relative machine precision.
compute A, such that

The best that we can aim for is to

(3.3) II-- A o( Ai I[).

~’ of ~’The relation (3.3) implies that the (2,1) element ei A will satisfy

~!I I---o( A II),

may be safely truncated to zero. Thus,for i 1, 2. Condition (3.4) implies that e
is also forced to zero.

We prove in 5 that by using our new method, the computed matrices A and A[
will satisfy condition (3.4) and A will satisfy the conditions that

(3.5) lYl o( X II)

and

(3.6) I’1---o(

The conditions proposed in [1] for computing the GSVD of two matrices, A1
and adj(A2), follow from (3.4), (3.5), (3.6), and the similar construction of the two
algorithms.

4. New algorithm. In this section, we propose a new algorithm for the PSVD
problem. Our algorithm is a modification of the algorithm presented in [2] for a
product of several matrices. The tool we use is a transformation discussed in Charlier,
Vanbegin, and Van Dooren [3]:

(4.1) Q=
-c s

where C2 -- 82 1. We may regard the transformation as a permuted reflection

s -c 1 0

The reason behind using permuted reflections is that we actually deal with an n n
problem. The permutation that is incorporated into Q corresponds to the so-called
odd-even order of eliminations in one sweep of a Jacobi SVD procedure.

While each transformation Q is defined by the cosine-sine pair

ci=cos0i and si=sin0i,

we also associate Q with the tangent

ti tan 0i

Given ti, we can easily recover ci and si using the relations

1
(4.2) ci and si tici.

V/1 +t
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Following the exposition in [2], we consider the result of applying the left and right
transformations Ql and Qr to a 2 x 2 upper triangular matrix A:

( ) ( )( )((4.3) A,=QtAQT a’ b’ st cl a b sr cr
e’ d’ -c s 0 d -cr sr

We can derive from (4.3) these four relations:

(4.4) e’ ctcr(-atr + dtt b)

(4.5) b’ clcr(-att + dtr + btttr)

a’ ctcr(btt + d + atttr)

d’ clcr(a- btr + dtttr)

where tt tan 0t and tr tan 0r. The postulates that both e’ and b’ be zeros define
two conditions on tt and tr, so that (4.3) represents an SVD of A. The postulate
that e’ be zero defines a condition relating 0t to 0r, so that if one is known the other
can be computed to reduce A to an upper triangular form. For ease of exposition,
assume for now that abd = O. This condition will be removed in 5.2. It implies that
ccr =/= O, and so the postulate that e’ 0 in (4.4) becomes

(4.8) atr + dtt b 0.

The consequence of (4.8) is that (4.6) and (4.7) simplify to

(4.9) a’ clcr(t + 1)d

and

(4.10) d’ Clcr(t2r + 1)a,

respectively. The relations (4.9) and (4.10) imply that

a’d ad

For the SVD problem, both e’ and b’ are zeros, and we can use (4.8) to reduce (4.5)
either to an equation in tt"

(4.11)

where

or to an equation in tr"

a= b
-b

(4.12) b’ ccr (a-) (t2r + 2trar -1)
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where

at- aa b
+b

From (4.11) we get a quadratic equation by setting b to zero:

(4.13) t + 2att 1 0

and from (4.12) we get

+ 0.

Equations (4.13) and (4.14) re solved by the formulas given in [2]:

(d-a)(d+a)
b

(4.16) at

(4.17) ar
r+b
2a

(4.8) t
at + sign(at)V/a + 1

(4.19) r
ar + sign(a)V/at2 + 1

In finite-precision arithmetic, either one of tt and t can be computed with a higher
relative precision. In particular, if

sign(r) -sign(b),

then (4.18) will produce a very accurate tt; whereas if

sign(r) sign(b),

then (4.19) will produce a very precise tr. If r 0, then both tt and tr will be
computed with the same relative accuracy.

Now, let r 0. We first present a lemma relating the sizes of tt and t to those
of a and d.

LEMMA 4.1. Let abdr
Conversely, if la

Proof. See [2].
We are ready to present an algorithm for computing the three orthogonal matrices

Q1, Q2, and Q3, such that (2.1) and (2.2) are satisfied. The algorithm proceeds in
two stages. In the first stage, we calculate the product A explicitly:

(4.20) a ala2
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(4.21) b alb2 + bid2,

(4.22) d dld2

We use (4.15) to calculate r, and then we compute either at or ar so that the corre-
sponding tangent defines the smaller angular rotation. Hence we obtain either t or

t3. In the second stage, we use the relation (4.8) with t or t3 as the reference tangent
to compute the remaining transformations. Suppose that t is known, then t2 and t3
are generated by the forward substitutions

(4.23) t2
dtt bl

al

(4.4) t dt b

On the other hand, if t3 is known, then t2 and t are generated by the backward
substitutions

(4.25) t2
a2t3 + b2

d2

at3 +b(4.26) t d

If t is computed first as the reference tangent, then (4.23) will guarantee that A will
be numerically upper triangular and (4.24) will guarantee that A will be numerically
diagonal. As will be shown later, these two properties will guarantee that A will be
numerically upper triangular and hence (3.4), (3.5), and (3.6) will be satisfied.

We refer to the method defined by (4.23)-(4.24) or (4.25)-(4.26) as half recursive,
to differentiate it from the fully recursive method proposed in [2] for computing the
PSVD of several matrices. The fully recursive method also picks the smaller outer
angular rotation as the starting point for the recursion, from which all remaining
rotations are computed. However in [2], the other outer rotation is computed from
the previous rotation in the sequence. For example, in the case of a product of two
matrices, the tangent t3 in (4.24) would be computed from t2 using (4.8):

d2t2 b2
a2

Note how (4.24) uses the product A whereas (4.27) uses the matrix A2. It was shown
in [1] that the fully recursive method may fail to satisfy (3.5) and (3.6) and thus is not
recommended for the GSVD problem. On the other hand, the fully recursive method
easily extends to any number of factors in the product. It is not clear what is an
appropriate extension of the half-recursive method for the case of a product of more
than two matrices.

Our half-recursive method is equivalent to the method proposed by Bai and Dem-
reel in [1] in the sense that it also computes a very accurate PSVD of AIA2, and that
it uses essentially the same criterion in choosing whether to compute the middle
transformation Q2 from Q or from Qa. A proof that the two methods use the same
condition for computing Q2 is given in Appendix B.
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5. Backward error analysis. In this section, we present a backward error anal-
ysis of our computation. The function fl(a) will be used to denote the floating point
approximation of a. For example, instead of a, b, and d, we have the perturbed values, b, and d, which result from floating point computation, fl(A1A2). Recall that
a tilde denotes a quantity computed exactly from perturbed data. For example,
denotes the result of using formula (4.15) in exact arithmetic with the perturbed data, b, and d.

In our error analysis, we adopt a convention that involves a liberal use of Greek
letters. For example, by c we mean a relative perturbation of an absolute magnitude
not greater than e, where e denotes the machine precision. All terms of order e2 or
higher will be ignored in this first-order analysis.

We start our procedure by computing elements of the product matrix A:

:-- fl(ala2) ala2(1 + C),

(5.2) d "= fl(dld2) did2(1 + ),

(5.3) b i(alb2 + bid2) alb2(1 q- 21) -+- bid2(1 q- 2/2),

where, according to our convention, the parameters O1, (1, /1, 2, and /3 are all
quantities whose absolute values are bounded by e. From (5.1)-(5.3) it follows that

A (A1 + 5A1)(A2 + 5A2),

with 5Ai -< e Ai II. This property, which generally does not hold for a product
of more than two 2 x 2 upper triangular matrices, will allow us to prove backward
error type assertions on the half-recursive method.

Our analysis is divided into two parts. In 5.1, we consider a regular case where
all elements of the computed matrix product are numerically significant with respect
to the maximal-in-magnitude element; i.e.,

(5.a) min(I 5 {, b{, dl) > e mx({ a{, b{,

In 5.2, we consider special cases where at least one element of the computed A is
numerically insignificant.

5.1. Regular case. Without loss of generality, we assume that rb < 0; i.e.,
sign(r) -sign(b). Thus we compute tl first as the reference tangent from which t2
and t3 will be next determined via (4.23) and (4.24), respectively. We recall several
lemmas from [2].

LEMMA 5.1. Let 1 and 1 be the exact and computed solutions, respectively,
of (4.18) with data ,,. Moreover, let 1,1 and, be the exact and computed
cosines and sines using (4.2) with the tangent value 1. Then

(5.5) t- 1(1 + 101)

(5.6) 51 1 (1 + 3#1),

(5.7) 1 1(1 - 4Vl)
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where el I< e, I#1
Proof. See [2].
In other words, Lemma 5.1 states that the procedure (4.15)-(4.19) for solving

(4.13) is numerically stable in the forward sense. Two lemmas follow, leading to our
main result of Theorem 5.5.

LEMMA 5.2. The recurrences (4.23) and (4.24) yield 2 and 3, such that

(5.8) 51t-2 d11 + 51 0,

(5.9) 5t-3 dt-- + O,

with

(5.10) 51=a1(1+21), 1=d1(1+1),

(5.11) 5 (1 + 2), (1 + ).

Proof. The proof easily follows from (4.23) and (4.24). Cl

LEMMA 5.3. The recurrence (4.24) yields 3, such that {3 3(1 + 13-)
Proof. Prom (4.24), it holds that

t-3 (1(1+ a-11)- )(1 +

+ (1+271)
a a

(
Since Id-/l <_ 1 and 11/31 <_ 1, we get 3 3(1 + 13/).

We now show that and d are computed with high relative precision.
LEMMA 5.4. Let 5 and be the exact singular values of the computed product. If 5’ and d-’ are computed via relations (4.6) and (4.7), then the computed singular

values and satisfy the following relations"

Proof. From (4.9) and (4.10), we get

5’=d(+1)513 and d=5(3+1)13,

where 1 and a are the exact tangents corresponding to the data , , and d; and
/. Thus, the lemma follows from Lemmas 5.1 and 5.3. [:l

THEOREM 5.5. Suppose that the computed tangent values are t- and . Let 1,
1, 3, and 3 be the corresponding exact cosine and sine values. Let

(5.13) ’ :-- 13[---3 -- dl b],

(5.14)
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That is, and are the exact values of e and b, respectively, corresponding to the
computed data 5, {, d-, 1, and t-3. Then

(5.15)

(5.16)

where K and K2 are some positive constants.
Proof. See Appendix A. cl

Lemma 5.4 and Theorem 5.5 together state that the SVD of the upper triangular
matrix A is computed very accurately. We now justify why the (2,1) element in the
computed matrix A can be set to zero by showing that ei corresponds to a relative
and elementwise perturbation of A of the order of e. Let the cosine and sine pairs 5i
and satisfy /5 for 1, 2, 3. From (4.2) we can derive that

(5.17)

(5.18) i := fl(i) i(1 + 4).
Let A denote the exact updated matrix derived from A, i, $, +, and $+. Our
next results provide a bound on the element e,~ i 1, 2, defined by the relation

(5.19) e -+a ++d -cc+lb.
THEOREM 5.6. The matrices A and A are almost upper triangular in that their

(2.1) elements and satisfy the inequalities

(5.20) ][ 3 IIA
and

(5.21) [’[I <- K3 e A2

Proof. Note that is the same for both fully recursive and half-recursive meth-
ods. The proof that is almost upper triengular in the sense that (5.20) holds can
be found in [2].

To prove the second part of the theorem from (5.8)-(5.11) and (5.1)-(5.3), we get
the following two relations to first order of the machine precision:

al(1 + 21)-2 d(1 + 1)-1 -}- bl 0,

(5.23)
ala2(1 + a + 2){3 did2(1 + 5 + ){ + alb2(1 + 2fll)

+ bld2(1 + 2fl2) 0.

By multiplying both sides of (5.22) by d2(1 + 2fl2) and subtracting from (5.23),
we obtain

al {a2(1 + a + 2)-3- (dd2 I\ a

x (6 q- 1 q- 2fl2){1 -}- 52(1 q- 2ill) d2(1 q- 2fl2 q- 2bl)2 0,
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or, since a O,

2))-3 /’’[dld-----21 (( -- (/) )1 -- 2/2)-1 -- b2(1 + 21)a2(1 + + a /

d2(1 + 22 + 21)2 a23 d22 + b2 + A 0,

where

A= a(a + 2)- ()a(5+-+2) +b-d(2 + 21).

Thus, we can rewrite (5.19) for i 2 as

(5.24) -c2s3a2 + $23d2 23b2 + 32(a23 d22 + b2 + A)

Now, as we start the hMf-recursive method from t, it means that [ I[ and
] ]. Hence from (5.17), (5.18), and (5.24), we derive the inequMity:

Il
_
132a2(a
/13252/21 / ]a3a242(2/2 / 21)1

completing the proof.
In summary, we have proved two results using backward error analysis. First, the

transformed matrix ’ is almost diagonal in that inequalities (5.15) and (5.16) both
hold. Second, we can safely set each computed matrix A, i 1, 2, to a triangular form
because (5.20) and (5.21) are valid. As a final note, even though we have assumed
that rb < 0, we can easily prove similar results for the case where rb >_ O.

5.2. Special cases. In this subsection, we assume that inequality (5.4) is vio-
lated. To be specific, define

and

(5.26)

Now

(5.28) lal +ldlO and IglO;

second,

(5.29) lal +ldl=o and 1l-TZ=O;

i.e., one of the elements of A is numerically insignificant. This situation requires
modifications to our algorithm, since the proposed formulas may break down. In
particular, we do not solve a quadratic equation to determine either tl or t3. Instead,
we set one of the two tangents to zero and attempt to compute all the other tangents
from the recurrences. We divide the special cases into three groups" first,

(5.27) -y _< e F;
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and third,

(5.30) I1= O.

First, assume that (5.28) holds. Hence at least one, but not all, of the following
three conditions hold:

We set t to zero if

7 b, 7 a, or 3’ d.

(5.3) al > d]

and set t3 to zero if

(5.32) al <]1

Thus, the sizes of the diagonal elements of A will be compared to determine which
one of t-1 or t-3 should be zeroed. Without loss of generality, assume that (5.31) holds;
hence, t becomes the reference angle. So, t2 and t3 are computed from recurrence
(4.23) and (4.24). Furthermore, since l 0, it follows that 3 -/a. Substituting
these values into (5.22)-(5.25), we can verify that Theorem 5.5 holds. Similarly,
Theorem 5.6 follows from (5.19). We note that it is very important to decide which
reference angle to choose, even for the case when b is numerically zero. At first, the
choice of the reference angle may seem arbitrary for a "small" b, since either t or t3
can be set to zero. However, an unnecessarily large error may occur unless we pay
special care.

Second, assume that (5.29) holds. Then, at least one of the ai’s equals zero and
at least one of the dj’s also equals zero, for i, j 1, 2. A solution is to permute either
the rows or the columns to ensure that the transformed product is diagonal and that
the data are reordered. Hence for this case, we may set the two extreme tangents
{-1, -3 } to {0, C}, resulting in the transformations being rotations of negative ninety
and zero degrees, respectively. To be specific, consider the case where one or more
ai’sequalzero. If a1=0, sett-l=0 andS-2 =t-3--. Ifal#0anda2 =0, set
t-1 0, compute 2 from the forward recurrence and set 3 cx3. Note that we may
also choose to determine the tangents using the values of the dj’s.

Third, assume that (5.30) holds. We need to account for the fact that we are
really solving an n n problem. Although the 2 2 subproblem is already numerically
diagonal, it is not sufficient to set t-1 3 , which will leave the 2 2 product
unchanged. The n n data need to be reordered, calling for tl t3 0, i.e.,
the affected rows and columns will be permuted. Unfortunately, while applying the
symmetric permutation, the triangular structures of both A1 and A2 are destroyed.
Therefore, t2 is determined from the recurrence.

6. Concluding remark. In this paper we have presented a simple and accurate
way to calculate the PSVD or GSVD of two 2 2 upper triangular matrices. In Ap-
pendix C, we present an example that shows that our half-recursive method produces
identical numerical results as the method in [1]. A significant issue in the design of
PSVD algorithms is how to compute the middle transformation. The method used
in our half-recursive algorithm is computationally more efficient than the method in
[1] and yields identical results. The following table lists the number of floating point
operations used to compute the three transformations, Q1, Q2, and Q3, for the three
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different algorithms in the regular case. The column labeled Simplified direct lists
the operation count for the Bai and Demmel algorithm if our simplified method is
substituted for their method of computing the middle transformation.

TABLE 1
Floating point operation counts.

Direct Simplified direct Half-recursive

Addition 20 13 11
Multiplication 25 17 15
Division 13 11 8
Square root 4 4 4

The half-recursive method is less expensive than the direct method and similar in cost
to the simplified direct algorithm. In addition, the upper-triangular structure of the
2 2 matrices is maintained by the half-recursive method. Application of the 2 2
half-recursive algorithm to n n problems is a topic for further investigation.

Appendix A. Proof of Theorem 5.5. We first present a lemma.
LEMMA A.1. Let 51 and tl be the exact values corresponding to the given data, and d-, and let t-1 be the computed value of. Define a residual r by

(A.1)

Thn

bd
r := --( + 251 1).a

(A.2) r <_

where Ka is a positive constant.
Proof. See the proof of Lemma 5.2 in [2]. [:l

We now have the necessary tools for proving Theorem 5.5.
Proof. First, from Lemma 5.2 and relation (5.9) we get

Using (5.1)-(5.2) and (5.11), we prove the inequality:

(A.3) ’ Ke ( a + d Ke

Second, rewrite (A. 1) as

1
(A.4) r --[ + 1( a2 2) ] [(dl )(1 + ) la2]

a

om (5.22)-(5.24), we obtain

(A.5)
1
(dl b) 3

a ClC3a

Substituting (A.5) into (A.4) and rearranging terms, we get

-t + dr3 + brat3 r
ClC3a
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and so

(A.6) ’(1 + d-)

From (4.18), we derive

1
2

and from (4.16), we get

It follows that

_>

(A.7) I1 -<

since we have assumed that d <l a I. Finally, recall from (5.3) that 1 1(1+ 10eb),
and use (A.6), Lemma A.1 and (A.5)to obtain

(A.8)

thus completing the proof. [:]

Appendix B. How to compute the middle transformation. As pointed
out by Bai and Demmel in [1], a critical issue concerns how the middle transformation
should be computed. They proposed the following scheme for its computation after
both end transformations have been determined. To relate the test for computing Q2
in [1] to the test in the half-recursive method, we first translate our setting to that in
[1]. Let

UT C1 --81 QT =_ and _--
81 C1 82 C2 83 C3

Note that the relation, given by

( 81 C1) ( al bl)__ ( 81al 81bl(B.1) Q1A1
-cl sl 0 dl -clal -Clbl + Sldl

upon permuting rows and changing the signs of the top row, is equivalent to

( Cl --81)( 61 51)__ ( Clal Clbl -81dl) __G(B.2) UTA1
sl cl 0 dl sial Slbl -t- Cldl

Similarly,

(B.3) A2Q- ( a20 b2) ( s3 -c3)__ ( s3a2+c3b2 -c3a2+s3b2h
d2 c3 s3 c3d2 s3d2]

By changing the sign of the second columns and permuting columns, we obtain
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(VTadj(A2) c3 --83 d2
S3 C 0 a2

(B.4) ( c3d2 -c3b2- 83a2 I-I.
s3d2 -s3b2 + c3a/

In [1], Bai and Demmel used (B.2) and (8.4) as a starting point for computing
Q2. Their argument is as follows. After postmultiplications of both (B.2) and (B.4)
by Q2, the (1,2) elements of G and H should become zeros. Now, one should compute
Q2 from the one product, either G or H, for which the computed element in the (1,2)
position has a smaller error relative to the norm of the row in which it resides. The
magnitude of that error can be only bounded and hence the test for the choice is
based on the bounds of the errors. It is easy to see that the bound g for the relative
error in the (1,2) element of the computed G is

+
while the bound h for the relative error in the (1,2) element of the computed H is

(B.6) h
c342 + c3b2 + 83a2"

Now if g h, then Bai and Demmel compute Q2 from UTA and otherwise from VTB.
The next lemma shows that the conditions specifying how Q2 is computed by Baiand
Demmel and by the half-recursive method are essentially equivalent.

LEMMA B.1. In exact arithmetic, the condition

(B.7) g h

where g is defined by (B.5) and h is defined by (B.6) is equivalent to the condition

(B.S) Id .

(B.9)

and

Proof. First note that (B.5) and (B.6) can be simplified to

g
lall + Itld -bll

Ib21 + It3a21(B.10) h
Id2] + It3a2 -respectively. Through (4.23) and (4.25), the relations (B.5) and (8.6)simplify further

to

(B.11) g
lall(1 + it21

(B.12) h
id21(1 + it2.1)
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respectively. Hence (B.7) is equivalent to

(B.13)

We now prove that (B.8) implies (B.7). The proof that lal < Idl implies that g < h
is analogous and is omitted. Our proof is elementary but tedious as it requires us to
consider a large number of cases. Assume that lal >_ Ibl. Then Lemma 4.1 implies
that t3 _> tl. From (4.24) we see that

lat3 W bl
and as lat31 >_ latl I, we conclude that

(B.14) sign(at3) -sign(b) -sign(alb2 + bld2),

as from (4.21) b-- ab2 +bd2. Substituting (4.24) into (B.13) and using (4.21) again,
we get that (B.13) is equivalent to the following inequality:

(B.15) Ibld21- fat3 + alb2 - bid21

_
lalb21-

Case 1. -Ibl >_ Ibd21- laiD21. Then

establishing (B.13).
Case 2a. -Ibl > Ibd21- lalb21 and let31 > Ibl. Then lalb21 > Ibd21 and using

(B.8) we obtain that

Ibd21,+ Idtl Ibd2l + lat3 + ab2 + bd2l lat31 - 2 Ibd21- Ib21,

from which (B.13) follows.
Case 25. -Ibl > Ibd21- lamb21 and lat31 <_ Ibl. Then again lamb21 > Ibd21. Now

from (B. 14)

Ibld21 + Idtl Ibd21 + lat3 -- alb2 - bd21
Ibd21- lat31--lalb21- Ibd21 lalb21- lat31,

from which (B.13) again follows.
Remark. Note that there might be a slight difference in using (B.7) or (B.8) as the

lemma holds only in exact arithmetic. In finite precision computation, the relations
(B.7) and (B.8) may not always be equivalent. However, we have not been able to
find any numerical example where these two conditions are not equivalent. Moreover,
as shown in this paper, the consequences of numerical nonequivalence are numerically
insignificant.

Appendix C. Numerical example. It has been proved in Appendix B that
the half-recursive procedure computes essentially the same numerical results as the
direct method of [1]. For both methods, the end transformations are computed explic-
itly from the product A AA2, and the middle transformation is computed from the
same direction. The greatest difference between the fully recursive method and the
other two occurs when there is cancellation in forming the product A AA2. In the
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following PSVD example, Ax and A2 each has an O(1) norm, but the product AxA2
has an O(10-5 norm. Hence errors which are small relative to the initial matrices
may be large relative to the product.

2.316797292247488e / 00A= 0

A2 ( 2.472499811756353e 05
0

5.728280868959543e 05
A1A2 0

1.437687878748196e 01
-5.208536329107726e 0

2.624474233535929e 00)4.22927a187671001e + 0

-1.11022aO2462g197e 1)-2.202832304370565e 0

The three methods all compute the left transformation from the explicit product
and calculate the middle transformation from A1. We use the subscripts dir, hr, and
fr to distinguish between results computed via the direct, half-recursive, and fully
recursive methods, respectively. The computed values of Al,dir, Al,hr, and A,fr are
numerically identical in that the corresponding entries are numerically equal:- ( 2.321253790030786e + 00

A-’dir 3.225930076892087e 07\

,h ( -5.198536633811768e 06
-2.7776162891e 17

A,f ( -g.198ga66aa811768e 06
-2.7776162891e 17

2.775557561562891e 17
-5.198536633811768e 06]
-3.225930076892087e 07
2.321253790030786e / 00 ]
-3.225930076892087e 07
2.321253790030786e / 00 ]

The computed matrices A’ A and A’2,dir, 2,hr, 2,fr are numerically triangular, but now

the (1,2) element of A’ is significantly different from the corresponding elements in2,fr
A’ and A’1,dir 1,hr

,dir ( 2.467752941777026e 05
1.531353724707768e 06

,hr ( 4.237408446913959e + O0
-5.551115123125783e 17, ( 4.237408446913959e + 00

2, \ 0

5.551115123125783e 10/4.237408446913959e + 0

-1.531353724707768e 06
2.467752941777026e 05 ]

-1.531363362694676e 06
2.467752941777026e 05 ]

To maintain triangularity, A and A are truncated by setting the appropriate ele-
ments to zero. Let A and A denote the truncated matrices. The product An

A.A should be diagonal:

AD,dir ( 5.728280868959542e 05
1.615587133892632e 27

A"hr- ( --2.202832304370564e0 05

\

A,n ( -2.202832304370564e 05
0

o
-2.202832304370564e 0

-1.615587133892632e 27
g.728280868999942e O ]
g.O1094280162901e 1)5.728280868999942e 0
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Clearly, A’hr and Adi are numerically diagonal, but A"fr fails the criterion of di-
agonality. Forcing A-"f to be a diagonal matrix requires a truncation of O(10-7),
which is significant with respect to IIA"II. The matrices A"d and A"h require only
insignificant truncations to obtain diagonality, but we have previously made O(10-7)
truncations during their computation to force fi. and " to triangular forms.2,dir 2,hr
Thus, equal amounts of absolute truncation errors have been committed by all three
methods. The only difference is that the relative truncation error is largest for the
fully recursive method.

It is interesting to note that if triangularity is not enforced and the factors A
and A are multiplied, then none of the products can be considered diagonal. One
may say that the numerical diagonality of APhr and Adir is a consequence of the
truncation to triangular forms.

- ( 5.728280868959542e 05
,dir" A2,dir 1.615587133892632e 27

( --2.202832304370564e 05,h" 2,hr --2.464671807471544e-- 16

-, ( --2.202832304370564e 05,fr" A2, -1.176117105626251e 16

2.464671807471544e 16
-2.202832304370564e 05/
-1.615587133892632e 27
5.728280868959542e 05 ]
5.010342801562901e 1)5.728280868959542e 0

In conclusion, our example shows that the half-recursive and direct methods pro-
duce numerically identical results, while the fully recursive method fails to meet the
diagonality criterion.
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NONLOCAL PERTURBATION ANALYSIS OF THE
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Abstract. The sensitivity of the Schur system (the Schur basis and the Schur form) of a general matrix
relative to perturbations, is studied. The estimates obtained are nonlocal and sharp. Asymptotic bounds (condition
numbers particularly) in the form of power series are derived as a particular case.

Key words. Schur canonical form, perturbation analysis, conditioning of the Schur form
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1. Introduction. Basic notations. The Schur system of a matrix is a useful tool in
many theoretical and computational problems (see, for example, ],[8]). Although much
less sensitive to perturbations compared with Jordan and Frobenius systems, the Schur
system nevertheless may be ill conditioned or even ill posed. Obtaining perturbation
bounds for the Schur system is very important from both a theoretical and a practical
point of view. In particular, the following problems, essential in numerical linear algebra
and control theory, exploit the Schur form of a general matrix, and the solutions depend
on the sensitivity of the corresponding Schur system.

(a) The computation of matrix exponential [6], [9], [10].
(b) The solution of Riccati equations by the Schur approach [2], [1 1].
(c) The pole assignment problem [12].
However, in contrast to other problems in linear algebra, the sensitivity ofthe Schur

system ofa matrix has not been studied to a sufficient extent. In particular, the sensitivity
of invariant subspaces corresponding to clusters of equal or close eigenvalues have been
examined [1]. At the same time, an invariant subspace is usually much less sensitive to
perturbations compared with the corresponding basis. This phenomenon is especially
important when studying the whole Schur system ofan n n matrix. Here the maximum
invariant subspace is the basic n-dimensional space itself and is not sensitive at all, while
the Schur basis may be infinitely sensitive.

In this paper we present a complete perturbation analysis ofthe whole Schur system
without the assumption that the perturbations in the original matrix are asymptotically
small. For small perturbations in the data, we give asymptotic bounds in the form of
power series expansions.

We shall use the following notations:
t (C), the set of real (complex) numbers;
+ [0, o);
Cmn, the space of m n complex matrices A [aij] (C
Ar, the transpose of A;
An jr, the complex conjugate transpose of A;
In, the unit n n matrix;
Un c Cn-n, the group of unitary matrices U (UHU
Sn c Cnn, the set of upper triangular matrices;
i(A), the eigenvalues of A;
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a(A) > >_ trr(A) > 0, the singular values of A;
[[xll, the Euclidean norm of x cn;
IIAII= (A), the spectral norm of A;
IIAI[- [Y(A) / / r(A)] /2, the Frobenius norm of A.
The set Cm’n is identified with Cmn as a linear space.
Each matrix A e Cnn (n > 2) is decomposed as the sum

A low (A) + diag (A) + up (A) A + A_ + A3
of its strictly lower, diagonal, and strictly upper parts, say,

Low (.), diag (.), and up (.) are linear operators (projections) in Cn’n of ranks n(n 1)/
2, n and n(n 1)/2, respectively.

2. Statement of the problem. Let A e Cnn. Then there exists U e Un such that

UnAU=T, or AU=UT, TeIn,

where the matrix T is referred as the Schur canonicalform of A. The columns ofU form
the Schur basis of A. If the matrix A is real and has real spectrum, then T is also real
and U may be chosen real and orthogonal. The pair (U, T) (U, UnAU) is said to be
the Schur system of A. Note that the matrices U and (generally) T are not uniquely
determined. Indeed, if UnAU e In, then VnAV e In, V UD, for each D diag [d, d2,

d], d d d 1. Moreover, we can achieve a Schur form T with
any prescribed ordering of the eigenvalues of A on the diagonal of T.

Denote by

a(A) {U e [[3n." low (UnAU) 0} Un,

the set of all U e Un, whose columns form a Schur basis for A, and let

(A) {(U, UHAU): U e a(A)) Un In
be the set of Schur systems of A. It follows from the definitions that (A) and (A) are
compact sets.

We assume for definiteness that the Schur system (U, T) of the unperturbed matrix
A is chosen so that

IlI Ul]- min {[]In- VIIF: V e (A)}.

Suppose that A is subject to a perturbation AA e Cnn. Then there exists AU C
such that U + AU e Un and

(A + AA)(U + AU) (U + AU)(T + AT), T + AT In,

where T + AT is the Schur form of A + AA.
The perturbation analysis problem (PAP) consists in estimating the norms of the

perturbations AU, AT as functions of the norm of AA. A major difficulty here is the
nonuniqueness of the Schur system.

Note that there exists an "exact" minimax bound for the perturbation in U. Indeed,
for each fi >_ 0, the quantity

pv(di) := max min ]]W- UI]F
IIYIIF-- W ea(A + Y)
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is well defined according to the Weierstrass theorem: 9v(6) I]W* UI[F, where W*
U + AU* B(A + Y) for some Y* with ]]Y* ]]F 6. The matrix AA* Y* is the "worst"
perturbation of A, which causes a maximum norm perturbation in U.

It follows from the definition of ou that:
(i) For each AA there exists U + AU B(A + AA) such that [IAUI]F _<

(ii) There exists AA* such that ]]AUHF >_ OU(I]AA*HF) for each U + AU
(A + AA*), but []AU*][F Ov(I[AA*I]F) for some U + AU* ](A + AA*).

Consider briefly the properties of the function 9v" R+ - R+. Obviously, 9v(0) 0
and the "ideal" case would be ifgv is continuous or even differentiable in certain interval
[0,/3). Unfortunately, 9v may be discontinuous at 6 0 if, for example, A has multiple
eigenvalues. In this case the Schur basis is infinitely sensitive and the PAP is ill posed.

The Schur form T UTAU is usually less sensitive compared with the Schur basis
U. In fact, consider the quantity

oT(6) := max min [IS T][F.
[[Y[[F (W,S) $(A + Y)

It characterizes the sensitivity of the Schur form in the sense that for each AA, one has

IIXTIIF --< oT(ll AAIIF)
for some (U + AU, T + AT) $(A + AA).

It may be shown that for some matrices A, the function ou is discontinuous at 6
0, while or is continuous and o(6) is of order at most 0(6/), 6 -- O.

The construction ofthe exact minimax bounds ,p(6), ov(6) is practically impossible.
That is the reason we look for upper bounds e(6) >_ o(6), ev(6) >_

We denote

6A IIAAIIF, u IIAUIIF, 6 IIATIIF.
The practical PAP for the Schur system of A may be formulated in the following

way: Determine an interval J [0, a) and two continuous nondecreasing functions
J -- +, er: J -- + such that eu(O) e(O) 0 and

(1) u <- eU(A), iT <-- eT(6A); iA J

for at least one pair (U + AU, T + AT) $(A + AA) and all AA with AA][F 6A.
Note that (1) may be violated for some Schu? systems of the perturbed matrix A +

AA. This property of the perturbation bounds is inevitable due to the nonuniqueness of
the Schur system.

It must be pointed out that the estimates (1) are nonlocal since they are valid for a
finite (although possibly small) interval J of perturbations 6A.

If the functions eu and ev are twice differentiable, we get the asymptotic estimates

(2) 6u <- kvaA + O(aA), ar <- kraA + O(Z?A); aA 0,

where ku eU(0) and kr er(0) are estimates ofthe absolute condition numbers (relative
to U and T) ofthe problem ofcomputing the Schur system ofA. Estimates ofthe relative
condition numbers are cu kullA[Ir/1/n and cv kv, respectively.

When the bounds (2) exist, the PAP for the Schur system is well posed, otherwise
it is illposed. Note that the ill-posed problems include infinitely sensitive problems when
a continuous bound for 6v does not exist.

3. Main results. In this section we present a complete perturbation analysis of the
Schur system ofa general matrix A under certain natural assumptions. We first reformulate
the problem of obtaining and estimating the Schur system (U + AU, T+ AT) of A +
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AA as an operator equation X 11(X), X U/AU, in Cn’n with a continuous mapping
11(. ). Then we show that 11(. maps certain compact set M c C into itself, where M is
"small" of order O(15A). Hence according to the Schauder fixed point principle, there
exists a solution X M and its norm may be estimated in terms of the perturbation 6A.
Note that an attempt to apply the Banach fixed point principle seems to be inappropriate
here since AU (and hence X) is always nonunique.

We assume that A has n pairwise distinct eigenvalues. This condition is not restrictive
since its violation may cause not only illposedness ofthe Schur system, but even nonex-
istence of a continuous band for 6v as shown by the following simple example.

Example 1. Let n 2 and A 12. Here $(A) [[J2 X {A) and U 12, T A. If
AA has a nonzero element only in position (2, 1), then (A + AA) consists ofthe matrices
+U, +U2, where u,12 -u,21 u2,12 u2,21 1. Hence the minimum norm perturbation
satisfies ]IAU]IF 1[I2 ---+ Uillr 2 and, for this type of perturbations AA, the norm 6v is
not continuous as a function of 6A: 6U 0 for 6A 0 and 6v 2 for 6A > 0.

Setting X U/4AU and E U/4AAU, we get

and

(3)

(4)

(5)

and

(6)

where

(T + E)(In + X) (In + X)(T + AT)

TX- XT (In + X)AT- E(In + X).

Since I + X e U,, we have

X/+ X + X/X O.

Equation (3) yields

AT G(X) (I + X/)[TX- XT + E(I + X)]

IIG(X)II- IITX- XT + E(I + X)IIF

< IITX XTII + IIEII < 0AIIXII + ,
:= IlI.(R) T T (R) In I1_ IlI (R) A A7" (R) I.

Note that obviously WA <-- 2IIAIIF. However, this bound is probably pessimistic since, e.g.,
OA < VIIA]IF for n 2.

Represent X as

X=low(X)+diag(X)+up(X)=X+Xz+X3

and take operation low (.) from both sides of (3):

low (TX XT) low (AT) + low (XAT) low [E(In + X)].

Since low (AT) 0, low (TX) low (TX), low (XT) low (XT), and low (XAT)
low (XAT), then

(7) low (TX XT) low (XAT) low [E(In + X)].

Consider the linear operator S(. in Cnn defined by

(X) low (TX XT).
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Since E(X) E(X), then E(.) maps the subspace Ml c C"" of strictly lower triangular
matrices into itself. Moreover, the eigenvalues of the restriction El(" of E(" on C""/MI
are hi(A) ,j.(A), > j, and hence El(" is invertible. If we denote by vec (X1) ’, ,
n(n 1)/2, the columnwise vector representation of Xl, then vec (El(Xl)) mat (El) vec
(X), where the matrix mat (El) Q [Qij] u.u of the operator El(’) is block lower
triangular (f0 0 for < j). For n 5, the matrix f is

T21 /23 /24 /25 0 0 0 0 0
0 T31 /34 /35 0 0 0 0 0
0 0 T41 /45 0 0 0 0 0
0 0 0 3"51 0 0 0 0 0
0 --t12 0 0 "/’32 t34 835 0 0
0 0 --t12 0 0 T42 t45 0 0
0 0 0 --t12 0 0 9-52 0 0
0 0 --t13 0 0 --t23 0 9-43 t45
0 0 0 --/13 0 0 --/23 0 9"53
0 0 0 --/14 0 0 --/24 0 --/34

where o are the elements ofT and 9-o t,- tj. ki(A) k(A).
Denoting

A min { I[low (TY YT) I[F" Y M1, I[Y V },

we have ]]E]-ll]F ]]Q-II] 2 ,1. Therefore, (7) may be rewritten as

(8) Xl II,(X)"= A{X,AT low [E(In + X)]},
where A(-): C"’" - C is a linear operator such that E(A(X)) Xl and

(9) IIA(x)IIF --< ’ IIxIIF.
Since we may choose X in (3), (4) with real diagonal elements xii, it follows from

(4) that x, -0.511x,112; x Ix,, x2,..., x], x; , and

X2 12(X --0.5 diag [llxlll 2, ]lx2[12,..., [Ix, I121
(0)

-0.5 diag (xHx)..
Relation (4) also gives

(1 1) X L3(X := --Up (XH) up (xHx).

Equations (8), (10), and (11) form an operator equation

X-- ](X), 1 11 -4- 1].2 -- 1,]3.

Consider now the set

(12) M {X: [IX/I[v < ci;i 1, 2, 3) C"’",

where c; are positive constants that will be determined later.
For X M, we have

Ilxll---- IIx, II2F + IIx2112F -4- IIx3112F C -4- C22 + C Ilcll ,
C [1, C2, 31
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and in view of (8), (9), and (5), (6)

II(x)ll -< IIlow (XAT) low [E(I / x)]llf

(13)

where

< W’(tIXiIFll/XTilF + IIEIIF)

< ’/,I[cI(O.)A Ilcll + A) + A] Cl(’r[Icl] -4- ) + ,

Since

"y e
/A /A

n

E IIx, 2- IIx[I=F,
i=l

we get

(14)
n

n i=1

Hence (10) yields

(15) IIn_(X)llF 0.5 Ilxi 4 0.511XII=F o.511cll 2.

On the other hand,

IIXXIIF 211up(XnX)l[F + [[xil[ 4
i=1

and (14) yields

Ilup (XX)II2F 0.5 [IX"Xll-- IIX 4 -< 0.5 Ilxll.
i=1

Thus

(16) Ilup (X/4N)IIF < tn IIXII2F, /.t 0.5

Having in mind that IJup (X)IIF IIX IIF, it follows from (11) and (16)

u3(x)II F --< Up (X) F / up (X’X)II F --< X, F / ’n X
(17)

_< c, + u.llell .
Now we shall show that under certain conditions there exists a vector

(18) c c(0, c [c, c, c3]; c; ci(O,

whose components satisfy the nonlinear algebraic system

(9) c, jS(e, ):= yc,(c + c + c)’/- + c + ,
(20) c A(c)"= 0.5(c + c + c),

(21) c3 A(c)"= c + u,(c + c + c),
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(or c f(c, e) [fl(c, e), A(c), J(c)]r) and the limits

(22) lim ci(e) 0; 1, 2, 3.
e--0

Denote by M, the set (12), (18). Then in view of (13), (15), (17), and (19)-(21), it
follows that ll(M,) c M,. Hence according to the Schauder fixed-point principle, there
exists a solution X M, of equation X ll(X) and IlXlle -< Ilc(e)ll Ile(6a/r/A)[I.

Next we shall derive conditions for solvability of (19)-(21) and upper bounds for
Ci(e) and [[c(e)[[.

There is a critical relation e (), +, such that:
(i) For 0 e t(7) the solution (18), (22) of (19)-(21) exists. Moreover, the

functions c(.) are analytic in e < (7) and are continuous (but not differentiable) for
();
(ii) For e > e,(7) the solution (18) does not exist.
In case (i), we can take

(23) 6 eV(6A) [Ic(e)l[ [2c2(e)] ’/2 2c2

and, in view of (6),

(24)

The critical value e. e.(3") is such that the Jacobi matrix J(e, e) 0f(c, e)/0e has
an eigenvalue for e e., f(c, e.) c. This may be proved using the method ofLyapunov
majorant functions 13]. However, as shown below, there is an easier way to determine
the relation

Equations (20) and (21) give

(25) C2 C21 + 2#nClC2 + (0.5 + 2#n)C2,22

while (19) and (20) yield

(26) c , At- ,C -[- 3"C1(2C2) 1/2.

Rewrite (25) and (26) as

cl g(t)"= e[1 e 3"(2t)1/2]-l,

c h(t)"= --#nt + [t- (0.5 + #2)t2]/2,
where c2 < min {tg, th } and

tg := 0.5(1 8)23"-2, th (0.5 + 2#2)-, h(th) O.

The relation e en(3") may be determined in parametric form using the conditions
g(t) h(t) and g’(t) h’(t):

3’ 3"(t)"= (2t)l/2h’(t)[2th’(t) + h(t) + h2(t)]-,
e e(t)"= h2(t)[2th’(t) + h(t) + h2(t)]-l;

0 < _< tmax [1 + 4#2 + #n(2 + 8#2n)1/2]-1,

where the function h has maximum for t =/max- In addition, we must impose the restriction
3" >_ since wa >_ r/A. Thus we obtain domains in the plane (3", e) for which alternative
(i) holds true.



390 M. M. KONSTANTINOV, P. HR. PETKOV, AND N. D. CHRISTOV

A disadvantage of this result is that the relation C2 2($) in (23), (24) is not in
explicit form. However, explicit (but slightly pessimistic) bounds for iv, iSr may be found
in the following way.

Since in view of (25) c < c2, we get from (26) c < 1/2yc2 + ec + e. Hence if we
consider the system

(27) Xl /2"yx2 + ex + e,

(28) X2 X21 - 21dnXlX2 -st-(0.5 q" 2/An)X2,22

instead of (25), (26), we shall have c < x, c2 -< x_. Setting the expression for x obtained
from (27) in (28), we get

x p(e) + q(e)xz + r(e)x,(29)

where

(30)

p() := 2( )-2,
q(e) 2e(1 -e)-211/2"y + #n(1 -e)],

r(e) (1 e)-2[/2y + U,(1 e)]2 + 0.5 +
The condition for existence of a solution of (29) is [1 q(e)]2 >_ 4p(e)r(e) or q(e) +
2[p(e)r(e)] /2 < 1, which is equivalent to

(31) 2e{[(/2y + #,(1 e)]2 + (0.5 + #2n)(1 e)2} ’/2 + 2e[V2"/+ Un(1 e)] < (1 e)2.

Inequality (31) may be strengthened to

(32) 2e[1/2U + #n(1 e)] + 2ec.(7) -< (1

where

(33) .(’r) [(I/27 + #.)2 + uZn + 0.5],/2.
Using (32), (33), it is easy to show that

e _< e.*(y) [/3.(y) [/32(y) 2#.]/2]/(1 +
(34)

/3n(y) + 1/27 + u. +
If e satisfies (31) or (34), then

(35)
x2 Xz(e) [2r(e)]-[1 q(e)- d/Z(e)],

d(e) := [1 q(e)]2 4p(e)r(e),

and

(36) 6 < eb(bA) := [2x2(e)] /2 2x2

[A]1]2

(37)

Consider finally the case when 6A and hence e is asymptotically small. It may be
shown that the solution of (25), (26) admits the power series expansion

c(e) e + (1 + 72y)e2 + [1 + V2(3 + ,)y + y2]e3

C2(e) e2 + 2(1 + 72y + #n)e

+ [3.5 + 6, + 6u] + 82(1 + )y + lOy2]e4 + ..-,
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and

(38)

6u <- eU(6A) [2C2(e)] ’/2 /2{e + (1 + 1/2Y + Un)g2

+ [1.25 + 2,,, + 2.5#2,2,

+ 31/2(1 + #)’r + 4"y2]e + }.

In particular, the condition numbers are

=, Cu= kr=cr= +
A A A

The solution of (27), (28) has the expansion

X(e) el(e)

Xz(e) c2(e) + 2/2"Y#ne4 + O(eS),
and

1/2(39) 6u
i.e., the estimates eu, eb, defined by (38), (39) coincide within terms of second order
with respect to

The estimates derived above are relatively sharp as shown by the following examples.
Example 2. Let A [5s and AA 10-kB be determined from

4.5 0.9 -1.9 4.4 -9.7- -3 7 -4
4.3 1.9 -1.9 5.2 -11.3 6 0 4 2 9

A= -3.1 0.0 2.0 -3.6 6.7 B= -3 -2 7 -5
1.7 0.9 -1.9 4.6 -7.1 8 6 -9 -3 4
3.0 0.9 -1.9 4.4 -8.2 7 4 -3 2 6

for k being an integer. The set of eigenvalues ofA is {0.1, 0.2, 1.0, 1.5, 2.0 }. The results
obtained from (36), (37) are shown in Table 1.

Our last example shows that the estimates obtained are asymptotically exact.
Example 3. Let A diag [, 2] 2.2, where > 2. We have WA I"]A kl

k2 > 0 and hence y 1. If we choose AA in the form

AA al, a2 >-- 0,
a2

where

(40) 6A (a2 + a2 + a2) 1/2

1/2’

TABLE

k 6A at, e aT e
11 2.492 10- 3.413 X 10-9 1.408 10-8 2.843 10-8 4.721 10-7

12 2.492 10-1 3.412 10-1 1.408 10-9 2.843 10.9 4.721 10.8

13 2.492 10-12 3.411 10- 1.407 10-1 2.842 10-1 4.720 10.9
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then

Hence

c- s ] s a
X s2 -t- (?2_.

--S c-- c r/A-- al a2

(41) 6 IIXIIF 2(1 c) ’/2, c [1 + aZ(rtA a a2)-21-’/2.
According to (41), the maximum of dia in (a2, a2, a) subject to the constraint (40) is
achieved for

a a2 6A e, a 6A (1 2e2)1/2; e ,
?A A

(U,max($) 211 Cmin($)] 1/2,

(42) Cmin(t:) $2(1 $2)-1]1/2,

e < - 0.7071.

Thus the exact bound (42) has the expansion

/2e(1 + 0.625e + 0.6174 + ")

while the bound (36) and the inequality (34) give

v <- ev(en) ,- /2e(1 + 2.914e + 13.239e + ."),

e < e{(1) 0.2035,

and the difference between the exact (42) and approximate (39) bound is of asymptotic
order 4.121 e.
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AN ALGORITHM FOR THE SINGLE-INPUT POLE
ASSIGNMENT PROBLEM*

RAFAEL BRUt, JOS MASt, AND ANA M. URBANO

Abstract. B. N. Datta and K. Datta have proposed an efficient parallel algorithm for the single-input pole
assignment problem when the spectrum set to be assigned is pairwise distinct and disjoint from the spectrum
of the dynamical matrix. This paper first presents a theoretical analysis of that algorithm and then presents the
necessary modifications on it for an arbitrary spectrum. Based on the modified algorithm, the authors present
two new algorithms for the problem and give some results on controllability that are of independent interests.

Key words, eigenvalue assignment, single-input, controllability, Jordan form

AMS subject classifications. 93B55, 93B60, 15A 18

1. Introduction. Given the time-invariant linear dynamical system

:(t) Ax(t) + bu(t),

where A e nn and b en l, an important problem in control theory is the eigenvalue
assignment problem commonly known as the pole-assignment problem; that is, to find
a vectorfsuch that the spectrum of the matrix, A bfr is equal to the prespecified and
conjugated complex number set f (#1, #2, #n}. One application of this problem
is the stabilization of a controllable system; that is, if the dynamic system has some
disturbance, how to choose a vector fsuch that the closed-loop system comes back to
the stable position. It is well known that this problem has a unique solution if and only
if the pair (A, b) is controllable [10].

There exist several sequential methods for computing the vectorf. Some well-known
and important methods are found in [1 ], [2], [5]-[7], and [9].

In [4], B. N. Datta and K. Datta proposed a parallel algorithm for solving the above
problem. This algorithm implicitly assumes that the eigenvalues to be assigned are pairwise
distinct and different from those of A. The main aim of this paper is to modify that
method for any self-conjugated set r, proposing some modifications of that parallel al-
gorithm to obtain the vectorfsuch that A bfr has the desired spectrum for any set f.
We point out here that a multi-input version of t,he Datta-Datta single-input parallel
algorithm was also proposed in [3]. This multi-input version also implicitly assumes that
the set of eigenvalues to be assigned is disjoint from the spectrum of A and pairwise
distinct.

The paper is organized as follows. First, in 2 we present a short description of the
algorithm given in [4] that is the starting point of our analysis. Then in 3 we give some
controllability results and theoretical analysis of that algorithm proving necessary and
sufficient conditions on the validity of that algorithm. In 4 we study the modification
when f fq a(A) 4: (where o-(A) denotes the spectrum ofA), and in 5 we give a general
algorithm when f fq a(A) : and some eigenvalue has multiplicity greater than one.
Finally, in 6 we illustrate our algorithms with some numerical experiments with the
help of MATLAB.

Received by the editors January 17, 1989; accepted for publication (in revised form) September 2 l, 1992.
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2. A single-input parallel algorithm for eigenvalue assignment by Datta and
Datta. Given the controllable pair (A, b) and the set ft {]21,/22,... ,/-n), the algorithm
proposed in [4] computes a vectorfsuch that a(A bfr) ft. The algorithm is suitable
for parallel implementation and is described as follows.

Stage I. Transform the pair (A, b) by orthogonal similarity to the pair (H, c), where
QAQr H is an unreduced upper Hessenberg matrix and Qb c [a, 0, 0] r,
a#0.

Stage II. Solve the n Hessenberg systems in PARALLEL:

(H- #iI)ti , 1, 2,..., n.

Stage III. Solve for d:

where T It1, t2,..., tn] and r [a, a, a] T.
Stage IV. Computefr a-ldTQ.

In Stage I of the algorithm, the orthogonal similarity Q transforms the pair (A, b) to
the equivalent pair (H, c), where H is an upper Hessenberg matrix and c [a, 0 0].
It is well known that (A, b) is controllable if and only if the matrix H is unreduced (that
is, hi,i-1 O, 2 n) and a 4:0 (see [6] and [7]).

Since

Q(A bfr)Q 7"= H- cfTQ r,
the problem of finding the vectorfsuch that a(A bfr) ft is equivalent to finding the
vector g, defined by gr frQT, such that

r(H- cg) ft.

Stage II of the algorithm solves the systems

(1) (H-tiI)ti=c, i= 1, 2 ,n.

Assuming that T is nonsingular, it computes the vector dr rTT-1 in Stage III.
In Stage IV the vectorfis computed as

fr= a-ldTQ [1, 1,..., 1]T-1Q-- gTa.

Theorem 2.2 of [4] proves that the above algorithm provides the vectorfsuch that
a(A bf r) ft, assuming that the matrix T obtained in Stage II is invertible. We prove
that the nonsingularity of T is guaranteed when the elements of the set f are pairwise
distinct and when no element of fl is in a(A) (see Proposition 3). Thus the above as-
sumptions in the algorithm given in [4] are not a restriction because it works implicitly
with these conditions. As we shall see in the next section, the nonsingularity of T is
related with the consistency of the systems (H- M)t c of Stage II.

3. Consistency and nonsingularity. In general, the matrix T obtained by solving (1)
is not invertible if some eigenvalue has multiplicity greater than one as Proposition
shows. Furthermore, in the case that ft N a(A) 4: , the matrix T cannot be constructed
from the systems of Stage II, as can be seen in Proposition 2. From the above remarks,
we observe that the algorithm given in [4] is valid if and only if ft f) a(A) and ft is
a pairwise disjoint set, as the following theorem proves. Since a(A) a(H), we state our
results for an unreduced upper Hessenberg matrix H.
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THEOREM 1. Let (H, c) be a controllable pair. Let f be a conjugated complex number
set. The algorithm given in [4] is valid ifand only ifthefollowing conditions are satisfied:
(i) 2 91 r(H) , and (ii) the elements of ft are pairwise distinct.

The proof of Theorem is based on the following results.
PROPOSITION 1. Let (H, c) be a controllable pair. Let ft {u, u, n} be a

conjugated complex number set. If ft t’) r(H) , but ti tj for some 4: j, then the
matrix T constructed in Stage II is singular.

Proof Since f f a(H) , then rank (H- #iI) n. Therefore, the system
(H- IiI)x c has a unique solution and hence the matrix Thas the ith andjth columns
equal. Hence T is singular.

The following lemma gives a basic result on the controllable systems with single
input, and we will use it in the next proposition. Moreover, the remark below is the main
point for constructing the general algorithm given in 5.

LEMMA 1. Let (H, c) be a controllable pair. Then
(i) dim Ker [H-//, c] 1, for all
(ii) If # a(H), then the geometric multiplicity ofl is 1.

Proof (i) If g r(H), it is obvious. Otherwise, since (H, c) is controllable, rank
[H- tI, c] n and hence dim Ker [H- t/, c] 1.

(ii) Since rank [H- zL c] n and considering that # a(H), we deduce that dim
Ker (H #I) 1.

Remark. Let 3"j be the jth column of the matrix H- Lj 1, 2,..., n.
(a) Then by Lemma l(ii), and since H #I is an unreduced upper Hessenberg

matrix, we have

span {3", 3"2,-’", 3"n-l, 3"n} span {3’, 3"2,’’", 3"n-l).
(b) By Lemma (i) and the last remark, we have the following direct sums:

C"= span {3",, 3"_,..., 3",_ ,, 3",} span {c}

span {3",, 3"2, 3".-, } span {c}.
PROPOSITION 2. Consider the controllable pair (H, c). Let 2 be a conjugated complex

number set. If 2 fq a(H), then the system (H- I)x c is inconsistent.
Proof If 6 a(H), then by Lemma l(ii), we have that rank (H- #I) n 1, and

since (H, c) is a controllable pair, rank [H- I, c] n. Thus, the system (H- tI)x c
is inconsistent. [5]

For the next proposition we consider, for each p 1, 2 n, the following partition
of the matrix H- tiI and the vectors t; and c.

H-#iI
H-#il= R

n-p

tn -p,i
tn-p+ 1,i

tn,i

02
S l]n-p
#i P

P

0

for each 1, 2,..., p.
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PROPOSITION 3. Let (H, c) be a controllable pair. Let ft {#1, U2, #n} be a
conjugated complex number set, pairwise distinct. Consider, in addition, that 2 fq

a(H) J. Let ti be the solution ofthe system
(2) (H- tiI)ti c for each 1, 2,..., n.

Then the rank ofthe matrix [tP, tl, tp] is equal to pfor each p 1, 2, n.
Proof We proceed by induction overp. Forp 1, it is evident that tn 4 0. Otherwise,

since H is unreduced Hessenberg matrix and using back substitution we deduce that the
vector t is the zero vector, which is not a solution of the nonhomogeneous system
(H- #I)x c.

Suppose by induction that the rank of the matrix [t, t, t] is p. Obviously,
the rank of the matrix

[t+l, t+’,..., t+1, tl]
is p or p + 1. Suppose the rank of this matrix is p instead ofp + 1. Then by the induction
hypothesis we have the following linear combination:

P

(3) t++l Z /3jt +’-
j=l

For each 1, 2, p + 1, by the above partitions, we can write system (2) as

(4) [H 02 --#iI t+ 0

Now restricting ourselves to the second subsystem of (4), for 1, 2 p, we have

(5) Rt -p- + (Ha #iI)t + O,

and for p + 1, taking into account (3), we get

P

(6) Rt-- + (H2 #p+ I) /3jt+ 0.
j=l

Subtracting expression (6) from the sum of all p subsystems (5) each one multiplied by
/3i, 1, 2 p, we obtain

R [3it7 -p-’ tp+ + /i(/.p+ u;)t +’ 0.

Since the matrix R has only the (1, n p)th entry different from zero, we have that the
last p rows satisfy

P

Z /i(p+ ldi)tf O.
i=1

Hence the rank of matrix [t, t,..., t] is less than p, which contradicts the induction
hypothesis.

We are now ready to prove Theorem 1.
Proof of Theorem 1. Sufficiency: Follows from Proposition 3. Necessity: If

a(H) 4: ?J, by Proposition 2, the matrix Tcannot exist. On the other hand if multiplicity
of # > 1, for some tz ft, by Proposition 1, T is singular.
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4. Proposed pole placement algorithm. If # f f) a(H), we then have seen in
Proposition 2 that the Datta-Datta algorithm is not valid. However, it is always possible
to find an eigenvector ofH associated with #, solving the system (H #I)x 0. In fact,
we shall see in Theorem 2 that in this case (that is, when f fq (H) 4: ) the matrix T
constructed in (7) is nonsingular. We will thus have the following modified algorithm.

ALGORITHM I
Stage I. Transform the pair (A, b) by orthogonal similarity to the pair (H, c), where

H is an upper unreduced Hessenberg matrix and c [c, 0, 0] r, with c :/: 0.
Stage II. For 1, 2 n.

If #i r(H), then
Solve the Hessenberg systems in PARALLEL

(H- ufl)t c.

Else
Solve the Hessenberg systems in PARALLEL for the nonzero solution

(H- #iI)t O.

Stage III. Form the vector u as follows: assign to the ith entry if/.t C (H),
otherwise assign 0 to this entry.

Stage IV. Solve for g:

grT= u r,
where

T [tl, t2, tn].

Stage V. Computef7- grQ.
The following result proves the validity of the above algorithm.
THEOREM 2. Let (H, c) be a controllable pair and let 2 {, 2, tn} be a

conjugated complex number set pairwise distinct. If ti, 1, 2 n, is a solution of
the systems

(7) (H-#fl)ti={ if#i - a(H),

if#i r(H),

where c [c, 0 0] r, c 4: 0, then the matrix

it;,

has rank p, for each p 1, 2 n.
Proof The proof is analogous to that of Proposition 3. 7]

The assumption that the complex numbers of f are pairwise distinct in Theorem
2 is necessary as the following example shows.

Example 1. Let

H and c
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and suppose that we want to assign the spectrum 2 { 1, 1, 2}. The solution of the
systems (7) yields the singular matrix

T= 0 -1. The general lgol’thm. With the hypothesis of Theorem 2, solving the systems
(7) is equivalent to solving the matrix system

(8) HT cur T diag (i),

where u r is a row vector constructed in the proposed algorithm: its ith entry is 0 if e
o-(H) and otherwise. From (8) note that the matrix H- cu rT-1 is diagonalizable as in
the case of [4]. However, in the general case where the spectrum to be assigned has some
eigenvalue with multiplicity greater than one, the matrix H curt-1 is not similar to
a diagonal matrix as the following proposition shows.

POeOSTO 4. Let (H, c) be a controllable pair, and let 2 {1, , } be
the spectrum to be assigned with multiplicities re(l), m(2),..., re(p), respectively. Ifg is
the vector such that a(H cgr) f, then the Jordan form ofH- cgr is

(9) j J2 0

o
where J is the m(k) m(k) Jordan matrix

jk= # 0 0

0 #

Proof Let , a(H- cg); we need to prove that dim Ker (H cg #I) 1.
Suppose that t and t2 are solutions of (H- cg- uI)x 0. Then

(10) (H- uI)ti cgTti zic, 1, 2.

Now we distinguish two cases. (i)/ a(H). Then ; 0, 1, 2, otherwise the systems
(10) are inconsistent by Proposition 2. Therefore the vectors t and t2 are in Ker (H- zI)
which, by Lemma (ii), has dimension 1. Hence the vectors t and t2 are linearly dependent.

(ii) # <t a(H). In this case i 4 0, 1, 2 (otherwise the unique solution is the trivial
one). Equation (10) becomes

(H- zI)(7t;) c, 1, 2.

Since the system (H- taI)x c has unique solution, then t and t2 are linearly dependent.
We conclude that dim Ker (H- cg7- taI) 1.

Remark. Proposition 4 suggests that when there are in the set ft eigenvalues with
multiplicity greater than one, the matrix diag (t*) in (8) may be substituted by the matrix
J defined in (9) to compute the matrix T. Now we discuss how to choose the vector u so
that the matrix system

(11) HT- cu TJ

provides n consistent linear systems. Later, we shall see in Theorem 3 that the matrix T
constructed from the solutions of these consistent systems is invertible.
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Remark. To see the consistency of the system (11) as a function ofthe vector u, we
partition this vector as

u

where the th block of u T is

b/(i) []i), ^(i)

and re(i) is the multiplicity of/i. Also we write the matrix T by blocks as

T [tt, tt2,..., t(p)],

where the block t(i) is

for 1, 2 p. The superscripts represent the corresponding eigenvalues. From the
matrix system (11), using this notation, we obtain the following linear systems:

(12)
(H r\.,(i) (i) (i)

[dil )tj lj+ nt- j C,

j= 1,2 m(i), i= 1,2 p,

where ttimli)+l O.
The systems (12) can be grouped into p subsystems corresponding to each eigenvalue

zi, 1, 2 p. Let us study the consistency of a subsystem (the same study can be
done for the other subsystems). To simplify the notation, we drop the scripts (i) and
work with the linear systems

(13) (H- #I)tj tj+ + [3c,

where tm + O.
We consider two cases: (i) a(H). In this case H zI is nonsingular and the m

linear systems (13) have unique solutions. The last system (i.e., j m)

(H- #I)tm mC

is consistent for every scalar tim. In particular, we obtain a nontrivial solution for tim
1. The remaining systems are consistent for any value of/3; in particular, we shall take
/3=0,j=m- 1, m-2,...,2, 1.

(ii) t e r(H). Suppose that the multiplicity in r(H) is r. Since (H, c) is controllable,
by Lemma (ii) the r systems

(H- #I)tm O,

(H #I)tm-1 tm,

(H #I)tm + tm- + 2

are consistent.
(iia) In the case m < r, then the systems (13) are consistent for m /m-1

O.
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Exploiting the structure of the unreduced Hessenberg matrix, a particular solution
of the systems (13) has the structure

(14) [tl, t2, tin]

(iib) In the case m > r, the first r systems (13) are consistent for {]m ]m-1
/m- /l 0. Then the next system of (13) to solve is

(15)

or equivalently

(16)

which is equivalent to

(H #I)tm tm + "- m- rC,

(H I)tm- -rC tm- + 1,

OI

(17) [H- #/, c] tm-r+ 1.n
Iam-

By the remark of Lemma 1, we can also write

m + 01"’I -- 02"’2 -- - On- ")l’ -- Iwhere -),; represents the ith column of the matrix H- I, 1, 2 n 1. Hence
we can find a particular solution of (17) setting 0n 0. Then a solution of (16) is
/m- --rm- and

tm-r [Ol 02 On-10] T.
The other vectors tm-r-, tm-r-2, l can similarly be obtained.
Again, by the structure of the matrix [H uI, c], we can get a partial solution of

(13) with the following structure:

(18)

Example 2. Let

[tl,..., tr, tr+l tm]

H= and C
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Suppose that we want to assign the spectrum ft { 1, 1, }. Since a(H), with
multiplicity 1, we are in the case (iib), and we must solve the systems

(H- I)t3 O,

(H- I)t2 t3 + [J2,

(H- I)h t2 +/31c.

A solution of the first system is t3 [0, 2, l] T. By (16) we get fiE 2, SO a solution
of the second system will be t2 [2, l, 0] r. With this solution and (17), we obtain/3
-1 and then one solution of the last system will be tl [1, 0, 0] T, and hence u
[-- 1, 2, 0] T.

ALGORITHM II
This algorithm finds the vectorfsuch that given the controllable pair (A, b) and the

conjugated complex number set ft {tl, /z2, tp), the matrix A bfr has the
spectrum ft, where/2 has multiplicity m(i), 1, 2 p. For the description of the
algorithm it is assumed that the spectrum of A (and so the spectrum of H) and the
multiplicities r(1), r(2) r(m) of its eigenvalues are known.

In the algorithm we represent by u(s) the block of the vector u that has coordinates
from m(l) + + m(s 1) + to m(1) + + m(s- 1) + m(s), and by ,i), j 1,
2,..., n the columns of matrix H uI.
Stage I. Transform the pair (A, b) by orthogonal similarity Q to the pair (H, c), where
H is an upper unreduced Hessenberg matrix and c [a, 0,..., 0] T, with a 4: 0.
Stage II. For 1, 2 p.

If/zi a(H).
Solve the system

(H- #iI)t(imi)= c.

For j re(i) 1, re(i) 2,..., solve the systems

(H ,,Ai) .(i)
Ia.i )tj j + 1.

Form the m(i)-dimensional vector u<i) [0, 0, 0, 1] r.
Else

If r(i) >_ m(i), solve the system for the nonzero solution

(H- IiI)t(imli) O.

Forj m(i) 1, m(i) 2 solve the systems

(H- tiZ)tJi) tJi)+ l,

Form the m(i)-dimensional vector u(i) [0, 0,..., O] r.
Else solve the system for the nontrivial solution

(H- uiI)ti) O.

Forj m(i) 1, m(i) 2 m(i) r(i) + solve the systems

(n #iI)t.i) ti)+ l.

For j m(i) r(i), m(i) r(i) 1, 2, 1, solve the systems

,(i) i),,yi) .(i) (i) .,-,(i)
tj+l + 02 "Y2 - "’"-[-(ni) l"Y(nt)1-t- 1 C.
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Form the m(i)-dimensional vector

U(i) [b/i), b/(2i), b/(i)
(i) (i)where uj .x j 1, 2,..., m(i) r(i), and 0 elsewhere.

I’R(i) t(i) (n/) 0]TForm "o) tUl u2 -1,

Stage III. Form the vector u [u), u2),.. up)] r.
Stage IV. Solve for g:

gTT= u r,
where

and t(i is

T [t{), t2), t{p)]

t(i) [ti), t(2i), t(imli)l
Stage V. Computef

The following theorem proves the validity of Algorithm II.
THFORZM 3. Let (H, c) be a controllable pair. Let 2 {#, u2, p} be an

arbitrary conjugated complex number set. Suppose that the multiplicity oft.re is re(i) and
r(i) in 2 and a(H), respectively, 1, 2 p. Then the solutions ofthe systems

(n rx.(i) (i) r(i)
#il)tj lj + -- [Jj C,

j= 1, 2,..., m(i), 1,2 ,p

are linearly independent, where
(a) t{i)+l 0.
(b) If#i q a(H), then {(im{i) and t.i) O forj m(i) m(i) 2, 2,tJ

(c) If#i a(H) and
(c l) r(i) > re(i), then O, j re(i), re(i) 1,..., 2, 1.
(c2) r(i) < re(i), then Bji) O, j re(i) re(i) r(i) + and the others

i) are calculated by (16).
Proof We need to prove that the matrix

T [t{), t2), :..,

where

t(i) [ti), t(2i), t(imli)], 1,2 p

is nonsingular. We will proceed in three steps.
Step 1. #i a(H). We can proceed by induction on re(i)as in the proofofProposition

3. We start in this case in the reverse order because the first linear system we solve is
(H- #iI)tli) c. Then we obtain that the rank of

.(i) t(imi)]t(i) [t]i), /2

corresponding to this eigenvalue is m(i).
Step 2. IAi . a(H). Taking into account the structure ofthe particular solutions (14)

and (18), the block

t(i) [ti), (i)2,..., ti)]
has rank re(i).

Step 3. It remains to prove the independence of the blocks tto of T corresponding
to the eigenvalues #i for all l, 2 p. For that, proceeding similarly to the proof
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of Proposition 3, we obtain that T is nonsingular. In this case, again, the induction is
applied in the reverse order as Step of this theorem. []

6. Results. In this section we present numerical results obtained by our algorithms
on two test problems: the Frank and Wilkinson matrices. These matrices, were used in
[3] as test matrices.

The accuracy obtained compares favorably with that obtained by Datta and Datta
[4] in their algorithm. We performed experiments with Algorithms I and II. MATLAB
[8] was used for implementing our algorithms.

W---

Example 1. The Wilkinson matrix

20 0 0 0 0 0 0 0

20 19 0 0 0 0 0 0

0 20 18 0 0 0 0 0

0 0 20 17 0 0 0 0

0 0 0 20 16 0 0 0

0 0 0 0 20 15 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 20 14 0

0 0 20 13

0 0 0 20 12

0 0 0 0 20

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0

11 0

0 20 10

0 0 20

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

9 0

0 20 8

0 0 20

0 0

0 0

0 0

0 0

0 0 0

0 0 0

0 0 0 0 0 0 0-
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

7 0 0 0 0 0 0

0 20 6 0 0 0 0 0

0 0 20 5 0 0 0 0

0 0 0 20 4 0 0 0

0 0 0 0 20 3 0 0

0 0 0 0 20 2 0

0 0 0 0 0 20

has the following computed eigenvalues a(W):

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}.
For Algorithm I the spectrum ft to be assigned is

ft 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}
with all multiplicities equal 1.

Then ft f3 a(W) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
The entries of the computed first row of the matrix W- cg 7" are

120.000051723387 0
-247.500243369342 0
396.000555157266 0

-450.450800870721 0
378.378800801735 0

-236.486822771660 0
108.108291772582 0
-34.459526679174 0

6.891906919606 0
-0.654731295163 0
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and its eigenvalues are

1. 00000000000000
2. 00000000000000
3. 00000000000000
4. 00000000000000
5. 00000000000000
6. 00000000000000
7. 00000000000000
8. 00000000000000
9. 00000000000000

10. 00000000000005

21. 00000000090067
22. 00000004690938
23. 00000088284309
24. 00001038739562
24. 99999594467154
25. 99993877257182"
27. 00006858100040
28. 00015437349975
28. 99989411123250
29. 99998862236297

The norm of the difference vector of the eigenvalues assigned and the eigenvalues
of W- cgT is 0(2 10-4).

For Algorithm II the spectrum 2 to be assigned is

f {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

with all multiplicities equal 2.
Then 2 f3 a(W) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
The entries of the computed first row of the matrix W- cgr are

and its eigenvalues are

-80.000000000259 0
-202.500000001586 0
-216.000000003493 0
-132.300000003715 0
-47.628000002097 0
-9.922500000639 0
-1.134000000102 0
-0.063787500008 0
-0.001417500000 0
-0.000007087500 0

0. 99999999501227
1. 00000000000000
2. 00000000000000
2. 00000002630856
2. 99999995228625
3. 00000000000000
4. 00000000000000
4. 00000005701010
4. 99999995710373
5. 00000000000000

6. 00000000000000
6. 00000001350166
6. 99999999820177
7. 00000000000000
8. 00000000000000
8. 00000000031483"
9. 00000000000000
9. 00000000000223
9. 99999999999965

10. 00000000000005

The norm of the difference vector of the eigenvalues assigned and the eigenvalues
of W- cgr is 0(9 10-8).
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Example 2. The Frank matrix

12 11 10 9 8 7 6 5 4 3 2
11 11 10 9 8 7 6 5 4 3 2
0 10 10 9 8 7 6 5 4 3 2
0 0 9 9 8 7 6 5 4 3 2
0 0 0 8 8 7 6 5 4 3 2
0 0 0 0 7 7 6 5 4 3 2
0 0 0 0 0 6 6 5 4 3 2
0 0 0 0 0 0 5 5 4 3 2
0 0 0 0 0 0 0 4 4 3 2
0 0 0 0 0 0 0 0 3 3 2
0 0 0 0 0 0 0 0 0 2 2
0 0 0 0 0 0 0 0 0 0

has the following computed eigenvalues r(W)

0.03102805830617
0.04950743419656
0.08122765574367
0.14364652066476
0.28474972048519
0.64350531900585

1. 55398870913215
3.,51185594858076
6. 96153308556712

12. 31107740086857"
20. 19898864587716
32. 22889150157219

For Algorithm I the spectrum f to be assigned written in two columns is

0.03102805830617 7
0.04950743419656 8
0.08122765574367 9
0.14364652066476 10
0.28474972048519 I1
0.64350531900585 12

with all multiplicities equal 1.

Then 2 fq a(F)

0.03102805830617
0.04950743419656
0.08122765574367
0.14364652066476
0.28474972048519
0.64350531900585

The entries of the computed first row of the matrix F- cgr are

-7.766335249261
-35.308642532913
-62.761983253348
-95.091914484174
-126.374891086865
-150.199014439408

-162.577346221521
-161.397773124918
-146.348974404763
-119.095129320986
-82.976983907449
-42.265088670901
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and its eigenvalues

0.03102815917842
0.04950736946874
0.08122767023319
0.14364651222413
0.28474972064216
0.64350531900500

6. 99999999999358
8. 00000000005549
8. 99999999986791

10. 00000000014808"
10. 99999999992647
11. 99999999999584

The norm of the difference vector of the eigenvalues assigned and the eigenvalues
of F cgT is O(1.5 10-7).

For Algorithm II the spectrum fl to be assigned is

1. 55398870913215
3. 51185594858076
6. 96153308556712

fl 12. 31107740086857
20. 19898864587716
32. 22889150157219

with all multiplicities equal 2.

1. 55398870913215
3. 51185594858076
6. 96153308556712

Then fl N a(F) 12. 31107740086857
20. 19898864587716
32. 22889150157219

The entries ofthe computed firstrow ofthematfix F -cg are

87.53267058319 2379.73451460592
-255.22818519940 -2175.29690462507
656.26133592782 1757.99622044554

-1193.96118935235 -1255.19608884964
1806.75457380974 809.50021222572

-2234.69607175733 -478.49127345807

and its eigenvalues are

1. 55398866499479
1. 55398875326951
3. 51185594858072 0.00000024596755
3. 51185594858072 + 0.00000024596755
6. 96153308556700 0.00000063665662
6. 96153308556700 + 0.00000063665662

12. 31107740086755 0.00000160986180 i"
12. 31107740086755 + 0.00000160986180
20. 19898650094308
20. 19899079082090
32. 22888869444581
32. 22889430868959

The norm ofthe difference vector ofthe eigenvalues assigned and the eigenvalues
ofF-cgis 0(5 10-6).
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BACKWARD ERROR ESTIMATES FOR TOEPLITZ SYSTEMS*
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Abstract. Given a computed approximate solution to Ax b, it is interesting to find nearby systems
with as exact solution and that have the same structure as A. This paper shows that the distance to these
nearby structured systems can be much larger than for the corresponding general perturbation for general and
symmetric Toeplitz systems. In fact, even the correctly rounded solution may require a structured perturbation
with terms as large as [[l[ times the machine precision.
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1. Introduction. Given the linear system Ax b and a computed solution , it is
interesting to find nearby systems for which .f is the exact solution. That is, to find
and 6b such that

(1.1) (A + A). b + b
with/A and 6b small. If we define the associated residual vector

r r()= b- A,

then (1.1) becomes

(1.2) (/A) r +/b.

Ifwe consider general perturbations 6A and fib, then conditions (1.1) or 1.2) do not
specify them fully, and we must impose additional conditions (such as minimizing some
measure of the size of 6A and 6b). If however the matrix A has some special form, and
we are interested in maintaining this form in the allowable perturbations, then the solution
of (1.1) or (1.2) becomes more complicated. In this paper, we consider the case of A
being of Toeplitz form. This issue of restricted perturbations for structured systems has
also been considered by Higham and Higham [7] who provide a framework for dealing
with general structured perturbations and define the notion ofstructured condition num-
bers. They use Toeplitz matrices as one of th.eir examples, and the work presented here
should be considered as an extension of their work.

Note that the scaling of the problem is important; we assume throughout that
[[A[[

_
and [[b[[ - 1, so that ill conditioning of A is reflected in [[x][ being (possibly)

large, but not small. We assume Hrlder vector norms and corresponding subordinate
matrix norms. Then, in fact,

]lbll /[Ibll\
[IAll

where K(A).= IlAl[ IIA- is the (standard) condition number ofA in any norm. We also
assume throughout that A is nonsingular.
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To get some sense of the size of the residual r(), it is useful to consider what
happens in the best possible case, when 2, the correctly rounded solution. Since

where nil < n machine round-off level, we can write

2 (I + D,)x,

and then

(1.3)

giving

r r()= b- A2 -AD,x,

I[xll

In particular, Ilrll/llxll - n independent of the solution x. We also remark that (1.3)
implies

(1.4) rl n IAI Ixl,

where the inequality is meant to be taken componentwise.
Thus, the most we can expect for a computed solution is that IIr()ll/llll - n.

Such behaviour occurs, for example, with solutions computed by Gaussian elimination
with partial pivoting (generally) or with Cholesky factorization on positive definite sym-
metric systems. As a result, it is not generally appropriate to solve (1.1) or 1.2) by taking
6A O. This gives 6b -r, which for 11211 large means a large backward error [lib[I

r[[
_

rt [1[I even for the correctly rounded solution. Instead, one attempts to find solutions
6A, 6b with

max (lirA[I, [lfbll)-< c()
for c some constant close to 1.

Allowing general perturbations 6A, 6b, one can’indeed find solutions satisfying 1.5),
as has been known for some time, and we review this material in 2. See, also, the
excellent survey paper by Higham [6]. Then in 3 we consider symmetric Toeplitz per-
turbations of symmetric Toeplitz matrices. We are motivated to do this from interest in
the stability properties of special methods available for solving Toeplitz systems, such as
the Levinson method (see Golub and Van Loan [5, p. 183], for example). One might
hope that the computed solution obtained from such a method is the exact solution of
a nearby Toeplitz system. Indeed, Bunch [3] refers to this behaviour as "strong stability."
However, we find that under these restrictions, the perturbations 6A and 6b satisfy not
(1.5), but

(1.6) max ([1rAIl, IlZibll) -< c[Irll.

This means that for ill-conditioned Toeplitz systems, computed solutions (even
correctly rounded solutions) satisfy Toeplitz systems that are as much as K(A)rt away
from the original system. We illustrate this behaviour with some numerical examples in
4. Finally in 5, we discuss the same problem for general Toeplitz systems, where the
conclusion is similar.
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2. General backward error. Consider the basic system (1.2). The equations decouple
and we consider the first one in detail:

((6A) (rA)n) r + (6b).

If r 0, we can take all unknowns 0. So assume that r # 0 and let

(OA)i reizi, (rb) rfy,

where { ei }]’ and fare fixed scaling factors and { zi } and y are to be determined. Then
the defining equation can be written

(2.1) (el1 enYn f)

\Y

oruVv 1.
Normally, besides satisfying (2.1), we want to make the perturbations as small as

possible in some sense, which amounts to minimizing vii for some norm. In particular,
if we use a Hrlder norm [Ivl]q, with + b 1,

luTvl <-Ilullllvllo
for any u and v satisfying (2.1), and

min [[V[lq
ull"

We could use p q 2, but it is more natural to use p 1, q o, giving

(2.2) min v
Ilull, f+ eilXil

which is attained by using v with vi sgn (ui)/I]u]] 1.

This max norm solution translates into

+rf(A)li 61
of-+- ., ei l.fi f+ ei l.fi

which replicates the Oettli-Prager result [8] for general scaling factors E and f One
particular case deserves special mention: ei I[A II, f- Ilbll, Then

+-rllAII +-rllbl[
(6b)(6A)li- ][bl] + IIAI[ 1[[1 IIbll + Ilall

and similarly for the other rows. Note that in this case, we do obtain

max ([,,A[,, ,,,b[,)< c()
as predicted in 1, where c involves IIA[I and I[bll, and is close to 1.

3. The symmetric Toeplitz case. Now assume A is a symmetric Toeplitz matrix,
and that we want 6A to be symmetric and Toeplitz as well. That is,

0 1 n-

6A 1 0 n-2

n- 0
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In the defining equation (1.2), the key observation (noted also in [7]) is to rewrite
)r and (for n odd):(iA)2 as Xe, where e is the vector (eo, en-1

Xl X2 X3 Xn- Xn
(2 + 3) 2 2. 0

X-’3 (22 -- 24) (21 -" 25)

2(.+1)/2 (2+2.) 0 0

2._ (2_ + 2) 2._ Y 0
Xn Xn Xn 2 X2 Xl

(3.1) X=

For n even, the middle row and column are not present. Note that each 2i appears once
in each row, and note that Ilxll 11 . Also, note that X can be singular: if 2i 0
for example, then Xe 0 for e (1, 1, 1)r. On the other hand, 2 (1, 0 ,0)r

gives X =/, the identity matrix.
Using this matrix, the defining equation (1.2) reads

where 6 6b, which is n equations in the 2n unknowns e and 6. This can also be ex-
pressed as

Again, we would like the perturbation to be as small as possible, and thus we are led to
the constrained optimization problem

minllvl[ withGv=r.

Note that we can include componentwise scaling factors in e, 6 by using diagonal scaling
factors De, Df giving G (SDe- Df).

Again, the most natural norm is Ilvll giving a constrained Chebyshev optimization
problem, which can be rewritten using 6 Xe r as the overdetermined discrete Che-
byshev problem

man (/X)e-()
This problem is difficult to solve explicitly, although algorithms have been developed to
solve individual cases (see [1] or [2]). The basic question here is whether the solution
Ilvll - [Irll/ll2[I.

The following example shows that this is not always true, and the consequence is
that even for a rounded solution 2, the closest perturbed symmetric Toeplitz system with
2 as exact solution can be nll21l away.

Example.

A 1-
1-- ce

1-
1-#

with u and a small and positive. (In fact, # is not crucial in what follows.) One eigenvalue
Xl a with corresponding eigenvector (1, O, 1)r.
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Hence when b (1, O, 1)r, the solution x 1 (1 O, 1)r. Now take the rounded
solution 2 1 (1 + rtl, O, -(1 + r/a))r. A short calculation gives, using rt rt3,

and

r(2) (1, 1, 1) 7, -I- 0(/)

a --(1 +n3) 0 +r/l J
Thus the equations Gv r are (to first order in

(1 + nl)1)l--(1 " n3)1)3- O1)4-- --,
v2- v -,

--(1 + /’]3)1)1 + (1 + nl)1)3 a1)6

It is easy to see that the minimax solution of these equations has all vl I I/( / ).
In fact,

U I)2 U --/(O/ + ), I)4 I)5 1)6 /(O/ + ).

Hence, for this example, we have explicitly

I1- xll r()ll
IIx[I ’ Ilxll

a bll - -,

Also, one can find a much closer general perturbation A with (A + 6A) b; in fact

6A=
z

0 -1 +0(/2).
0 -1

Later on, we provide numerical evidence of the same behaviour, using rounded
solutions, and solutions computed by the Cholesky and Levinson algorithms. All exhibit
the same behavior as above.

Now return to the basic problem (3.2). Although an explicit form ofthe solution in
the max norm is not available, we can find an approximate solution by solving the
corresponding constrained least squares problem

min [Ivl[2 with Gv r.

IfM2 minv vii2 andM mino vii then

f Mz < Mo <- M,

and hence the solutions differ in value by at most a factor fn.
Moreover, the constrained least squares solution has a simple form

v= Grz, Gv= r,
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where z is the vector of Lagrange multipliers (see, for example, [4, p. 156]). That is,

(3.3, (l+XXr,z=r, () (X_rzZ)
Alternatively, one can solve the overdetermined problem

min

with solution (I + XrX)e Xrr and X, r.
Note that from this formulation, it easily follows that if r() is such that rrX 0,

then 0 and gi -r, which gives a solution (as we mentioned earlier) that is unacceptably
large when [[[I is large. However, this is by no means the only troublesome case, as we
see below.

Ofcourse, the more acceptable computational method for finding v, at least in cases
where X is ill conditioned, is to use the QR decomposition (Golub and Van Loan [5,
p. 567]):

(i)

(ii)

(iii)

set Gr= (Q[Q:
0

/Rrw(’)= r}find w Qrv via
[ W(2)_. 0

find v Qw Qw).

An even more explicit formulation of the minimum least squares solution can be
derived from (3.3) using the singular value decomposition (SVD).

THEOREM 1. Let X UDVr be the SVD of the matrix X in (3.1), and let r
{3iuti) be the expansion ofr r() in the singular vectors { u(i)}. Then the solution z to

(3.3) has the expansion

 u(i

and the minimal least squares solution v has

Ilvll== z ’r Z

Proof. The proof follows by substitution.
Theorem above gives a reformulation of the minimum restricted perturbation in

the 2 sense, which makes . exact. This basic result can be applied in various ways as
we now explore.

THEOREM 2. Suppose that the computed solution is such that the SVD coefficients
{i} ofr(.ff) satisfy

Its, -< c /1 +

for c not much bigger than 1. Then [Iv[la cVn n, and hence the minimum perturbation
is close to the round-offlevel.

Proof Again, the proof follows by direct substitution.
To clarify the situation, it helps to separate the cases where the solution x does and

does not reflect the ill condition ofA. When x does not, that is, when Ilxl] - 1, Theorem
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2 applies as long as the computed solution .f produces r(Y)II close to the round-off level
r/. Since IIxIl I111 ,

_
a > a2 > > an, and the requirements of Theorem 2 hold

since the {/3i } are all at the round-offlevel. Note that the near singularity ofXis immaterial
in this case.

Now consider large Ilxll, and recall that Ilxll can be as large as K(A). Assume that Y
produces a residual with IIr()ll - nllll, as occurs with , the correctly rounded
solution. Then some {3i } are also this large, and some {o- } are as large as I111. If the
large {/3i } occur only for large { O" }, then the conditions required for Theorem 2 still
hold. However, experimental evidence with ill-conditioned symmetric positive definite
Toeplitz systems indicates that typically a///i /I111, whether is the correctly rounded
solution, the Cholesky solution, or the solution computed using the Levinson algorithm.
We present some examples in the next section. We can quantify the situation as follows:
Assume that

/i cllll with ci < ,
/1 + dillll for/= 1,..., n.

Note that
THEOREM 3. With the above definitions of {C } and { di },

min v112 d/2}

Thus

(3.4) wlc, < min Ilvl12 < r/he 1/1+ a2n

Proof Again, the proof follows by direct substitution.
Thus, the actual minimum symmetric Toeplitz perturbation is very dependent on

the particular problem and can vary in size from r/to K(A)r/. To realize a large perturbation,
the data vector b must give rise to a solution x that reflects the ill condition of A and
that also results in an appreciable spread in the singular values of the matrix X.

4. Some numerical results. The first example is the 3 3 matrix from 3:

A 1-# 1-
-oz -#

We took 10-, . A has then two eigenvalues near 10-. For various data
vectors b, we computed solutions to Ax b as follows:

(i) 2 Cholesky solution,
(ii) 2 Levinson solution,
(iii) 2 Correctly rounded solution, obtained from 2 using double precision iterative

refinement.
Working precision was long precision on an IBM mainframe, with special routines

for "double long" calculations, so that - 10-16. For each approximate solution, we
computed the residual r, the minimal least squares solution v () from (3.3), the singular
values ai(X), and the coefficients 13i(r).

In Case below, b reflects the ill condition ofA and Ilxll is large. For each approx-
imate solution, the closest symmetric Toeplitz system with that exact solution is roughly



BACKWARD ERROR ESTIMATES FOR TOEPLITZ SYSTEMS 415

n [Ixll away. In Case 2, however, Ilx[I is near and, even though X is singular, the smallest
perturbation is now close to the round-off level r/.

Case 1.

b (-0.72, 0.55, 0.22)r,
o-i(X): 1.0 x 107,

Ilxll 4.8 106,

2.9 106 0.32.

1.0 10-l

3.2 10-1

1.8 10-l

Case 2.

4.7 10-11

3.9 10-1

8.7 10-1

-25 10-1, -.14 10-9, .50 10-1.
15 10-9, -.33 10-9, -.41 10-1.

-.86 10-I0, .28 10-9, -92 10-1.

b (-0.58,-.58, 0.58)11x11 o.19,

oi(S): .60, .21, .84 10-9.

Ilrll IlVminll2 /3. 1.0 10-17 1.4 10-17 -.16 10-16 .47 10-18, .93 10-18.
6’x 2.4 10-17 3.2 10-17 -.37 10-1 0-17, 17

61
.37 .31 10-

2.1 10-17 3.1 10-17 36 10-1 -.40 X 10-17, --.88 10-:6.

As a second example, consider the prolate matrix (see Slepian [9]) of order 11 with

a "Ylj-il,

sin (rk/2)
k rk 3’o .

This matrix is positive definite symmetric and Toeplitz and its smallest eigenvalue
,1 is near 10-7. Generally, the behaviour with various data vectors b is similar to that of
the first example, and we mention only one case where b is the eigenvector corresponding
to ,1. For this case (and for b other eigenvectors as well), the matrix X is near singular,
giving more than enough spread in the singular values to result in a minimum perturbation
of nearly K(A)r/. The/3-coefficients are all near 10-1.

b first eigenvector, Ilxll 5.4 106,

r;(X): 3.3 107, 7.3 10-s.

3.1 10-1 2.5 10-1

1.5 10-1 1.1 10-1

3.7 10-1 2.1 10-11

5. The general Toeplitz case. IfA is a general (unsymmetric) Toeplitz matrix, and
we allow similar perturbations 6A, then

80 81 8n-
8_ 80 8n 2

8-n+ 8-1 80
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giving (2n 1) parameters {ei }, plus n more in 6b. The defining equation (1.2) can again
be rewritten

Xe-tS=r or (X-I)()=r or Gv=r,

as in (3.2), but now we have n equations in (3n 1) unknowns, and X is the n
(2n 1) matrix

(5.1)

(We have reversed the order of the equations to make X look triangular.)
The situation now is somewhat different from the symmetric case discussed in 3,

although the theorems still apply. There are more parameters and thus fewer restrictions
on the perturbations. This is manifested in X (or really the rows of X) being better
conditioned than the X of 3, making it harder to effect a large minimum perturbation.

It is instructive to compare results with those of 3. Take again the prolate matrix
with n 11; for the correctly rounded solution , the results are as follows:

b first eigenvector, I111 5.4 106,

ai(X): 2.4 107, 3.3 103.

3.7 10- 1.0 10-4

(In all the examples quoted here, the {/3i } were all in magnitude close to rt[[g[[.) Note
that the spread in X’s singular values is much less here with a corresponding decrease in
the size of the perturbation.

One can increase the perturbation by taking a larger n. For n 15, the results are

b first eigenvector, [Igl[ 4.8 109,

ai(X): 2.6 10 1.0 105.

2.0 10-7 3.3 10-2

In both examples, note that the minimum 2 perturbation lies between the round-
off level and the size of the residual in accordance with (3.4). In particular, to effect a
minimum perturbation as large as K(A)r/, the vector 7 must yield a matrix X with K(X)
approaching r(A).

Acknowledgment. The author would like to thank the (anonymous) referees for
suggestions that significantly improved the paper.
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Abstract. Fast algorithms for the computation of the Moore-Penrose inverse A of a square Toeplitz
matrix A are constructed based on Bezoutian representations of A+. Two approaches are presented. The first
approach is a recursion of the nested submatrices, the second approach uses generalized inverses ofA that are
Bezoutians and a global formula.
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1. Introduction. In this paper we consider square Toeplitz matrices

(1.1) A

a0 a-1 a_n+
al ao a-n+2

an- an-2 ao

with complex entries ai E C. The main aim is the construction of fast algorithms for the
computation of the Moore-Penrose inverse (MPI) of A. Algorithms presented in this
paper are based on a matrix representation for the MPI ofA that was established for the
Hankel analogues in the authors’ paper [8]. In this sense, this paper is a continuation of
[8]; however, we tried to make the presentations fairly self-contained. Recall that the
MPI of a matrix C is a matrix C/ defined by the following four relations:

(1.2a) CC+C C,

(1.2b) C+CC+ C+,
(1.2c) (CC+)* CC+,
(1.2d) (C+C)* C+C.

Here the asterisk denotes the conjugate complex transpose. The MPI exists always
and is unique.

When speaking about fast algorithms, we have in mind algorithms that have a
computational complexity of less than O(n3). Actually, the algorithms presented in this
paper have complexity O(n2) or less.

Before explaining our approach for the Moore-Penrose (MP) inversion of Toeplitz
matrices, let us remember some facts concerning Toeplitz matrix inversion. The history
starts with the famous paper of Levinson 17], in which, in principle, an algorithm for
the fast solution of linear systems with a positive definite Toeplitz coefficient matrix is
presented. The algorithm was further developed by other authors. A fast algorithm for
the inverse matrix was first presented by Trench [21]. Other relevant sources are, for
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instance, [5] and [23]. In [6], formulas for the inverse ofa Toeplitz matrix A are established,
which have the form

(1.3) A-1 LI U1 L2U2,

where Li, L2 are certain lower and U1, U2 are upper triangular Toeplitz matrices. The
entries of these matrices are determined by the first and last columns of A-1. The im-
portance of the formula consists of the fact that it allows the solution of a system
Ax b with complexity O(n log n), since multiplication of a vector by a triangular
Toeplitz matrix requires O(n log n) flops if the fast Fourier transform (FFT) is utilized.

To be more precise, let us note that (1.3) with L1, L2, UI, U2 being determined by
the first and last columns ofA-1 actually holds only under some additional conditions.
Formulas of the form (1.3) without additional conditions can be established with the
help of the concept of a fundamental system ofA (see [9], 10], 11 ]1).

IfA is nonsingular then a fundamental system is, by definition, a basis of the (two-
dimensional) kernel of the (n 1) (n + 1) matrix (ai_j)ni- ,j_-n 0. The definition of the
fundamental system concept in the singular case is given in {}7.

From our viewpoint today, the construction offast inversion algorithms for Toeplitz
matrices, and other structured matrices as well, can be divided into two stages: (i) rep-
resentation of A-1 with the help of a certain "fundamental system" (a system of O(n)
parameters), and (ii) evaluation of the fundamental system.

To construct fast algorithms for MP inversion, we also followed the two-stage strategy
as for the inversion in the usual sense. In our paper [8], we discussed the first stage for
Hankel matrices, even for the general rectangular case. The main result of this paper is
that the MPI of a Hankel matrix is a 4-Bezoutian. For Toeplitz matrices, this means that
there is a formula of the form (1.3) for A/ with the difference that four instead of two
matrix products are involved. The precise formulation of the corresponding result and
the idea of the proof are presented in 2.

In our situation, a fundamental system is by definition a basis ofa four-dimensional
space, which is the kernel of a certain matrix related to A. Of course, there are many
fundamental systems, but among them there are two "canonical" ones. These are fun-
damental systems from which we get the MPI ofA immediately. However, it is sometimes
convenient to use not the pure canonical systems, but a mixture of them.

The properties of the canonical systems and some of the relations between them
are discussed in 3.

The main aim of this paper is to treat the second stage of MP inversion, i.e., the
evaluation of a fundamental system. In view of the well-known algorithms for Toeplitz
matrix inversion, the first idea is to consider two subsequent nested submatrices of the
family A(k) [ai_j]ko (k 1, n). It developed that the recursion formulas for the
canonical fundamental systems are rather complicated, but quite a few other fundamental
systems exist with simpler recursion formulas. One version is presented in {}4.

The recursion formulas lead to an O(n2) complexity algorithm for the computation
of the MPI of the Toeplitz matrix A, as shown in 5. This algorithm is of the Levinson
type, which means that it involves inner product calculations; hence it is not very con-
venient for parallel computing. In {}6 for one case we show that the algorithm has also a
Schur-type version that avoids inner product calculations and leads to an O(n) complexity
algorithm for an n-processor computer.

In 11 instead of "fundamental system" the name "characteristic polynomials" is used.
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In 7 another approach for the evaluation of a fundamental system is presented.
This approach is based on the fact that there are generalized inverses ofA, i.e., matrices
B satisfying condition (1.2a), which have the form (1.3) and can be computed with usual
Toeplitz matrix inversion algorithms. If B is a generalized inverse ofA, then

(1.4) A+ (I- P)BQ,

where Q is the orthogonal projection onto Im A and P is the orthogonal projection onto
ker A. The projections P and Q can also be determined by usual Toeplitz algorithms,
and formula (1.4) can be transformed into a form containing only triangular Toeplitz
matrices. This allows us to compute the vectors occurring in the matrix representation
ofA/ with O(n log2 n) complexity at a sequential or O(n) complexity at an n-processor
parallel computer.

We point out that the methods presented in this paper are only two ofmany thinkable
possibilities for constructing fast algorithms for the MP inversion of Toeplitz matrices.
Various other ideas evolve from the literature on least squares problems in adaptive
filtering and related topics (see, e.g., [18]-[20] and references therein). One suggestion is
to look for recursion formulas for the MPI of the rectangular Toeplitz matrices OkA that
are introduced in 7. The recursion will start then with the MP inversion of a column
vector, which is a simple task. Furthermore, it is interesting to study the behavior of the
MPI after one row and one column extension, as it appears in adaptive filtering. Moreover,
a QR decomposition approach seems to be convenient for MP inversion. We hope to
connect these ideas with our approach and to continue the discussion on MP inversion
of structured matrices in a subsequent paper.

Finally, let us define some notations. The elements ofC are identified with column
vectors and the components are numbered from 0 to n 1. If x Cn, then we denote
by (x)k its (k + 1)th coefficient. For x (Xk)-, we denote by x(k) the polynomial
x(,) x0 + xX + + x_k-.

After this paper had been completed, Zhong [22] published an article containing
formulas for the MPI of square Toeplitz matrices that are more involved (but are related
to) than those we used in 2 as the starting point of our considerations.

2. Matrix representation of the MPI. For. the construction ofmatrix representations
of MPI of Toeplitz matrices, we employ the familiar extension approach described in
Lemma 2.1 (cf. [3]).

LEMMA 2.1. Let C be an arbitrary matrix, and let U and Vbe matrices the columns
ofwhichform a basis ofthe kernel ofC, C*, respectively. Then the matrix

(2.1) = U*

is nonsingular and the inverse has theform

c (u*)+](2.2) - V+ 0

Now we consider the special case of a square Toeplitz matrix C A. To get infor-
mation about the structure ofA/, we utilize the following kernel structure property.
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LEMMA 2.2. Let A be a singular n n Toeplitz matrix, and let K dim ker A
(=n rank A). Then there exists a vector u (ui), r n , such that the columns of
the matrix

(2.3) M

u0
Uo

no

form a basis of ker A.
Lemma 2.2 was first stated and proved in a slightly different form in [7]. Concerning

the case of rectangular Toeplitz matrices, we refer to [11] (see, also, [8]).
Let us note that the vector u is uniquely determined by A, up to a constant factor,

and can be computed with the help of usual Toeplitz matrix inversion algorithms. The
details are discussed in the Appendix.

Let J, denote the matrix of the reflection operator,

0 1 t
Then we have

J,,AJ,, A;
hence

(2.4) A* J,AJn,

where the bar denotes the matrix with conjugate complex entries. From relation (2.4)
we conclude that the columns of the matrix

(2.5) N UO ".

UO Ur

Uo

form a basis of ker A*.
To compute the MPI of Toeplitz matrix , we must form the matrix

and evaluate its inverse. Matrix s is a matrix consisting ofToeplitz blocks. Such a matrix
is called a Toeplitz mosaic matrix. The theory ofToeplitz mosaic matrices is quite similar
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tO the theory of block Toeplitz matrices and generalizes this theory, since any block
Toeplitz matrix can be transformed into a Toeplitz mosaic matrix by permuting rows
and columns. So it is shown (see [12]) that the inverse of a Toeplitz mosaic matrix is of
a certain Bezoutian type, where the corresponding Bezoutian concept generalizes a concept
of Anderson-Jury (see [2], 15], 16]).

If we apply the general result on the inverse of Toeplitz mosaic matrices in our
special situation and consider the left upper corner of the inverse matrix; then we will
obtain a representation ofA/ as a 4-Bezoutian, where the r-Bezoutian concept is under-
stood in the sense of Lerer-Tismenetsky (see [15], [16]). We do not present the exact
definition here, because in this paper we are dealing only with square Toeplitz matrices,
and in this case all can be reduced to the classical Bezoutian concept. Concerning the
rectangular case we refer to [8].

It is convenient to introduce classical Bezoutians with the help of their generating
functions.

The generating function of a matrix C [cij]m6 1,"-61 is defined as the polynomial
in two variables

m-1 n-1

C(k, U) X Z Cijki#j"
i=0 j=0

DEFINITION 2.1. An n n matrix B is said to be a (Toeplitz) Bezoutian ifand only
ifthere are polynomials a()), b(X) such that

(2.7) B(),,/)
a(,)b#(u)- b(X)a#(u)

XI
where

a#(#) #,a(u-), b%)

The matrix B will be called the Bezoutian ofa and b and denoted by Bez (a, b).
Bezoutians permit matrix representations that are very important from a compu-

tational viewpoint. We note one of these representations as follows:

a0

an-

ao 0

al ao

bn- bl
bn "..
0 o bn-1

b,,

bl bo 0 an "..
"’. "’. 0 ". an-1

bn- bl bo an

(2.8)

Bez (a, b)

There are many other representations of Bez (a, b). Among them are formulas
involving circulant matrices that are, as shown in [1 ], more effective in numerical com-
putation.

Furthermore, there are also recursion formulas ofTrench type [21 ], e.g., let co denote
the entries of the matrix Bez (a, b), then

Cio aibn- bian,

(2.9) COj aobn-j- boan-j,

Cij Ci- l,j-1 -- aibn-j bian-j, (i,j n-l).
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As a consequence ofthe representation ofthe inverse ofthe Toeplitz mosaic matrix, we get the following theorem.
THEOREM 2.1. Let A be a singular n n Toeplitz matrix and let l be defined by

(2.6). Furthermore, let the vectors x+, y+, z+, w+ Cn, +, rt+, +, w+ C be defined via
equations

(2.10)

where

eo=[ 0 ..-0],

L/J

L6o+I eo LK+J

g+=[a_, al-, a-l] T, h+=[0 0 fir ffl] T,
0 is a zero vector ofsuitable length, and a_, is an arbitraryfixed number.

Then

A+ Bez (37+, x+) + Bez (z+, w+),(2.1 l)

where

p+(x) y+(x)-

The proof of the theorem is completely analogous to the corresponding Hankel
matrix theorem that was stated and proved for the more general rectangular case in [8].
Therefore, we do not present it here.

The recursion formula (2.9) allows us to compute A/ with an amount of O(n2)
flops, provided that the vectors x/, y/, z+, w/ are known. Moreover, with the help of
formula (2.8), any pseudo solution A/y of a system Ax y can be computed with com-
plexity O(n log n) if the FFT is utilized.

Vectors g/ and h/ appear as prolongation ofthe blocks in the matrix to the fight.
If we take the analogous prolongation to the left, we get the formula described in the
following theorem.

THEOREM 2.2. Let A be a singular n n Toeplitz matrix and let be defined by
(2.6). Furthermore, let vectors x_, y_, z_, w_ C"; _, _, _, o_ C be defined via
equations

(2.12) [e0- ] [-] [-],
.Z_

where e,_ l(e-l) is the last unit vector in C" (C), g_ [al a2 a,,] T, h_

[fir- U-0 0 0] T, 0 is a zero vector ofsuitable length, and an is an arbitrary
fixed number.

Then

(2.13) A+ Bez 07_, Y’_) + Bez (_, v_),

where _(X)= Xx_(X), ;_(X)=-1 + Xy_(X), v_(X)= Xw_(X), and _(X)= Xz_(X).

3. Fundamental systems. In the previous section, we presented two formulas for
the MPI of a Toeplitz matrix A. In this section we first show that there is actually a
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variety of such formulas. This variety is connected with a four-dimensional space, and
any choice of a basis corresponds with a representation ofA/. Later, it will be clear that
a convenient choice of the basis has great influence on the complexity of the formulas
and, therefore, of the algorithm.

Let us start with some notation. If C [ci P- q-
-j] i=0,j=0 is a p q Toeplitz matrix,

then OC will denote the (p 1) (q + 1) Toeplitz matrix

oc [c,_] ,_-q0.
For given by (2.6), we define

(3.1) 0" [OAOM* 7]"
Since is nonsingular, 01 has a kernel of dimension four.

DEFINITION 3.1. Any basis of ker 0az is called afundamental system of
We can observe immediately that the following two systems are fundamental:

(3.2) X+= Y+= W+= Z+=
L%+j L;+j

and

(3.3)

0 -1 0 0

X_= Y_= W_= Z_=

The quantities appearing here are defined by (2.10) and (2.12).
Fundamental systems (3.2) and (3.3) will be referred to as canonical; system (3.2)

will be called the (+)-system and (3.3) will be called the (-)-system. Let us point out that
the canonical fundamental systems depend on fixed numbers an and

Any fundamental system can be transformed into canonical systems. To show how
to do this, we introduce matrices _+:

ao a_l a-n
0 0 -1

+ o 0 0
0 0 0

rO 0
0 0
0 0
0 0 --1

an an- ao
--1 0 0
0 0 fro r
0 0 0

0 0 o
0 0
0 0

-1 0 0

It can be easily seen that

(3.4) ,I,+[x+ Y+ w+z+] ,_[x_ Y_ w_z_] 14.

From this relation, we get the following proposition.
PROPOSITION 3.1. Let X, X2, X3, X4 be a fundamental system of1 and let X be

the matrix with the columns Xi (i 4). Then A := +_X is nonsingular and the
columns ofXA_ form the (++_)-canonicalfundamental system of.
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Our next aim is to get more information about the vectors of the canonical fun-
damental systems. For this we need the MPI of the matrices M* and N occurring in the
definition of. Since M and N have full rank, we have

(3.5) (M*)+ M(M*M)-1, N+ (N*N)-IN*.

We introduce the matrix
(3.6) T M*M.

Obviously, T is a positive definite K K Toeplitz matrix. Furthermore, we have

(3.7) N JnmJK.
From (3.7), we obtain

N*N JKM*MJ JTJ T.

Hence the following lemma is true.
LEMMA 3.1. It holds that

(3.8) (M*)+ MT-, N+ T-N*.

Now we can start our investigation of the vectors of the canonical fundamental
systems. We use all notations from above. Furthermore, we define

(3.9) c T-eo.
In view of (2.4), we have

(3.10) T-e_ JK=: .
First we consider vectors W+_ that have the simplest structure.
PROPOSITION 3.2. It holds that
(a) a+ o_ O,
(b) w+=Mc, w_=M.
The assertion follows immediately from Lemma 2.1 and (3.8).
In the sequel, the numbers tr+ defined by

r+ [a_ a_,]u+,
_

[a, a]u_,(3.11)

where

b/+ [0 0 U0 b/rlT b/_ [U0 b/r 0 01r

will play an important role. They appear in the following lemma, which is easily verified.
LEMMA 3.2. Let u’+ Cn be defined by

b/- [0 0 b/0 Ur-l] T, b/t-- [Ul Ur 0 0] T.

Then

(3.12) Au+ a+eo- Hrg+ and Au’_ ff-en-1-- uog-.

From the relation (3.12), we obtain the following fact that will be important in the
sequel.

COROLLARY 3.1. At least one ofthe numbers, r+ and Ur, and one ofthe numbers,
r_ and Uo, are differentfrom zero.

In fact, + Ur 0 would imply that u+ e ker A i.e., u’+ e Im M. But u is linearly
independent of the columns of M. An analogous argument provides r_ # 0 or u0 4: 0.
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Let Mk denote the matrix ofthe form (2.3) with k columns. Furthermore, we define

Tk MMk [ti-j]ko and Ck T-leo, ?k T- ek- 1.

In particular, M M, T T, c c. Let us note that T is a principal submatfix of Tk
ifj < k. We denote by d and d the solutions of equations

(3.13) Td (t-K+k)2), Td (t, +k)k210.

In view of t_k t-, we have d JKd. Furthermore, d is connected with c / via

d
.+1 d C+l,(3.14)

-1

where

(3.15) e+ (c+ 1)o (c+ ).

In the next two propositions we describe the structure of vectors X/, X_, Y/, Y_ of
the canonical fundamental systems.

PROPOSITION 3.3. It holds that
(a) /+ UrC, --- UO.
(b) IfUr O, then a+ 4:0 and

(3.16a) MK+
O’+

(c) Ifuo O, then r_ O, and

(3.16b)
a_

Proof Two relations (a) follow from Lemma 2.1 and Lemma 3.1.
Now let Ur 0. According to Lemma 3.2, we have Au’+ a+eo, where a+ 4:0 holds

due to Corollary 3.1. Since x/ A/e0, we conclude that

(3.17) x+ u’+ Ma,
o’+

where a 6 C must be chosen in such a way that x+ is 0rthogonal to ker A, which means
that M’x/ 0. Hence Ta M*Ma M*u’+. Since M*u+ t_ / k) we conclude

d and x/ - (Md- u’+). This is equivalent to (3.16a), and so (b) isthat a ,
proved.

Assertion (c) is proved analogously.
PROPOSITION 3.4. It holds that
(a) n+ +c, r/_ r_.
(b) Ifa+ O, then ur 4:0 and

(3.18) [-"Y] --/’/rl M+ 1[--
(c) Ifa_ O, then Uo :/: O, and

(3.19) M+
UO
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and

The proof is completely analogous to the one of Proposition 3.3.
Finally we state a proposition concerning the vectors Z_+.
PROPOSITION 3.5. It holds that + d,

_
d.

Proof. By Lemmas 2.1 and 3.1 we have

+ N/h+ T-IN*h+ T-(t_K+k)-=lo d- N+h T-N*h T-(t +k)k--0 d.
Now we are able to indicate a collection of fundamental systems different from the

canonical ones.
THEOREM 3.1. Thefollowing systems arefundamental.

System (A). Case (I) UoUr 4: O, X+, X_, W+, W_.
Case (II)Uotr+ 4: O, Y+, X_, W+, W_.
Case (III) Ur 0"_ =/= O, X+, Y_, W+, W_.
Case (IV) r+_ 4: 0, Y+, Y_, W+, W_.

System (B). W+, W_, Z+, Z_.
System (C). X+, X_, Y+, Y_.

Proof It suffices to show the linear independence of the system. The linear inde-
pendence of Systems (A) and (B) follows from Propositions 3.2-3.5 and the fact that the
vectors

are linearly independent since (c)0 g= 0 and the vectors

d

are linearly independent in view of (3.14).
It remains to verify that System (C) is linearly independent. Suppose that for ,

+X+ + _X_ + B+Y+ + B_Y_ O.

By Propositions 3.3 and 3.4, we obtain for the second pas of the considered vectors

+__ =0.a+u + -uo + ++ 0

Since the vectors

are linearly independent, we conclude that

a+u, + +a+ a_Uo +

__
O.

Hence the second parts of the vectors

V+:=a+X++B+Y+ and V_’=a_X_+
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vanish and their first parts depend linearly. Repeating the arguments of the proof of
Proposition 3.3, we obtain that the first parts of V_+ are multiples of the vectors

M,+_ and M,+

respectively. But the latter two vectors are linearly independent. Consequently, V/
V_ 0. In view of the linear independence ofX/, Y/ and X_, Y_, we may conclude that
a_+ =/3+_ 0, which proves the linear independence of the system. Vl

In view of Corollary 3.1, all possible situations are covered by Cases (I)-(IV) of
System (A) of Theorem 3.1.

In the next two sections, we establish a recursive algorithm that is based on System
(A) of Theorem 3.1. In this connection, we must show how to jump from one of the
cases (I)-(IV) to another one. It follows from the algebraic theory of Toeplitz matrices
that only the following changes are possible:

(3.20) (I) -- (II-IV), (II) ---) (IV), (III) -)- (IV).

For the jumps indicated in (3.20) we need the following relation.
PROPOSITION 3.6. It holds that
(a) if Ur # O, then

(3.21)

where

(3.22a)

(3.22b)

(b) Ifuo # O, then

1r+ L_+ x+ -= w_ z w+),
Ur 8,Ur

ll]C.

(3.23) y_ a__ X_ (W+ aW_),
UO eUo

where e and a are defined as above.
Proof We prove only (a). The proof of (.b) is analogous.
Suppose that Ur 4: O. In view of Corollary 3.1, we may assume that u0 # 0 or a_ # 0.
Since Y+ e ker 0, Y+ is by Theorem 3.1 a linear combination of the vectors X+,

X_, W+, W_ if u0 4:0 and a linear combination ofX+, Y_, W+, W_ if a_ 4: 0. We recall
that according to Propositions 3.2, 3.3, and 3.4, the second parts ofthe vectors IF_+ vanish
and the second parts of X+, X_, Y+, Y_ are given by

[u c] [ [U0 o’_

respectively. Since the last component of d is nonzero, we conclude that Y+ is already a
linear combination ofX+, IF+, and IF_ in both cases u0 # 0 and a_ # 0. From this and
(3..22), we conclude that

(3.24) Y+ a---L+ X+ + I+W+ + g_W_
Ur

for certain g+_ C.
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To evaluate #+_, we apply the functionals

f= [0 0-1[0 0], f=[fr0 U-r 0 010 0],

which are the second and third rows of the matrix +, to (3.24). As the result, we get

=-#_(w_)n_ and 0=#++&#_,

where

=[ff u- 0 0]w_.

This can be transformed into

(3.25) a_ and /+
(W-)n- (W-)n-

From Proposition 3.2, we get (w_),_ Ur(d),-1 UCo and

=[ff U-r 0 0]M=[t_

Inserting this and (3.25) into (3.24), we obtain (3.21), (3.22).
Remark. We have proved that e and a are also given by

e ()_ ,
(3.26) =[ff U-r 0

a=[0 0 u-0
COROLLARY 3.2. It holds that
(a) fur 4 O, then

(b) Ifuo 4: 0, then

(3.27) [;+]- (i 0

(3.28)

we obtain the following relations.
Remark 3.1. IfA is Hermitian, then x_ .f+, y_ 3+, w_ v+, z_ +. Furthermore,

a_ +. The latter relation implies the following remark.
Remark 3.2. IfA is Hermitian, then only Cases (I) and (IV) ofTheorem 3.1 appear.
For semidefinite matrices still more is true.
Remark 3.3. IfA is positive or negative semidefinite, then only Case (I) ofTheorem

3.1 appears.

J.J L0

where and e are given by (3.22) or (3.26).
We discuss some specifications for the case of a Hermitian or positive semidefinite

Toeplitz matrix A.
Suppose that A* A, i.e., a-i 6 (i 0 n 1). In this case the vector

u (u;) appearing in Lemma 2.2 can be chosen in such a way that 7 u, i.e., ui
fir-(i 0,..., r). Hence matrix is Hermitian.

In view of the relation
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Remark 3.3 is a consequence oflohvidov’s rule for the signature ofa Toeplitz matrix
(see 13] and 11 ]).

4. Recursions of fundamental systems. In this section we consider, besides the Toe-
plitz matrix A [ai-j]-l, an extension A’ ofA of the form

A’= [ai-l.

The problem we discuss is how a fundamental system for the Toeplitz mosaic matrix
associated with A’ can be obtained from a fundamental system of 1. The recursion will
then lead to a fast algorithm for computing a fundamental system of an arbitrary square
Toeplitz matrix.

Since there are many fundamental systems, we must decide which system provides
the simplest recursion formulas. The first idea is to take one ofthe canonical fundamental
systems. However, the corresponding formulas for this approach seem to be rather com-
plicated. All Systems (A)-(C) described in Theorem 3.1 lead to simpler formulas. So far,
we do not really know which version is the simplest. From a certain viewpoint, System
(A) seems to be the most natural, therefore we describe it in detail.

Let us agree upon some notational convention. All quantities corresponding to
matrix A’ will be denoted by the same symbols as the analogous quantities corresponding
to A, only supplemented by a prime.

The first question we must answer is that of the structure of matrix ’. For this,
we must determine the kernel of A’ in dependence on ker A. The following lemma is
well known (see [11]).

LEMMA 4.1. Let the numbers a+ be defined by (3.11). Then

(I) K’= + 1, u’= u, M’= m+1 /fo+ o-_ --0;

(III) ’=, u’= M’=
M,

to1
(IV) K’=K--l, U’:/1,
In all cases N’ Jn + IM’JK,.

if a+ r_ #0;

if r+cr_ # O.

The simplest recursion formulas are those for vectors w_+. They are based on the
following lemma.

LEMMA 4.2. For the first and last columns, cK and of T- (T M*M), the
following recursions hoM true:

(4.1) (i) [c +

where

(4.2) a [t tl]C ( It-1
and

(4.3) (ii) [c_ ,(h) h4-,(h)] [c(h)
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where

(4.4) 6
(C)x
(C)o

Formulas (4.1) and (4.2) are well known and easily checked. Formula (4.1) provides
only the classical Levinson algorithm.

Remark 4.1. For c, +1 T-+ leo, the relation a, (c, / 1),/(c, / 1)o holds.
THEOREM 4.1. Let r+_ be defined by (3.11). The vectors w’+_ are obtainedfrom w/

and w_ via thefollowingformulas:
(I) Case a+ r_ 0:

(4.5) [w() w’_(X)] I1
where

(4.6a) a [t. tllC [0 0 U-O
and

U-r-I]W+

(4.6b) [t-1

(II) Case + 4: O, r_ O:

(4.7) [w+(X) w’(X)]=[w+(X) w_(X)].

(III) Case r+ O, r_ 4: 0:

(4.8) [w(X) w’_(X)I=[Xw+(X) Xw_(X)].

(IV) Case a+a_ 4: 0:

t-,1= [ffl tt-r 0

(4.9) [W(X) W’-(X)I=[w+(X) W_(X)][6
where

0

(4.10a) 6
(C)x- (W+)t
(C)o (w_),

and

(4.10b) 6
()o (w_),
(C)o (W+)s

where (w+)s is thefirst and (w+)t the last nonzero component ofw+.
Proof (I). By Proposition 3.2 and Lemma 4.1, we have

w+ M,+ lC,+ 1, M,+ + 1.

Taking (4.1) into account, we obtain (4.5) with a being defined by the first equalities of
(4.6a) or (4.6b).

To get the second expressions for constant a, we remark that

, 0
and /’

0

eo + ale,,
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where

a=[0 0 U-o U-r-]w+,

From this relation, we conclude that

w(X)
a0/2

and

GEORG HEINIG AND FRANK HELLINGER

(w+(X)- ,Xw(X))

(Xw_(X)- a_w+(X)).w’_(x)

Comparing this with (4.5), we obtain 0/ 0/and 0/2 .
(II). By Lemma 4. l, we have in this case

U-r 0 0]W_.

which is equivalent to (4.8).
(IV). Again, applying Lemma 4.1, we get

T’ (M’)*M’ M*_ M,,_ T,,_

According to Proposition 3.2, we have

(4.11) w+ M. lC’
d

and by Lemma 4.2, we have

(4.12a)

and

(4.12b)

and c’=c,_.

w" ’

MXc- ) w+ w_M, o

M_ c’
M, ,, M,(- 6c) w_ 6w+.

Taking (4.11) and (4.12) together, we get (4.9) with 6 being defined by the first equalities
of (4.10). The second expressions follow from w+ Mc, w_ M.

which implies that T’ (M!)*M’ M*M T and c’ c. Hence by Proposition 3.2

w’+ M’c’ w" M’?’=
W+

W’_ MY"=

which is the same as (4.7).
(III). By Lemma 4.1, we have

Hence T’ (M’)*M’ M*M T, which implies that c’ c. Thus by Proposition 3.2
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Remark 4.2. The number/ appearing in Case (IV) can also be expressed in the
form

(4.13)

where

fr+w+ fr_w_
i and 5

f+w_ fr_w+

f r+ [a_, a-n] and f_r [a, a].

This follows from the relations

[ eo

and

Now we are going to construct recursion formulas for vectors x+, y_+ according to
System (A) of Theorem 3.1. We begin with Case (I).

THEOREM 4.2. Suppose that tr+ tr_ O. Then UoUr 4 0 and

(4.14) [x(k)

where

(4.15a)

(4.15b)

(4.15c)

and a is defined by (4.6).
Proof We have

[xO+(x xo_(x)][ --a_"
X’-()]

a+a_ -a+

x+(x) x+(X)- +w’_(x),

Ol.+ OtUr/UO

+ [0 0 frO /r-

(4.16) ., O eo

where

and

x_(x) Xx_(X)- _w(X),

Ol_ UO/Ur,- [/1 ar 0 O]x_,

0

[p-eo + en]

(4.17) O+ [a, a]x+, ,o_ [a_ a_,]x_.

Hence

rxo+l
and

This leads to (4.14) with a+ being replaced by p_+. It remains to show that a+ o+.
Note that (4.16) implies the following recursion for +:

[+(x) x_(x)](4.18) [(,) ’__(X)]
p+p_
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On the other hand according to Proposition 3.3 we have

" u0+ blr, - UO, t-t- UrCK + 1, + 1.

Taking (4.1) into account, we obtain

[1 --lblo/blr][(,) ’(x)]- l-I1 [+(x) x_(x)]
--olblr/HO

A comparison with (4.18) yields

(4.19)

0+ Ollgr/UO-- Ol+ and O- ltO/llr Ol_. [--]

Remark 4.3. For constants/3_+ defined by (4.15c), the following is true:

+ (z_),_ , - (Z+)o.

In fact, since x+ A+eo and JnA+Jn (A+), we have

+=[o o u-o
eJ.A+J.[O
T IA+[ffren- -1

eTn_lZ_.

The second relation is proved analogously.
The treatment of Case (II) will be started with some preliminary consideration.
LZMMA 4.3. Suppose that rr+ 4 0 and rr_ O. Then ’+ 0 and

x(X) (Xw_(X)- w+(X)),
err+

where

(4.20a) e ()K_ [a_ a-n]W-
rr+

U-r-]A+eo
]7’0 /0 Hr-

U-o 0 O]

and

(4.20b) [t_ t_]d= [if, U-r 0 0]W_.

Proof We have

where according to Proposition 3.2,

pl [a-i a_lw_ [a-1

and

and
LP2eoJ

a_.]Md. rr+e_. err+

/92 [ffl U-r 0 0]W_ [ffl /r 0 0]M [t_ t_]Y
This implies that

where x is given by (4.19), which is just our assertion.
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THEOREM 4.3. Assume that rr+ 4 0 and rr_ O. Then vectors x" and y’+ can be
computed via theformulas

(r_ )(4.21) x’_(X) Xx_(X) + _-/3_ w+(X)- Xw_(X)
err+

and

(4.22) y(X) Xy+(X)+ ((4+ err+-a_,_ 1)__ ’)’+)W+(,)- t])+ --err+a_n_l W_()k),

where

r_ [a_ a-nlx- (Y+)o, 4)+ [a_ a_,ly+,
(4.23)

/--= [ffl U-r 0 O]x--, ’’+ [ffl U-r 0 O]y+,

and , e are defined by (4.20).
Proof We have

where g’= [0

and sO’ y+

L-+J L g+e0

a-n a_l]r and fl_, "y+, 4+, r_ are given by (4.23). From these

-r_ [a-1 a-n]A+e,-1.

In view of

JnA+J,, (A+)r,
we conclude that

r_ er,_,J,A+J,[a_, a_,lT= egA+[a_,, a_,]r= egy+,

which is the assertion.
Remark 4.4. If there is a change from Case (I) to Case (II), vector y+ appearing in

(4.22) is not immediately available, but it can be computed with the help of (3.27) since
in this case we still have Ur O.

Case (III) can be treated analogously to Case (II). We formulate only the corre-
sponding results.

LEMMA 4.4. Suppose that rr+ 0 and rr_ 4: O. Then " 0 and

(4.24) x’_(X)
err-

relations, we conclude that

x’(X) Xx(X) _x(X) _w+(X)

and

y’+(h) Xy+(h) (+ a-n-I)X-(X)

Taking (4.19) into account, we obtain (4.21) and (4.22).
It remains to prove that r_ (Y+)o. However, we have x_ A+e_ 1. Hence
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where

(4.25a) e (C+)o [a,, al]w+

and

(4.25b) a [t t]c= [0 0 u-0 U-r-]W+.

Moreover, a and e are the same as in Lemma 4.3.
THEOREM 4.4. Assume that r+ 0 and a_ O. Then the vectors x’+ and y’_ can be

computed via theformulas

x+(,) + w+(X)+ (+(4.26)
/

and

(a(4,_-a,,+))(4.27) y’_(X) y_(X)
b_ a,+,

w+(X) +
_

Xw_(X),
O’_ 0"_

where

’+ [a,, al]x+ (y-),,-l, 49- [a,, al]y-,
(4.28)

/+ [0 0 /0 /r-l]X+, + [0 0 /0 br-l]Y-,

and a, e are defined by (4.25).
It remains to consider Case (IV).
LEMMA 4.5. Assume that a+a_ 4 O. Then ’+ ’_ 0 and

[Ow] ](4.29) x_
ff+ o’_

where

(4.30) e (C)o [a,, a]w+ [a-i a_,,]w_
o’_ t7"+

Proof We have

and

where

01 [a,, al]w+ [a,, a]Mc a_ec
and

/92 [a-i a_,,]w_ [a_ a-n]M3 (r+e,-13. er+.

From these relations we get (4.29) immediately. IS]

Now we can establish a recursion from w_+, y_+ to y’_+. However, the formula will be
a little nicer for y_+, y’+_ being replaced by 37_+, 37’_+, which are the first parts of the corre-
sponding vectors of the canonical fundamental systems and which are defined by

(4.31)
p+(x) y+(X)-

y_(x) + Xy_(X), 37’__() + ,y’_(,).
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THEOREM 4.5. Assume that r+a_ 4 O. Then the vectors 9’+_ can be computedfrom
and w+ with the help oftheformulas

(4.32)

+() yo+(x + a-n-i v+ ,w_(,),
0"+

an+l t)_

7(x) y-(x) + w+(X),

where

(4.33) [y+(X) y_(X)]=[.O+(X)jT_(X)][ ][_1,+-_]
and

0"+(4.34) ,u+ , ,u_=

v+ 4+ +(- ao),

(4.35) + [a-1 a_,ly+,

if+ [a,, al]y+,

Moreover,

{ff- (C)-
O’+ (C)0

v_ 4- U-(k+ ao),

/- [a-1 a_.ly_,- [an al]y-.

(4.36) k- if+.

Proof Let Vr/+_, Ar_+ denote the vectors obtained from 7+_ after cancelling the first
or last component, respectively. Then we observe that

and

where

h=[o o U-r ao] r, h’_=[ar U-o 0 O] r,
gO+=[O a_, a_]r, gO_=[a a, O]r

and 4_+, k_+ are defined by (4.35).
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We introduce auxiliary vectors

(4.37)

where

(4.38)

Then we have

(4.39)

Hence

and

+ (n+)-/(-)-, - (n-)o/(+)0.

.’ yO+] [(4)+ t.t+(_ ao))eo + gO+],,o+j o

y,+ yO+ + (a-,,-1 49. + +(- ao))X’+

y,_ yO_ + (a,,/l 49- + -(4’. ao))X’-.

Taking Lemma 4.5 into account, we obtain (4.32).
Relation (4.33) follows from (4.37) for t_+ being defined by (4.38). It remains to

show that _+ can also be expressed by (4.34).
By Proposition 3.4, we have r+ a+c,

_
a_d. Hence

where

(n/)- /(c)_

(n/)0 /(C)o /,

(C)o.

This implies the equivalence of (4.38) and (4.34).
It remains to prove (4.36). We have

P-= [a-1 a-,]A+[al

In view of J,,A+J,, (A+)T, we conclude that

an] T.

[an al]A+[a-,, a_l]T= [a, al]y+ +. ff]

Remark 4.5. Constants u_+ can also be expressed as

u+ [ao a-,]y+, ,_ [a, ao]y.
That means, for the computation of y’_+, only two inner product calculations are

needed.
IfA is Hermitian, then all recursions can be simplified. First we recall that, in this

case, we need only the recursion ofTheorems 4.1, 4.2, and 4.5. In the case ofa semidefinite
A, only Theorems 4.1 and 4.2 must be applied. Furthermore,

x_=2+, y_=))+, w_=+, z_=2+,



MOORE-PENROSE INVERSION OF TOEPLITZ MATRICES 439

and the same is true, of course, for the corresponding vectors for 1’. Moreover,

/3_=/3+ and q_=+.

5. Complete nested recursion.
5.1. Classification. In this section, we consider the family ofall principal submatrices

A(/c) [ai_j]ko-(k 1,..., n)

of Toeplitz matrix A given by (1.1). All quantities introduced in previous sections for
matrix A are denoted by the same symbol in the case of matrix A(/c) supplemented by
superscript (k). For example, /k) is the regular extension ofAk) of the form (2.6), x),
y), w), z denote the first pas of the solutions of fundamental equations (2.10) and
(2.12) for replaced by k). Fuhermore, uk) denotes the vector spanning ker Ak)

according to Lemma 2.2, rt) dim ker At), and

0
’=[a al](5.1) /:= [a-1 "’" a-l u(

Thereby, 0 denotes a zero vector of length ( 1; a and a_ are arbitraw but fixed
numbers.

The aim ofthis section is to establish a procedure for the computation ofthe vectors
involved in the matrix representation ofA+ (cf. Theorem 2.1), which is based on a recursion
of fundamental systems of the sequence of Toeplitz mosaic matrices

Let r denote the largest index k for which matrix A( is nonsingular. If all A( are
singular, we put r 0. Then dim ker A(+ 1) 1. Suppose that

(5.2) ker A(r+ 1) lin {u}, u (Ui)6.

Then UoUr O.
It is a remarkable fact that, with the help of the vector u, the kernels of all matrices

A) for k > r can be described. For this we still introduce the numbers

(5.3)

Clearly, Ok,_ O’k,+ for k 0, r. Let s denote the smallest integer for which ak,- 4: Q
and the smallest integer for which ak,+ 4: 0. In case that all ak,- or a/c,+ vanish, we set
s n or n, respectively.

LEMMA 5.1. Let utk) denote the vector spanning ker A) according to Lemma 2.2.
Then:

(I) For r < k < min {s, t}

(II) Fort < k < s

(III) For s <_ k <

/,/(k +

/,/(k)

(IV) For max {s, t} _< k

/g(k+ 1)

r(k + l) r(k) _j 1.

K(k + 1) K(k).

r(k + )

K(k + l) K(k) 1.



440 GEORG HEINIG AND FRANK HELLINGER

The assertion of the lemma follows from the considerations in [11, 1.5.9].
As a consequence we get the following corollary.
COROLLARY 5.1. Thefollowing relations hoM true.

a)=Iak,+=0 r<k<t, a(_k)={ak,_=0 r<k<s,

(at,+ v 0 <_ k, as,- O s < k.

That means the recursion part of the algorithm involves merely numbers a+ := at,+
and a_ as,-.

Furthermore, we may conclude the following corollary.
COROLLARY 5.2. It holds that

(a) (u(k))o UO q: 0 for r < k < s,

(b)

(utk))o 0 for s < k.

(ll(k))r(k)-1 l’lr 0 for r < k < t,

(lg(k))r(k)-1 0 for < k, where r(k) k Ktk).

Now we can classify matrices Atk) according to Cases (I)-(IV) of System (A) in
Theorem 3.1.

Case (I) ((ll(k))o(ld(k))r(k) 5/= 0): r < k < min {s, t}

Case (II) ((u(k))oa) q: 0): _< k _< s

Case (III) (a(-k)(u(k))r(k) 51: 0): S <-- k <_

Case (IV) (a(_k)a) q: 0): max {s, t} < k.

Let us point out that the cases have some nonempty intersections that are levels
and s. This allows us to change the fundamental system with the help of Proposition 3.6
as it is required for the continuation of the recursive procedure.

Now we are able to describe an algorithm for MPI computation.

5.2. Initialization. The first step is the computation of the integer r, the vector u
satisfying the conditions of Lemma 2.2, and the quantities a,_ and a,+ for k r + 1,
r + 2 up to the first nonzero number. This can be done by standard algorithms of
the Levinson type for Toeplitz matrix inversion. In the Appendix we present a version
that is convenient for our purposes and is a slight modification ofthe algorithm proposed
in [10] (for Hankel matrices see [9]).

The second step consists in the computation of first parts ofthe fundamental system
of the matrix

d(r+ 1)

l u*

(5.5) A(r)P+ (/r-i)= 1, A(r)P (/r-i);,

Since we have for k r + Case (I) of Theorem 3.1, we must evaluate x+ 1) and
w+ 1). This can be done by the following relations.

PROPOSITION 5.1. It holds that

(5.4) (a) w+ 1) w+ i) u.
U*U

(b) Ifr > 0 andp+ are the solutions ofthe equations
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then

(5.6)

and

p+ [a_ a-r]p+ r 4: O, p_ [a a]p_ o 4:0

(5.7) x/= 1_ ([0P+ P+

where

O+u)

(5.8) 0+= [7 u-lp+, 0_= [go U-_]p_.
b/*b/

(c) Ifr 0 then xg+ 1) 0.
Proof Obviously,

b/*b/

which implies (5.4).
Furthermore, we have

d2(r+ 1) .__p
/0J

and 1(+) p-
O+

where 0’_+ u*uO+_ and p_+, 0_+ are defined by (5.6) and (5.8). Taking (5.9) into account,
we obtain (5.7).

Assertion (c) is obvious.
Vectors p_+ can be computed with the help of a standard recursive algorithm for the

solution ofToeplitz systems or with the help ofa matrix representation (e.g., a Gohberg-
Semencul formula) for (A(r))-l (see the Appendix).

5.3. Recursion. We arrive at the main part ofthe algorithm, which is the recursion
of the first parts of fundamental systems of

For k < min {s, t} we successively compute vectors w andx according to formulas
(4.5) and (4.14), (4.15) for We, X_+ being replaced by wt_+k) and xt_+k), w’_+, x’+_ being replaced
by w+ ), x+ 1) and K k r.

If k min { s, t}, then we use Corollary 3.2 to change to one of the Cases (II), (III),
or (IV) depending on whether < s, s < t, or s t.

For _< k < s, the w)(X) remain unchanged, and the x(_), y) are computed with
the help of (4.21), (4.22). Analogously, case s _< k < is treated using recursions (4.8),
(4.26), and (4.27).

If k max {s, t}, then we must employ Corollary 3.2 to compute y+ or y_ of the
corresponding level.

As a result of the described recursive procedure, we get the first parts of the fun-
damental systems of z(") 1 according to Cases (I)-(IV) of Theorem 3.1. Let us note
that these cases can equivalently be characterized by

(5.10) (I) s=t=n, (II) t<s<n, (III) s<t<n, (IV) s,t<n.

This follows from considerations at the end of 5.1.
In the subsequent section, it will be seen that the presented recursion formulas will

be useful further on.
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5.4. Canonical fundamental system. The final step will be the computation of one
of the canonical fundamental systems. Since the formulas for A/ involve only the first
parts ofthe corresponding vectors, it suffices to evaluate them. We show how to determine
the first parts of the (+)-system.

Of course, we must distinguish the four Cases (I)-(IV) listed in (5.10) (or Theorem
3.1). In these cases the following vectors must be computed:

(I) y+, z+ from Xx, w+,

(II) x+, z+ from x_, y+, w+,

(III) y/, z/ from x/, y_, w+,

(IV) x+, z+ from y+, w+.

The computation of the corresponding linear combinations can be carried out by
applying matrix + introduced in 3 to the corresponding vectors. This leads to two
4 4 systems ofsimple form that can be solved explicitly. However, the explicit formulas
are rather complicated. We get simpler formulas if we use vectors of levels n and
n + 1. Vectors x(_2 + 1) and w(_2 + 1) are obtained by adding another recursion of the same
type as from n to n. In the case where a,+ or a_,_ occurs in the corresponding
recursion, it can be chosen arbitrary. We present the formulas without proofs. The proofs
are a straightforward checking.

PROPOSITION 5.2. It holds that
(I) Ifs t= n, then

-1
(5. ) y+(x) w+

UrK +

_1((5.12) z+(X) x+ )(X)
L/0$K + (X(--n+ur, +1))nl W(’-n+ 1) (k))

(II) If < s n, then

(5.13) x+(X) (Xw_(X) ,w+(X)),
++( I

(5.14) z+(X) (X(__n+ 1)(k) -t- (X(--n+ 1))ny+(k)).

(III) Ifs < n, then

(5.15) y+(x)
-1

(x(_n + l))n
(X(._n+ l)()k) //W+(k)),

(5.16) z+(X) (;(_n- I)(X) I)X+(X)),

where

a_l + n])(--n- 1),

U-r 0 0]X + )
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(IV) Ifs, < n, then

(5.17) x+(X) Xw(_n- )(X),
O’+rK +

-1
(.8) z+(X)

O’--/?t +

where

Recall that

(;-(x) 6x+(X)),

O=[a0 a_+,]37-).

37+(x) y+(x)-

e, (T; e0)0 (k , + 1).

6. Schur-tyle algorithm. The disadvantage of the algorithm presented in the pre-
vious section is that it involves inner product calculations at each level. Therefore it
requires O(n log n) steps in parallel computation, but an amount of O(n) is desirable. In
this section we show that, similar to the Toeplitz matrix inversion algorithms, there are
modifications without this disadvantage. The corresponding algorithms are related to the
famous Schur algorithm and will be referred to as Schur type (cf. [14], [4], [10]).

For simplicity we present here only formulas of Case (I) of Theorem 3.1. Let us
recall that we only have Case (I) in the event that matrix A is semidefinite. Formulas for
other cases are quite similar, but a little more complicated. We do not present them here
because we think that the approach offered in the subsequent section provides more
effective algorithms for parallel processing.

We use all the notations of 5.
First let us note that vector u generating the kernel of A can be computed with a

Schur-type version of the algorithm, described in the Appendix, which requires O(n)
steps at an n-processor computer (see [9], [10]).

Since we only consider Case (I), i.e., we assume s n, we only have to apply
recursions (4.5) and (4.14) for x+/-, w+ being repltced by x), w), and x’_+; w’_+ being
replaced by x+ ), w+ ), respectively, to obtain vectors involved in the formula for the
MPI ofA.

The main task is now to evaluate constants c and/5 appearing in these formulas
recursively. Constants a) are, by (4.1 5b), up to constant factors, the same as they appear
in the Schur algorithm for the inversion of the positive definite Toeplitz matrix Tn-r
M*n-rMn-r [li-j] . We present the corresponding formulas.

We introduce parameters c}k) (j + r- n, 2n 2r- 2) by

(6.1) aJk) := [tj tj-k+r+ liCk-r,

where we settj=0forj{1 +r-n,...,n-r- 1}and

Ck- T- reo

Then formula (4.1) leads to the following proposition.
PROPOSITION 6.1. Numbers aj) fulfill the recursion

+ ) k) a(k)akk)(6.2) C c)[ 2 (Cj r),
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where

ol(k) Olk

(r+ 1) (k)Initial values ofa.k) are aj ?0tj-Note that, by definition, a 0 forj 1,...,
k- 1-rand at0k)= 1.

.Formula (6.2), together with Proposition 3.2, allows us to compute the vectors w+
in O(n) parallel steps.

It remains to find a recursion for constants/3_+k) defined by

(6.3) /3 [0 0 b0 b llx(+k), /(__k) [/’1 U-r 0 0Ix(--k)

appearing in the recursion (4.14) for A being replaced by A(k).
Let Nk denote the matrix of the form (2.5) with k columns. We need the following

formula.
LEMMA 6.1. It holds that

where

(6.4)

(k)Nkw)_ a_+,

a) (k)\k_ a(k)--[,Olj )j=-r and =d).

Proof By Proposition 3.2, we have

W(+k) Mk_rCk_ and w(-) Mk-rk-r.
Hence

(6.5)

where

Nk W(+k) NkMk-rCk-r k- rCk-r,

tl

tk-n tl-
(K= n-r),

t tn k

0 tK_

and we get

(6.6) NkW(-k) ’k- rk-r.
Formula (6.5) implies the first relation of (6.4) immediately. The second relation

follows after taking into account that

k-rJk-r Jm Tk-r,

where m 2K r + k- 2.
We now introduce vectors b by

Suppose that

bt+k) f(k) k-,t+,j]j=
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Then we have, in particular,

(6.7) /3 =/3!,_,. and (3)=
PROPOSITION 6.2. Parameters!fulfill recursions

(6.8a) (k+) ( Urol(k)O_.,j),t-" +,j oflO[ 2 /3+’j U--
(6.8b) ’)=

1-Ic#)l21 (_ Uo ()0+,j + o,),Ur

where
f4(k /,(_t_k)(k+ 1)(6.9) 13+,j +,j t" k-r-j, O___,j (_._k,)j_ (__k)olk + 1).

These formulas follow from (4.14) after applying Nk +1 to both sides and taking
Lemma 6.1 into account.

Now recursions (6.2), (6.8), (6.9), together with (4.5) and (4.14), provide an O(n)
step parallel algorithm to compute vectors w+_, x_+. Vectors y_+, z_+ are obtained according
to Proposition 5.2.

7. Nonrecursive approach. In this section we present another approach to obtain
vectors x+, y+, w/, z+ appearing in formula (2.11), which is based on formula (1.4) for
the MPI. The complexity of the corresponding algorithm equals O(n (log n)2).

The first step is the construction ofa generalized inverse ofA that possesses a simple
structure. In 11 ], two approaches are offered for Hankel matrices. We choose the second
approach and adopt it to the case of Toeplitz matrices. The approach is based on the
following well-known fact (see [11]).

LEMMA 7.1. Suppose that C is an n n singular matrix with defect K and let C+ be
a n and C_ a n matrix such that [C C_] and [cC+] havefull rank. Then

is nonsingularfor any matrix Co. Furthermore, if

-! o
where B is n n, then B is generalized inverse to C, i.e., CBC C.

In our case of a Toeplitz matrix A, we choose C__ and Co in such a way that C
A(’ +" [ai-]g +"- , i.e., d is a Toeplitz extension ofA. To find such an extension, we
introduce the concept of a fundamental system of a singular Toeplitz matrix A.

We introduce the family of Toeplitz matrices

(7.1) OA [a_] .: "]2 (k 0, 1,..., (n 1)).

Then the following lemma is true (cf. [11 ]).
LEMMA 7.2. Suppose that denotes the defect ofA, and A is not the zero matrix.

Then there are two vectors u C-+ and v e C"++1 such that k := {X(h): X e
ker OkA }, , := {x(h): x e C2" is given by

{u(X), Xu(A) Xk-+’u(X)) k ,..., K,
(7.2) k

[lin {u(X),..., xk-+"u(X), v(X) kk--"v(x)} k + 1,..., n.
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From Lemma 7.2 we can conclude, in particular, that the first (last) component of
one ofthe vectors u or v is nonzero and that the polynomials u(X) and v(X) are coprime.

Any pair of vectors u, v is said to be afundamental system ofA. Clearly, u is unique
up to a constant factor, but v is not unique. It can be changed by linear combinations
of Xiu(). This leads to the following remark.

Remark 7.1. Vector v (vi)/ can be chosen in such a way that VoVn+K 4: O.
With the help ofvector v, we extend A to a nonsingular matrix. We define successively

nwr

(7.3a) a , a_ ivi
/)0 i=1

and

(k =n,...,n+K- 1)

n+K-1

(7.3b) a_ Z an-k+-i)i (k n, n + t 1).
/)n+ i=0

LEMMA 7.3. MatrixA(n+ ) is nonsingular and { Xu(), v(X)} is afundamental system
ofA(n + ).

Proof By construction ti, v ker OA(n + ), where 7(X) Xu(),). We still must show
that An + ) is nonsingular. If dim ker A(n + ) > 0, then, by Lemma 7.2, ker OA(n + ) is
the linear hull of vectors corresponding to polynomials Xgw(X) for a certain vector w.
That means that all polynomials corresponding to vectors in ker OA(n + ) would have a
common zero. But 7(X) and v(X) are coprime. Consequently,

With the arguments ofthe proof ofLemma 7.3, we may check that the assumptions
of Lemma 7.1 are fulfilled. Hence the following lemma is true.

LEMMA 7.4. If(A(n+"))- is decomposed in theform

(A(n + .))_1
B

B+ Bo
where B is n n, then B is a generalized inverse ofA.

Now we employ the well-known results on the inverse of a nonsingular Toeplitz
matrix (see 10], 11 ]) and obtain the following theorem.

THEOREM 7.1. Suppose that A is a Toeplitz matrix with defect > 0 and u
(Ui) -, 1) (1)i)+ is a fundamental system ofA with l)Ol)n+ =/= O. Let a-n be defined
according to (7.3b). Then the n n principal submatrix B) ofthe matrix

(7.4) B Bez (X"u(X), v(X)),
o"

where

(7.5) a 1)n/,[a-, a-nlu
is a generalized inverse ofA.

The fundamental system ofA can be computed by standard Toeplitz matrix algo-
rithms (see the Appendix).

To make the application of formula (1.4) possible, we must determine orthogonal
projections P and Q onto ker A and Im A, respectively.

Since by Lemma 2.2 we have kerA ImMandMhas full rank, we get the following
expression for P:

(7.6) P MT-1M*,
where T M*M is a positive definite Toeplitz matrix.
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Since I Q is the orthogonal projection onto ker A*, taking (3.8) into account, we
obtain

(7.7) Q 1- NT-1N*.

by

(7.8)

From (1.4) and Theorem 7.1 we conclude the following corollary.
COROLLARY 7.1. IfBn) is the matrixfrom Theorem 7.1, then the MPI ofA is given

A+ (I- MT-M*)Bn)(I- NT-iN*).

Since T- can be represented as the product sum of triangular Toeplitz matrices,
and other matrices involved in (7.8) are also ofthis type, the application ofA/ to a vector
with the help of formula (7.8) requires only O(n log n) flops.

To make it possible to use the somehow simpler formula (2.11), we must evaluate
vectors x/, y/, w/, z/. Vector w/ is, according to Proposition 3.2, given by w/ Mc,
where c T-eo. The other three vectors are pseudo solutions of certain equations, i.e.,
they can be computed with the help of (7.8).

However, it is more convenient to replace x/, y/, w/, z/ by other systems that
also determine A+. A convenient choice is z+_, w+_, which corresponds to System (B)
of Theorem 3.1.

Vector w_ is given by w_ M and vectors z_+ by

(7.9) z+ A+h+, z_ A+h_,

where

h+ [0 0 G-, h_=[G_,_ U-o 0 O].
PROPOSITION 7.1. Vectors z+ defined by (7.9) are given by

(7.10)
z+ (I MT-M*)B(n)(h+ Nd),

z_ (In- MT-’M*)Bn)(h- Nd),

where d is given by (3.14) and Bn) by Theorem 7.1.
Proof We have

N’h_ (t + i)- and N’h+ (ti-)- 1.

Thus

T-N*h_ d and T-N*h+ d.

The rest follows from (7.8).
It remains to compute x+ and y+.
PROPOSITION 7.2. It holds that
(a) if ur O, then

(7.11) X+(k) (w+(X) Xw_(X)),
r+ + ,(1 lal 2)

(7.12) 37+(X) --a+eK+ ,(hz_(h) + az+(X))- 0+w+(X)- 0_Xw_(X),
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where

p +-= 1-I1
k [a_ a_,lz_,

/9+ Otp_- O’+ex + IX,

x=[ff U-r 0 0]z_.

(b) Ifur 4: O, then

((7.13) x+(,) --b/r, + l(Z-() -" oz+()) -- /9 I12 w+() /

(7.14) )7+(X) a--2-+ x+() _1 (,w_(,) w+(X)),
b/r eb/r

where

Recall that

0 blr,+l[bl U-r 0 0]Z_.

(z_)._
,w_(,).

+, (c + )o, (C)o,

-(c, + )/(c, + )o,

+(X) y+(X)-

Relation (7.4) coincides with (3.27), and (7.11) is a consequence of Proposition 3.3.
The other two equalities can be verified by applying matrices _+ introduced in 3. Cor-
responding proofs are straightforward but cumbersome, therefore we omit the details.

Appendix. Computation of a fundamental system of a square Toeplitz matrix. For
the convenience of the reader, we present here an algorithm for the computation of a
fundamental system of a square Toeplitz matrix A. This algorithm can be used to get
vector u, which is necessary for the initialization of the algorithm described in 5 or to
establish a generalized inverse ofA, which is’needed to apply the approach of 7.2

The algorithm presented below is a slight modification of the algorithm described
in [10] and the two-step Hankel matrix algorithm discussed in [9]. Different from many
classical procedures, our algorithm works without additional assumption.

For brevity, we describe only the Levinson-type version of the algorithm. For the
Schur-type version, which is convenient for parallelisation, a divide-and-conquer pro-
cedure, and some historical comments, we refer to [9] and 10].

As above, let Ak denote the principal submatrices of A, Ak [ai_j]0-. Suppose
that K dim ker Atk). Let { uk), v)} be a fundamental system ofA), where u), v)

are vectors of length k K + 1, k + + 1, respectively. We show how to evaluate a
fundamental system for Atk + 1). We must distinguish different cases. Indicators for these
cases are the numbers

) [a_k a_]u),fill 0"12 [ak ak]u(k),
) [a a_]v), )

O"21 a22 [a a_,]v{)

For brevity we omit superscript (k).

The definition of the fundamental system concept is given following Lemma 7.2.
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THEOREM A. 1. A fundamental system ofA(k+ 1) is given by

[u+ (X) v + (X)] [u(X)
where Ek(X) and Kk / are defined as follows:

(1) Case > O.
(la) 0- a2 0,

(lb) a 4:0 0-2,

v)(X)IE(X),

E(X) [ x], + + 1.

--0"22/0"12- ks0-21/0-11]

Kk + Kk

with s 2rk + 1.
(lC) 0-11 0 5/= 0-12,

(ld) 0"110"22 :: O,

with s 2.
(2) Case O.

(2a) 0"110"22- 0"120"21 O,

Ek(X)
0"22

0"12

or

Kk + Kk.

Kk + Kk

(2b) 0"110"22- 0"120"21 O,

E(X)
0"11/0"21

/f0"2! 4 O, gk+

Ek(k) [-0-21/0-1 ] if0-11 =/= 0’ /k+l 1"

In the case of a strongly nonsingular matrix A, we only have case (2a). The formula
corresponding to this case is the classical Levinson recursion except for a scaling factor.
Furthermore, it is worth mentioning that the algorithm essentially simplifies if matrix A
is symmetric or Hermitian.

Let us note that, in numerical computation, it is useful to make some scaling during
the computation to improve the numerical stability of the algorithm.

Finally, let us describe how to initialize the recursion.
If ao 4: 0, then we put

u(l)(k)-- 1, V()(,) X.
In case that a_ =/= 0 a2-t at-1, we have t and we may choose

u(t)(,) 1, v<t)(X) X21-1.
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In case that al- 4:0 al_ 2 al-l, we have K 1- and we may choose

u(>(,) ?,, v>(,) 1.

If al-l 4:0 a2- al-2 4: al-1, then K l- 2 and

x2l-2u{l)(x) , v(l)(x) a al-

is a fundamental system ofA(l).
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FAST TRIANGULAR FACTORIZATION AND INVERSION
OF HANKEL AND RELATED MATRICES
WITH ARBITRARY RANK PROFILE*

DEBAJYOTI PALt AND THOMAS KAILATH$

Abstract. The authors present a fast procedure for computing a "modified" triangular fac-
torization of Hankel, quasi-Hankel (matrices congruent in a certain sense to Hankel matrices) and
sign-modified quasi-Hankel (products of quasi-Hankel and signature matrices) matrices. A fast pro-
cedure for computing inverse of Hankel and quasi-Hankel matrices is also presented. A modified
triangular factorization is an LDL* factorization, where L is lower triangular with unit diagonal
entries and D is a block diagonal matrix with possibly varying block sizes. Only matrices with
all leading minors nonzero, often called strongly regular, will always have a purely diagonal and
nonsingular D matrix. The matrices studied in this paper have diagonal blocks with a particular
Hankel-(like) structure.

The algorithms presented here are obtained by extending a generating function approach of Lev-
Ari and Kailath for matrices with a generalized displacement structure. A particular application of
the results is a fast method of computing the rank profile and inertia of the matrices involved.

Key words, triangular factorization, Schur complement, Hankel, quasi-Hankel, Toeplitz, inver-
sion, zero minors, rank profile, inertia, Iohvidov, displacement structure

AMS subject classifications. 15A06, 15A09, 15A23, 15A57, 65F05

1. Introduction. Triangular factorization and inversion of a general n n ma-
trix requires O(n3) elementary operations. The special structure of Hankel matrices,

Hn-1 ----[hi+j], O<_i,j<_n-1

allows one to invert them or to solve a Hankel system of linear equations by fast
algorithms that require only O(n2) operations (see, e.g., Trench [18], Berlekamp [1],
Kung [9], Heinig and Rout [6], Citron [3], Chun [2], Labahn, Choi, and Cabay [10],
and the references therein).

However, the particular problem of explicitly computing their triangular factors
in O(n2) operations did not receive as much attention. Among early investigators
are Phillips [14], Rissanen [16], [17], and Gragg [.4]. Later, Kung [9] and Gragg and
Lindquist [5] considered this problem in the context of partial realization problems.

Recently Lev-Ari and Kailath [12] and Chun [2] considered the factorization of
Hankel and quasi-Hankel (QH) matrices as a special case of their work on generalized
displacement structure. A QH matrix has the form LtHLT, where Lt and H are
lower triangular Toeplitz and Hankel, respectively. QH structure arises naturally in
the process of factoring a Hankel matrix, because the Schur complement of the top
left corner entry of a Hankel matrix is QH. Such matrices arise in other contexts also,
e.g., in the computation of the greatest common divisor (GCD) of two polynomials
and in the problem of root-distribution of polynomials with respect to (w.r.t.) the real
axis. In studying the closely related imaginary axis problem we encounter products
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of QH matrices and certain signature matrices, which we shall call sign-modified QH
(SMQH) matrices.

However, the results of [12] and [2] or those of [14], [16], and [4] are only for
matrices that are strongly regular, i.e., with all its leading principal minors nonzero.
We should mention here that a strict triangular factorization is not possible unless
M1 the leading minors are nonzero. What can be achieved otherwise is a modified
triangular factorization (MTF) of the form

M LDBLT,

where L is lower triangular with unit diagonal, while DB is a block diagonal matrix
with possibly varying block sizes.

Gragg [4] mentions the possibility of block triangularization via generalized Lanc-
zos polynomials, the so-called lower triangular Hankel structures of the block diagonal
entries and their relationship to nontrivial blocks in the Pad table. However Gragg
[4] does not provide an algorithm for computing the sought block triangular factor-
ization. These issues have been studied further in Gragg and Lindquist [5], where
the algorithm of Kung [9] (which is mentioned in the next paragraph) was used to
obtain the results. Rissanen [15] studied the factorization of Hankel matrices that are
not strongly regular; however, while his method is recursive it is not fast (i.e., not an

O(n2) procedure). Then, in 1974, Rissanen [17] derived a fast (i.e., O(n2)) procedure
for factoring nonstrongly regular Hankel matrices. Although this procedure is recur-
sive, the need for computation of an inner product at each step it makes does not
parallelize well (i.e., each recursive step requires a constant number of parallel steps
so that the whole algorithm takes O(n) parallel steps) and requires O(n log n) parallel
steps.

Kung [9] presented a method that is fast as well as recursive; however, his pro-
cedure is not completely recursive in the sense that it utilizes the block pivots in the
presence of vanishing principal minors. Moreover, Kung’s procedure requires compu-
tation of an inner product at each step, so that this algorithm also does not parallelize
well (as explained earlier). The determination of the number of consecutive zero prin-
cipal minors for a block step is not straightforward in this procedure, and it requires
computation of certain "predicted Markov parameters" until a mismatch between the
"predicted" and the "given" Markov parameters is observed (see [9] for details).

Recently Citron [3] refined Kung’s method to avoid block pivots and the compu-
tation of inner products; the determination of the number of consecutive zero minors
for a block step was also greatly simplified.

In this paper we present a recursive O(n2) algorithm for such a factorization.
Possibly this is the first paper to give a fast and completely recursive procedure for
computing an MTF of Hankel, QH, and SMQH matrices. Furthermore, following
the ideas of Chun [2], we develop fast O(n2) algorithms for factorizing certain block
matrices that allow us to obtain alternative O(n2) algorithms to those mentioned
above for solving linear equations and obtaining the inverse of the coefficient matrix.

A characteristic of all these new algorithms is that the coefficients in the recursions
are all computed without invoking inner products, a fact that sets them apart from all
Berlekmp-Massey-related algorithms. The absence of inner products makes parallel
computation more feasible in the sense that with O(n) processors, the computation
time for the direct factorization methods can be reduced to O(n), assuming unit time
for each elementary computation; because of the inner products, the corresponding
number for the Barlekamp-Massey-type algorithms is O(n log n).
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TABLE 1.1

Classification of contributions.

Strong
regularity
required
Yes
Yes
Yes
Yes

Yes

No

Computes
factors of
inverse

Trench (1965)

Rissanen (1973)

Berlekamp (1968)

Computes
direct
factors

Phillips (1971)
Rissanen (1973)
Lev-Ari and

Kailath (1986)
Chun (1989)

Algorithm is
for

Inversion
Factorization
Factorization
Factorization

Factorization
and inversion

Linear
equations

O(n) factorization

Inner
product
required

Yes
Yes
Yes
No

No

Yes

Matrices
H
H
H

H, QH

H, QH

No Rissanen (1971) H
’No Rissanen (1974) Linear Yes H

equations
No Gragg (1974) Factorization Yes H
No Sung (1977) Sung (1977) Linear Yes H

equations
No Gragg and Yes H

Lindquist (1983)
No Heinig (1984) Yes H

Citron (1986)No

No

No

Inversion
and linear
equations
Linear

equations
Linear

equations
Inversion
and linear
equations

Factorization,
inversion, and

linear
equations

No

Citron (1986)

Heinig and
Jankowski (1989)

Labahn et al. (1990)

No

No

No

NoPal and
Kailath
(1994)

H, QH

H, QH,
and

SMQH

To close this introduction, we make the following observation: all the fast al-
gorithms mentioned above (including those in this paper) either compute the direct
triangular factors of the given matrix or the triangular factors of its inverse. Some of
these algorithms require that the matrices be strongly regular, i.e., with all its leading
principal minors nonzero, while the other algorithms work without this requirement.
Although all these procedures are recursive, the need for the computation of an inner
product at each step for some of these algorithms makes it difficult to parallelize them
well (i.e., each recursive step requires a constant number of parallel steps so that the
whole algorithm takes O(n) parallel steps) and requires O(n log n) parallel steps.

Table 1.1 summarizes these classifications.
In 2, we explain the general (Jacobi) triangular factorization procedure for an

arbitrary matrix. Then in 3 we show how the structure of Hankel and QH matrices
can be exploited to obtain a fast recursive procedure for computing a modified trian-
gular factorization of Hankel and QH matrices. It is shown that the diagonal blocks
are lower triangular Hankel. Following Lev-Ari and Kailath [12], we introduce a "gen-
erating function" representation of Hermitian matrices and derive all our results in
the form of certain polynomial recursions. In 4 we extend the results of 3 to include
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certain SMQH matrices. In 5 we introduce the notions of block generating functions
and block quasi-Hankel (BQH) matrices. It is shown that inverse of a QH matrix can
be obtained by computing a block Schur complement of a certain associated BQH
matrix. Next we discuss the so-called admissibility conditions and derive polynomial
recursions for Schur complementation of BQH matrices with regular and arbitrary
rank profiles. At this point we discuss the transmission line interpretation of these
polynomial recursions and indicate that this procedure works under all circumstances
including those where a Gohberg-Heinig-type formula does not hold to be good. We
end this section with an example. In 6 we show how to adopt the procedure of 5
towards obtaining solutions to linear equations with a nonsingular QH coefficient ma-
trix and an arbitrary right-hand side. Section 7 contains some concluding remarks.
Appendix A provides a proof of (17) and Appendix B describes certain inertia rules
of Iohvidov [7].

The related problem of factoring Toeplitz and quasi-Toeplitz (QT) matrices with
arbitrary rank profile has been considered in a separate publication [13]. This is
because of the fact that although an elegant unified derivation of fast triangularization
procedures for structured matrices with a so-called generalized displacement structure
has been obtained in the strongly regular case by Lev-Ari and Kailath [12], a unified
treatment in the nonstrongly regular cases largely remains an open problem.

2. Triangular factorization of real symmetric matrices. Strongly regular
real symmetric matrices MeRnn can be factored as

(1) M LDLT,
where L is a lower triangular matrix with unit diagonal elements and D is a nonsin-
gular diagonal matrix and the superscript T denotes matrix transpose.

Let us denote the columns of matrix L by {/i, i 1,2,..., n} and the diagonal
elements of the matrix D by {di}. Then we can write

n

(2) M LDLT dllT,
i--1

which suggests the following recursive computational procedure:

(3) M+I M- di//; M1 M,

(4) d _eMe and /i Me_d1,

where _e is the unit vector with nonzero entry at the ith position.
This is the celebrated Jacobi procedure (see [12]). Equations (2)-(4) show that

the first i- 1 rows and columns of M contain only zero entries, d is the (i, i)th
element of Mi, and d/ is the ith column of M, so that M has the form

Ol o]o P

P is called the Schur complement of the matrix M with regard to the leading (i-
1) (i 1) principal submatrix; note that P+I is the Schur complement of the (1, 1)
entry of P, i.e., we compute one Schur complement at every step of the triangular
factorization procedure (3)-(4).
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Singularities. Given a real symmetric matrix M, it will be impossible to compute
the Schur complement of the (1, 1) element if and only if the (1, 1) element is zero.
The following are the possibilities:

(i) M O;
(ii) M : O, but the first row and column of M are identically zero;
(iii) M O, the first row and column of M are also not identically zero, but

roll =0.
In ease (i) finding a triangular faetorization is trivial. In ease (ii) there is no

need to find the Sehur complement of mll. We can simply choose the first column
of L to be e_, and d O; then resume the triangular faetorization procedure. In
ease (iii) we must find the block Sehur complement of the smallest nonsingular block
available at the top-left corner of the matrix M. This will lead to a modified triangular
factorization M LDLT, where LeRnn is a lower triangular matrix with unit
diagonal elements and DeRn is a matrix with scalar as well as block entries along
the diagonal, while all the other entries are zero. Such a factorization always exists;
however, it is nonunique.

3. Modified triangular factorization of Hankel and QH matrices. Since
triangular factorization is nested, factorization of the leading minors does not depend
on the actual size of the matrix. Hence we can consider without loss of generality that
all matrices under consideration are in fact semi-infinite. Following [12], it is useful
to associate M with a "generating" function

(5) M(z, w)= [1 z z2 ]M[1 w w2 ]*,

where * denotes the Hermitian transpose. A Hankel matrix of order n has the form
h ln-1gn-1 i+j]i,j=O, where hk are arbitrary (k 0, 1, 2,..., 2n- 2). We shall define

the semi-infinite extension Hn-l, of a finite Hankel matrix Hn- as a Hankel matrix
with first row

[ho h h2n-2 0 0 ].

The generating function of this semi-infinite extension can be seen to be (see, e.g.,
[])

(6) H_,(z, w) zh(z) w*h*(w)
Z W*

where

2n--2

k=0

Next we shall define a matrix Q to be QH if its generating function Q(z, w) has
the form

(8) Q(z, w) a(z)b* (w) b(z)a* (w)
Z W*

where a(.) and b(.) are real power series. The reason for this definition and for the
name will appear soon (see (14) below). First, however, it is convenient to add a
"normalizing" assumption that, unless otherwise specified,

(9) a(0) =0.
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This is justified, except when a(0) 0 and b(0) 0 because given any two real
power serieses a(z) and b(z), we can construct two other real power serieses a(z) and
(z) such that a(z)b* (w) b(z)a* (w) a(z)* (w) -/(z)a* (w) and a(z) 0. The
exception can be handled by simply interchanging a(.) and b(.). We will postpone the
discussion of the so-called singular cases that include case a(0) 0 b(0) until 3.1.

THEOREM 3.1. The Schur complement of the (0, 0) element ho, of Hn-l,o is QH.
Proof. If h0 0, the Schur complement does not exist. When h0 0, the Schur

complement of h0 in Hn-l, is obtained by subtracting from M the outer product of
the first column and the first row, normalized by the inverse of h0. The generating
function HC_l,(z, w) of this Schur complement is

(z*)Hn_I,(z,) H_,(,) g_l,(z, 0)[H_,(0, 0)]-H_,,(0, ).

Therefore using (7),

(zw*)H_l,o(z w) Hn_l,x)(Z w) h(z)h*(w)/ho

After some algebra this reduces to

(10) HCn_l,x)(Z, w) -o z w*

2n--3

Zkhl(/ h/l
k=O

which is QH. D
Given Q(z, w) as in (8), where a(.) and b(.) are real polynomials, say

m q

a(z) akzk and b(z) Z bkzk’
k-O k=O

let us define

(11) (z) a(z) z
(z)

k--0

in some disc a, centered at the origin. Also let

(12) I(z) z-((,)- (0))= +,z.
Then in the disc a,

(13) (z ) (z)[l(z) *I*()] ,().(z-*)

The central term is the generating function of a Hankel matrix. We shall say that
(13) is a congruous relationship because of the following matrix interpretation of (13)"

(14) Q BLFHB,
where FH is a semi-infinite Hankel matrix with first row gl g2 g3 and BL
is a semi-infinite lower triangular Toeplitz matrix with first column

[bo b bq 0 0 IT.
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Note that since b(0) 0, BL in (14) is always full rank, so that the rank profile of
Q is the same as that of FH. The representation (14) is the reason for the name

quasi-Hankel; the QH structure is preserved under Schur complementation.

THEOREM 3.2. The Schur complement of the (0, 0) element, gl, of FH i8 QH.

Proof. If gl 0, then the Schur complement does not exist. So we assume gl 0.
By Theorem 3.1 (see (10)) the generating function FI(Z w) of the Schur complement
of the (0, 0) element gl of FH is

F (z,
z f(z)--Zgk+2Zk and g#0.

k--O

The congruence (13) then shows that the generating function QC(z, w) of the Schur
complement of the (0, 0) element of Q is

which is QH.

3.1. Singularities of the QH family of matrices. Given a QH matrix Q
with generating function Q(z, w) as in (8), it will be impossible to compute the Schur
complement of the (0, 0) element if and only if the (0, 0) element is zero or, equivalently,
Q(0, 0) 0. The following are the possibilities (see 2).

(i) Q 0, i.e., Q(z,w) 0, which will happen if and only if a(z)/b(z)
c, a constant.

(ii) Q 0, but the first row and column of Q are identically zero or, in other
words, Q(z, w) O, but Q(z, 0) Q(0, w) 0". Using our assumption (9), this is

equivalent to having a(0) 0 b(0).
(iii) Q 0, the first row and column of Q are also not identically zero, but

q00 0 or, in other words, Q(z, w) 0, Q(z, O) O, Q(0, w) 0, but Q(0, 0) 0.
Now recalling our assumption (9) that a(0) 0, we must have b(0/ = 0 (if not
we would be in case (ii)). Then Q(0, 0) a’ (0)b*(0) 0 = a (0) 0 and
Q(z,O) a(z)b*(O)/z 0 = a(z) O. Thus a(0) a’(0) 0, but a(z) O.
This implies there exists a positive integer t > 1, such that limz-.0 z-ta(z) O.
Now it is clear from (11) that if b(0) 0, then z-Jg(z)lz=O 0 if and only if
z-Ja(z)lz=O O, 0 <_ j <_ t- 1 for t <_ m. This leads to the observations that
hi

t-1 t-1O}i= that the first 1 leading principal minors of FH are0}i= {gi and t-
zero if and only ifgj-0, l<_j<_t-1.

We can summarize the above discussion as follows.

LEMMA 3.1. The first nonsingular leading principal submatrix of FH is of dimen-
sion t if and only if t is the smallest positive integer such that limz--.0 z-ta(z) O,
provided b(O) O.
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Because gj 0, 0 _< j <_ t- 1, this submatrix, say FH(t), must have the form

(15) FH(t)It

gt 0 0 O"

gt+l gt 0

0

0

92t- 9t+l 9t

where it is a t t antidiagonal unit matrix. Then t[H(t)] -1 will also be lower
triangular Toeplitz, say

(16) [t[H(t)] -1

pl 0 0

P Pl ".

Pt-1 "" "" 0
Pt Pt-1 P. Pl

=Pit, say.

Furthermore, some calculation shows (see Appendix A) that

(17)

at 0 0 p bo
at+l at P2 b

at+l 0 "_
a.t- at+ at Pt bt

Now we can analyze the block Schur complement of FH(t) and derive a recursive
procedure for computing the block factorization in t scalar steps.

The Schur complement ~cFH(t) with respect to H(t) as in (15) is

(18)

where

gt+l

0 0

gt 0 ".

gt+ gt

gt

and

0 0 p

P2

P P2 Pt txt

Equation (18) corresponds to a block factorization step. The block diagonal entry
of dimension t is the Hankel matrix P and the corresponding t columns of the lower tri-
angular factor are down-shifted versions of the same infinite vector [gt gt+l IT.
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The generating function of this block factor is

[1 z z2 ...]GPGT[1 w w2 ...]*
gt(z)[X z z2 zt-1]P[1 w w2 wt-]*g;(w)

[(Zk"bl--(W’)kq-I I ]() ;_
*

(z*)-- ;(),
kk=O

Z

where

(z) /z z-(z).
j=O

Then since QC(z, w) b(z)Ft( (z, w)b*(w), we have the following result.
LEMMA 3.2. Generating function of the Schur complement. If b(O) 0 and

the first nonsingular principal submatrix of Q is of dimension t, then the block Schur
complement Q of this first t x t nonsingular leading principal submatrix has generating
function
(9)

(ZW, c (ZW,)t-l-k
z-

where a(z) z-ta(z) and {py}= are given by (17).
Although computation of {pj}= via (17)is sufficient to find the required block

factors in (18), it is not yet clear how to express the generating function Q(z, w) of
the QH block Schur complement in the standard form (8). Some further exploration
will show how to do this.

We can try to rewrite (19) to show one step at a time:

(,(,) (,) ()() p_ (,)-1-
Z *kk=O

_(( p_ -* (,-1-
kk=O

Now by (17), b(z)- pa(z) is divisible by z. So if we define

zt-lat(z) el (z), Zbl (z) b(z) plat(z),

Q(z, w) a (z)b (w) b (z)a (w)
Z W*

then

(zw*)-Q (z, w) Q(z, w)-a(z)a (w) p_
w*

(zw*)-e-
Z--

Lk--O
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This suggests the following result.
LEMMA 3.3. Recursive form for Q(z, w). It holds that

(20) Q(z, w) at(z)b (w) bt(z)a (w)
Z W*

where bt(z) is defined by the recursion,

(o) bo() ().() +(z) (z) p+,(z); p+ ,(0)’

Proof. The lemma is proved by induction.
Define

Q(z, w) aj(z)b(w) a(w)bj(z)
Z W*

where, aj(z)-- zt-Jat(z) and (bj(z)}= is as defined above. Then,

Q(z, w)-at(z)a(w)pj+l (zt-j (w*)t-j
1l)*

(z)[;() p+;()]- ;()[(z) -+(z)]
Z W*

Therefore

t--1

(zk+l_ (w,)k+l) ]Q(z’w)--at(z)a(w)[k_oPt-k_ z w*
(ZW*)t-l-k

(zw*)tQ(z, w) (zw*)tQ(z, w).

Hence,

Q(z,w)C QP (z w) a(z)b (W)z_w.- a (w)bt(z)

The recursions (20) and (21) provide an efficient means of computing the block
factorization step in (19) via a sequence of t scalar recursions. It is clear that the

{Q(z, -w))i=0 do not represent any Sehur complement; only the final member of this
sequence, viz., QPt(z, ), represents the desired block Sehur complement and allows
us to continue with the faetorization process.

Now we are ready to describe a general triangular faetorization algorithm by
putting together the steps described above.

3.2. Algorithm for triangular factorization of QH matrices. Let us first
express the general factorization formulas (3) and (4) in generating function terms,

(22) j+I(Z, V) [j(Z, W)- /Ij(z,O);I(o,o)/j(O,w),
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(23) dy =/l/j(0, 0), l(z) l/Iy(z, O)d- 1 when dy # 0,

where

(*)-o(z,) Mo(,)= [1 z z Mo [ ]*

and

zYl(z) ly(Z)= [I Z z2 l_j.

The following cases represent all the possibilities that may be encountered at any
step j.

Case 1. (a) aj(0) # 0, bj(O) O. In this case, we generate two other polynomials
aj+l(0) and bj+l(0), such that aj+l(0) 0 and by+l(0) # 0, so that Qy(z,w)
+(,)"

a+l(Z) ay(z) ybj(z) (j ay(O)/b(O),

+(z) (z).

(b) ay(0) # 0, bj(0) 0. This is just an exchange step. We simply assign

a+() (), +() a(z)

so that Qy(z, w) -Qy+ (z, w).
Case 2. (a) a(0) 0, b(0) # 0, limz-0 z-laj(z) # O. This is a strongly

regular step (the Schur complement of the (1,1) entry can be computed) for which
the recursion is

zaj+l (Z) aj(z),

zbj+i(z) bj(z) jz-aj(z); Cy lim b(z)
z-O z-laj(z)"

This implies that

(zw*)Qj+l (z, w) Qj(z, w) jay+i (z)a+ (w),

from which we can identify

and
d(j__v) (-1)Qj(0, 0) (-1)vflay+l(0)l

(__)(z) (--)a+(z)/a+ (o),

where 5y and "yy denote the number of times Cases l(a) and l(b) have been encountered
before step j.

Case 3. aj(O) O, bj(O) :/: 0 and there exists a positive integer t > 1, such that
z-ray(z) is a polynomial in z and limz-,0 z-taj(z) :/: O. The Schur complement of the
(1,1) entry cannot be computed in this case; however, a block Schur complement can
be computed via repeated t times application of (21). So the recursion is

za+l(z) ay(z),

zbj+(z) by(z) jz-ta(z); {y lim
bj(z)

o z-ta(z)"
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This implies that

So, in Case 3, the block diagonal is the t t matrix (-1)D(j__), where

(24) D(j__j)

0 0 0

The t columns contributing to the lower triangular factor L form the n t Toeplitz ma-
trix whose first column is [,aj+t,o, ay+t,1,...,..., aj+t,m, O, 0,..., 0]nTI where

j-sj -,
m

k=0

Case 4. aj(O) 0 and bj(O) 0. In this case both the first column and row of
must be zeros. So the recursion for the polynomials is

This implies that

(zw*)Qj+ (z, w) Qy(z, w).

Therefore

d(j_5_) 0 and l(j_6_)(z) z(j-6-’).

We have just discussed the relationship of the polynomial recursions and the
factors of triangular factorization in all of the four cases. It is important to note that
at any step one only needs to compute a linear update of the polynomials aj(.) and
by(.). This is true irrespective of the presence of a singularity. Hence the modified
triangular factorization of QH matrices can be computed in O(n2) computations using
the recursions of this subsection.

Example. Let

1 1 1 2 2
1 1 2 2 2
1 2 2 2 2
2 2 2 2 2
2 2 2 2 2
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Step

0

TABLE 3.1
Recursions for triangular factorization.

+ () t#
#+l(z)

1 q- z + z q- 2z3 q- 2za q- 2z + 2z6 q- 2z7 -b 2zs

-[1 + z + 2z2 -t- 2z3 + 2za + 2z5 / 2z6 -t- 2z7]
--z2 T 2zs

--[1 + z + 2z2 T 2z3 -t- 2z4 + 2z + 2z6 - 2z7]
--z - 2z7

--[1Tz-2z2-2z3T2z4-t-4z5/2z6]

1 1 0 0

--1 0 0 0

1 2 1 0

Comment
Strong

regularity

Transformation

step

Singularity
Case 3

--1 + 2z6 1 1 1 0 Strong

-211 / z + z2 + Z3 - 2Z4 -{- 2Z5] regularity

Transformation

step

Z -[- Z2 -[- Z3 -[- 2Z4 q- 2Z5 + 2Z6

--211 -l- Z + Z2 + Z3 -b 2Z4 -b 2Z5]
5 1 q- z q- z2 q- 2z3 q- 2z4 -b 2z -2 1 2 0 Strong

2z regularity

6 2z2 0 0 2 0 Exchange
1 + z + z2 + 2z3 - 2z4 -{- 2z5 step

7 2z 2 2 1 Singularity
1 + z + 2z -[- 2z3 -[- 2z4 case 3

1 2 1 Strong2

1 -t- 2z -t- 2z2 + 2z3 regularity

9 -[4z -[- 4z2 -b 4z3] 2 0 2 1 Transformation
1 q- 2z q- 2z2 q- 2z3 step

1 3 1 Strong10 -[4 + 4z + 4z2] -3
1 + z + 2z2 regularity

11 4z2 -4 0 3 1 Transformation

1 + z + 2z2 step
2 4 1 Singularity4z

1 -b 2z case 3

12

1 4 1 Strong13 4

2 regularity
14 0 2 0 4 1 Transformation

0 step

Now defining a semi-infinite extension H4, as in (10), we get, H4,(z, w)
[zh(z)-w*h*(w)]/[z-w*], where h(z) 1 + z + z2 + 2z3 + 2Z4 + 2Z5 -- 2Z6 -- 2Z7 -- 2Z8.
Using the procedure described earlier, we get the polynomials {ay(z), by(z) 15}j=O,
starting with ao(z) zh(z) and bo(z) 1. The results are summarized in Table 3.1.

This yields the following factorization,

1 0 0 0 0 1 0 0 0 0 1 1 1 2 2
1 1 0 0 0 0 0 1 0 0 0 1 0 0 0
1 0 1 0 0 0 1 1 0 0 0 0 1 0 0
2 0 0 1 0 0 0 0 -2 0 0 0 0 1 1
2 0 0 1 1 0 0 0 0 0 0 0 0 0 1

4. SMQH matrices. A matrix N is said to be an SMQH matrix if its generating
function admits the representation

(25) N(z, w)
p(z)q*(w) q(-z)p*(-w)

ZW*
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where p(z) and q(z) are real polynomials. An important special case is when p(z)
q(z), which arises in studying the problem of root distribution of the polynomial p(z)
with respect to the imaginary axis (see Krein and Naimark [8] and Lev-Ari, Bistritz,
and Kailath [11]). Then

(26) N(z, w)
p(z)p* (w) p* (-w)p(-z)

zWw*

and we shall call it the imaginary axis Bezoutian. Note that this is not QH, as defined
in (8). However we can obtain a related QH Bezoutian as follows.

Let re(z) and n(z), be the even and the odd parts of p(z); in terms of which we
can write

(27) N(z, w) 2[m(z)n* (w) + n(z)m* (w)] 2I(z, w), say.
z-f-w*

Then note that

(28) 2[n(z)m* (w) m(z)n* (w)]
Z W*

represents a QH matrix.
Now we can apply the algorithm of the last section; certain simplifications ensue

because of the special structure of I(-z, w) (alternate entries of the corresponding
matrix are zero). Assign a(z) n(z) and b(z) m(z). Then co(z) n(z) and
bo(z) m(z). Since a0(0) 0, the transformation step is not necessary. Now if
b0(0) # 0 and limz-0 z-lao(z) # 0, then Case 2 yields

and
zal (z) co(z) It(z)

zb(z) bo(z) oz-iao(z) re(z) oz-n(z); 0 lim zm(z)/n(z).
z---*0

In this case, hi(Z) is an even polynomial and bl(Z) becomes an odd polynomial.
However, if b0(0) - 0 but limz_.0 z-iao(z) 0, then Case 3 applies provided co(z) :
0. If then t is the smallest positive integer such that limz_.0 z-tao(z) O, then

and
za (z) ao( ) n(z)

zbl (z) bo oz-tao(z) re(z) oz-tn(z); 0 lim ztm(z)/n(z).
z---*0

Once again, al (z) is an even polynomial whereas bl (z) is an odd one. But if bo(0) 0,
then Case 4 applies and we get

and
zal (z) ao(z It(z)

zbl(z) Do(z m(z).

Even in this case, a (z) is an even polynomial and bl (z) is an odd one. Thus,

a7 (z)
Z W*

where al (z) is an even polynomial and b (z) is an odd polynomial. The structure of
I(z,-w) makes it clear that not only is it QH, but QH with a certain structure, since
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at every step of recursion one of the polynomials must be even while the other one
must be odd. This leads to the elimination of any possible encounter with the Case
l(a). Since we are dealing with even and odd polynomials, we shall use {mj(z)} and
{nj(z)} as variables of recursion. Define

(29) Z(z,-) ()’/() "()i()
Z W*

Then the recursions for {mj(.)} and {n(.)} are as follows: Assign too(z) re(z) and
no(z) n(z).

Case (i). If mj(z) = 0 and limz-0 z-lnj(z) = O, then

Also,

or

znj+ (z) nj(z),

znj+ (z) mj(z) jz-nj(z); Cj lim zmj (z)
-0 (z)

(,-) M+()./+1() (z*)+l(,-)

(z,) .+(z)mi+ + zo*+,(z, ).
Then the diagonal factor and the generating function of the jth column of the trian-
gular factor are

dj Ij (0, 0) Cj Imj+ (0)12
and

"+()/’+(0).
Case (ii). If mj(0) # 0, limz_0 z-inj(z) 0 while there exists a positive integer

t such that z-tnj(z) is a polynomial and lim_0 z-tnj(z) # 0, then t must be odd.
Let t 2 + 1, then

z+(z) n()
and

zn+(z) mj(z) jz-tny(z); lim ztmJ(z)
o (z)"

Case (iii). If m(0) 0, then

mj+l (Z) j(Z), ZjW (Z) mj(z).

A close examination reveals that an occurrence of Case (iii) without a prior occurrence
of Ce (ii) can happen only if Ce (iii) occurs before any other ce. Otherwise, if
an instance of Ce (ii) is encountered then 2 consecutive singular leading principal
minors of the given matrix must be followed by a nonsingular leading principal minor.
In that situation, occurrence of the Cases (ii) and (iii) will alternate times each and
then an occurrence of Ce (i) must be encountered. All this reflects itself in the
following formula:

(*)+z++(z,)

mj++l(z)mj++l(W) j+ [ - +
k=O
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So the block diagonal entry

(30) Dj

(24-1) (2+1)

and the corresponding 2+1 columns of the triangular factor L must be the n (2+1)
Toeplitz matrix whose first column is

[0,..., 0, mj+2+l,O, 0, mj+2+2,0, mj+2+l,2q, 0, 0,..., 0]nTx 1,

J

where
q

mj+2+l(z) mj+2+l, 2kz2k.
k:0

However, an independent occurrence of Case (iii) will reflect itself as

Then

dj-O and lj(z)-zj.

We have just connected the recursions in {my(z)} and {nj(z)} with the factors of tri-
angular factorization. Extensions of the procedure just described to find a "modified
triangular factorization" of an arbitrary SMQH matrix are straightforward. Exten-
sions for factoring Bezout matrices (associated with the imaginary axis Bezoutians)
derived from a complex polynomial are also straightforward and will be presented
elsewhere (see [19]).

5. Inversion of Hankel and QH matrices: Block generating function
n--1approach. Consider a nonsingular Hankel matrix of order n H,_I [hi+j]i,j=o,

where hk are arbitrary (k 0, 1, 2,..., 2n- 2). We shall define the 2n 2n Hankel
block matrix

r 1(31) Hb= I I0 2n2n

Hn-I is the first n n principal submatrix of Hb and the corresponding block
Schur complement is -H11. We define the following semi-infinite matrix

(32) Hb, [ Hn-’ I ]
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where Hn-l, is the semi-infinite extension of Hn-1, Ioo is a semi-infinite identity
matrix, and Oo is a semi-infinite zero matrix. It is useful to associate a semi-infinite
block structured matrix

Mll M12M--
M21 M22

(with structured semi-infinite blocks Mj, 1 <_ i, j _< 2) with a block "generating"
function

(33)
M(z,w) 0 0 1 z-1 z-2 M21 M22

[1 o o 10 0 1 W-1

Then the block generating function (which is obtained by replacing each of the
semi-infinite Hankel blocks by their generating functions)

(34) Hb,oo(Z W) Hn-l’(Z’z w) z-w*_,. 0

where

(35) Hn-,o(z, w) zh(z) w*h*(w)
2; W*

such that

2n--2

(z) z.
k--O

For now we restrict ourselves to real symmetric matrices only, so that h(z) h*(z*).
For simplicity assume that h0 : 0 for now. Then note that

(36a)

zh(z)

Hb,(z, w)
z 0 -110 w 0

Z W*

Clearly, then

(36b) Hb,(z, w) Gb(Z)JG,(w)
Z W*

where

J= O and Gb(z)= z 0

Next we shall define a matrix Qb to be BQH if its block generating function Qb(z, w)
can be represented in the form

z w* c(z) d(z) 0 c(w) d(w)
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where a(z), b(z), c(z), and d(z) are all polynomials (functions) in z and Z-1

THEOREM 5.1. The Schur complement of the 1 1 leading principal submatrix of
Hb,oo is BQH.

Proof. If hi 0, then the Schur complement does not exist. So we assume hi 1.
The block generating function Hc (z, w) of this Schur complement isb,o

0 1 b’(Z’W) 0 1

Hb,oo(z, w) [ Hn-l’(z’ O) ] [Hn-l’(O’

which implies that

(as)
Hc (z, w)b,o Z

where we have defined

-l[ Hn_l,oo(O,w 1],

z -1 0 w -1

2n--3

Zkhi(z) Z hkTi [J

k--O

Since H,o is BQH, a question naturMly arises about the structure of the Schur
complement of a BQH matrix. This is answered in the following theorem.

THEOREM 5.2. The Schur complement of the 1 x 1 leading principal submatrix
of a BQH matrix is also BQH.

Proof. Define the partition

Qb(z, w) [ q,ll (z’ w) q,i2(z’ w) ]qb,21(Z, W) qb,22(Z, W)

The generating function Q(z, w) of the Schur complement is given by

(39) 0 1 Q,(z,w)r 0 1

--Qb(z,w)-- [ qb,ll(Z,O) ] -1 (0 0)[ qb,11(O,w) qb,12(O,w)qb,21(z,O) qb,ll

where Qb(z, w) in (37) is the block generating function of BQH matrix Qb. At this
point, we make the same normalizing assumption a(0) 0 as in 3. Then

qb,21(Z, O) z-lc(z)b*(O) (0) Cl(Z)

It is clear that al(z) and cl(z) are polynomials in z and z-1, respectively. Now if
Qb(O, 0) 0, then after some algebra we get

(40)

Ib(O)12 [ al(z)b’(w) bl(z)a’(w) -(bl(z)w*c’(w) ai(z)d’(w)) ]b (w)zcl (z) a’ (w)dl (z) zcl (z)d’ (w) w*c’ (w)dl (z)
Q(z,w)=

2; ’11)*

zcl (z) dl (z) 0 wcl (w) dl (w)
Z W*
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where we have defined

(41) bl (z) [al (O)b(z) b(O)al(z)]/z and dl (z) [d(z)al (0) cl (z)b(0)].
It is clear that bl(z) is a polynomial since the numerator in (41) has a root at the
origin, while dl (z) is a polynomial in z-1. This completes the proof of the theorem,
since Q,(z, w) is clearly BQH.

Thus making any distinction between the block Hankel and BQH families is not
material in the context of Schur complementation.

5.0.1. Generator for Hll._ It is clear that n steps of Schur reduction on the
block generating function Hb,(z, w) would directly lead to the generating function of

H-11 by way of the computed polynomials (functions) cn-l(z) and dn-l(z) starting
with co(z)= z and do(z)--0 as in (36). In particular,

H11(z-1,w-1)
----[1 z-1 z-2 ...]H-_I[1 w-1 w-2 ..]*

[Cn-1 (z)d_l(W) dn-1 (z)c_ (w)]

[w- * w-* *Cn_ (w)z-l"n_l(Z)]
Z-I W-*

[z-len-l(Z) z-ldn-l(Z)] 0 [w-len-l(W) w-ldn-l(W)]
Z-I W--*

Thus the generator for H-_I must be [z-lcn_I(Z) z-ldn_l(Z)].
5.1. Singularities and block Schur complements. The Schur complement

Q,(z, w) of the 1 x 1 leading principal submatrix of a BQH matrix cannot be computed
if [1 0]Qb(0, 0)[1 0]* Q(0, 0) 0 (see (39)). Since we are interested in inverting Q,
the first two cases (see 3.1) of singularity are not material. The third case, which
requires computing a block Schur complement, must be understood in terms of its
impact on the block generating function procedure.

5.1.1. The structure of Qb. Let

(42)

a(z)d* (w) b(z)c* (w)
c(z)d* (w) d(z)c* (w)

Q,(z, w)
c(z)b* (w) d(z)a* (w)

Z ’tO*

Qy(z,w) Ql(z,w) say.

Let a(z) ztat(z) (see (19) and Lemma 3.2). Since congruence preserves rank
profile and inertia the BQH form Qb(z, w) defined as follows:

(43)
Ib(z) 0 ] [b*(w)0 z-ld(z) Rb(z,w) 0

]
o]w-*d*(w)

must have the same rank profile and inertia as Qb(z, w). Let Rb(z, w) be partitioned

(44) Rb(Z W)_ [ RH(z,w)
Ry(z,w) Ri(z,w) say.
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5.1.2. Structures of RH, Ry, and RI. The structure of RH has been studied
in 3. Let us examine the structure of Ry first.

(45a) Ry(z, w)
y(z) (w*)tg’ (w)

1 z--lw

where (see (18))

(45b)
y(z) c(z)/d(z) -’.=o yiZ-i and

OO(z) =(z)/,(z) =0+z
The t t block Schur complementation on RH modifies Ry and produces R. as
follows"

(6) o R R YU(),
where y is a t columns wide lower triangular Toeplitz matrix with the first column
[y y ]*, G is in (18) and U() is a t x t upper triangular Woeplitz matrix
with first row P2 P]. The parameters {pj} are in (16). It can be shown
that the generating function R(z, w) of the above matrix R is given by

()

](,(, (,_-(-1( p_
*

(,-- ;(.
Lk=O

z

Aer some algebra, (47a) reduces to

(ab) R(z,) (z)[ *()*()] ;()[ z-(z)()]
1 z-lw

where p(z) p + p2z +... + pz-. Since c(z) y(z)d(z), a(z) g(z)b(z), and
ztbt(z) b(z)[1- p(z)g(z)] (see (21)), we get

(as) (z) *().(z, ) *()d(z)
Z W*

where we have defined tit(z) d(z) z-tp(z)c(z). Next we examine the structure of
RI.

() Ri(z ) (z) *()
W--* Z-1

where y(z) has been defined above. Then the t x t block Schur complementation on

RH modifies RI and produces R as follows:

(0) R R yipiy*,

where y is as defined before and P is as in (18). It can be shown that the generating
function R(z, w) of the above matrix R is given by

R(z, ) RI(,) z--(z)

(z) [1 (*)-tp* (w)* (w)] [1 z-tp(z)(z)] *()
--* Z--1
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Then the generating function of the t t block Schur complement Q of QI is given
by

(1) R(z,) c(z)d[(w) dt(z)c*(w)
Z q.U*

Thus the t t block Schur complement Q of QI must be BQH, viz.,

(52) Qr(z w)=
ct(z) dr(z) -1 0 ct(w) dt(w

say,

where ct(z) c(z) and dr(z) d(z) z-tp(z)c(z).
Since (21) provides a recursive procedure for computing bt(z) it may be possible

to obtain one such recursion for computing dr(z) too. Next we show that it is indeed
SO.

5.1.3. Recursions for updating at(z), bt(z), ct(z), and dr(z). Since ct(z)=
c(z) and dr(z) d(z) z-tp(z)c(z), the following linear recursion

(53)
co(z)=c(z) and do(z)=d(z),

+l(Z) =(z),
dj+l (z) dj(z) pj+iz-(t-J) cj(z),

recursively computes ct(z) and dr(z) using the {pj} in (16). Then we can combine
the recursions (21) with the above recursion (53) and write

(54)

0 1 Cj+l(Z) ldj+l(Z cj(z) ldj(z 0 1

5.2. Polynomial recursions for Schur complementation. We can rewrite
(40) as follows:

()

ib(O)12 [ al(z)

Q(z,w)=
d(z) 0 wc(w) d(w)

z 0
0 1

a(z) b(z)
c(z) d(z) ]O(z)[71 ] [()lb()]*,()0 c(w) ld(w)

Z W*

where the 2 2 matrix O(z) assumes three different forms that are discussed below.

5.2.1. O(z) for a strongly regular step. It is clear that a strongly regular step
of Schur complementation is translated into a univariate map Gb(z) --* Gb(z)O(z)
of form

(56) [ z O l1 + (z) Gb (Z)Oj(z)

Let us define the partitions,

(57) Gbj(Z)= [ aj(z) bj(z) ]cy(z) dy(z)
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It should be noted that the transformation Oy(z) is completely determined by ay(z)
and by(z).

Case la. ay(0) # 0, by(0) # 0. This is only a transformation step (see 3.2 for
details), for which the recursion is

(58)
zay+l(z) =ay(z) yby(z),
+(z) =(z),

where Cy ay (0)/by (0). This implies that

[ Io](59) Oy(z)= -(Y 1

Case lb. ay(O) 0, by(0) 0. This is only an exchange step (see 3.2 for details),
for which the recursion is

(60a)
ay+l(Z) =by(z),
by+l(z) -ay (z).

This implies that

(60b) Oy(z) [ 01
Case 2. ay(0) 0, by(O) O, limz_0z-1

step for which the recursion is
ay(z) # O. This is also a strongly regular

(61)
zay+l(z) =aj(z),
zbj+l(Z) by(z) jz-laj(z),

where

This implies that

1 --Yz-1 ](62) Oy(Z)= 0 1

5.2.2. O(z) for a nonstrongly regular step. Case 2. ay(z) kby(z) for
some constant k. Since Qy(z, w) 0 all the following principal submatrices of Q are
singular. Thus at this step there is no need to proceed any further.

Case 3. ay(0) 0, by(0) 0 and there exists a positive integer ty > 1, such that
limzoz-tay(z) O. In this case we need to find a t t block Schur complement.
At this point one needs to make repeated (t times) use of the linear recursion

zay+l(z) =aj(z),

(63)
zby+l(z) =by(z) yz-(t-J)ay(z),
+(z) =(z),
d+() d(z) z-(-)(z),
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where

j lim zt-Jbj(z)/aj(z) pj+l.
z.-’,O

This implies that the univariate map Gb(Z) --+ Gb(Z)O(z) assumes the form

z o ] Gb+ (z)= Gb(Z)%(z),(64a) O 1

where

1 -(:j z-(*-j) ](64b) Oj(z)= 0 1

Case 4. a(O) bj(O) 0. Since Qj(z, O) 0 Qj(O, w), Qj and all the following
principal submatrices are singular, there is no need to proceed any further.

Example. Next we shall consider inverting a 3 x 3 nonsingular real Hankel matrix
whose 2 x 2 principal minor is zero. Consider the 3 x 3 symmetric Hankel matrix T
with first and last rows [1 1 1] and [1 2 2], respectively. The starting generator

o(z) do(z) 0

Thus we have a strongly regular step and hence using (65a)-(65b), we get

[1 -z-I ](o=1, to=l, and Oo(z)= 0 1

which implies

(65b)

(z) [ al(z)
[

hi(z)]1dl(z) [ l+z+z2+2z3+2zaz -(l+z+2z2+2za)

Its clear that the next step is just a transformation step. Thus, using (58)-(59), we
get

1 O]1--1 and O(z)= 1 1

which implies

a2(z)(c) =() |
k

b2(z) ] [ -z2+2z4
d2(z) z- 1

-(l+z+z2+2za) ]

This takes us into a nonstrongly regular step. Using (64a)-(64b), we get

1 --Z-2 ]2 1, t2 2, and O2(z) O 1

which gives

(d) aa() (z) ba(z)] [-z+2za -(1+3z+2z) ]d(/ z-1 -(+z--z-)
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and brings us back to a strongly regular step. Next, using (61)-(62), we get

1 -z-l]3=1, t3=l, and O3(z)= O 1

which implies

(65e) [a4(z) Ib4(z) ] [ -1+2z2 -(3+4z) ]G4(z) C4(Z) da(z) z- 1 -(2- z-2)

The generator for the inverse of H must be [z-lc4(z), z-Ida(z)] [1 z-1,

A straightforward calculation verifies this claim.

--2z-1 +

5.3. QH matrices and admissibility condition. From our previous experi-
ence with QT matrices (see [13] and [20]), we may expect that inverting a QH matrix
may require some preprocessing. This is generally true. However, for a special class
of QH matrices, it is not required. We shall call this family of matrices admissible.

For an admissible Qn-,(z, w), the given a(z) and b(z) are such that there exist
complex numbers A and # satisfying

Aa(z) + #b(z) 1.

Next choose

which implies that

(67) Qb, [ Qn-l’ I ]
Hence after n steps of Schur reduction, one obtains the generators for the inverse.

It is shown in Appendix A that for an arbitrary nonsingular QH matrix Qn-1,
-1it is Q-I and not Qn-1 that possesses the same displacement rank. This naturally

raises the question: Is it possible to compute Q-I in a similar fashion? The answer
is yes, and we provide an explanation below.

It is clear that

(68 ) Q,_ L_{b a}HL_{b a},

where H is the first n n principal submatrix of the infinite Hankel matrix of the
Markov parameters of (b(z)+a(z))/(b(z)-a(z)) (assuming invertibility of Ln-{b-a};
otherwise we shall use -a instead of a).

So

(68b)
Q_ LI{b- a}/H-iL*l{b _a},

L_l{b a}iL_{b a}Q_1L_l{b a}iL*l{b a}.

Choose

z-w* z z 0 w w
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which implies that

Qn-l,o Ln-l,{b-a} ](70) Qb’= L_l,o{b-_a} O
Hence after n steps of Schur reduction, one obtains the generators for L_l{b-
a}Q-lL_l{b-a}. It is clear that if [z-lcn(Z), z-ldn(z)] is the generator for this

matrix then [dn(Z) Cn(Z)] is the generator of [L_l{b-a}Q-lLn_{b a}i. It is
possible to directly compute c(z) and dn(Z) instead of Cn(Z) and dn(z); thus we can

also compute the generator for Q_I directly as explained below.
If

Cj+l(Z) dj+l(Z) cj(z) dj(z) Oj(z),

then we must have

Given a(z) and b(z), it is possible to find co(z) such that

() [a(z) ,(z)]c(z) 1 + O(z")

Partition cc(z) as c(z) (z) + O(z). Then the recursions

[a+(z) +l(Z)]= [a(z) (z)]O(z),

(7) 0(z) a0(z) (z)

would be sufficient and the Schur procedure would compute the generator [dn (z), cn (z)]
for Q- in n steps.

6. Solution to linear equations. It is clear that the solutions to the Yule-
Walker type equations are obtained directly from the generators of the inverse. How-
ever, solution to a system of linear equations with an arbitrary right-hand side requires
extension of the notion block QH generating function (37) to

z-w* c(z) d(z) -1 0 p(w) q(w

where a(z), b(z), c(z), d(z), p(z), and q(z) are all polynomials (functions) in z and z-.
The linear equation

Qx y

for an arbitrary column vector y can be solved by choosing c(z) c(z) d(z) (see
(71)-(72)) and p(z) c(z)y(z) q(z), where y(z) [1 z z2 zn]y_. It develops that
the Schur complements can be computed via trivial modification of the linear recur-
sions in 5.2. In fact, the Oj(z)s in (56)-(64b) remain the same while the Schur com-
plementation steps are translated into two univariate maps G(z) ---, G(z)O(z), 1
i < 2 of form

(74) O

with
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Let us define the partitions

(75a) G (z) [ aj(z) bj(z)
dj(z

2 [ aj(z) bj(z) 1(75b) Gb (Z) pj(z) qj(z)

7. Concluding remarks. A new approach that provides a unified framework
for fast and completely recursive procedures for computing modified triangular fac-
torization of Hankel, QH, and SMQH matrices has been developed.

This recursive procedure is based on the fact that the Schur complement (or the
block Schur complement) of the top-left entry (or block) of a Hankel or a QH matrix
is QH, while that of a SMQH matrix is SMQH; except for Lev-Ari and Kailath [12] or
Chun [2], earlier papers did not utilize this fact. The procedure presented here does
not require computation of inner products and parallelizes well. Determination of the
size of a block factor is done by counting the number of repeated zeros at the origin
of a polynomial (see also [3]).

It also turns out that the block diagonal entries are either lower triangular Hankel
matrices (for Hankel and QH cases) or products of a signature matrix and a lower
triangular Hankel matrix (for SMQH matrices); see (24) and (30). The inertia of such
matrices (and hence the inertia of the original matrices) is determinable by inspection
using certain rules due to Iohvidov [7] (see Appendix B). Computation of the inertia
of SMQH matrices has applications in the problems of stability checking of linear time
invariant continuous time systems and root distribution of polynomials with regard
to the imaginary axis (see [11], [19], and [20]).

Using the results on modified triangular factorization, we have extended the Schur
complement-based approach of Chun [2] for solving linear equations and inverting
strongly regular Hankel matrices to Hankel and QH matrices with arbitrary rank
profile. This leads to simultaneous derivation of the type of recursions of Lanczos
(Schur) and Berlekamp-Massey (Levinson). The inversion procedures will work as
long as the underlying matrices are nonsingular. Unlike most previous approaches
(see Heinig and Rost [6]) no special requirement on the rank profile is needed.

Since theoretical detection of a singularity and the number of consecutive zero
minors require infinite precision, it is clear that a floating point implementation of
the algorithm would contain serious problems. This raises the issue of devising a nu-
merically sound general algorithm that could deal with "nearly singular cases." Such
a question goes beyond the scope of the paper and deserves a thorough investigation.

Appendix A. Derivation of (17). From (15)-(16),

(A.1) p(z)j(z) 1,

where

t-1 t-1

p(z) -pj+lZj and t(z)= ’gj+tzj.
j=o j=o

A matrix is called lower triangular Hankel if it has only zero entries above the main antidiagonal.
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Define

g2t(z) E gj+2tz
j then gt(z) t(z) + ztg2t(z), gt(z) E gJ+tzJ.

j=o j=o

But if the first t- 1 leading principal minors of Q are singular so are the first t- 1
leading principal minors of FH, which implies that ztgt(z) g(z). Therefore under
this condition,

(A.2) a(z) a(z) + z

Then from (A.1)-(A.2),

(A.3)
p(z)at(z)

1 + ztp(z)g2t(z), = p(z)at(z) b(z) + ztp(z)g2t(z)b(z).

Since the second term ztp(z)g2t(z)b(z) does not affect the coefficients of
{Z0 Zt-1} the entries,..., (P}=i can be computed via the matrix equation (17)
(see 3.1).

Appendix B. Iohvidov’s inertia rules. If none of the principal minors of a
matrix is zero, computing inertia is easy. Computing inertia is generally hard if a
number of zero principal minors are followed by a nonzero principal minor. However,
for Hankel matrices this difficulty can be avoided using a nice set of rules due to
Iohvidov [7].

Iohvidov’s rules. Let the sequence of successive principal minors of an n n
Hankel matrix Hn-1 contain an isolated group of p (>_ 1) zeros:

(A_ 0), A A+ A+_ O, (A+ 0).

Also, let a number of extra positive and negative eigenvalues that Hh+p has as com-
pared to Hh-1 be r(h- 1, h + p) and u(h- 1, h + p), respectively. These can be
computed by formulas in Table B.1 where 0 (_l)p/2 Sign (Ah+p)/(Ah_).

TABLE B. 1

p odd p even

r(h 1, h + p) p+1+02
v(h 1 h + p) p+ p+l-O

2 2

However, this rule simplifies even further, since it turns out that 0 Sign ,
where is the entry on the main antidiagonal of the corresponding block diagonal
factor (see (24)).
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THE ARNOLDI METHOD FOR NORMAL MATRICES*

THOMAS HUCKLEt

Abstract. For large Hermitian matrices the preconditionend conjugate gradient algorithm and
the Lanczos algorithm are the most important methods for solving linear systems and for computing
eigenvalues. There are various generalizations to the nonsymmetric case based on the Arnoldi method
or on the nonsymmetric Lanczos algorithm, e.g., generalized minimal residual ((GMRES), residual
minimization in a Krylov space) and conjugate gradient squared ((CGS), a biorthogonalization al-
gorithm adapted from the biconjugate gradient method) for linear equations and the incomplete
orthogonalization method and the look-ahead Lanczos algorithm for computing eigenvalues. The
aim of this paper is to analyse the Arnoldi method applied to a normal matrix. It is shown that for
a normal matrix A, the Arnoldi projection Hp is a normal upper Hessenberg matrix if and only if A
is (1)-normal. Only in this case, Hp is tridiagonal and the Arnoldi method has the same properties
as in the Hermitian case.

Key words, large linear systems, normal matrices, Krylov subspace methods, Arnoldi method,
Lanczos method

AMS subject classifications. 65F10

1. Introduction. Normal matrices appear in some applications, such as in the
solution of the complex Helmholtz equation [7]. Furthermore, there exist methods
for normalizing a given general matrix, for example, by Jacobi-like algorithms. In
this paper, we examine the Arnoldi method applied to normal matrices. The Arnoldi
process [1] is a method for transforming a general real or complex n n matrix A to
Hessenberg form. Set

Kp := span {b, Ab, Ap-lb}, p-- 1,2,...,

the Krylov subspace of order p related to matrix A and vector b, and Hp the orthogonal
projection of A on Kp. The orthonormal vectors vi, i 1, 2,..., vl b/llbll that form
a basis of Kp can be computed iteratively by equations

P

(1) hp+l,pVp+l Avp E hi,pVi, h,p vHAvp for i 1,...,p.
i----1

The matrices Hp and Vp built up from h,k, i, k 1,... ,p and v, i 1,... ,p can be
used to give estimates for the solution of the linear system Ax b and the eigenvalues
of A [16], [18]. The eigenvalues of Hp are the Ritz values of A with respect to Kp.

For the following, denote by p* the minimal p with Kp Kp+l or the maximal p
with dim(Kp) p.

ARNOLDI ALGORITHM

for j :---- 1,p
w := Avj;
for/:- 1,j

hi,j :- vi
IIAvj w :- w hi,jvi

end

Received by the editors September 30, 1991; accepted for publication (in revised form) November
4, 1992.

Institut fiir Angewandte Mathematik und Statistik, Universitt Wiirzburg, D-97074 Wiirzburg,
Germany (huckle@vax. rz. uni-wuerzburg, dbp. de).

479



480 THOMAS HUCKLE

hj+l,j "= Ilwll;
end

if hj+l,j 0, then stop; vj+l "=

For this algorithm the following holds (see, e.g., [11], [13], [171).
(i) Vl,..., Vp form an orthonormal basis of Kp; Hp VpHAVp is an upper p p

Hessenberg matrix.
(ii) If hj+l,j 0 for an integer j and the algorithm stops after j steps, then

j p* and the eigenvalues of Hj are eigenvalues of A.
(iii) The Ritz values of A with respect to Kp are the eigenvalues A(P) of Hp, and

the Ritz vectors are z(p) Vpy(p), where y(P) are the normalized eigenvalues of Hp
associated with ,(P).

(iv) If ep (0,..., 0, 1)T, then

T(2) AVp VpHp nu hp+l,pVp+ ep

and the residual of the Ritz pair (A(P),z(p)) satisfies

The matrices that appear in the Arnoldi algorithm can be also represented by
means of orthogonal projections [3], [4]. Let rp be the orthogonal projection on the
subspace Kp, and Ap the orthogonal projection of A on Kp; thus An rpAIgp. The
operator Ap can be characterized by the equations

(4)
Ai+b for < p- 1,Ap(Aib) p-1 Aj 1,7rpApb j=0 ej b for p-

where and -fp+ must be chosen in such a way that qp+ := "fp+(Ap rpAP)b is
orthogonal to Kp and has Euclidean length 1. Then, for p < p*, qp+ O. With

0 0 0 0
1 0 0

Fp := 0 1 0 2

0 1 p_

Lp := (b, Ab,... ,AP-b) and Qp (q,..., qp), there exists a matrix R with Lp
QpR, and there holds

TALp LpFp + qp+ ep
or

AQp Qp(RFpR-1) + (1/rp,p)qp+eTp
Comparing (5) with (1) and (2) we see that for p G p* we can set Qp Vp and
then Hp QTpAQp RFpR-1. Hence, Fp and Hp have the same spectrum and the
characteristic polynomial of Hp is of the form (see, e.g., [15])

p-1

p(x) xpu E6ixi
i--0
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For symmetric A the Arnoldi method coincides with the symmetric Lanczos
method [2], [12] and Hp is tridiagonal. In the general case, Hp is a full upper nes-
senberg matrix, and thus the Arnoldi algorithm often has to be used with restarts
or with incomplete orthogonalization [16]. In this last method the new vector vj+l
is computed by orthogonalizing Avj against the previous k + 1 vectors vj-k,..., vj,
rather than against all the previous vectors vl,..., vy. Then, the resulting Hessenberg
matrix is a band matrix.

The GMRES algorithm [18] for solving Ax b is based on the Arnoldi method
applied to the matrix A with starting vector v ro/llroll, ro Axo- b. In this
process, one computes that z E span (r0, Aro,..., Akro), for which the residual lib-
A(xo + z)l12 takes its minimal value.

For nonsymmetric matrices the Arnoldi method and the nonsymmetric Lanczos
algorithm lead to different methods for computing eigenvalues and solutions of linear
systems [9], [14].

2. Is Hv normal for normal A? For symmetric A the Arnoldi method yields a
symmetric tridiagonal matrix Hp. If A is unitary, then the operator Ap, the orthogonal
projection of A on the Krylov subspace Kp(A, b), is nearly unitary [3]. This means
that for p < p*, there holds

ApAHp I + E with rank(E)=l.

Furthermore, A and Ap are both unitary if and only if p p*. This consideration
leads to the question whether for normal A, Ap is normal, too.

THEOREM 1. Let A be normal and 1 < p < p*. Then, Ap is normal too if and
only if

or there exist /o and " with

AHb e K2(A, b)

AHb "ob + "Ab.

Proof. Let qi+ (A rA)b be the orthogonM vectors that constitute a basis
of the Krylov subspaces Kj(A, b). Thus, q+l / K and there exists a decomposition

p--1

(6) AHb=c+q withc=E’yjAJb and q+/-Kp.
j=O

Furthermore, there holds

HAp (TrpATrp)H 7rpAHvrp 7rpAH in Kp

The condition that Ap is normal is equivalent to the equations

(7) ApAHp (Aib) AHpAv(Ab), i 0, 1,..., p 1.

For i < p- 1, the left and right sides of (7) can be written in the form

ABAHp Ab- 7rpArpAHAb rpApAAHb
(8)

pArpAi(c + q) pAp +j. b + pApA q
j=0
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(9)

and

HAp ApAib 7rpAHTrpAAib 7pAHTrpAi+lb 7rpAHAi+lb

p-1

7rpAi+IAHb pA+I(c + q) p rj..li+j+lh.+ pAi+lq
j=0

For the following, let us suppose that Ap is normM and < p- 1. For 0, (6),
(7), and (8) yield rpAq rpq 0, and thus Aq Kp. With b e Kp, we get

0 (Aq)gb qH(AHb) qH(c + q) ]]q[I 2

and hence, q O.
Now we prove by induction that p--i 0 for 0, 1,..., p- 2" the case when
0 is obvious. Now assume that the proposition holds for an integer i- 1 with

0 i 1 p- 3, and 7p 7p_i+ 0. Thus, we have

p--i

AHb Ab
j=0

With (4), equation (8) can be written in the form

p-i-1

AAAib pA jAJ+ib + p_ipApAPb
j=0

p-i-1

p 7A+i+lb + %-ipA(Ab- q+l)
j=0

7jAJ+i+lb 7p-ipAqp+l
j=0

and (9) yields
p--i

HAp ApAb r’ a+J+lb
j=0

With (7) it follows that "/p-iTrpAqp+l 0 and, therefore, /p-iAqp+l .1_ gp. For
Aib we get

and thus, because of p < p*, "Yp-i O.
All in all, we have proved that for A and Ap normal, AHb E K2.
Now, let us assume that A is a normal matrix and AHb "ob + /Ab. Then, for

< p- 1 there follows

ApAHp Aib upApAi(7ob + 7Ab) pAi+(7ob + 7Ab)
H7pAi+AHb 7pAHA+lb pAHpApAib Ap ApAib
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and furthermore, for i p- 1 and using (4), we get

ApAHp Ap-lb 7rpAzrp(7oAP-1 / 71AP)b 7OTrpAPb + 717rpATrpAPb
p-1 p-1 p-1

+ +
j=o j=o j=o
p-1 p-1

HejrpAYAHb 7rpAg ejAJb 7rpAgTrpAPb Ap ApAp-lb
j=o j=o

Hence, (7) is fulfilled, and An is normal too. rl

Remark. A1 is always normal, and, for normal A, An. is normal, too.
COROLLARY 1. Let 1 < p < p* and A normal. Then Ap is normal too if and only

if AHp --7oI + 7lAp holds in K.
Proof. Prom Theorem i we get Ab (70I/71A)b and thus for 0, 1,..., p-1,

it holds that

H(Aib) rpAi("/ob + 7lAb) 7oAb + 717rpAi+lb (7OIp / "/1Ap)AbAp

On the other hand, AH 7Olp / 7" yields immediately AHAp ApAH. D
COROLLARY 2. If A and Ap are normal for an integer p with 1 < p < p*, then

A is normal for all <_ p*.
COROLLARY 3. Let A be normal. Then Ap is normal for every b and p <_ p* if

and only if AH 7oI / 71A.
Proof. Let xj, j 1,..., n be orthogonal eigenvectors connected with eigenvalues

nAj of A and set b j=l xj. From AHb 7ob + 7lAb, we get

n n

+
j=l j=l

Therefore, the eigenvalues of A satisfy the equation ,kj 7o + 71Aj for fixed 7o,

71, and it holds that AH 7oi + 71A.
On the other hand, a normal matrix A with AH 7oi + 71A satisfies the as-

sumptions of Theorem 1 and, therefore, Ap is normal. [:]

For normal A, the representation AH 7oi / 71A yields further properties of 70
and 71. Suppose that A has two different eigenvalues # and u. Then it follows that
fi- 71 (-/) and, therefore, 71 has absolute value 1, say 71 eib. Furthermore,
with 7o #- eiCtt, the number iToe-/2 must be real.

Theorem 1 shows that for unitary matrices A, Ap is not normal.
THEOaEM 2. Let A be unitary and 1 < p < p* for a given b. Then Ap is not

normal.
Proof. Let 1 < p < p*. From Theorem 1 we get AHb-- (7oi / 71A)b, and this

leads to

(71.42 / 7oA I)b 0.

Now it is possible to choose orthogonal eigenvectors xj of A connected with pairwise
different eigenvalues ,j, such that b has the representation

k

(10) b-ajxj and aye0.
j=l
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This yields ’IA --")’0Aj 1 0 for j 1,..., k. Therefore, there must hold k _< 2,
and this implies that p* _< 2. 0

The representation (10) of b shows how p* depends on b and shows that p* k.
This is a consequence of the equation

1 ,2
(b, Ab, Ap-lb) (alXl, akXk)

1 Ak

A Theorem of Gantmacher [8] states that a matrix A is normal if and only if there
exists a polynomial p of degree <_ n with AH p(A). For what follows we set

(11) n(A) := the minimal degree of a polynomial p with AH p(A).

It is easy to see that n(A) is less or equal to the degree of the minimal polynomial of
A. With this notation we get the following theorem.

THEOREM 3. Let A be normal and 1 < p < p*, p- 1 >_ k > 1 for given b.
Furthermore, assume that Agb p(A)b with a polynomial of degree

_
k. Then it

holds that

ApHAp-ApAHp -:E and rank(E)_<k.

and

Proof. For i 0, 1,..., p 1 k, we get

HApAp Aib zrpAzrpAip(A)b zrpAi+ AHb

AHp ApAib rpAHrpAAib rpAi+lAHb

Therefore, Ex 0 for all x E Kp_k(A, b). Hence, the null space of E is at least of
dimension p- k.

The matrices that satisfy BH /0I-3,1B. form an important class with interesting
properties. Faber and Manteuffel [6] showed that these matrices coincide with the class
of matrices that can be written in the form

(12) B aI + eiS with Hermitian S.

Thereby, (12) means that B is normal, and the eigenvalues of B are collinear and lie
on a straight line a + eit, t real. The class (12) is the weakest generalisation of the
class of Hermitian matrices. Furthermore, 0, 1 and a, are connected by

(13) "Y1 e-2i and imaginary part(ae-i) ’0ez

Following [6], these matrices are the only matrices for which one can define a conjugate
gradient method with three-term recursion. This class appears also in applications,
e.g., in connection with the complex Helmholtz equation [7].

Now, the representation (10) allows a new formulation of Theorem 1.
COROLLARY 4. For normal A, Ap is also normal, 1 < p < p*, if and only if in

the representation (10) of b all eigenvalues Ai, 1,..., k, are collinear.
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Proof. Theorem 1 and (10) show that Ap is normal if and only if

Ai 70 + 71Ai, i-- 1,...,k

But this means that all Ai lie on a straight line a + eiCt with a and determined by
(13). D

Hence, for normal A, Ap is also normal if and only if all eigenvalues of Ap.--and
therefore all eigenvalues of Ap, p 1,..., p*--are collinear.

Furthermore, there holds the following theorem.
THEOREM 4. Nondecomposable, normal, tridiagonal matrices are of the form (12)

and have collinear eigenvalues.
Proof. With

al

Cl a2

an-1 bn-1
Cn-- an

the main diagonal of

(14) TTH THT

shows that Icj Ibjl for j 1,...,n- 1. Considering the subdiagonal elements
aj,j-2, we can see that cy e5y with fixed 5. All by and cy are different from zero
and thus (14) yields

aj+ aj eis(ty+l tj)

Therefore, for all j 1,..., n- 1, there holds

ay+ aj ryei5/2, real,

or

All in all, we get

j-1

aj a +E rkeiS/2
k-1

T aI + ei/2

k=l rk e bn-1
n--1e--iS/2n-X Ek--1 rk

3. Properties of the projected matrix Hp for normal A. For the following,
let A be a normal n n matrix. In 2 we showed that the matrix Hp that arises in
the Arnoldi process is generally no longer normal. But Hp. is also normal. Therefore,
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there exists a polynomial of degree n(Ap.), defined in (11), with ApH. p(Ap.) or

AHb p(A)b. With qi vi defined by the Arnoldi algorithm, there follows

hi,j q(Asqi) q(p(A)b) 0

for > n(Ap.)+ j. Thereby, p is a polynomial of degree less or equal n(Ap.) +i- 1.
Hence, we have proved the following theorem.

THEOREM 5. The upper Hessenberg matrix generated by the Arnoldi process has
upper bandwidth n(Ap.) <_ n(A).

Remarks. If Ap and also Hp are normal for 1 < p < p* and have the form (12),
then there holds n(Ap.) <_ 1, and Hp is a normal tridiagonal matrix for every p.
Therefore, Hp is of the form described in Theorem 4. In particular, the linear system
that must be solved in the GMRES algorithm is of tridiagonal form if A satisfies (12).

Faber and Manteuffel showed in [6] that for a normal matrix B with n(B) > 1,
the degree of the minimal polynomial of B is less than or equal to n(B)2. Hence, in
this case, n(Ap. will be very large and the band structure of Hp will be visible only
for large p.

Further properties of Hp result from the consideration that Hp is a leading prin-
cipal submatrix of the normal upper Hessenberg matrix Hp..

LEMMA 1. Let A be normal and partitioned in the form

A= D

with quadratic matrices B and E. Then, IIClIF IIDIIF, and the departure of
normality of B is given by

lIBBH BHB[IF
_

[IDll + IIcll 2 [[Cll 

Proof. Equation AAH AHA yields

(15) BBH BHB DHD CCH

Considering only the trace of (15) and estimating the right side of (15) proves the
lemma.

Hence, for the upper Hessenberg matrix Hp generated by the Arnoldi process, we
get

Furthermore, there holds the theorem that follows.
THEOREM 6. For normal A, the departure of normality of Hp satisfies

][HpHpH H;H,]] _< 2 [IAll v/n p.

Proof. It holds that

HpHpH HHH, QHp (A(r, I,)AH + AH (Ip rp)A) Q, fl

Without loss of generality, from now on we assume that p* n holds. Lemma 1
shows that for the normal Hessenberg matrix Hn (hi,j)in,j=,,

p n

(16) [hP+*,pl2= E E Ihi,[2
i=1 j=p+l
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for p 1, 2,..., n- 1. For what follows denote by Di the mean value of the squared
absolute values of the elements on the ith superdiagonal,

and Mi is the maximum of this value. In the same way, set D the mean value of the
squared subdiagonal elements,

n--1

n- 1 -" lhJ+’J
j=l

and M is the maximum. By summing (16) and taking into consideration the multi-
plicities of the superdiagonal elements in this sum, we get

i(n- i)D=
(n- 1)

i=1

For each superdiagonal this gives

and

(n- 1)
Di

_
.-:-7---. D, i- 1,..., n- 1
Ln-)

n-1
M <_D, M <_M.

i

More precisely, with Lemma 1 we get even

J

k--1

especially for i 1 and n- 1

n--1

Ihul < Ih.,l and Ih,l < min]hk+,kl.

Then, using

n--1 n--1

Z(n i)ni <_ i(n -i)ni <_ (n 1)D,
i=1 i=1

we can estimate the Frobenius norm of H by

IIHll nDo + 2(n- 1)D _< nMo q- 2(n- 1)M.

The mean value of the squared superdiagonal elements is bounded from above by

Because of

2D 2M
n n

k--1 k--1
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the mean value of the absolute values of these elements is bounded by

v/2D/n < v/2M/n.

For the submatrix Hp, p <_ p*, (16) yields

(17)
k p

i--1 j--k+l

for k 1,2,...,p- 1. Let us denote by d, di, m, and mi the quantities of Hp
corresponding to D, Di, M, and Mi. Therefore,

di 1 12 1 12p-
j=l

Ihj,j+i d
p- 1

j=
Ih+l’J

and m and mi are the associated maxima. Then, from (17) we get the following
theorem.

THEOREM 7. For normal A, the matrix Hp generated by the Arnoldi process has
the following properties:

(i) d < [(p- 1)/i(p-i)]d and rni < (p- 1/i)d;
(ii) IIHpll2F < pdo + 2(p- 1)d < pmo + 2(p- 1)m
(iii) the mean value of all squared superdiagonal elements of Hp is less than or

equal to 2d/p;
(iv) the mean value of the absolute values of all superdiagonal elements of Hp is

less than or equal to v/2d/p.
(v) Ihi,i+yl < min=

Similar results can be found in [5]. If we number the superdiagonals in such a
way that the main diagonal is associated with i 0, and h,p is the diagonal with

p, then Theorem 70) states that the mean value of all elements in a superdiagonal
is maximal for 1 and p and is minimal for [p/2J. Furthermore, by (v),
we get an upper bound for Ihi,i+jl that is decreasing for increasing j. This gives an
explanation for the observation of Saad [16] that in many examples the elements
become slowly smaller as j increases with i fixed.

A normal matrix with extreme behaviour in the sense of Theorem 7 is the unitary
Frobenius matrix

0
1 0

(18)
".

This matrix is also an example with bad behaviour for the Arnoldi method and for
GMRES with starting vector el; the Ritz values are all zero up to the last iteration,
and both algorithms give no improvement of the starting values up to that point.

In the Hermitian case, we get for the Ritz values generated by the Arnoldi process
from (3), that for every Ritz value AP) there exists an eigenvalue of A with

(19) l-- T (P)
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Furthermore, all Ritz values and eigenvalues can be ordered in such a way that (see
[10],

P 2

i-1

In view of (3), equation (19) remains true for normal A. But, example (18) shows
that (20) is not always true for normal A.

4. Conclusions. The Arnoldi method applied to a normal matrix leads to upper
Hessenberg matrices Hp with special properties. But Hp is tridiagonal only for the
well-known class (12). For this class, the Arnoldi method shows the same behaviour
as for symmetric matrices and is thus superior to all other Lanczos-type methods. In
nearly all the remaining cases, the convergence behaviour of the Arnoldi method can
be very poor.

Acknowledgment. I would like to thank Roland Freund for bringing some im-
portant references to my attention and also the referees for some helpful comments.
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UNICITY OF BIPROPORTION*

LOUIS DE MESNARD

Abstract. The biproportion of S on margins ofM is called the intern composition law, K: (S, M) X
K(S, M)/X ASB.

A and B are diagonal matrices, algorithmically computed, providing the respect ofmargins ofM. Biproportion
is an empirical concept. In this paper, the author shows that any algorithm used to compute a biproportion
leads to the same result. Then the concept is unique and no longer empirical. Some special properties are also
indicated.

Key words, biproportion, biproportional, RAS, updating matrices
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1. Introduction. For many years, economists have used biproportion. For example,
R. Stone and M. Bacharach used the RAS method in the sixties, as well as many others
(see a short survey in [3]). This method is useful when we want to update or filter a
matrix, by projecting this matrix on the margins of another matrix, (i.e., equip it with
the margins of another matrix).

For a long time biproportion lacked theoretical basis: RAS is a purely empirical
method. It is possible to give theoretical foundations to biproportion [3], but numerous
algorithms must exist to compute a biproportion. It is not satisfactory because of this
multiplicity of algorithms, biproportion remains empirical. However, we do not want to
compare different algorithms from the standpoint of numerical computation as in [2].

In this paper, we show that any possible algorithm leads to the same result. This
settles the theory that biproportion is unique as proportion and is no longer an empirical
concept. Some parts of arguments and demonstrations still come from [3].

1. Definition of biproportion.
1.1. Ordinary proportion. We present this well-known concept in a special form.

Let x and s be two real vectors. There exists a proportion behind these two vectors, that
is to say, x is proportional to s with the ratio k, if

xi ksi Vi,

where k is the ratio of the margins

X.
k=-- with x.= xi and s.= ,si.

S.

1.2. Biproportion. Let E be the set of (n m) matrices of real positive numbers. S
and M are two matrices belonging to this set, and A and B are two diagonal matrices
having the same dimensions. The margins ofM are the numbers mi. and m. so that

mij-- mi. V and , mij-- m.j Vj.
j

Received by the editors November 25, 1991; accepted for publication (in revised form) November 10,
1992.
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The term RAS comes from rAs, where and s are vectors and A is a matrix.
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We call biproportion of S on margins of M, the intern composition law K, of E
E E, such that

K
(S,M)-)X=K(S,M): X=ASB and ,xij mi. V and ,xij m. Vj.

j

With Bacharach, we can say that X is biproportional to S according to M ].
The solution can be found, for example, using the algorithm (h and B are scalars)

Ai mi.(j BjSij)
-1

Vi and Bj m.j( Aisij)
-1

Vj.

We call these equations the K algorithm; they satisfy marginal constraints ofM:

x0 Ai Bjs0 mi. Bjs0 BjSij mi.
J J j

xo B so m. so so m. Vj.

Many justifications may be found. For example, we may use the theo of infor-
mation, transforming it a little [3]:

Min x0 Log x-AO with _, xi m4 Vj, and , xij mi.
j Sij j

Vi.

Many other algorithms may be used such as RAS or modified RAS [2].

2. Unicity of biproportion. The algorithm K corresponding to the equations of Ai
and B allows one to calculate biproportion2 as it is a converging process toward the
solution. We may think that an undetermined number of other algorithms can play this
role. Some algorithms, like RAS, are known. Bachem and Korte [2] demonstrate identity
of the algorithms of RAS and K, but do not demonstrate universality of biproportion,
because they only demonstrate RAS. The question is whether or not all ofthem give the
same solution as K. If not, biproportion seriously lacks consistency, because its result
depends on the choices of the algorithm. Otherwise, biproportion appears as universal,
and so has a very stable basis.

2.1. Idempotency. Biproportion of a matrix on its own margins is a neutral
operation.

THEOREM 1. K(S, S’) S, where S’ has the same margins as S. In particular, we
have K(S, S) S.

Proof. Suppose, without loss ofgenerality, that we start the algorithm ofbiproportion
by Bj for all j. At the first step, we obtain the following equilibrating factors A"

Si. Si.
Vi,Ai(1)

j Bj(O)sij j Sij

because S is equipped with its own margins. Then,

s4 s.j
Vj.B)(1)

Ei A(O)si Ei Sij

The conditions of convergence are given, and unicity of the solution is proved in [3].
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By induction, we can show that the two series (A’) and (B’) are uniformly unitary.
Let us suppose that A;(t) for all i, and Bfi(t) for all j is true until t, and let us
verify that this is true for + 1:

Si. Si.A;(t + 1)
2x-j aj’(t)sij Z,j S0

Vi

and

s.. s.. Vj.B}(t + 1)
Zi A}(t + 1)sij Zi so

Therefore, A’ l and B’ =/.

2.2. Composition ofbilrOlortions and associativity. Biproportion is not linear re-
garding to the variables, even if it is a generalisation of the proportion, which is linear
because it is one dimensional. In an ordinary proportion, a double use of proportion
remains a proportion:

x=sm and x’=xm’x’=smm’x’=sm".

In the same way, a double use ofbiproportion remains a biproportion: biproportion
is globally linear. Furthermore, the composition of two biproportions is identical to the
second biproportion.

THEOREM 2. K[K(S, M), M’] K[S, M’]. Note that it couM be generalised to
compositions ofbiproportions

K{K. .KtK(S, M), M’] M

Proof Let S and M be two matrices. We write a first biproportion

X K(S, M) ASB with xo Ai&jBj Vi, j,

and

Vi,

Consider then the composition with a second biproportion

X’ K(X, M’) A’XB’ with x;j A ;xijBj. Vi, j,

and

A m. Bjxij Vi,

Bi m’4 A xij Vj.
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with

Let us calculate A’ and B’:

A m. BjAisoBj Vi,

t.A’; m. Bj’s, V

In the same way

and

AAi A7 and B’j.Bj B;.

B)’ m’.j A’[so Vj

Aisijnj Vi, j.x} A,iAisoBTB

Therefore, X’, biproportional to K(S, M) according to M’, is also biproportional to
S according to M’.

Also, the intern composition law K is associative.
COROLLARY. It holds that K[K(S M), M’] K{S, [K(M, M’)] }.
Proof The proof is clear. K[K(S, m), m’] K(S, M’) and K{S, [K(M, m’)] }

K(S, M’).

2.3. Unicity. We have the following lemma.
LEMMA 1. IfKq is any nonspecified algorithm (theform ofUand Vis unknown), with

X Kq(s, M) USV, and ifX’ K(X, M) AXB, then X’ X, i.e., K[Kq(S, m), M]
Kq(s, M). As a special case, we get K[K(S, M), M] K(S, M).

Proof K[Kq(S, M), M] K(X, M). X has the same margins as M, then K(X, M)
K(X, X). From the property of idempotency, K(X, X) X Kq(s, M).

Whatever algorithm is used, let us show that one biproportion is identical to another.
Then choosing K or any other algorithm is of no consequence.

THEOREM OF UNICITY. IfKq is any nonspecified algorithm (theform of U and V
is unknown), with X Kq(s, M) USV, then U and V may be put in the standard
form K.

Proof Let X’ K(X, M) AXB; K is the specified algorithm. According to Lemma
1, this composition of biproportions is a neutral operation. Therefore, matrices A and B
are the identity matrix: Ai for all and B for all j.

Then, as x0 UisoV for all ij

mi. mi. mi.
Ai ,j Bjxij UisoV

Ui , soV
Vi,

m.j m4 m.j
Vj.Vj--

sijUi
Bj

i Aixij i gisijVj i
Therefore, Ui and Vj. have the same form as the equilibrating factors of the bipro-

portion.



494 LOUIS DE MESNARD

This result was obtained without specifying the algorithm of the projector Kq. It is
sufficient to know that gq is a biproportion of S on the margins ofM.

We may apply this result to RAS. The solution of K and the solution of RAS are
identical. RAS is an algorithm that plays the role of gq, and the proof we have given
does not need to be specified in terms of its algorithm. Then, the necessary and sufficient
conditions of existence and convergence of the solution (not presented here, see [1] or
[3]) are identical for K, for RAS, and for any biproportional algorithm. Nonnegativity
of elements of S and M is required.

Biproportion appears to be as universal as proportion is in the one-dimensional
world. This should end the discussion about the theoretical character of biproportion.

3. Some properties specific to biproportion.
3.1. Ineffectiveness of separability. Let us show that if we multiply every term of

a same row or column of the matrix S by the same value, we do not change anything in
a biproportion. Therefore such a modification ofthe s0 is ineffective because it is separable
in rows and columns.

We name separable modification of the terms of a matrix S with n rows and m
columns, a modification ofS that can be reduced to the left product by a diagonal matrix
U of size n, and to the right product by another diagonal matrix V of size m: S’ USV.
A separable modification does not change a biproportion.

THEOREM 3. Let X K(S, M) ASB and X’ K(S’, M) A’S’B’ with S’ USV.
Then X’ ASB K(S, M).

Proof. It holds that X’ A’S’B’ A’USVB’ A"SB", putting A" A’U and B" B’V.
Let us prove that A" A and B" B.

/
-1

m. }s) i,j,

and

A mi. B)llisijl)j Vi, j,

A mi. B’j:so Vi, j,

Bi m.j A}uis1)j Vi, j,

B}’ m4 A’[s6 Vi, j.

Then, the iterative form will be

/
-1

(t + m. }’(tls vi, j.
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If we start with A(1) A;(1), we get

B)(1) Bj(1)

A(2) Ag(2)

and by induction

B;(t) Bj(t) Vj,

A(t + 1) Ai(t + 1) Vi.

Therefore, in the limit, A" A and B" B. Then, X’ A"SB" ASB X. ff]

3.2. Nonreciprocality. Proportion has the property of reciprocality. Ifa vector V2
is proportional to a vector V1 according to k, then V is proportional to V2, according to, and

V2 Vk= O V Vz/k O.

On the other hand, biproportion does not verify the property of reciprocality. (The
proof is given by counter-examples in [3].) Consider two matrices T1 and T2.

Tzij K(T ij Tzi) # Ti9 K( T2ig To) Vi, j.

If the indices and 2 represent periods of time, we can describe the first term

T2i9 K(Tij, Tig) as prospective, and the second term Ti9 K(T2o, To) as retrospective.
In practical applications, nonreciprocality implies that we must calculate twice, once in
the prospective way and once in the retrospective way, and compare the results [3].

Another difficulty is due to nonreciprocality. As proportion is reciprocal, if V2
Vk, we can retrieve V knowing k. As biproportion is not reciprocal, given a biproportion
X K(S, M), we cannot retrieve S without knowing the initial margins of S, even if we
know M, because of the transcendent nature of K.

The property of nonreciprocality could be used to build a coding system for matrices.
To code a matrix is to use a transformation of it that is sufficiently hard to reverse, to
prevent a return from the transformed matrix toward the original matrix. The transformed
matrix X (it could be a matrix of numbers, such as a computer image) is then coded.
Only authorised persons could retrieve the original matrix S, knowing the margins of S;
with the simple proportion applied to a vector, any person could know the elements of
this vector with a factor of proportionality and so, nothing is coded.

However, the system is limited because the coding person who knows the matrix S
to be coded also knows the decoding key, i.e., the margins of S.

4. Conclusion. Since the choice of the algorithm of biproportion is indifferent, bi-
proportion appears as universal as proportion. Then, biproportion is no longer empirical,
and it is possible to make the systematic mathematical treatment of biproportion. How-
ever, biproportion is not a simple generalisation ofproportion: it is iteratively computed,
it is only partially linear, and it does satisfy reciprocality.
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CHARACTERIZATIONS OF SCALING FUNCTIONS:
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Abstract. A dilation equation is a functional equation of the form f(t) -k--0N Ck f(2t k),
and any nonzero solution of such an equation is called a scaling function. Dilation equations play
an important role in several fields, including interpolating subdivision schemes and wavelet theory.
This paper obtains sharp bounds for the HSlder exponent of continuity of any continuous, compactly
supported scaling function in terms of the joint spectral radius of two matrices determined by the
coefficients {co,..., CN}. The arguments lead directly to a characterization of all dilation equations
that have continuous, compactly supported solutions.

Key words, dilation equation, joint spectral radius, scaling function, two-scale difference equa-
tion, wavelet
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Functional equations of the form
N

(1) f(t) Ck f(2t k)
k--0

play an important role in several fields, including wavelet theory and interpolating
subdivision schemes. Such equations are referred to as dilation equations or two-scale
difference equations, and any nonzero solution f is called a scaling function. The
coefficients {co,... ,CN} may be real or complex; if they are real then the scaling
function f will be real-valued.

In this paper we obtain sharp bounds for the HSlder exponent of continuity of any
continuous, compactly supported scaling function. Our arguments lead directly to a
characterization of 11 dilation equations that have continuous, compactly supported
solutions. These methods also enable us to examine how certain properties of scaling
functions, such as the HSlder exponent, behave as a function of the coefficients, and
we provide several examples to illustrate the basic structure present. Our work was
inspired by an early preprint of [DL2], in which sufficient conditions for the existence
of continuous, compactly supported scaling functions were obtained and lower bounds
for the HSlder exponent of continuity were derived. In that paper the assumption was
made that the coefficients satisfy

(2) E C2k E C2k+ 1.
k k

Conditions and bounds were then expressed in terms of the joint spectral radius
(Tolv,Tlv of two matrices To, T (determined by the coefficients {Co,...,CN})
restricted to a certain subspace V of CN. We have extended these results in the
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sense that all dilation equations possessing continuous, compactly supported solu-
tions, without restriction on the coefficients, are now described in terms of a joint
spectral radius (Tolw, Tllw), with the subspace V replaced by a (possibly different)
subspace W, and that sharp bounds for the Hblder exponent follow from the value of
(Tolw,Tllw). The replacement of V by W is not without cost: W depends explic-
itly on the coefficients (co,..., CN}, while V is independent of them. This dependency
nonetheless yields a number of interesting facts about the behavior of scaling functions
as a function of the coefficients (co,..., CN}. For example, we show that the maximum
Hblder exponent of continuity is not continuous as a function of the coefficients. We
give several methods of determining the subspace W explicitly. The results presented
here implicitly characterize those dilation equations having compactly supported, n-
times differentiable solutions, and are generalizable to positive integer dilation factors
other than two and to higher dimensions. An application of the results of this pa-
per to the specific case N _< 3 can be found in [CH1]. The sequel [CH2] discusses
more general characterizations, including discontinuous and noncompactly supported
scaling functions. Finally, we wish it noted that a revised version of [DL2] brought
to our attention the work IMP2], which was the first work to provide necessary and
sufficient conditions for the existence of continuous, compactly supported scaling func-
tions. However, those results are not stated in terms of a joint spectral radius and do
not yield estimates for the Hblder exponent of continuity; in addition, the behavior of
the properties of scaling functions as a function of the coefficients is not examined.

We say that a function h on R is (globally) Hblder continuous if there exist
constants c, g such that Ih(x)- h(y)l <_ g Ix- yl for all x, y e R. The constants
c and K are referred to as a Hblder exponent and Hblder constant for h, respectively.
We refer to

Omax sup {O" h is Hblder continuous with exponent c)
as the maximum Hblder exponent of h, although it should be noted that the supremum
need not be attained, i.e., h need not be Hblder continuous with exponent c Omax.
We make similar definitions for local Hb’lder continuity at a point x, i.e., x is fixed in
the inequality and only y varies.

The application of dilation equations to subdivision schemes is discussed in the
important papers [CDM], [DD], [Du], [DGL], [MP], and IMP2]. Our own interest in
dilation equations arose from their application to wavelet theory. We briefly outline
this relation below; the basic results can be found in the research papers [D], [L], [M],
or in the expository surveys [HI, IS]. Assume that the coefficients (co,..., CN} satisfy
(2) and

2, ifj 0,
(3) Eckk+2J 0, ifj0,

k

where we take ck 0 if k < 0 or k > N. It can then be shown that there exists an
integrable and square-integrable scaling function f. Define the wavelet

(4) g(t) E (--1)k CN-k f(2t k),
k

and construct g,k(t) 2/2 g(2nt- k) by dilation and translation of g. If the scaling
function f is orthogonal to its integer translates (i.e., f f(t) f(t k)dt 0 for k : 0),
then {g,k},kez will form an orthonormal basis for L2(R) after a suitable normal-
ization of g. It can be shown that for nearly all choices of coefficients {co,... ,CN}
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satisfying (2) and (3) the associated scaling function f is orthogonal to its integer
translates and therefore determines a wavelet orthonormal basis.

Example 1. Consider the dilation equation where N 1 and co Cl 1. Both
(2) and (3) are satisfied, and the associated scaling function f X[0,1 is orthogonal
to its integer translates (where HE denotes the characteristic function of the set E).
The wavelet g given by (4) is then g X[o,1/2 -X[1/2,1). The orthonormal basis {gn,k}
determined by this g is known as the Haar system.

The Haar system has the desirable property that the wavelet g is compactly
supported. However, the fact that this wavelet is discontinuous severely limits its
usefulness. An important problem for wavelet theory is therefore the construction
of smooth, compactly supported wavelets. By (4), it suffices to construct smooth,
compactly supported scaling functions. The construction of such scaling functions is
also important in subdivision theory; however, in that framework (3) is irrelevant and
(2) may or may not be assumed. Several authors have proved conditions for the exis-
tence of smooth, compactly supported scaling functions, with varying interpretations
of "smooth," and with varying restrictions on the coefficients. As suggested by the
"self-similar" nature of the dilation equation, a continuous scaling function f is often
"fractal" in nature, in the sense that if it is n-times differentiable then its nth deriv-
ative is Hhlder continuous with Hhlder exponent strictly less than one. Daubechies
and Lagarias have proved that compactly supported, infinitely differentiable scaling
functions are impossible [DL1].

The methods used to prove the conditions referred to above generally fall into the
following three categories or combinations thereof: Fourier transform methods (e.g.,
[D], [DL1], [E], [M], [V]), iterated function system methods (e.g., [W], [D], [DL1],
[DD], [DGL]), and dyadic interpolation methods (e.g., [W], [DL2], IMP2]). In this
paper we use the dyadic interpolation method to characterize all dilation equations
that have continuous, compactly supported solutions, without any restrictions on the
coefficients. However, since a number of facts that will be important to us are more
easily proved using the Fourier transform technique, we briefly review that method.
This technique is based on the equivalent form of the dilation equation on the Fourier
transform side, namely,

where mo() (1/2) E ck eik and/(9/) f f(t) eit dt. If too(O) (1/2) ’ ck 1 then
it follows that

j=l

converges uniformly on compact sets to a continuous function and is a solution to (5).
The inverse Fourier transform # of this function is therefore a solution to (1), at least
in the sense of distributions. One can show that # has support contained in [0, N],
and is the only distributional solution to (1) with a continuous Fourier transform (up
to multiplication by a constant). In particular, there can be at most one integrable
solution to a dilation equation satisfying ck 2 (up to multiplication by a constant
and with uniqueness interpreted as usual as equality almost everywhere), and if one
exists it will have the form (6) and have. compact support. More generally, Daubechies
and Lagarias have proved the following theorem.

THEOREM 1 (see [DL1]). Let coe]flcients {co,..., Cg} be given. If there exists an
integrable, compactly supported solution f to the dilation equation (1), then supp(f) c
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[0, N] and there exists an integer n > 0 such that the following statements hold.
(a) ck=2n+l.
(b) f is unique up to multiplication by a constant and has Fourier transform

](,),) ,),n i-ij__l 2-n m0(2-j,).
(c) There is an integrable, compactly supported solution F to the dilation equation

determined by the coejCficients {2-nc0,..., 2-ncg} and (with the proper choice of scale)
f is the nth distributional derivative of F.

In particular, continuous, compactly supported scaling functions can exist only
when Ck 2n+l, and for n > 0 are the (usual) nth derivatives of scaling functions
satisfying Ck 2. Dilation equations satisfying Ck 2 are therefore in some
sense fundamental. Additional assumptions on the coefficients {co,..., CN} can impose
enough regularity on the infinite product in (6) so that the scaling function can be
proved to be continuous or n-times differentiable, and to bound from below the HSlder
exponent of continuity of the scaling function or its nth derivative. Eirola [E] has nicely
demonstrated that Fourier transform methods are well suited to estimating Sobolev,
rather than HSlder, exponents of continuity of scaling functions.

We turn now to the dyadic interpolation method and our own results. Since we
are concerned mainly with questions of continuity, we assume that scaling functions,
even if discontinuous, are defined for all points in R and satisfy the dilation equation at
all points, not just almost everywhere, as is the case in the Fourier transform method.
This has the seemingly paradoxical effect that a given dilation equation may have
more than one distinct integrable, compactly supported solution. For example, if f is
one such scaling function and if c E C and S c R are given so that both S and its
complement are measurable and invariant under the mapping t 2t- k for all k E Z,
then

](t) { f(t), t e S,
t S,

is also an integrable, compactly supported scalin function. However, by Theorem 1,
either S or its complement must have measure zero (more fundamentally, this also
follows from ergodicity considerations). This leads us to pose the following problem,
which affects the interpretation of Theorem 4 at the end of this paper: Is it possible
that such differing representatives of a compactly supported scaling function may have
differing properties, e.g., if one representative is unbounded, must all representatives
be unbounded?

The dyadic interpolation method is based on this key observation: if the values of
the scaling function at the integers are known then the dilation equation determines
the values of the scaling function at the half-integers, and by recursion at every dyadic
point x k/2n where k, n Z. If f is continuous then this determines its values at
all points (thereby giving an easily programmable method for graphing a continuous
scaling function). Daubechies and Lagarias [DL2] and Micchelli and Prautzsch IMP2]
independently implemented this recursion via products of two N x N matrices, and
used this implementation to obtain conditions for the existence of continuous scaling
functions. We explain this now, using the notation of [DL2].

Given coefficients {co,..., CN}, define the N x N matrices To and T1 by (T0)ij
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C2i--j--1 and (T )ij c2i-j i.e.,

co 0 0 0 0
(32 Cl co 0 0

0 0 0 CN CN-1

and

Cl C0 0 0 0
C3 C2 1 0 0

0 0 0 0 CN

Given x e [0, 1] with x # 1/2, define

{ 2x, 0<x< ,
TX 2x mod l

2x-l, 1/2<x<l,

i.e., if x 1/2 and x .did2... is a binary expansion of x then TX .d2d3 The
value of T(1/2) is undefined. Note that a dyadic point x has two binary expansions, one
ending in infinitely many zeros, and one ending in infinitely many ones. The former
expansion will be termed the upper or finite binary expansion, and the latter the lower
binary expansion. All nondyadic points have unique binary expansions.

The following result allows questions about scaling functions to be translated into
questions about certain vector-valued (specifically, Cg-valued) functions on [0, 1]. The
definition of HSlder continuity for vector-valued functions is analogous to the definition
for ordinary functions, with the absolute value replaced by any norm on CN. The
HSlder exponent of continuity for a vector-valued function is independent of the choice
of norm.

PROPOSITION 1. Let coefficients {co,... ,CN} be given.
(a) Assume f is a scaling function with supp(f) c [0, N]. Define the vector-

valued function v:[0, 1] -+ CN by

:(x)
f(x + 1)

f(x + N- 1)

Then v satisfies

(S) Vi+l(O) vi(1), i 1,..., N 1,
1

() (x) Tov(x), 0 < x < ,
1

(10) v(x) Tv(Tx), - < x < 1,

where vi(x) is the ith component of v(x). If :(O) :(N) 0 (e.g., if f is continuous)
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then v also satisfies

(11)
(12)
(13)

(14) v

el(0) VN(1) 0,

v(O) Toy(O),
v(1) Tie(l),

Toe(i) Tie(O).

If f is continuous then so is v. If f is HSlder continuous with HSlder exponent
then the same is true of v.

(b) Assume v "[0, 1] CN is a vector-valued function satisfying (8)-(14). De-
fine the function f by

(15) f(x) { O, x <_ O or x >_ N,
vi(x), i- 1 _< x _< i, i 1,...,N.

Then f is a scaling function with supp(f) C [0, N]. If v is continuous then so is f If
v is HSlder continuous with HSlder exponent a then the same is true of f.

A vector-valued function v" [0, 1] - CN satisfying (8)-(14) will be called a scaling
vector. If v is a scaling vector then (9), (10), and (12)-(14) can be summarily written

(16) v(x) Td, V(TX), 0 <_ X <_ 1,

where x .did2... is any binary expansion of x, since, by (14), the ambiguity at
x-- 1/2 is nonproblematic.

Note that if f is a scaling function supported in [0, N] and v is defined by (7)
then (12)-(14) follow immediately from (11). Also, note from (1) that co, CN 1
implies f(0) f(N) 0. Thus, for co, CN 1 there is an exact equivalence between
scaling functions and scaling vectors. If Co 1 then it is possible that f(0) : 0, and
in this case it is easy to see that (12)-(14) may fail (a specific example is the Haar
system, i.e., N 1, co Cl 1, and f X[0,1)). Similar remarks hold if CN 1.
However, it follows directly from the dilation equation that if Ic01 _> 1 then f must be
discontinuous at 0, and if ICNI _> 1 then f must be discontinuous at N.

If v is a scaling vector then, by (11), v(0) (O, al,...,aN_) for some a
(ai,...,aN_)t. It follows then from (12) that Ma a, where M is the (N- 1)
(N- 1) submatrix of To and T defined by Mij -c2i-j, i.e.,

(17) M

Cl CO 0 0 0
C3 C2 Cl 0 0

0 0 0 CN CN-1

Thus scaling vectors can only exist when M has 1 as an eigenvalue. This is true, for
example, when (2) is satisfied, for then (1,..., 1) is a left eigenvector for i for the
eigenvalue 1.

CONSTRUCTION 1. We demonstratethat if 1 is an eigenvalue of M, then it is
possible to construct a vector-valued function v, defined for dyadic x E [0, 1] only,
which satisfies (8)-(14). This construction need not be unique if the eigenvalue 1 has
multiplicity greater than 1. In general, it may not be possible to extend this function
to a scaling vector defined at all points in [0, 1] so that the associated scaling function
defined by (15) is integrable. Equivalently, every dilation equation such that 1 is an
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eigenvalue for M can be solved on the restricted domain of the dyadic points in R,
but not necessarily for all points in R.

To construct v, let a (al,..., aN-l) be any right eigenvector for M for the
eigenvalue 1. Define v(O)= (O, al,...,aN_l) and v(1)= (al,...,ag_l,O)t; then (8)
and (11) are satisfied. Given a dyadic x E (0, 1), let x .dl... dm be its upper binary
expansion, and define

(18) V(X) Tdl Turn v(O).
Then (9), (10), and (12)-(14) follow immediately for dyadic x.

As pointed out above, the matrix M must have 1 as an eigenvalue in order that
a scaling vector exist; in particular, this must be the case if a continuous, compactly
supported scaling function exists. Since the derivative of a differentiable scaling func-
tion is itself a scaling function for the dilation equation determined by the coefficients
{2c0,..., 2CN}, it follows immediately that if a compactly supported scaling function
is n-times differentiable, then 1, 2-1,..., 2-n must all be eigenvalues for M. In par-
ticular, n < N- 1, and no compactly supported scaling function can be infinitely
differentiable.

Example 2. Consider the case N 3. If {co, Cl, C2, C3} satisfy (2) then cl 1-c3
and c2 1- co. Restricting our attention to real-valued coefficients (as we will do in
all specific examples in this paper), the collection of four-coefficient dilation equations
satisfying (2) can therefore be identified with the (co, c3)-plane, so that each point in
the plane determines a four-coefficient dilation equation and conversely. We make this
identification throughout when we discuss the case N 3. Despite the fact that the
dilation equation can be solved at dyadic points for any coefficient choice (co, c3), it
is proved in [CH2] that it is impossible to construct integrable, compactly supported
scaling functions for any point (co, c3) on or outside the ellipse shown in Fig. 1, with
the single exception of the point (1, 1). Conversely, integrable, compactly supported
scaling functions do exist for all points in the shaded region of Fig. 1. These scaling
functions are continuous for those points in the shaded region that are also inside the
triangle of Fig. 1, and are differentiable for those points lying on the solid portion of
the dashed line [CH1]. A scaling function for the point (1, 1) is X[0,3). However, the
function v defined in Construction 1 for this point is highly oscillatory, e.g., v(x) takes
each of the values (0, 1, 1) t, (1, 0, 1)t, and (1,’1, 0) on a dense set of dyadic x.

Let us now consider the question of continuity of scaling vectors. Given a scaling
vector v and a dyadic point x .dl... din, consider points y .dl... dmdm+l.., dn
close to x. If v is continuous then Tdl"’" Td. (v(0)- V(T’y)) V(X)- v(y) --* 0
as y x. This suggests that a characterization of continuity for scaling functions
requires consideration of all possible products Tdl... Td. of To and T1 operating on
all possible differences v(x) -v(y). The correct tool for this turns out to be the joint
spectral radius of To, T1 restricted to a certain subspace of CN. We therefore digress
to define the joint spectral radius of general matrices and to give some of its properties
relevant to the results in this paper. Let I1" be any norm on CN, with corresponding
operator norm [IA[I SUpu0 [[Au[[/[[ull defined for N x N matrices A.

DEFINITION 1. The joint spectral radius (A0, A1) of two matrices Ao, A1 is

5(A0, A1) lim sup hm,

where

m ,(Ao, A1) mx IIA Ad. 1/.
d=O,1
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%

FIG. 1.

satisfying (2).
The (co,c3)-plane, identified with real-valued, four-coefficient dilation equations

This definition generalizes the usual spectral radius p(A) of a single matrix A,
which is given by the formula

p(A) -limsup IIAmll l/m max {IAl" I is an eigenvalue of A}.
m---cx

An extension of the joint spectral radius to larger collections of matrices, and to
matrices restricted to subspaces, is made in the obvious way. The joint spectral radius
was introduced by aota and Strang [RS]; some recent papers include [BW] and [DL3].

The joint spectral radius is independent of the choice of norm I1" II, and of the
choice of basis, that is, (Ao, A) (Bo, Bi) whenever B BArB-1 for any fixed
invertible matrix B. Set

max p(Ad Adm) 1/mm m(Ao, A)
d:O,

so that m is the mth root of the largest absolute eigenvalue that occurs among all
products of length m of the matrices A0, A1. Then &, _< t(A0, A1) _< 5, for every
m. In particular, t(A0, A1) _> 1 and generally one expects t(A0, A1) to be strictly
larger than 1. Wang [W] proves the nontrivial result that t(A0, A1) lim sup m.
It therefore follows that sup&m t(A0, A) limm inf tm. As each m is a
continuous function of the entries of A0 and A1, sup &, is lower semicontinuous as
a function of those entries. Similarly, infm is upper semicontinuous, and therefore
t(A0, A) is continuous as a function of the entries of A0 and A [HS].
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The exact evaluation of the joint spectral radius is difficult, except in special cases
such as the following.

LEMMA 1. If Ao and A1 can be simultaneously symmetrized, i.e., there exists
an invertible matrix B such that BAiB-1 is real and symmetric for i O, 1, then
t(A0, A1) (1 max {p(Ao),p(A1)}.

The conclusion of Lemma 1 holds more generally when Ao, A1 can be simultane-
ously Hermitianized.

It is easy to see that given any 0 > t(Ao, A1), there exists a constant C > 0 such
that m

_
C1/m 0 for every m. This need not be true with 0 t(A0, A1). One case

where it is true with 0 t(Ao, A1) is if Ao, A1 are simultaneously symmetrizable,
for then 51 51 (using the Euclidean space norm), and therefore m

_
/1 1

__
(A0, A1) for every m.

Another case in which some simplification of the joint spectral radius occurs is
the following.

LEMMA 2. If Ao, A1 can be simultaneously block upper-triangularized, i.e., there
exists an invertible matrix B such that BAiB-1 has the block form

BAiB-1 ".. i 0, 1,

for some square submatrices C1 C, then (A0, A1) maxj=l k {/(Cg, C1)}.
In particular, if each block C is a single number--meaning that A0, A1 can be si-

multaneously upper-triangularized--then (A0, A1) 1 max (p(Ao), p(A1)}. The
proof of Lemma 2 follows easily from block matrix multiplication and consideration
of the eigenvalues of the products BAd1 Ad.B-1.

We return now to the matrices To, T1 and the scaling vector v. Assume that (2)
holds; then (1,..., 1) is a common left eigenvector for both To and T1. Hence the
(N- 1)-dimensional subspace

V {u E CN Ul --... +UN O}

is invariant under both of those operators since it is the orthogonal complement of
(1,..., 1) in CN. By (18), V contains every difference v(x)- v(y) for dyadic x, y e
[0, 1]. This observation suggests consideration of the joint spectral radius (Toly, T1 Iv)
of To, T1 restricted to the subspace V. Note that since V is invariant under both To
and T1, there exists a change-of-basis matrix B such that

(19) BTiB_ ( S . )0 1 =0,1,

where So, 1 are (N-l) (N-l) matrices, and (Tolv,Tllv) (So, S1). A sufficient
condition for continuity and a lower bound for the maximum Hhlder exponent of
continuity is provided by the following theorem of Daubechies and Lagarias.

THEOREM 2 (see [DL2]). Assume that coe]:ficients {co,..., CN} satisfying (2) are
given. If (Tolv,Tllv) < 1 then a continuous scaling vector v exists, and is Hhlder
continuous with Omax

_
log2 (T01v, TIlV). The exponent a log2 t(Tolv, Tllv)

is allowed if there exists a constant C > 0 such that m <_ Ci/m (Tolv,TIlv) for
every m.

We emphasize that the value -log2(Tolv, TllV in Theorem 2 is only a lower
bound for the maximum Hhlder exponent, i.e., the theorem does not imply that v
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cannot be H61der continuous for exponents a > -log2(Toly,Tlly).
Note that if (2) does not hold, then V need not be invariant under both To and

T1, and therefore (Toly, T Iv) need not be well defined. The necessary and sufficient
conditions for the existence of continuous, compactly supported scaling functions pre-
sented below do not depend on (2).

The problem of characterizing all choices of coefficients {co,..., CN} for which
(Tolv,TIv < 1 is difficult. Of course, (Tolv,TIlv) <_ m for each m and thin de-
pends on only finitely many matrices; however, the number of matrices involved grows
exponentially with m and therefore/m can be computed in practice only for small m.
A recursive algorithm, based on the building blocks idea of [DL2], for bounding a joint
spectral radius from above with minimal computation is given in [CH1].

Theorem 2 implies that continuous scaling vectors exist for every coefficient choice
in the set

CV {{C0,...,CN} satisfying (2)’(Tolv,TIv) < 1}.
This is an open set since (Tolv,TIv is a continuous function of the coefficients
{co,..., CN}. The lower bound log2 (Toly, TIlV) for the maximum Hhlder exponent
given in Theorem 2 is also a continuous function of the coefficients. However, we show
in Example 7 that amax itself is not continuous as a function of the coefficients, even for
coefficients in Cv. Despite this, we can prove that if (2) holds then the corresponding
scaling functions change in a continuous manner (with respect to the sup-norm) as
the coefficients change within Cv. This result takes advantage of the fact that V is
independent of the coefficients.

PROPOSITION 2. Fix {c0,...,Cg} 6 Cv and let f be the corresponding scaling
function. For each e > 0 there exists a > 0 such that if {50,..., 5N} satisfies (2) and
Ici 5 < .for i 0,..., N then there is a continuous, compactly supported scaling

] {e0,..., If( ) <
Proof. For each > 0 set

Uv {{50,...,5N} satisfying (2)’1ci- 5il <_ , i= O,...,N}.
Since {c0,...,Cg} 6 Cv, there must exist an integer m such that (Tolv, TIlv) <_
t- < 1. As tm depends on only finitely many matrix products, there must be , r/> 0
such that if {50,...,5N} 6 Uv then (oly,ly _< thm < 0 < 1, where 0, 1 are
the matrices corresponding to {50,..., 5N} and tim maxdj=0,1 II(dl"’" d.)lyll 1/m.
Therefore, for each {50,..., 5N} 6 Uv, there exists a corresponding continuous scaling
vector # that is Hhlder continuous with exponent 5 satisfying

) >_ a -log20.

Careful examination of the proof of Theorem 2 given in [DL2] reveals that correspond-
ing Hhlder constants K for satisfy

where

and

2CRk<

max ( (thmr)r )r--0,...,m--

sup II (t)ll < ( (max{li ll’ I1 111} + 1)
t[O,1] "’"
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The quantities ( and / axe continuous as functions of the coefficients, so K
sup{o N}u, K < c.

e Let Sn be theNow let e be given and choose n large enough that 2-nK < .
set of all dyadic points in [0, 1] with finite binary expansions of length n or less. The
functions 9 are completely determined on Sn by 9(0) and the 2n matrices of the form
d,’’" dn" Hence, there exists a i < such that supxes [Iv(x) (x)[[ < for all
{50,..., 5N} E U. Given y E [0, 1] arbitrary, there is an x Sn with [y-x] < 2-n, so

IIv( ) < IIv( ) v(x) + IIv(x) + II (x)
<_ g ly-xl + - + g]x-yla

The result now follows once we recall that all norms on CN are equivalent, and note
that the sup-norm for scaling vectors is equivalent to the sup-norm for the associated
scaling functions.

Theorem 2 states that the condition (Tolv,TIlv) < 1 implies the existence of
a continuous, compactly supported scaling function. The following example, inspired
by [W], shows that (Tolv,TllV) < 1 is not, in general, necessary for the existence of
a continuous, compactly supported scaling function.

Example 3. Fix N, choose coefficients (co,... ,CN} satisfying (2), and let f be
the associated scaling function. Let d > 1 be any odd integer, set N Nd, and define
coefficients {50,..., 5} by

{cj, ifk=jd,
ck

0, ifkCjd.

Let 0, 1 be the matrices corresponding to {50,...,5}, and let be the cor-

responding subspace of C. By construction, the coefficients {50,...,5} satisfy
(2), and the associated scaling function is ](t) f(-). It must be the case that

(01ff, llff) >- P(01ff) >- 1 since both (1, 1,..., 1) and (1, 0, 0, 1, 0, 0,..., 1, 0, 0) are

left eigenvectors for 0 and 1 for the eigenvalue 1 and dim() /- 1. How-
ever, if (Tolv,TIv < 1 then f, and therefore ], will be continuous. The dilation
equation defined by the coefficients {50,..., 5} is referred to as a stretched dilation
equation. Wang examined stretched dilation equations using iterated function system
techniques.

For a stretched dilation equation, the differences v(x)- v(y) are contained in
a lower-dimensional subspace of V, and therefore the value of (Tolv, TIlv) may be
determined by vectors not directly related to the scaling vector v. This suggests that
better results might be obtained by replacing V with the subspace

W span{v(x)- v(y) dyadic x, y [0, 1]}
span{v(x)- v(0) dyadic x [0, 1]}.

Note that W is invariant under To, T1 by construction, without the need to assume
(2). If (2) does hold then W c V. Note also that W depends explicitly on the scaling
vector v, while V does not. We show in Theorem 3 below that (Tolw,Tlw < 1
is sufficient to ensure the existence of a continuous scaling function, and we give
several examples illustrating the distinction between V and W and its consequences.
Moreover, by considering W instead of V, we obtain necessary conditions for the
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existence of continuous scaling functions. These necessary conditions can be illustrated
by the following example.

2-

-1-

-2

1.5 2

FIG. 2. Subsets of the (co, c3)-plane: region where either 20 < 1 or (Tolv, T1 Iv) < 1 due

to simultaneous symmetrization (shaded area); boundary of the region where 20 < 1 (solid curve).

Example 4. Consider N 3 as in Example 2. The shaded region in Fig. 2 is the
union of the set of points (co, c3) where 2o(Toly, Tlly) < 1 (obtained by numerical
computation using the Euclidean norm) and the set of points (co, c3) such that So, $1
defined by (19) are simultaneously symmetrizable with t(T01y, TIlV) (So, $1) < 1.
Theorem 2 therefore implies that continuous, compactly supported scaling functions
exist for each point in the shaded region.

To derive a necessary condition, consider the behavior of the scaling vector v
near the point 0. If v is continuous, then necessarily v(2-m) -+ v(0) as m -- oc. It
is straightforward to check by evaluating v(2-m) Tv(1) directly that this occurs
if and only if Ic01, I1 -co -c31 < 1. Similarly, the continuity of v at 1 implies Ic31,
I1 co c31 < 1. The eigenvalues of T01v, [/ly combined are co, c3, and 1 co c3,
so if v is continuous then &I(Tolv,T1.1v) < 1. Moreover, this analysis shows that
IIv(2-m) -v(0)l is on the order of &[, so the maximum Hhlder exponent of continuity
of v is at most log2 &l. The region of points (co, c3) such that &l < 1 is the interior
of the triangle shown in Fig. 2, i.e, continuous scaling vectors are restricted to points
in the interior of that triangle. [_-]

The case N 3 is simple enough that the result of Example 4 can be obtained
directly by evaluating v(2-m) as a function of the coefficients {co,..., Cg}. Although
this exact evaluation cannot be done at arbitrary points, the spirit of the approach
of Example 4 is used in the proof of Theorem 3(b) below to obtain that continuity
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implies 5m(Tolw, T11w) < 1 for every m. Specifically, the matrices To, T1 are replaced
by products T Tall ""Td., the eigenvalues co, c3, 1 -Co -c3 of Toly, TIIv by
eigenvalues of TIw and the points 2-m, 0 by points X,, Ym depending on the product
T. We must replace V by W to ensure that v(X,) v(Ym) will have a component
in the required eigenspace of T. This was unnecessary for the case N 3 since the
dilation equations for that case are very restrictive, cf. Example 5. For N 3, the set
of points (co, c3) such that &20 < 1 is the interior of the solid curve shown in Fig. 2,
i.e., continuous scaling vectors are restricted not only to the interior of the triangle,
but to the interior of the region bounded by the solid curve.

Since (Tolw, Tllw) sup(m, the preceding remarks suggest that the value
of (T01w, Tlw) is essentially the single determining factor for the existence of a
continuous scaling function. This is made precise in the following theorem. Recall
that scaling vectors can exist only when the matrix M defined by (17) has 1 as an
eigenvalue.

THEOREM 3. Assume the coeJficients {co,..., CN} are such that 1 is an eigenvalue
for M.

(a) Let v be the vector-valued function defined for dyadic x constructed in Con-
struction 1. If (Tolw, Tlw < 1 then v extends to a continuous scaling vector.

(b) If v is any continuous scaling vector then (Tolw,Tlw < 1. In this case v
is Hhlder continuous with amax log2/(T01w, T Iw), and the exponent a amax is
achieved if and only if there exists a constant C > 0 such thatm <_ C/’ (Tolw,TIlw)
for every m.

The proof of Theorem 3 is given below; we first make some remarks on its state-
ment, consider how to determine W, and examine the relationship between V and W
for those dilation equations satisfying (2).

First, note that the subspace W depends explicitly on v. Thus, in the hypothesis
of Theorem 3(a), the vector-valued function of Construction 1 must be determined
before W and (Tolw, T Iw) can be evaluated.

Second, in the hypotheses of Theorem 3(b), note that if v is a continuous scal-
ing vector, then it agrees at dyadic points with the vector-valued function given in
Construction 1. Thus

Cw {{co,... ,CN} satisfying (2)’(Tolw,TIlw) < 1}
is the precise set of all dilation equations satisfying (2) that have continuous, compactly
supported solutions, cf. the definition of Cv following Theorem 2. Example 7 below
presents a specific case where Cw Cv for reasons other than trivial cases such as
stretched dilation equations.

Finally, note that since the derivative of a differentiable scaling function is itself
a solution of another dilation equation (with coefficients multiplied by two), Theo-
rem 3 implicitly characterizes those dilation equations having compactly supported,
n-times differentiable solutions. This higher-order characterization, and the fact that
computation of the joint spectral radius can often be simplified when the coefficients
satisfy Ck 2 and the sum rules -’(-1)k kick 0 for j 0,... ,n, is elaborated
on in [HC].

We now discuss several methods of determining the subspace W explicitly. Note
that W is one subspace that is invariant under both To and T1. The following
proposition provides a means of recognizing which invariant subspace is W by ex-
amination of the single vector v(1)- v(0). This vector is easily computable since

v(O) (O,a,...,aN_) and v(1) (a,...,aN_,O) for some eigenvector a
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(hi,..., aN-1)t of the matrix M for the eigenvalue 1. If the multiplicity of this eigen-
value is one, then v(0) hnd v(1) are uniquely determined up to multiplication by a
constant.

PROPOSITION 3. W is the smallest subspace of CN invariant under both To and
T which contains the vector v(1)- v(O).

Proof. Let U be the smallest subspace of CN invariant under both To and T
which contains the vector v(1) v(O). Then U c W, and v(1) v(O) + u for some
u E U. Since T0v(1) Tlv(O) v(1/2) we have v(21-) v(0) T0v(1)- v(O) Ton U.
Continuing in this manner we obtain that if x .dl... dm [0, 1] is dyadic, then
v(x) v(O) Td, Td, v(O) v(O) U, whence U D W.

The following corollary gives sufficient conditions for W to be all of V, assuming
that (2) is satisfied. A hyperplane in Cg is any translate of a subspace of Cg.

COROLLARY 1. Assume (2) holds. If {v(x) dyadic x e [0, 1]} is not contained
in any hyperplane in CN of dimension N- 2 or less, then W V. In particular, if
span{v(x) dyadic x e [0, 1]} CN, then W V.

Proof. It follows from the hypotheses that {v(x)- v(0): dyadic x e [0, 1]} is not
contained in any hyperplane of dimension N- 2 or less. Since this set is contained
in the (N- 1)-dimensional subspace V, it follows that V is its span, and therefore is
W.

If the components of v(0) add to zero then v(x) Y for every dyadic x and
therefore span(v(x) dyadic x [0, 1]} C Y CN, yet it may still be the case that
{v(x) dyadic x e [0, 1]} is not contained in any hyperplane of dimension N-2 or less.
If the components of v(0) do not add to zero then span(v(x) dyadic x e [0, 1]} Cg

if and only if {v(x) dyadic x e [0, 1]} is not contained in any hyperplane of dimension
N- 2 or less. Lawton ILl proved that if (2) holds then an integrable, compactly
supported scaling function f satisfies f(t J- k) f f ](0) almost everywhere.
Since f must also satisfy ]() ](0) YI m0(//2J), cf. (6), it must be the case that

](0) 0, and thus ig__l vi(x) ](0) 0 almost everywhere. In particular, if (2)
holds and the components of v(0) add to zero then v cannot be continuous.

Corollary 1 is easily implemented only for small values of N. In general, the
hypotheses of the following proposition are easier to check.

PROPOSITION 4. Assume (2) holds, and let T Tdl Td. be any product ofTo,
T1 such that

(a) T has distinct eigenvalues, and
(b) there is some dyadic z e [0, 1] such that v(z) has a component in each of the

eigenspaces of T.
Let z .ZlZ2 be any binary expansion of z, and define xo,... ,XN-1 by xo z,

Xl -.dl...dmzZ2..., x2 --.dl...dmd...dmZlZ2..., etc. Then {v(xo),..., V(Xg-)}
forms a basis for CN, and therefore W V.

Proof. Note that v(xi) Tiv(z) for 0,...,N- 1. Let A1,...,AN be the
distinct eigenvalues of T; then, by hypothesis, v(z) Ul +...-}- UN where each
ui is a nonzero eigenvector for T corresponding to the eigenvalue ,ki. Assume that
{v(z),..., Tg-lv(z)} was not a basis for cN; then there exist scalars 1,..., aN, not
all zero, such that

0 O1V(Z) J- O2Tv(z) + + aN TN-v(z)
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-- aN 1N-1 Ul -}- -[- aN NN-1 itN.

As {it1,... ,ttN} forms a basis for CN we must therefore have al + a2 Ai + +
aN /N-1 0 for 1,... ,N, i.e., A1,... ,AN are roots of the polynomial p(A)
al -]- a2 -- -" aN N-1. As p has degree at most N 1, this is therefore a
contradiction. [

Typically, the product T and the value of z in the hypotheses of Proposition 4
are chosen so as to simplify computations, as in the following example.

Example 5. Fix N 3 as in Example 2 and consider Proposition 4 with T To
and z 1. The eigenvalues of To are 1, co, and 1- co- c3; assume these are distinct.
Corresponding eigenvectors of To are Ul v(0) (0, co, C3)t, it2 (1 2c0 c3, 2c0
1,3)t, and tt3 (0, 1,--1)t. Up to multiplication by a constant, v(1) (c0, c3, 0)t.
Since 1 2c0 -c3 # 0,

co ca(i-co-ca)v(1) Ul - it2 -}- ’tt3.1 2c0 c3 1 2c0 c3

Thus v(1) has a component in each of the eigenspaces of To, and therefore W V,
provided that co, c3, 1- co- c3 # 0.

Compare the above computation to the result proved in [CH1], that {v(x)
dyadic x E [0, 1]} is not contained in any line in C3 if co, c3, 1 -co -c3 0; hence
W is all of V in that case. When 1 co c3 0, then W has dimension 1 and hence
is a proper subset of V. This case is not the result of a stretched dilation equation,
but rather arises from the presence of zero eigenvalues. In particular, the eigenvalues
of Toly are co and 1 co c3 and the eigenvalues of TIlV are c3 and 1 co c3.
If i -co -c3 0 then zero is a common eigenvalue of Toly and TIlV; moreover,
the corresponding eigenspaces are identical. Note, however, that (Tolv, TIlv)
D(Tolw,Tllw) despite the fact that Y W, since the zero eigenvalue does not impact
the value of the joint spectral radius.

The next example is another simple illustration of how W may differ from V
without the joint spectral radius being affected.

Example 6. Given coefficients {co,..., CN} satisfying (2), define 5i ci for i
0,...,N and 5N+1 0. Let f, v, W, etc., be the usual items associated with

{co,..., CN}, and let ], , IV, etc., be the corresponding items associated with {50,...,
N+I }. Clearly ] f, yet ld , even if W V, since

UN 0, UN+I 0} # . Wang [W] demonstrates that (Toly, TIlV)
and it follows similarly that (Tolw, Tllw) t3(01,211). If W Y then these
four numbers are equal, despite the fact that ld .

The calculations in the preceding example are carried out by placing To and T1 in
block upper-triangular form, as follows. Suppose we are given any dilation equation
satisfying (2) such that W is a proper subspace of V, say J dim(W) < N- 1. Since
both W and V are invariant under To and T1, there will be a change-of-basis matrix
B such that BToB-1 and BT1B-1 have the block upper-triangular forms
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P *)BTiB-1 0 Qi
o o 1

=o, 1,

where the matrices P are J x J and the matrices Q are (N- J- 1) x (N- J- 1).
Hence,

(Tolw,Tlw) (Po, P)
and

(Tolv,TIIv max {5(P0, P1), (Q0, Q1)}.

One such basis choice is the eigenvector basis for To (if it exists), in which case To is
diagonalized and T can be block upper-triangularized.

Our next example presents a class of dilation equations for which the distinction
between V and W plays an important role in determining the continuity of the associ-
ated scaling vectors. In particular, this example illustrates the fact that the maximum
Hblder exponent is not continuous as a function of the coefficients {co,..., CN}.

FIG. 3. The (cO,Cl)-plane, identified with symmetric, real-valued, seven-coefficient dilation

equations satisfying (2).

Example 7. Set N 6 and consider the two-parameter family of all symmetric
sets {co, c, 1/2 co, 1 2c1, co, Cl, co} of real coefficients which satisfy (2). We
identify these dilation equations with the (co, c)-plane. The shaded region in Fig. 3
is a numerical approximation of the region {(c0, ci): 16(Tolv, T11v) < 1} (using the
norm Ilull Itil--... -It61) and is therefore a subset of Cv, i.e., all points in this
region give rise to continuous, compactly supported scaling functions. We discuss
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several subfamilies of the (co, Cl)-plane below; in particular, the three lines shown in
Fig. 3 are discussed in parts (b), (c), and (d).

(a) The point (1/2,0) corresponds to a stretched dilation equation, and the asso-
ciated scaling vector is v(x) (x, x -4- 1, x + 2, 3 x, 2 x, 1 x)t. Therefore W is
a line in (36 and hence is a proper subset of V. Although (Toly, TIlV) 1 we have
(Tolw, Tlw) 1/2, and v is Hhlder continuous with Hhlder exponent 1. In particular,
Cv is a proper subset of Cw.

(b) Consider now those dilation equations in the (co, Cl)-plane lying on the line
(Co, c) (1/2 + ,-t), E R. When t 0 this is the stretched dilation equation
discussed in part (a). When 5 0, Proposition 3 can be used to show that dim(W)
3. Furthermore, P0, P1 can be simultaneously block upper-triangularized to the form

Ri * )0

where R0, R are 2 x 2 matrices. If < - or 5 > -1/4 then R0, R can be simulta-
neously symmetrized. The 2 x 2 matrices Q0, Q can be simultaneously symmetrized
for all 5, whence

1, 21 (Tolw,Tllw) max {, 11/2 + 11/2 + }
and

(Tolv, Tiv max{1/2,
at least for [-},-1/4]. In particular,

 (Tolw.T lw)  (T01.. TII.) 1/2.
 (Tolw.Tllw) 1/2 <  (T01..TII.) < 1.
 (T01w. T lw) < 1 <  (T01.. TII.).

<<- -,
-1<<06

0<<.
The stretched dilation equation (1/2,0) is therefore a boundary point of Cv, yet belongs
to Cw, and there exist nonstretched dilation equations in Cw that are not in Cv.

(c) Consider next the dilation equations lying on the line (co, Cl) (5 + t, ).
0). Applying Propo-Again, 0 corresponds to the stretched dilation equation (5,

sition 4 we find that W V for all # 0 (we can ignore those finitely many 5 for
which the eigenvalues of To are not distinct).. Therefore (Tolw, Tilw) > p(Tolw) > 1
for 5 [(-3- v/)/8,-}], i.e., there do not exist any continuous scaling functions

corresponding to 5 [(-3- Vz)/8,-]. Thus, although (Tolw,Tllw) < 1 at the
point (1/2,0), an arbitrarily small change in the coefficients can result in a dilation
equation with (Tolw,Tllw) > 1, i.e., (Tolw,Tllw) is not a continuous function of
the coefficients since the subspace W can change abruptly. Proposition 2 with W in
place of V is therefore false.

(d) Finally, consider those dilation equations lying on the line (co, c) ( +
5, + 5). The point (, ), corresponding to 5 0, also lies on the line considered
in part (a), and satisfies (To]w,Tllw) 1/2, (Tolv,TIlv) , and its associated
scaling vector is continuous with Hhlder exponent 1. For 5 # 0, Proposition 4 can
be used to show that W Y. Since (Tolv,TIlv) is a continuous function of the
coefficients (c0, Cl), given small we c.an find a 50 > 0 such that I(Tolv,TIlv)- 1 <
when 0 < 151 < 50. Thus the scaling vectors for 0 < 151 < 50 are continuous,

with maximum Hhlder exponent a < -log2(s5- -) < 1. However, the maximum
Hhlder exponent corresponding to 5 0 is exactly 1. As a function of the coefficients
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(CO, 1), the maximum Hhlder exponent is therefore not continuous. By comparison,
(Tolv,Tllv) < 1 for 0 _< 151 < 50, so by Proposition 2 the associated scaling vectors
deform continuously with respect to the sup-norm as 5 varies.

In the examples we have considered, the sets W and V are equal except under
restricted conditions. We therefore conjecture that for each fixed N, the set of coeffi-
cients {co,..., CN} satisfying (2) such that W V is a set of measure zero in the set
of all coefficients satisfying (2).

We turn now to the proof of Theorem 3, for which we require a definition and
lemma. In the statement of Proposition 4, the matrix T was assumed to have distinct
eigenvalues, and hence T had a full set of linearly independent eigenvectors. Therefore,
the definition of "component" used in hypothesis (b) of Proposition 4 was obvious.
Now let A be an arbitrary N N matrix with complex entries. If E C is an
eigenvalue of A, then U {u E cN (A_A)ku 0forsomek > 0} is an A-
invariant subspace of CN, for if u U, then Au (A-))u + Au U. By standard
Jordan decomposition techniques we can write CN U @ Z, where Z is a unique
A-invariant subspace of (N [Her]. Any vector u CN can therefore be uniquely
written u u + z where u U and z E Z. We say that u has a component in U
if u 0; note this implies u 0.

One of the basic tools of our analysis is given in the next lemma.
LEMMA 3. Let A be an N N matrix and let be any eigenvalue of A. Ifu CN

has a component in U, then there is a constant C > 0 such that IIAnull >_ C I)1n for
alln >0.

Proof. As all norms on CN are equivalent, it suffices to prove the result for the
Euclidean space norm Ilull (lull 2 +... lUNI2) /2.

Let CN U @Z be the standard Jordan decomposition induced by A. The sub-
space U), can be written U U @... @ Up, where each Ui is a nontrivial, A-invariant
subspace of U that cannot be further decomposed into A-invariant subspaces. As u
has a component in U it must therefore have a component in some Ui, say U. Let
Z1 U2 (’" ( Up ( Z, so CN Vl ( Z1 and U, Z1 are A-invariant.

Since U is finite-dimensional there must exist a smallest positive integer m such
that (A-))mw 0 for all w

_
U1. Let u U be such that (A A)m-ul = 0 and

set Uk (A- A)k-ul for k 2,... ,m. Since U1 is indecomposable, (Ul,...,
comprises a basis for U. Moreover, the (u} satisfy the relationships

Auk Uk+l + . uk fork---1,...,m-1,
(20) Aum ) Urn.

Consider now the vector u; we have u v +... + vm + z where each vk is a scalar
multiple of uk and z Z. Since u has a component in U, at least one of the vk is
nonzero. Let k* be that positive integer such that vk. 0 while vk 0 for k < k*.
Then (20) implies that

(21) Ann An vk* / E Pk,nVk + Az,
k>k*

where each Pk,n is a polynomial in of degree at most n. Now let Z2 denote the
proper subspace of CN generated by Z1 and {Uk :k k*}. Since dim(Z2) N- 1,
there exist unique vectors z* Z2 and u* Z2 +/- such that Vk. u* + z*. Moreover,
u* 0 since vk. Z2. It follows then from (21) that for each n > 0,

A’u A’u* + A’z* + Pe, vk + A’z Anu* -’ Zn
k>k*
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where zn E Z2. Since u* is orthogonal to zn, we therefore have

IIA"II I1,,,*11 + IIz,,ll >_ Il:"[l*ll.
The proof of Lemma 3 can be simplified if A is diagonalizable.
Proof of Theorem 3. (a) The fact that the hypothesis (Tolv,Tllv) < 1 in Theo-

rem 2 can be replaced by (Tolw, Tlw) < 1 and that the assumption of (2) is then no
longer necessary is a simple observation following from the proof of Theorem 2 given
in [DL2]. Moreover, the same proof implies that v is Hhlder continuous for each ex-
ponent 0 <_ O/< -log2(To[w,Tlw), or 0 <_ O/<_ -log2(Tolw,Tlw if there exists
a constant C > 0 such that m <- C/m (Tolw, TIw) for every m. In particular,
O/max

_
log2 (ToIw, TIlW).

(b) Assume that v is a continuous scaling vector; then v is Hhlder continuous
for some exponent O/in the range 0 _< O/ _< 1. Let K be any corresponding Hhlder
constant.

Choose any m > 0, and let T Tdl Td. be any fixed product of the matrices
To, T1. Let A be any eigenvalue of TIw. By definition of W, there must be dyadic
points x, y E [0, 1] such that v(x)-v(y) has a component in U), (u W" (T-A)ku
0 for some k > 0}. Let x .XlX2... and y .Yly2... be binary expansions of x and
y, respectively, and define the dyadic points Xk, Yk for k > 0 by

X .d dmXlX2 Y .d dmyly2

X2 .d dmd dmXlX2 Y2 .d dmd dmYlY2
etc., so v(Xk) Tkv(x) and v(Yk) Tkv(y) for all k > 0. We then have by Lemma 3
that

IIv(Xk v(Yk Tk (v(x) v(y) >_ C I1k

for some constant C > 0 independent of k. Since IXk Ykl 0 as k oc and v is
continuous, we must therefore have IAI < 1. In fact, IXk Ykl- 2-mk x Yl, SO

IIv(Xk) v(Yk)ll

_
K), [Xk Yk[’

for all k, where O/ -log2 I1/ and K C Ix- yl -a. However, by the Hhlder
continuity of v,

[[v(Xk v(Yk <_ g IXk Yk [a
for all k, so IXk Yk[-" >_ K/K for all k. Since [Xk Ykl - 0 as k -. oc, this
implies O/<_ O/x.

Taking the supremum over all eigenvalues of T Tdl... Td. for all choices of
dj 0, 1, we obtain 5m < 1 and O/_< -log2 m. Thus f3(To[w, T1 [w) sup 5, _< 1
and O/_< -log2(To[w,T[w), so O/max _< -log2(Tolw, T[w). Combining this with
the proof of part (a), we obtain O/max log2 (To[w, TlIw).

Suppose that O/= O/max. Then given any x .xx2... and y .yly2..., we have

IITd Td (v(x) v(Y))il IIv(X) ’(Y)II K IX YI K (2-’ Ix yl),
where X .dl ...dmXlX2... and Y .d ...dmYlY2 By considering a basis
{(x) -v(yj)}j=l for W, we obtain that there is a constant C > 0 such that

IITd’"Td,Wll <_ C2-’’ I[w[] for every w e W, and therefore /, _< CI/m 2-C1/m P(T0 Iw, TI[W).
The proof is now complete except for the case of a dilation equation satisfying

(22) suphm (To[w,TI[w) 1 and 5m < 1 for every m.
m
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Assume therefore that a continuous scaling vector exists for a dilation equation satis-
fying (22). Then each 3m _> 1, and so for every m > 0 there is some product of
Tlw of length in having norm greater than or equal to 1. Using a diagonalization
process, we can therefore construct a sequence dl, d2,.., so that Sm Td Td, sat-
isfies IISmlwII-> 1 for all m. Let (v(xj) v(yj) J}y=l be a basis for W. Then there exist

vectors Um =g am,.# (v(x)-v(y)) W such that IlUmll 1 and IISmumll > 1 for
every m. Since W is finite dimensional, we can (by taking subsequences if necessary)
suppose that for each j the limit ay limm-+oo amj exists. Then SmUm -+ u with

Ilull limm-+oo IISmUmll _> 1. Now, by the continuity of v, we have that SmV(X.),
SmV(yj) --+ V(X) as m -+ oo, where x .did2..., so

u lim SmUm
m--cx)

J J

mlim,x, am,j Sm(v(xj) v(yj)) aj (v(x) v(x)) O,
j--1 j--1

a contradiction. [J
The proof of Theorem 3(b) raises an interesting question: Do there exist dila-

tion equations such that (22) holds? A scaling function for such a dilation equation
must be discontinuous by Theorem 3(b). More generally, the same existence ques-
tion can be asked with the value 1 in (22) replaced by any positive number; we do
not know of any specific examples of such dilation equations, i.e., dilation equations
for which the supremum supm is not achieved for any m. Note that superm (1
when simultaneous symmetrization occurs; however, the supremum may be achieved
even though simultaneous symmetrization does not occur. For example, consider the
dilation equation defined by N 3 and (co, c3) (1/2, 1/2). In this case V W and
sup Sin 2 > 5. Lagarias and Wang have conjectured that the supremum must
always be achieved; in [LW] they prove several results related to this conjecture.

Theorem 3 discusses only global HSlder exponents. It is possible for a local
HSlder exponent at a particular point to be strictly greater than the maximum global
HSlder exponent. For example, assume (Tolw,Tllw) < 1; then v is continuous
by Theorem 3, and its maximum global HSlder exponent of continuity is amax
-log2(ToIw,TIlw). Fix any product T Tdl""Td,, and let z be any rational
point whose binary expansion is of the form z .zl... znd....dmd.., dm If
y > z with 2-n-(k/l)m _< y- z < 2-n-kin, then the first n /km digits of y are the
same as those of z (using the upper binary expansion of z if z is dyadic). Therefore

IIv(y) v(z)ll IITz, Tz,Tk (v(T’+k’Y) v(Tn+kmz))II

< C Ok

C O--(n+m)/m (2-n-(k+)m)-og. o/’

< C’ 0-(’+’)1’’‘ ly- zl -lg011’’‘

where p(TIw < 0 < 1 and C and C’ are constants independent of k. Using a similar
argument from the left (with the lower binary expansion for z if z is dyadic), we
conclude that v is locally HSlder continuous at z at least for each exponent az in the
range

log2 p(TIw)1/m, if m > 1,
(23) 0 <_ az <

log2 max(p(T01w), p(Tllw)}, if m 1.
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Thus the maximum local Hhlder exponent at z is bounded below by the right-hand
side of (23). This quantity depends only on the single product T (or on To and T1 if z
is dyadic), and therefore can be strictly greater than the maximum global exponent,
which depends on all possible products of To and T1. The proof of Theorem 3(b)
demonstrates that the right-hand side of (23) is the maximum local Hhlder exponent
at the point x .d... dmd.., dm If Tolw and TIw are invertible, then

and therefore in this case the right-hand side of (23) is also the maximum local Hhlder
exponent at any z of the form z .Zl zndl.., dmd.., dm

Example 8. Consider N 3 as in Example 2. Given coefficients (co, c3), the maxi-
mum local Hhlder exponent of continuity at any dyadic point is O/dyadic

log2 max {Ic01, Ic31, I1 co c31}. Consider the following specific examples.
(a) In [CH1] we determined that the scaling function determined by (co, c3)

(0.6,-0.2) is Hhlder continuous with maximum global Hhlder exponent somewhere in
the range 0.598 _< O/max

_
0.600. However, O/dyadic --log2 0.6 0.737. This is the

largest maximum local Hhlder exponent at dyadic points for (co, c3) satisfying both
(2) and (3).

(b) If max {Ic01, Ic31, II-c0-c31} < 1/2 then O/dyadic strictly exceeds 1. It follows that
v is differentiable at all dyadic z with v’(z) O. If v was differentiable everywhere,
then this would imply that v was identically constant, which is not the case. For
example, for (co, c3) (1/2, 1/2), the maximum global Hhlder exponent is only O/max

0.891.
Finally, we use the techniques applied in the proof of Theorem 3 to make some

observations about discontinuous scaling functions. In particular, we obtain the fol-
lowing theorem.

THEOREM 4. Assume v is a scaling vector.
(a) /f (Tolw, T1]w) >_ 1 with m >_ 1 for some m, then v is discontinuous. If

Tolw, TllW are invertible, then discontinuities occur on a dense set of rational points
in [0, 1].

(b) If (Tolw,Tlw > 1, then v is unbounded. If Tolw, Tlw are invertible,
then singularities occur on a dense set of rational points in [0, 1].

Proof. (a) If , _> 1 for some m then there is some product T Tdl"’" Td.
and some eigenvalue A of TIw such that IAI _> 1. Let Xk, Yk be as in the proof of
Theorem 3(b); it follows then that IIv(Xk)- v(Yk)ll >_ C I1k for some constant C > 0
independent of k. As Xk, Yk --* X .d... d,dl.., dm..., it follows that v cannot
be continuous at X. An argument similar to the one following (23) shows that if
Tolw, TIw are invertible, then discontinuities also occur at every point z of the form
z .z... Zndl... dmdl.., dm

(b) If (Tolw,Tlw > 1 then m > 1 for some m, and therefore there is some
product T Tdl... Td. and some eigenvalue A of TIw such that [AI > 1. The
remainder of the proof follows just as in part (a).

As a final comment, suppose we are given a scaling vector v with (T0 Iw, T11w)
1. We have then by Theorem 4(b) that v is unbounded. The singularities constructed
in the proof of this result occur only at rational points. Consider then the function
obtained by setting (x) v(x) for nonrational x and (x) 0 for rational x. This
is also a scaling vector, and (01V, IlV) 0. However, is clearly discontinuous;
note that Theorem 3(a) does not imply continuity since is not given at dyadic points
by the method of Construction 1. Since (01,11) < 1, Theorem 4(b) does not
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imply that is unbounded. We therefore ask whether it is possible that be bounded.
As pointed out by the referee, the subspaces W or are probably not the best for
dealing with this question. A more relevant subspace might be

N span{v(x)- v(y)’x, y e S},
s

where the intersection is taken over all subsets S c [0, 1] with measure one that are
invariant under T.
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Abstract. Two complex matrices A and B are said to be (complex) orthogonally equivalent
if there exist (complex) orthogonal matrices Q1 and Q2 such that A Q1BQ2. In this note the
authors obtain characterization of linear operators that preserve complex orthogonal equivalence.
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1. Introduction and statement of result. Let Mm,n be the set of all m-by-n
matrices with complex entries; and we write Mn Mn,. A matrix Q E Mn is said
to be (complex) orthogonal if QTQ I. Two matrices A,B Mm, are said to be
(complex) orthogonally equivalent, denoted A B, if A Q1BQ2 for some orthogonal
matrices Q1 Mm and Q2 @ Mn. One checks that is an equivalence relation on

Mm,n. We are interested in studying linear orthogonal equivalence preservers on

Mm,n; that is, T: Mm,n --+ Mm,n and T(A) T(B) whenever A B. We prove the
following, which is our main result.

THEOREM 1.1. Let T be a given linear operator on Mm,n. Then T preserves
orthogonal equivalence if and only if there exist complex orthogonal Q1 Mm and
Q2 Mn and a scalar ( ( such that either:

(1) T(A) QIAQ2 for all A e Mm,n; or
(2) m n and T(A) cQATQ2 for all A e M,.
We have divided the proof of the theorem into three parts. In 2, we establish that

either T 0 or T is nonsingular. In 3, we show that T has the form asserted in the
theorem, except that Q1 and Q2 are nonsingular, but are not necessarily orthogonal.
Finally, in 4, the theorem is proved.

Similar problems have been studied in [5] and [7], and we use their general ap-
proach. We analyse the orbits

O(A) {X e Mm,, X A}

and their corresponding tangent spaces TA. It is known that these orbits are homo-
geneous differentiable manifolds [1]. As in [5] and [7], it is necessary to develop some
special techniques to supplement the general approach in solving the problem. Unlike
the relations considered in [7], little is known about complex orthogonal equivalence
and a simple canonical form is not available. This makes the problem more difficult
and more interesting. In fact, the results obtained in this paper may give more insight
into, and better understanding of, the orthogonal equivalence relation.
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We denote the standard basis of Mm,n by {Ell, E12,..., Era,n}. When Eij E Mn,
we set Fij _-- Ej-Ej and, to avoid confusion when Ey Mm, we set Gj =- Eiy- Ej.
Note that all Fy and Gy are skew-symmetric matrices. We denote the standard basis
of @n by {el,..., e,}. The n-by-n identity matrix is denoted by I, or when necessary
for clarity, by In. A vector x (C)n is said to be isotropic if xTx O.

2. Preliminary results. The following observation is used repeatedly in our
arguments.

LEMMA 2.1. Let V be a subspace of Mm,n that is invariant under orthogonal
equivalence, and let T V --, Mm,n be a linear transformation that preserves orthog-
onal equivalence. Then

T(span O(A)) C span O(T(A)) and T(TA) C 7T(A)

for every A V. Consequently, if T is nonsingular, then

dim span O(A) <_ dim span O(T(A)) and dim TA <_ dim TT(A)

for every A V.
LEMMA 2.2. Let X, Y Mm,n be given, let T be a linear operator on Mm,n

that preserves orthogonal equivalence, and suppose X Tx. If Y q[ Ty, then T(X)
O(Y)

Proof. Suppose T(X) QYQ2 for some orthogonal QI Mm and Q2 Mn.
T TLet T1 QI TQ2. Then Y QyT(X)QT2 TI(X T1 (’x) C r’TI(X ]y. [-]

Remark. The argument used to prove the preceding lemma can be used to obtain
its conclusion under more general hypotheses: Let G be a given group of nonsingular
linear operators on Mm,n, and say A B if A L(B) for some L G. Let T be a
given linear operator on Mm,n such that T(A) T(B) whenever A B. If X Tx
and Y qd Ty, then T(X) L(Y) for all L E G.

LEMMA 2.3. Span O(A) Mm, for every nonzero A Mm,.
Proof. Let A M,, be a given nonzero matrix. There exists orthogonal (in fact,

permutation matrices) P Mm and Q Mn such that the (1,1)-entry of B PAQ,
say, bl, is nonzero. For a given positive integer k, define the diagonal orthogonal
matrix

Dk ----diag(1,-1,-1,...,-1) E Mk.

Then 4b11E1 (Im + D,)B(I + D) B + DmB +BD + DmBDn span O(A),
so Ell span O(A). Since there exist permutation (and hence, orthogonal) matrices

Pi Mm and Pj Mn such that Eij PiE11Pj, every Eid E span O(A) and hence
span (9(A) Mm,n.

LEMMA 2.4. Let T be a given linear operator on Mm,n. IfT preserves orthogonal
equivalence, then either T 0 or T is nonsingular.

Proof. Suppose that ker T contains a nonzero matrix A. By Lemma 2.1,

T(span O(A)) C span O(T(A))= {0}.

Now, Lemma 2.3 guarantees that span O(A) Mm,. Hence, T- 0.
We use the following result, which is Lemma (1) in [3].
LEMMA 2.5. Let X1,X2 Mn,k with 1 <_ k <_ n. There exists a complex

orthogonal Q M such that X1 QX2 if and only if the following two conditions
are satisfied"
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(a) xTI X1 xT2 x2, and
(b) there exists a nonsingular B E Mn such that XI BX2.
Note that if X, X2 Mn,k have full rank, Lemma 2.5 ensures that there exists

an orthogonal Q Mn such that X QX2 if and only if xT x1 xT2 x2. In
particular, for n _> 2 and any given nonzero z n, there are two possibilities:

(a) If zTz 0, then z aQel for some orthogonal Q Mn and some nonzero
a ; and

(b) if z 0 and zTz 0, then z q(e + ie2) for some orthogonal Q e Mn.
Let A e Mm,n be given. Then O(A) {QAQ2 Q e Mm, Q2 e Mn, QTI QI

Im, and QT2Q2 In}. If B A, then ATA is similar to BTB and AAT is similar
to BBT. Suppose A has rank 1, so A xyT for some x (m and y E Cn. Then
rank ATA 0 or 1 according to whether xTx is zero or nonzero, and rank ATA
0 or 1 according to whether yTy is zero or nonzero. Depending on the four possibilities
for the pair (rank ATA, rank AAT), it follows that for some nonzero scalar a ,
O(A) contains exactly one of the following: (a) aEl; (b) a(E + iE2); (c) a(El +
iE21); or (d) a(E E22 + iE2 + iE2).

The same reasoning leads immediately to the following lemma.
LEMMA 2.6. Let m and n be given integers with m,n >_ 2, let Ell,E12, E21,

E22 Mm,n be standard basis matrices, and let E Ell E22 + iE2 + iE2. Then
(a) O(E) {qqT2 ql e (C)m, q2 e (n, and qTl q qT2q2 1}.
(b) O(E +iE2) {qyT q E m, y e Cn, qTq= l, and yTy=O}.
(c) O(EI + iE21) {xqT" x (C)m, q (n, XTx 0, and qTq 1}.
(d) O(E) {xyT x e (m, y e Cn, and xTx yTy 0}
If Q(t) Mn is a differentiable family of orthogonal matrices with Q(0) I, then

differentiation of the identity Q(t)Q(t)T I at t 0 shows that Q’(0) + Q’(O)T o,
that is, Q(0) is skew-symmetric. Conversely, if B Mn is a given skew-symmetric
matrix, then Q(t) =_ etB is a differentiable family of orthogonal matrices such that
Q(0) I and Q’(0) S [6]. If A e Mm,n is given and Q(t) e Mm and Q2(t) e Mn
are given differentiable families of orthogonal matrices with Q(0) Im and Q2(0)
In, one computes that

d
d{Q(t)AQ2(t)}lt=o QI(0)A + AQ2(0).

Thus, the tangent space to (9(A) at A is given explicitly by

(2.1) TA {XA + AY X Mm, Y Mn, X + XT 0, and Y + yT 0}.

DEFINITION 2.7. Let A Mm,n with n >_ 2. Then

SA =- {AFij I,2, and i < j <_ n}.

Note that SAC TA for every A Mm,n.
Suppose A Mm,n and rank A >_ 2. Then there exists a permutation matrix

Q Mn such that the first two columns of AQ are linearly independent. Since
Fij Eij -Eji Mn is skew-symmetric, SAQ C TAQ is a linearly independent subset
with 2n- 3 elements. Thus, dim TA dim TAQ _> 2n- 3 whenever rank A _> 2. A
similar argument shows that dim TA >_ 3n- 6 whenever rank A >_ 3.

Now suppose A Mm,n, rank A >_ 2, and dim TA 2n- 3. Let Q Mn be a
permutation matrix such that the first two columns of

B =_ AQ bl b2 b3 bn]
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are independent. Then Ss C TB and dim span Ss 2n- 3 dim TA dim TB, so
TB=span8B={BY’YEMnandY+yT=o}. Ifn>3andj>3, notethat

BF3j 0 0 -bj 0 O b3 0 0]

and the only matrices in Ss with nonzero entries in the third column are BE13
-b30bl0 0]andBF23-[0 -b3b20 0];thus, b3=0andbjisalinear

combination of bl and b2. Hence, rank A rank B 2 if n >. 3. Note that if n 2
or m 2 and if A Mm,n with rank A _> 2, then rank A 2.

LEMMA 2.8. Let A Mm,n be nonzero. Then

TA {XA + AY" X Mm, Y Mn and X + XT 0, Y -- yT 0}

and
(a) dim TA m + n- 2 if A e {Ell, EI + iE2, EI + iE21}
(b) dim TA m + n 3 if A E E22 + iE2 + iE21
(c) dimTA >_ 2n-3 if rankA _> 2. Moreover, ifn > 3, rankA _> 2, and

dim TA 2n- 3, then rank A 2 and there exists a permutation matrix
Q Mn such that TAQ span ,AQ

(d) dim TA _> 3n- 6 /f rank A _> 3.
(e) If rank A 2 and dim TA 2n- 3, then there exists a permutation matrix

Q Mn such that dim span 8AQ 2n- 3.
Proof. The asserted form of TA, as well as assertions (c) and (d), have been

verified. Assertions (a) and (b) follow from direct computations. We consider in
detail only the case in which A E + iE2; the other cases can be dealt with
similarly. Let X [xij] Mm and Y [Yij] Mn be skew-symmetric. Then

XA=

0 0 0...0
X21 ix21 0

Xml iXml 0

AY=

iy2 y12 y13 +/’y23 Yln + iy2
0 0 0 0

0 0 0 0

Since y21 -y12, dim TA m + n- 2. D

3. A rank-preserving property of T-.
PROPOSITION 3.1. Let T be a nonsingular linear operator on Mm,n that preserves

orthogonal equivalence. Then T-(E) has rank 1 whenever E has rank 1.
We have organized the proof of Proposition 3.1 into a sequence of ten lemmata.
LEMMA 3.2. Let T be a nonsingular linear operator on Mm,n that preserves

orthogonal equivalence. If E Mm,n and rank E 1, then dim TT-I(E) <_ m +n- 2.

Proof. Lemma 2.1 shows that dim TT-I(E) <_ dim TE, while Lemma 2.6 and
Lemma 2.8 (a), (b) give dim TE <_ m + n- 2. 0

LEMMA 3.3. Proposition 3.1 holds if m 1 or m + 1 < n.

Proof. If m 1, then the nonsingularity of T implies that T-1 (E) 0 whenever
E 0, and this is equivalent to the asserted rank property in this case. Let E Mm,
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be given with 3 _< rn + 1 < n. If rank E 1, then dim TT-1 (E) <-- n / m- 2 < 2n- 3.
The first inequality is from Lemma 3.2 and the strict inequality is from our assumption
that 3 _< m + 1 < n. Lemma 2.8(c) now shows that T-I(E) must have rank 1.

LEMMA 3.4. Let T be a nonsingular linear operator on Mm,n that preserves
orthogonal equivalence. If rn + 1 n > 3 or rn n > 4, and if E E Mm,n and
rank E 1, then rank T- (E) _< 2.

Proof. If rank E 1, then Lemma 3.2 guarantees that dim TT-I(E) <_ m + n 2.
Ifm+l n > 3, thenm+n-2 2n-3 < 2n-2_< 3n-6. Ifm n > 4,
then m + n 2 2n 2 < 3n 6. Thus, under the stated hypotheses we have
dim TT-(E < 3n- 6 and hence rank T-(E) <_ 2 by Lemma 2.8(d).

Let rankA 2 and suppose that A [ala2 an] E Mm,n. There are
two possibilities: at least one ai is not isotropic, in which case we may suppose

aTla 7 O, or all of them are isotropic. Moreover, we may assume that {a,a2} is
linearly independent.

Case 1. aTla 7 O. Let c v/aTlal so a 0. Lemma 2.5 ensures that Qa
a 0 0 ]T for some orthogonal Q Mm, so

QA= a* 10 A

If we write A [b2 b3 bn], then b2 7 0 since a and a2 are linearly independent.
There are two possibilities: b2 is isotropic or is not isotropic.

(i) Suppose bb2 7 O. After applying the preceding argument to A1, we see that
there exists an orthogonal Q Mm such that

B=_QA= 0 a,,5, withaO,
OOA

but A2 0 since rank A 2. For n _> m _> 3, and referring to the discussion after
Definition 2.7, we see that that {G3B, G23B} U Ss is a linearly independent subset
of TB. Hence, dim 2rA dim :Is >_ 2n 1 > m + n 2.

(ii) If bT2b2 0, a similar argument shows ttiat there is an orthogonal Q Mm
such that

c *

B=_QIA 0 z
0 i
0 0

where z E M,n-2 and 7 0. Let X [x... xn -qB. Then the columns of X
have the form

xj
aj

iaoJ
j= l,...,n

for some aj C. Hence, for n _> m >_ 3, {G12B, G13B} [-JSB is a linearly independent
subset of Ts. Hence, dim TA dim TB >_ 2n- 1 > m + n- 2.
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Case 2. aTa aT2a2 O. Because aTa O, there exists an orthogonal Q M,
and a 0 such that

QA= ia
0 b2

Note that the second column of QA is isotropic and independent of the first column.
(i) If b2 0, then there is 5 0 such that

B =_ QA- ia -i5
0 0

For n _> m _> 3, {G13B, G23B} U -B is a linearly independent subset of TB. Hence,
dimTA>_2n-l>m+n-2.

(ii) If b2 0 and bT2b2 0, there exists an orthogonal Q1 E Mm and 0 such
that

B--QIA=
0
0 0

For n _> m _> 4, {G14B, G34B} [J -B is a linearly independent subset of TA, and
dim TA >_ 2n-- 1 > m + n-- 2.

(iii) If b2 0 and bT2b2 0, there exists an orthogonal QI Mm and 0 such
that

B=_ QA= 0
0 iA
0 0

Just as in Case l(ii), {G13B, G23B} t 8B C B is linearly independent. Hence, for
n_>m_>4, dimTA--dimTB>_2n-l>m+n-2.

Therefore, if A Mm,,, n _> m _> 4, and rank A 2, then dim TA >_ 2n- 1 >
m + n- 2 >_ dim TE for any E im,n with rank E 1 by Lemma 2.8(a), (b).
Combining this result with Lemma 3.4 proves the following lemma.

LEMMA 3.5. Proposition 3.1 holds if n > 4 and m n or m n 1.
Let { (2, 2), (2, 3), (3, 3), (3, 4), (4, 4)}. If E im,, with n _> m and (m,n), we have shown that rank T-(E) 1 whenever rank E 1. We treat the five

special cases (m, n) separately. We use the following two results.
LEMMA 3.6. Let A Mn. Then XA is skew-symmetric for every skew-symmetric

X Mn if and only if A I for some .
Proof. If A aI, then XA aX is evidently skew-symmetric. Conversely, if

X and XA are skew-symmetric, then XA -(XA)T --(ATXT) ATx. Let
A [aij] and consider the skew-symmetric matrices Fk Elk Ek for k 1,... n.
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Then

FkA

akl ak2 akk akn
0 0 0 0

--all --a12 alk aln

0 0 0 0

-a 0... ax 0"
--ak2 0 hi2 0

ATFlk
--akk 0 alk 0

--ank 0 aln 0

Hence, akk all and aki 0 for all k. Thus, A a11I.
LEMMA 3.7. Let A E Mm,n. If dim TA dim span SAQ for some orthogonal

Q Mn, then AAT aim for some @.
Proof. Suppose dim TA dim span qAQ. Since dim TA dim 7"AQ, we have

7"AQ span SAQ. Hence, for each skew-symmetric Y Mm there exists a skew-
symmetric X Mn such that YAQ AQX. Thus YAAT yAQT(AQT)T
(AQ)X(AQ)T is skew-symmetric for every skew-symmetric Y, and hence AAT aim
by Lemma 3.6. [:]

LEMMA 3.8. Proposition 3.1 holds if (m, n) (2, 3).
Proof. Suppose E M2,3 has rank 1. Since rank T-I(E) _< m 2, there are

only two possibilities: rank T-I(E) 1 (which is the assertion of Proposition 3.1),
or rank T-(E) 2. We wish to exclude the latter possibility.

We look at

7)-- {Y E M2,3" dim Ty <_ 3}.
Since dim TT-I(y) <_ dim Ty, it must be the case that T-(Y) 7) whenever Y 7).
If E has rank 1, then Lemma 2.8(a), (b) show that E 7). Suppose X 7) and
rank X 2. Then Lemma 2.8(c) ensures that dim Tx >_ 3, so that dim Tx 3 for
this case. Hence, Lemma 2.8(e) ensures that there exists an orthogonal Q E M3 such
that dim span SXQ 3. Lemma 3.7 now guarantees that XXT /212 for some
j3 . Moreover, Lemma (4.4) of [5] shows that/3 0. It follows from Lemma 2.5
that there exists an orthogonal Q M3 such that

We will show that T-I(x) O(aX) for some a 0. Since X 7), it suffices to show
that T(E) q O(X) for each E E {Ell, EI + iE12, Ell -b iE21, Ell E22 + iE2 q-
iE2 }.

Let
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so that (.9(A) (9(X). One checks that

0 ] }-x 0 x,y, z E

Let B E (9(A) N TA. Then

x +y2 yz 21 BBT= 212"yz X2 - Z

Hence, y z 0 and x2 2. Thus, (9(A) A TA consists of exactly two vectors.
Let E Ell- E22 + iE2 + iE2. Then dim TT-I(E) <_ dim TE 2 < dim TB

for any B {0} U O(E). It follows that T-(E) e O(E) and hence, T(E) 60(E).
Thus, T(E) . (9(A).

T TSuppose that T(EI) O(A), say T(E) Q2AQ3. Let TI =_ Q2 TQ3. Then,
A QT(EI)Q T(EI). Note that

TEll {[ 0 X 1 }z 0 "x,y,z C

Thus, {E2, E3, E21} C O(Ell)CI "/-Ell SO that O(Ell)CI rEll contains at least three
vectors. Moreover, X {T1 (E12), T1(E13), T (E2)} contains three vectors since T1 is
nonsingular. However, X C TI(O(EI) OTEI)C O(TI(Ell))f’T(EI)----O(A)TA,
which contains exactly two vectors. This contradiction shows that T(E)

_
O(A).

Now let E E11 + iE12. Then E E(-iF12) TE. Since A TA,we have
T(E)

_
O(A) by Lemma 2.2. Similarly, if E El1 --iE21 (-iGI2)E, then

T(E)

_
O(A).

Thus, T-I(A) cannot have rank 1, and hence it has rank 2 and T-(A) e O(aA)
1d) and hence, T-I(E) O(aA)for some a - 0. It follows that T(O(A)) c 0(-

for all rank-1 E M2,3, and all a # 0. Combining this result with the observation
that T-I(Y) T) for any Y T, we see that rank T-I(E) 1 whenever rank
E=I.

LEMMA 3.9. Proposition 3.1 holds if (m, n) (3, 4).
Proof. Let E E M3,a have rank 1 and let A =_ T-I(E). Lemma 3.4 shows that

rank A is either 1 or 2. Suppose rank A 2. We apply the analysis of the proof of
Lemma 3.5 to A. Note that Cases l(i), (ii) and 2(i), (iii) are not possible here. Thus,
A has the form covered in Case 2(ii):

a 5 x
ia x2 x5
0 Ax3x

with A = 0 and all the columns of A are isotropic vectors. It now follows from
Lemma 2.8(a), (c) and Lemma 2.1 that dim TA 5. Moreover, Lemma 2.8(e) ensures
that dim span -AP 5 for some permutation matrix P M4. Hence, Lemma 3.7
guarantees that there exists a such that AAT hi3. Since it is always the case
that rank A _> rank AAT, we must have a 0, that is, the rows of A are also isotropic
vectors. Thus, there exists an orthogonal Q M4 such that the first row of AQ is

[aiaO0]. Since AAT 0, the third row of AQ has the form [00cd], where
C2 -[- d2 0 and d 0. It follows that

aia 0 edd]ia -a ebd
0 0 bd
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with e2 b2 -1 and ad 0. By considering all the possible cases, one checks that
G12AQ span SAQ. We show one such case" b e i. Suppose that G12AQ
AQ(a1F12 + a2F13 + a3FI4 + aaF23 + a5F24). Examining the (1, 1), (2, 1), (3, 1), and
(2, 4) entries, we get a -1, a2 a3 a5 0. This is a contradiction since for
any ca, G12AQ -AQF2 + aaAQF23. Hence, dim TA dim TAQ >_ 6, again a
contradiction. Since we can exclude all the possibilities associated with rank A 2,
it follows that rank A 1.

LEMMA 3.10. Proposition 3.1 holds if (m, n) (4, 4).
Proof. If A E Ma has rank 2, then dimTA _> 7 as shown on the proof of

Lemma 3.5. Let B E E22 + iE2 + iE21. Then dim TT-I(B)
dim Tc for any C {0} U O(B) and hence, T-I(B) e O(B) has rank 1. Let
D diag(1, -1, 1, 1). Then E +iE12 1/2(B+DB) and T-I(E+iEI2)
-(T-I(B) + T-(DB)) a sum of two rank 1 matrices. Hence, T-(E11 + iE2)2
has rank at most 2. But since dimTc _< 6 < 7 _< dimTA for all A,C Ma
such that rank C 1 and rank A 2, we must have rank T-(C) 2 so that
rank T-I(EI + iE2) 1. Similarly, since EI + iE21 1/2(B + BD) and EI- ((EI + iE12) + (E + iE2)D), both T-1(E11 + iE2) and T-(EI) have rank 1.2
Thus, if E M4 has rank 1, then T-(E) must also have rank 1.

Let T be a nonsingular linear orthogonal equivalence preserver on Mm,n, with
m _< n and (m,n) {(2,2), (3,3)}. Our arguments up to this point show that
T-1 preserves rank 1 matrices, that is, T-I(E) has rank 1 whenever E Mm,n
has rank 1. Theorem 1 of [8] guarantees that there exist nonsingular X M,
and Y Mn such that either T-I(A) XAY for all A Mm,n, or m n and
T-(A) XATy for all A Mn. Hence, either T(A) MAN for all A Mm,n,
or m n and T(A) MATN for all A Mn, where M X- and N _-- Y-. We
will now show that the same conclusion can be drawn for the two remaining cases

(m, n) (2, 2), (3, 3), from which Proposition 3.1 follows in these two cases.
LEMMA 3.11. Let T be a nonsingular linear operator on Mn that preserves or-

thogonal equivalence. If n 2 or n 3, then there exists a scalar a 0 such that

Proof. First note that Xn =- EI -E22 + iE2 + iE2 Xn(iF2) Txn for all
n 2, 3,..., where Eij, Xn Mn. Note also that, Tin {X Mn Z + XT 0} is

the set of all skew symmetric matrices in M. Hence, dim T/n n(n-) Moreover,2

In - Tin for each n.
Let n 2. Then dim T/. 1. It follows from Lemma 2.8(a)-(c) that ei-

ther T-1(I2) is nonsingular or T-(I2) O(X2). However, T-(I2) O(X2) by
Lemma 2.2. Thus, T-(I2) is nonsingular and Lemma 2.8(e) implies that dim TT-I(I2)

1 dim span SI.Q for some permutation matrix Q M2. Lemma 3.7 guarantees
that T-(I2) E O(/I2) for some/ 0.

Let n 3. A similar argument shows that either

rank T-1(I3) _> 2 or T-(I3) e (9(X3),

and that the latter possibility is excluded. Hence, rank T-(I3) _> 2. Let A _=

T-1(I3). Then dim TA 3 dim span SAQ for some permutation matrix Q M3.
Hence, AAT hi3 by Lemma 3.7, and Lemma 4.4 of [5] again guarantees that a 0.
Therefore, T-(I3) O(/I3) with 2 a 0. D

Suppose n 2 or 3. Then Lemma 3.11 ensures that T-I(I) (9(aIn). Hence,
T aT satisfies T[(In) O(In). It follows that T(O(In)) C O(In). Lemma 1 of
[4] guarantees that T((9(In)) O(In). Thus, Lemma 6 of [2] guarantees that there
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exist nonsingular M,N E Mn such that either TI(A) MAN or TI(A) MATN
for all A Mn. It follows that Proposition 3.1 holds for these two cases as well.

The preceding ten lemmata constitute a proof of all cases of Proposition 3.1 in
which m <_ n. The remaining cases follow from considering TI(X) --- T(XT) and
applying the known cases to T Mn,m -- Mn,m.

The following proposition summarizes the main conclusions of this section.
PROPOSITION 3.12. Let T be a nonsingular linear operator on Mm,n that pre-

serves orthogonal equivalence. Then there exist nonsingular M Mm and N Mn
such that either

(1) T(A) MAN for all A e Mm,n, or

(2) m n and T(A) MATN for all A e Mm,n.
4. Proof of the main theorem. Let T be a given linear operator on Mm,n.

Suppose T preserves orthogonM equivalence. Then Lemma 2.4 guarantees that either
T 0 or T is nonsingular. If T 0, then Theorem 1.1 holds with a 0. If T 0,
we will use the following to show that Theorem 1.1 still holds.

PROPOSITION 4.1. Let A Mn be nonsingular. Suppose that

X
TATAx xTpTATAPx

for all orthogonal P Mn and all x Cn. Then there exist an orthogonal Q Mn
and a scalar 0 such that A

Proof. An easy polarization argument shows that if C Mn is symmetric and
xTCx 0 for all x E then C 0. Since xTATAx xTPTATAPx for all x
it follows that ATA pTATAp for all orthogonal P Mn. Hence,

ATA "’. "..

Letx[1 10 0]Tandy----[/00 0]T. ThenxTx=yTyandhence
there exists an orthogonal Q1
xTQTATAQx yTATAy 2a. Hence, 0 and ATA aI with a - 0 since A is

A is orthogonal and A v/-Q. [:lnonsingular. Thus, Q _=

LEMMA 4.2. Let T be a given nonsingular linear operator on Mm,n. Then T
preserves orthogonal equivalence if and only if there exist orthogonal matrices
Mm, Q2 Mn, and a scalar 0 such that either

(1) T(A) QIAQ2 for all A M,,, or

(2) m n and T(A) QATQ2 for all A Mn.
Proof. Under the stated assumptions, Proposition 3.12 ensures that there exist

nonsingular M Mm and N Mn such that either T(A) MAN for all A Mm,n,
or m n and T(A) MATN for all A M,,n. We consider only the case T(A)
MAN; the case T(A) MATN can be dealt with similarly. Let an orthogonal
P Mn be given. Since T preserves orthogonal equivalence, for each A Mm,n there
exist orthogonal matrices Q Mm and Z Mn (which depend on A and P) such
that T(A) QT(AP)Z. Hence,

MAN(MAN)T= T(A)T(A)T

(4.1) QT(AP)Z(QT(AP)Z)T

QMAPN(MAPN)TQT.
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Choose

where x E Cn. Then (4.1) becomes

xTNNTx xTpNNTpTx 00] QT0

Since QT Q-l, taking the trace of both sides shows that xTNNTx
xTpNNTpTx. Since this identity holds for all x E @n and all orthogonal P ME,
Proposition 4.1 ensures that N 02Q2 for some orthogonal Q2 @ Mn and some scalar
a2 0. A similar analysis of T(A)TT(A) shows that M ClQ1 for some orthogonal
Q1 Mm and some scalar 1 0.

This completes the proof of the forward implication of Theorem 1.1. The converse
can be easily verified.

Acknowledgment. It is a pleasure to acknowledge valuable advice from Profes-
sor Steven Pierce in the preparation of this paper.

REFERENCES

[1] W. M. BOOTHBY, An Introduction to Differential Manifolds and Riemannian Geometry,
Academic Press, New York, 1975.

[2] E. P. BOTTA AND S. PIERCE, The preservers of any orthogonal group, Pacific J. Math., 70
(1977), pp. 37-49.

[3] D. CHOUDHURY AND R. A. HORN, A complex orthogonal-symmetric analog of the polar de-
composition, SIAM J. Alg. Disc. Meth. 8 (1987), pp. 219-225.

[4] J. D. DIXON, Rigid embedding of simple groups in the general linear group, Canad. J. Math.,
XXIX (1977), pp. 384-391.

[5] Y. P. HONG, R. A. HORN, AND C. K. LI, Linear operators preserving t-congruence on ma-

trices, Linear Algebra Appl., to appear.
[6] R. A. HORN AND C. R. JOHNSON, Topics in Matrix Analysis, Cambridge University Press,

New York, 1991.
[7] R. A. HORN, C. K. LI, AND N. K. TSING, Linear operators preserving certain equivalence

relations on matrices, SIAM J. Matrix Anal. Appl., 12 (1991), pp. 195-204.
[8] M. MARCUS AND B. N. MOYLS, Transformations on tensor product spaces, Pacific J. Math.,



SIAM J. MATRIX ANAL. APPL.
Vol. 15, No. 2, pp. 530-548, March 1994

1994 Society for Industrial and Applied Mathematics
012

A PARALLEL ALGORITHM FOR COMPUTING THE SINGULAR
VALUE DECOMPOSITION OF A MATRIX*

E. R. JESSUP AND D. C. SORENSEN

Abstract. A parallel algorithm for computing the singular value decomposition of a matrix is
presented. The algorithm uses a divide and conquer procedure based on a rank one modification
of a bidiagonal matrix. Numerical difficulties associated with forming the product of a matrix with
its transpose are avoided, and numerically stable formulae for obtaining the left singular vectors
after computing updated right singular vectors are derived. A deflation technique is described that,
together with a robust root finding method, assures computation of the singular values to full accuracy
in the residual and also assures orthogonality of the singular vectors.

Key words, bidiagonal matrix, singular value decomposition, divide and conquer algorithm
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1. Introduction.
matrix A can be written

The singular value decomposition (SVD) of a real m n

A UVT,

where U and V are both orthogonal matrices and E is a diagonal matrix with non-
negative diagonal elements. The columns of U and V are, respectively, the left and
right singular vectors of A; the diagonal elements of are its singular values. A stan-
dard algorithm for computing the SVD involves first reducing a matrix A to upper
bidiagonal form B using elementary orthogonal transformations [12], [13] as follows:

A BT

and then computing the SVD of B ]z-]T. Combining the two results gives

A- gr(Ef(T)T UEVT,

whereU []YandV ).
This paper focuses on the computation of the SVD of the bidiagonal matrix B by

divide and conquer mechanisms based on rank one tearing of the bidiagonal matrix
B. Algorithms founded on this technique have proven accurate and efficient for both
serial and parallel computation of eigensystems of symmetric tridiagonal matrices
[6], [10]. The notable speed and accuracy of the rank one updating process for that
problem motivate application of rank one updating techniques to the SVD.

The presentation of the updating technique begins in 2 with a review of the rank
one updating techniques used for the symmetric tridiagonal eigenproblem. Section
3 continues with a discussion of some difficulties arising in the design of an SVD
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algorithm that is both accurate and efficient. Section 4 describes a basic divide and
conquer step for the SVD equivalent to a rank one tearing of a symmetric tridiagonal
matrix.

Sections 5 and 6 are devoted to finite precision deflation rules and the orthogonal-
ity of the computed singular vectors. Section 7 covers implementation of the divide
and conquer algorithm PSVD and the results of numerical experiments.

In all sections, we consider only the case m n. If m > n, the initial reduction
may be preceded by computing a QR factorization of A and using the n n triangular
matrix R in place of A. A similar procedure is appropriate for the case m < n.

Throughout this paper, unless otherwise specified, capital Roman letters represent
matrices, lower case Roman letters represent column vectors, and lower case Greek
letters represent scalars. A superscript T denotes transpose. All matrices and vectors
are real.

2. Divide and conquer for the symmetric tridiagonal eigenproblem.
In [6], Cuppen presents a divide and conquer technique for finding the eigenvalues
and eigenvectors of a symmetric tridiagonal matrix. Rank one tearing is applied to
divide the tridiagonal matrix T of order n into

( )(T T1 eeT1 TI 0 ek
ek,ee T2 0 T2 + e

where 1 k n, and ej represents the jth canonical vector of appropriate length. If
the eigensystems of the two submatrices are T QDQ and T2 Q2 2Q2, then

where

0 Q D
0 D

zT is the last row of Q, z2
T is the first row of Q2, and p is chosen so that z 112 1.

The problem is then reduced to finding the eigensystem of a diagonal matrix plus a
rank one change. The eigenvalues of T are equal to the eigenvalues of D + pzzT; the
eigenvectors of T are the eigenvectors of D + #zz

T premultiplied by the matrix Q.
An updating technique described in [5], [6], and [11] is employed to determine

the eigensystem of D + pzzT. When the diagonal elements of D are distinct and the
elements of z are nonzero, the eigenvalues of D + pzzT are equal to the roots of

w(,k) 1 + pzT(D- AI)-zT

and can be determined efficiently by a rational interpolation scheme developed in [5].
The eigenvector corresponding to the ith eigenvalue A is found directly from

u (D- ,I)-z.

When the diagonal elements of D diag(5,..., 5n) are not distinct (i.e., 5k 5k+1
5k+Z ), the eigenvector basis is rotated to zero out the components Ck+,..., k+Z

of z corresponding to the repeated diagonal elements of D [5]. When the jth element
of z is zero, the element 5j is an eigenvalue of D + pzzT, and the jth unit vector ej
is its corresponding eigenvector.
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Multiple diagonal elements of D and zero elements of z result in significant reduc-
tion in the work required to compute the eigensystem of D + pzzT. This phenomenon
called deflation has been refined for use in finite precision arithmetic where nearly
equal diagonal elements of D and small elements of z are deflated [10]. As shown
in [6], [10], and [15], substantial deflation and resulting savings in computation time
occurs for a wide variety of symmetric tridiagonal eigenproblems. The computed
eigensystem is obtained to high accuracy, and the computed eigenvectors are orthog-
onal [10], [14], and [20].

An experimental comparison in [16] finds the implementation TREEQL [10] of the
divide and conquer method and bisection with inverse iteration to be the fastest serial
techniques for solving the symmetric tridiagonal eigenproblem. TREEQL is generally
fastest when deflation is significant. The QL method (implemented as EISPACK’s
TQL2 [18]) is generally slowest. All three demonstrate comparable high accuracy in
practice, although only TREEQL, TQL2, and bisection can be proven to be backward
stable [3], [7]. TREEQL is also fast on shared-memory multiprocessors [10], but is
less efficient on statically scheduled distributed-memory multiprocessors [14].

3. Background. The bidiagonal SVD is closely related to the symmetric tridi-
agonal eigenproblem. For example, the matrix products 1 BTB and ’2 BBT
are symmetric tridiagonal matrices of order n having as eigenvalues the squares of
the singular values of B and having as eigenvectors, respectively, the left and right
singular vectors of B. Thus, one way to determine the SVD of B is to compute the
eigendecompositions 261 X2XT and 2 YE2yT. This approach, however, can
be both inefficient and inaccurate. In this section, we review the drawbacks of using
eigensolvers to compute B YEXT.

First, finding the eigendecomposition of 1 gives only the singular^values and
the left singular vectors of B. Computing the eigendecomposition of T2 gives the
left vectors Y but requires redundant computation of the singular value matrix E.
Because X and Y are computed independently, it is also generally impossible to
correctly pair the left and right singular vectors associated with equal or nearly equal
singular values. It is preferable to compute each right singular vector using suitable
relationships to its corresponding left singular vector.

The vector pairing problem can be overcome by computing the matrix of right
singular vectors directly from X BTyE-: This approach fails, however, when
E has a zero diagonal element. Moreover, numerical experiments have shown an
increased residual and degraded orthogonality of right singular vectors computed this
way for matrices with large condition numbers. This is particularly disturbing as the
SVD is often called upon when a matrix has a large condition number. Attempts to
avoid conditioning problems through a combination of the two equations such as

(1) (B + aI)x (B + aI)Ty

can fail when there are a significant number of small singular values. However, Arbenz
and Golub [2] suggest an iterative procedure using a modified Lanczos process that
essentially corrects initial numerical errors made in (1).

Inaccuracies in the small singular values can also result from multiplication of
B and its transpose in finite precision arithmetic [13]. For example, suppose that
fl(1 + e2) 1 in finite precision arithmetic. If

(1 0)B=
1 e
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then the computed product TT BBT is

1 0 1 1 1 1

with exact eigenvalues 0 and 2. The computed singular values of B are then 0 and
V, while the true singular values are

and

2e2 )2+e2 +V/4+e4

1/2

)
1/2

2 + e2 + V/4 + e4

2

For this matrix, the relative error in the smallest computed singular value is 1.
Some existing techniques for the solution of the singular value problem bypass

these numerical problems by operating on the matrix B and implicitly forming the
product BBT. The Golub-Reinsch QL method [12], [13] for computing the SVD, for
example, has been implemented as the LINPACK routine DSVDC. When using rank
one updating techniques, however, it is not convenient to represent the torn matrix
as the product of bidiagonal matrices in this way; it is necessary to devise a different
way to work with the matrix product implicitly.

A final alternative that permits computation of a correct SVD is to embed the
order n bidiagonal matrix in an order 2n symmetric banded matrix: the eigenvalues
of the 2n 2n matrix

MI= B 0

are the singular values of B and their negatives. To compute the SVD of B, the
columns and rows of M are permuted to the order 1, n + 1, 2, n + 2,..., n, 2n to
form the 2n x 2n tridiagonal matrix M with a ero diagonal. The eigenvector i
of M corresponding to eigenvalue i i has as its odd-numbered components,
the components of the ith left singular vector i (Uli,... ,ui)r and has as its
even-numbered components, the components of the ith right singular vector zi
(Pli,..., ,)T [12]"

/]li

#1i

M2 o-

#hi

l]li

#hi

Methods for the symmetric tridiagonal eigenproblem are then applied directly to the
matrix M2. This approach is efficient for methods that can take advantage of the
zero structure of M2 and that can compute the first n eigenpairs independently of
the second n eigenpairs. Bisection with inverse iteration, for example, falls into this
category; the divide and conquer method of [6] and [10] described in 2 does not
[15]. A divide and conquer strategy that maintains the zero diagonal in the torn
submatrices is described in [1].
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The remainder of this paper discusses a method for computing the SVD that
is both efficient and stable. It implicitly formulates the matrix product BBT in a
way that avoids cancellation in finite precision arithmetic, and it computes each right
singular vector from its corresponding left singular vector. The formulation presented
here is the most accurate of several alternatives considered in [17].

4. Divide and conquer for the bidiagonal SVD. This section presents a
divide and conquer technique designed for use with the matrix B. It is an efficient
alternative to the divide and conquer eigensolver applied to a 2n 2n tridiagonal
matrix. It avoids the numerical difficulties associated with explicit formation of BBT
or BTB by reformulating the product to prevent cancellation. The algorithm relies
on rank one tearing. Specifically, the rank one modification of the matrix B

0 0 +z

where/3 flk allows implicit formation of BBT as follows:

where the matrix

(0 0)/)2 B2 0 I

is the bidiagonal matrix B2 with its first column replaced by the zero vector and
ozel B2el. This splitting may be considered a special case of the general rank one
updates to the SVD described in [4].

The SVDs B1 UIEIV1T and/)2 222T can be computed independently
and used with (4) to produce

0 02’]22 02T -’{-
Oel

where tl glTek and 2 agr2Tel. The eigendecomposition of the diagonal plus
rank one matrix can be found via the updating techniques derived in [5], [10], and
[11] and summarized in 2.

This computation requires that the diagonal elements of the matrix

rl 0
0

be distinct and that the elements of (UlT, 2T) be nonzero. When these assumptions
do not hold, the problem deflates. However, because the squares of the singular

(4)

(U10 0
) [ ,?2T)1 0
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values less than one are not as well separated as the singular values themselves, the
deflation rules of [10] concerning nearly equal diagonal values are not appropriate. To
develop deflation rules for the SVD, it is necessary to reformulate the basic step of
the updating process and to provide rules based on the original data rather than on
the squared data appearing in (4).

To this end, let the (n- k) (n- k-l) matrix B2 be defined by

(0, 2) 2 B2 (I- elelT).
Now consider the SVD of/2 222T, and note that

=( 0 u[,

where is a unit vector orthogonal to the columns of . When B1 U ,
() = (gl 0 0)(1 1 ) ( 0 0 )0 U2 2 0 1 0

0 u o o o o9
For notational convenience, we permute (5) to obtain

0 2 u2 0 0 9f0 2 0 0 0 1 0

Deflation rules are then needed for the interior matrix

0

0
0 0

where diag(#,..., #-1) and (1,..., -1). (The matrices of (g) are not
explicitly permuted in the implementation of PSVD described in 7.)

The deflation procedure for M resembles that for tridiagonal matrices. In exact
arithmetic, the problem deflates whenever any of the following cases occur:

1. An element of is ero: 0.
2. Diagonal elements of N are equal: #i , j.
a. A diagonal element of N is ero: -0.

It is easily verified that if 0, # is a singular value of with left and right
singular vectors equal to the jth canonical vector e providing the deflation for case
1. The other two cases may be reduced to case 1 using appropriate plane rotations
to introduce a ero component in the vector .

When #i #, twsided rotations are applied in the tridiagonal case. A plane
rotation G1 in the (i,j)-plane is constructed and applied to M (and to the other
matrix factors in (6) as well) so that

0)M-
0 1 0 # 0 1

A 2 3 submatrix of M is affected as follows:

0
0 0  0)01

0 #
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where a #i j, with T2 (#i)2 + (#j)2 c- #j/T, and s #i/r.
When #i 0, a one-sided rotation G2 in the (i, n)-plane is applied from the left

using # to zero out pi: In this case

and a 2 2 submatrix is affected as follows:

because i 0.
In practice, these deflation rules must be modified to accommodate the limitations

of finite precision arithmetic. Finite precision rules are given in 7 that apply when
or fi has small elements or when , has close elements.
Permuting so that all zero elements in the last column are grouped together, the

result of deflation is a matrix of the form

2, PHIGTpT 0 ,, u
0 0 #

where E has distinct, positive elements, and the vector u has only nonzero elements.
P is the appropriate permutation matrix, and G and H are matrices consisting of
accumulated products of the rotations constructed at each of the deflation steps.

After deflation, one only needs to compute the SVD of

( u) =_ yzT(7) M
0 #

The diagonal elements of ,,1 are taken as singular values of with appropriate
canonical vectors as singular vectors. The squares of the singular values of M and its
left singular vectors are given by the eigendecomposition

22YE2yT MMT =- 0 o)o + (ur’

An eigenvalue a2 of MMT is a root of the secular equation

and can be computed using the root-finder from [5]. If the sorted diagonal elements
~2 the jth eigenvalue ay of MMT lies in theof diag(2, 0) are 0 5" < 5" <... < an,

interval (Sy ~2a+l) [5], and all eigenvalues are positive. The jth singular value of B is

aj, and the left singular vector of B associated with aj for j 1,..., n is

where 0 is a normalization factor. The corresponding right singular vector is

T

MTyj I1: 
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That is, a vector in the direction of the right singular vector xj is given by

M yj- uT # --#/a

Recall from (8) that aj satisfies

+ --" -1.

Thus, the quantities o’j, xj, and j can be computed as follows

PROCEDURE 4.1 (SOLUTION OF THE DEFLATED UPDATING PROBLEM).
1. Solve (8) for

a.x=
-1-- Xj=

x4. yy , .
The orthogonality of the singular vectors computed according to this procedure

is examined in 6.
The singular values of B T are those of and its singular vectors are

derived from those of M. Specifically,

and

_0 0)(, 0)0 u 0 Y

0 0 VT 0 X
0 1 0

where I is the identity matrix of the same order as ]1.
5. Deflation rules for finite precision arithmetic. Section 4 gives rules

for deflating the problem when the matrix ( :0 a) from (7) when (] fi) has

equal diagonal elements, #i j, j, or zeros in the last column, # 0. As in
the tridiagonal case, these rules can be extended to deflate the problem when M has
close diagonal elements, #i dj, or small elements I#jl < e for some small positive
value of e. In this section, we present deflation rules for finite precision arithmetic
followed by an analysis to show that the errors imposed by deflation are small.
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The finite precision rules are summarized in Procedure 5.1 below. They follow
the same three basic steps as in exact arithmetic, but small elements of fi or E are
approximated as zero and close diagonal elements of E are approximated as equal.
To keep track of deflation, two lists are used: deflate_list holds the indices of all
small elements in the last column of the matrix, and solve_list holds the remaining
indices. The list solve_list is initialized with the indices 1,..., n- 1 of all diagonal
elements in E. When deflation is complete, the list deflate_list holds the indices of
the diagonal elements of the transformed matrix to be accepted as singular values of
M, and solve_list holds the indices of the rows of M retained in the deflated matrix.

PROCEDURE 5.1 (DEFLATION IN FINITE PRECISION ARITHMETIC).
1. For all k E solve_list,

if I#kl < , move k from solve_list to deflate_list.
2. Permute the indices so the elements of solve_list are increasing

adjacent integers and k

_
+1. (That is, replace M by pTMp such that

Pen en with k deflate_list for 1 <_ k <_ deflate_listl and k’ solve_list

for deflate_list[ + 1

_
k’

_
n 1.)

3. For all but the last k solve_list,
if ]k --dk+ is small, apply a two-sided plane rotation so that k O, and
move k from solve_list to deflate_list.
{In PSVD, the two-sided rotation is applied as follows:

k+l)
ff [( +I)PP+I[ < eT then

c Pk+l/Z and s Pk/T
k C2k W 82k+1
k+l 82k W C2k+1
k+l T

p0}
4. For k solve_list,

if [k[ is small, apply a one-sided plane rotation so that Pk O, and move k
from solve_list to dCate_list.
{In PSVD, the one-sided rotation is applied as follows:

ff [kk[ < e72 then
C= pk/T and s= a

k Ck

p0}

We now examine the errors introduced by Procedure 5.1. The first source of error
is the transformation of the matrix at steps 2 and 3. The exact result of one of the
two-sided rotations would be

(9)

(c 0 c 0)0s c 0 +1 #+1 0 0 1

(0110 0)



A PARALLEL ALGORITHM FOR COMPUTING THE SVD 539

where 5k C2-2(k + 82k+ and (k+l 82-2ffk -- C20"k+ 1" In step 2, the second term in
the matrix sum in (9) is set to zero. Thus, with each rotation an error is imposed of
the form

where ek (k k+l)#k#k+l/(#2k +#+1)" The test to decide when rotations should
be performed guarantees that lekl < e for all k. Similarly, the exact result of one of
the one-sided rotations would be

(c 0 0)10
so that each rotation in step 3 causes an error of the form

Ek(3) --ek (enekT)
with Iekl < e for all k.

As in the exact case, the resulting matrix may then be permuted to form

(10) 0 u +El-- 0 u +E,
0 0 # 0 0 #

where

0 0 ’1 /E 0 0 0 + E1
0 0 0

In these equations, E1 is a matrix with elements bounded by e, fi {#k[k E
deflate_list}, and u {#klk e solve_list}. Thus, [eTfil[ < e for all i and leu[ >_ e for
all i.

We approximate the vector 1 as zero, accept the diagonal elements of ] as
singular values of M, and compute the SVD of the deflated submatrix

by the procedure outlined in 4. Because the constituent errors are small, the SVD
of J/computed in this way is the exact SVD of a matrix close to

The magnitude of the total error E depends on the deflation tolerance e. A
reasonable choice for e is macheps max where macheps is machine precision and
max is the largest diagonal element of E in the undeflated matrix M. Because the
accurate determination of the small singular values may be important, however, it is
also possible to vary the tolerance at each step of deflation according to the size of
the singular value at that deflation step.

6. Orthogonality of the singular vectors. Let us now consider the possible
limitations on orthogonality of singular vectors due to nearly equal singular values.
Many of the results concerning this issue for the symmetric eigenvalue problem apply
directly. In particular, the recent results of Sorensen and Tang [20] concerning the
numerical orthogonality of the computed eigenvectors will apply. Our first result in
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this section is a perturbation lemma that demonstrates the inherent difficulty with
nearly equal roots.

For purposes of this discussion, we denote the diagonal elements of of the
deflated matrix M by 5j and the corresponding components of the vector u by #j for
j 1, 2,..., n- 1 so that the secular equation (8) becomes

(11)
n-1 2 #2f(a2) 1 + -2 a2 a2"
j--1 0.

Let

and let

T ( 1"1 ’1"2 (l"n-1
_1) 1

(13) x #_-7, 5] =""’ " _o.2, n-1 (b,,)an-1 1 + j=l

Note that the squares of the singular values of M are roots of f and that the unit
vectors xa and ya are just permuted left and right singular vectors ofM corresponding
to a when a2 is a root of f.

LEMMA 6.1. Let Ya and xa be given by (12) and (13), respectively. Then for any
o’,7 {i: i= 1,...,n- 1} U {0},

1 If(a2)(14) lyTa y.r]
i0.2 ,),21 (f,(a2)f,(72))1/2,

and

(15)
0.2 (f(0.2)_

(a2 72)
n-1 (.j,j)2 n-1

1 + E (_ 0.2)2
1 + E (-_ 72)2

j=l j=l

1/2

Proof. Equation (14) is just the result implied by Lemma 4.2 in [10]. To derive
(15), we note that

(16)

n-1 ~2 2

1+
"= (y_0.2)(_72)

n--1 (.y 0.2),22
1 + E (- 0.2)(8j=l

n-1 2 .2 [ .2" 0.21 + ~2 72 72
{- 0.272

f(72 + yTay, (f, (0.2 f, (72 1/2.
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Equation (15) follows from (14) applied to the second term in (16).

Note that in (12) and (13), y and x are always vectors of unit length and that
the set of n vectors selected by setting a2 equal to the roots of (11) provides the set of
left and right singular vectors for the deflated matrix M in (7). Moreover, (14) shows
that the set of left vectors are mutually orthogonal, and (15) shows that the set of
right vectors are mutually orthogonal whenever (72 and ’)’2 are set to distinct roots of
f. Finally, the term 1(72 -’)’21 appearing in the denominator of (14) warns that it may
be difficult to attain orthogonal singular vectors when the roots (7 and 7 are close.

We now wish to examine the situation of close roots. With an argument similar
to that given in Lemma 4.6 of [10], one can show that 5i -(7 must be bounded away
from zero due to the deflation process. Because of this, we can expect to compute the
differences 5y -(7 to high relative accuracy. This is quite important with regard to
orthogonality of the computed singular vectors as the following lemma shows.

LEMMA 6.2. Suppose that y2 and 2 are numerical approximations to exact roots
(72 and 72 of f. Assume that these roots are distinct and let the relative errors for
the quantities (ri- (7 and 5i-7 be denoted by and r/i, respectively. That is, the
computed differences are

~2 _2 2(17) (7i-2 &2 (52 (72)( 1 -t- Oi) and (7i ((7 ,),2)(1 + r/i),

for 1,2,... ,n. Let y and y be defined according to (12), and let x and x be
defined according to (13) using the computed quantities given in (17). If [0[, [r/il -<
e << 1, then

and

( + )[xx[ <_
(1 e) 2"

Proof. A proof of the bound on the inner product of the left vectors is given in
Lemma 4.7 of [10]. For the right vectors, note that

1/
2n--1 (32.j

(5a2. a21(1 + Oy)(5 ,),2)(1 + r/y)
n--1 ~2 2

.= (e a2)(1 + Oj)(O ,),2)(1 + r/j)- ((?a2. -a-gi-’a2. -72) (1 +o)(1 +he)j--1

Thus,
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-1/2

j--1 j--I

-< (a2. a2)(a2. _,.),2) (1 -e)2

\j=l
-1/2

[( ) ( n_l

1 + (._ a2)2
1 + (._ ,,/2)2

j=l j=l

-<

and the lemma is proved.
This lemma shows that orthogonality can be assured whenever it is possible to

provide small relative errors in the computed differences j -. The results of [20]
indicate that this condition may be achieved in practice.

We have applied the root-finder used in [10] directly to (11) and have taken the
square root of to get a singular value without any apparent diculty even when
very dicult problems were solved. Nevertheless, it is certainly conceivable that
problems could arise. Namely, it may be necessary to further refine the root-finding
process to prevent loss of accuracy in terms of the form

2

when 8 is small and is near to .
Both of the following two modifications to the root-finder remove he dependence

on from all terms other than the term . irst, one could use

and update both and + to avoid unnecessary cancellation caused by the
squaring. Alternatively, one could use

j 1 1- (+ + (e_l

and the results of [20] would apply directly to the evaluation of f in this form.
If either of these last two schemes are employed, then it is possible to show that

the hypothesis (17) of Lemma 6.2 will be satisfied when the differences 8 - are
computed to high relative accuracy.. Nxperimental results. In this section, we present computational results
from the implementation PSVD of the divide and conquer method developed in 4-g.
PSVD splits the matrix B reeursively into submatrices of order 8 and solves the sub-
problems using DSVDC if B is of order 16 or greater and calls DSVDC without matrix
splitting otherwise. DSVDC is the Nstest serial method for solving the problems of
very small order [1]. The results reported here concern only the computation of the
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SVD of a bidiagonal matrix B and not reduction of a general matrix to bidiagonal
form. In all cases, the full sets of left and right singular vectors were computed along
with the singular values.

The first set of experiments include serial timings and accuracy tests. These were
carried out in .double precision on a single Sequent Symmetry $81 processor using
the Weitek floating point accelerator. On this machine, macheps- 2.22 x 10-16. We
compare the results from PSVD to those from the LINPACK code DSVDC [8] and
the implementation of bisection and inverse iteration B/III developed in [16].

The five bidiagonal matrices tested are introduced below. A pair of computed
eigenvalues i, +1 belong to a cluster if- +1 _< 10-14[j[max.

1. Matrix [2,1]" All diagonal elements are 2, and all off-diagonal elements are
1. All singular values lie within the interval [1,3]. For all tested matrix orders, the
singular values are computationally distinct.

2. Random: These matrices have uniformly distributed random entries between
-1 and 1 generated by the uniform pseudorandom number generator RAND available
from NETLIB on both diagonal and off-diagonal elements. The matrices tested turn
out to have singular values with minimum magnitude O(10-5).

3. Bw" Inspired by the Wilkinson matrix W+ [21], this matrix of even order has
n 1, 1 n and all off-diagonal elements equal to one. Itsdiagonal elements ,...,

smallest singular value is O(10-3), and, in finite precision, its largest singular values
have multiplicity two for matrix orders of about ten and larger.

4. Matrix [2, u]/n: The matrix [2, u]/n of order n has the value 2In in each off-
in the ith diagonal position. This matrix is illdiagonal position and the value

conditioned and has one singular value less than 10-la for orders greater than eighty.
5. Modified matrix [2,1]" This matrix is formed from matrix [2,1] by setting

the sixth through ninth diagonal elements a6,..., O9 and fifth through eighth off-
diagonal elements fib,..., f18 equal to 10-14. This matrix is severely ill conditioned,
having between four and eight singular values less than 10-s and between two and
four singular values less than 10-14 for all tested orders.

Let .-]]rT denote the computed SVD of B. To determine the accuracy of the
result, we measure the residual error and the deviation from orthogonality of both
sets of singular vectors"

1
7 m.ax B, 5-,:, II,

Ox -II z IIo ,
Oy -II I

When all of these quantities are small, the computed SVD of B is nearly the SVD of
a matrix near B [15]. In other words, () + ti))(]Y + 8]Y)T is the exact SVD of a
matrix B + E with small 8, 8I?, and E.

Table 1 shows the greatest residual and deviation from orthogonality measured
for the five test problems solved by B/III, PSVD, and DSVDC for matrix orders 32,
100, and 200. Even for ill-conditioned matrices, PSVD attains full orthogonality of
singular vectors and a small residual. Although only PSVD, DSVDC, and bisection
(B) are provably stable methods, all three methods tested achieve similarly good
results.

The run times for computing the full SVDs of the five matrices are compared
in Figs. 1-4 for problem [2,1] and Bw. (These are representative samples from the
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TABLE 1
Maximum residual and orthogonalities of SVDs computed by B/III, PSVD, and DSVDC for

the five test matrices.

Matrix
order

n=32

n 100

n 200

Method

PSVD
DSVDC
B/III

PSVD
DSVDC
B/III

PSVD
DSVDC
B/III

Maximum
residual

1.66d-14
1.79d-15
9.77d-16

9.39d-14
4.22d-15
2.38d-15

Maximum
orthogonality

(left)
Ov

7.65d-15
1.13d-14
9.76d-15

2.56d-14
2.68d-14
1.90d-14

4.09d-15
7.60d-15
5.99d-15

1.13d-14
8.13d-14
5.42d-13

Maximum
orthogonality

(right)
Ox

7.54d-15
1.13d-14
1.02d-14

2.37d-14
2.86d-14
1.87d-14

1.64d-14
8.14d-14
5.53d-14

TABLE 2
The number of roots computed by PSVD for five bidiagonal matrices.

Matrix Order

[2,11 32
100
200

Bw 32
100
2O0

PSVD.

Fraction of roots computed

1.0
0.9
0.8
0.6
0.6
0.5

full set presented in [15].) For small order problems, PSVD is consistently the fastest
method except when PSVD simply calls DSVDC, and B/III is the slowest. For larger
order problems (greater than about 50), performance depends more strongly on the
matrix characteristics. Namely, when significant deflation occurs, PSVD is the fastest
of the three methods. Table 2 shows the fraction of singular values actually computed
(as opposed to deflated) by PSVD for matrices [2,1] and Bw. The greater degree of
deflation for Bw accounts for the lower runtime of PSVD relative to B/III for Bw.

Similar tests were performed on an Alliant FX/8. The operating system was
Concentrix 3.0 and the optimization level for the subroutines comprising the units
of computation were options -Ogv. Parallelism was invoked and controlled explicitly
through the use of the SCHEDULE package [19]. Implementation details are quite
similar to the those for the symmetric eigenvalue routine TREEQL [8]. The recursive
matrix splitting leads to a hierarchy of subproblems with a data dependency graph
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FIG. 1. Times for computation of the SVD by B/III, PSVD, and DSVDC versus matrix order
for matrix [2,1].
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FIG. 2. Times for computation of the SVD by B/III, PSVD, and DSVDC versus matrix order
for matrix [2,1].
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FIG. 3. Times for computation of the SVD by B/III, PSVD, and DSVDC versus matrix order
for matrix Bw.
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FIG. 4. Times for computation of the SVD by B/III, PSVD, and DSVDC versus matrix order
for matrix Bw.
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TABLE 3
Speedups for PSVD on the Alliant FX/8.

Order Ratio of time
DSVDC (1 proc)
PSVD (8 procs)

100 13.4
150 14.8
300 15.7
350 13.9

Ratio of time
PSVD (1 proc)
PSVD (8 procs)

5.0
5.3
4.7
4.6

in the form of a binary tree of height h. The smallest subproblems are of order
n/2h and lie at the leaves of the tree (tree level 0). At level 0, the subproblems are
solved independently in parallel, one problem per processor. At level l, 1 _< _< h,
each problem of order n/2h-l is solved by updating the solutions to a pair of order
n/2h-z+1 subproblems from level 1- 1. At these levels, parallelism is achieved by dy-
namically assigning root-finding and singular vector computation tasks to processors
[17]. As in the symmetric case, this parallel algorithm can be pipelined with block
reduction of a matrix to bidiagonal form [9, 10, 17]. (An implementation of PSVD for
distributed-memory machines without dynamically scheduled processes is described
in [15]. Experiments with a similar implementation of the symmetric eigensolver sug-
gest that PSVD would not be efficient on statically scheduled multiprocessors [14],
[].)

Table 3 shows the speedup of PSVD run on eight processors relative to the PSVD
and DSVDC run on one processor for matrix [2,1]. As can be seen, the performance of
the parallel algorithm compared to DSVDC on a single processor is quite impressive.
The somewhat disappointing results in the second column of this table are not yet
understood. We attribute it to two aspects of the implementation. First, the deflation
step within each SVD update step is done serially and must be completed before any
dynamic allocation is done for root-finding. This limits the expected speedup. Second,
there is potential for cache conflict when explicit parallel processing is done on the
Alliant FX/8. We have not quantified either of these phenomena, however. Speedup
of PSVD on eight processors as compared to one processor is limited to about 5.
When the same comparison is done with four processors, speedup is limited to about
3. In all cases, the accuracies of DSVDC and PSVD were comparable.

The results in this section suggest that, as for the symmetric tridiagonal eigen-
problem, PSVD provides a fast and accurate serial alternative to DSVDC and B/III.
More care is needed in the parallel implementation to increase the speedup observed
when PSVD is compared to itself using one processor and eight processors. Moreover,
a careful study of the effects of deflation is in order. A cursory examination of the
results seemed to indicate that deflation is not nearly as prevalent in this setting as
it has been in the symmetric tridiagonal case.

Acknowledgments. We are grateful to Peter Arbenz and Gene Golub for sev-
eral enlightening discussions. In particular, their paper [2] motivated us to consider
the formulation developed in 3. We also wish to acknowledge a stimulating discus-
sion during a special session on divide and conquer methods during the (atlinburg
X meeting held at Fairfield Glade in October 1987. A question from Gene Wachs-
press prompted us to reconsider the computation of right singular vectors so that we
ultimately discovered the method described in 6.
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Abstract. Solutions to a sequence of modified least squares problems, where either a new
observation is added (updating) or an old observation is deleted (downdating), are required in many
applications. Stable algorithms for downdating can be constructed if the complete QR factorization
of the data matrix is available. Algorithms that only downdate R and do not store Q require less
operations. However, they do not give good accuracy and may not recover accuracy after an ill-
conditioned problem has occurred. The authors describe a new algorithm for accurate downdating
of least squares solutions and compare it to existing algorithms. Numerical test results are also
presented using the sliding window method, where a number of updatings and downdatings occur
repeatedly.
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1. Introduction. Many problems in signal processing can be formulated as a
least squares problem

(1.1) minllXw-sll2, x
_
Rpxn, p > n.

If rank (X) n and the QR decomposition of the data matrix (X s) is

(1.2) QT(x 8) 0 e Rpx(n+l),
0

where Q E Rpp, then the least squares solution w is obtained from

(1.3) Rw u,

and the residual vector r and its norm satisfy

(Throughout this paper, we assume that Z and s are scaled to have norms O(1).)
Frequently, we know the factorization in (1.2) and wish to find the solution to a

modified problem

min IIXw 112,

where a new observation (yT 7) is added (updating):
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or an old observation (zT a)is removed (downdating):

(z,)X= 2 s=

Often the modified problem involves both an updating and a downdating. From (1.3),
we see that the solution to the modified problem can be obtained by modifying the
R factor of the corresponding augmented matrix ( ). If R and/ are the R factors
of X and X, respectively, then we have for updating

T RTR + yyT,

and for downdating

T[: RTR zzT.

Throughout this paper, we will assume that the data matrices X and X have full
column rank. Hence, the problem of modifying the R factor of X after a row is added
or deleted is mathematically, but not numerically, equivalent to that of updating or
downdating a Cholesky factorization under a rank-one perturbation. Thus, when we
deal with the solution of the least squares problem (1.1), it is essential to consider
the matrix X as the data rather than the upper triangular factor R. Note that an
algorithm that is stable merely for the problem of downdating RTR, may not be stable
for downdating least squares solutions.

2From the relation a (A) ,ki(ATA) and classical perturbation theory for eigen-
values [8], it follows that the singular values a(R) interleave with a a(R),
where for downdating

In downdating, the smallest singular value may decrease and we can have n 0,
even when R has full column rank. Moreover, any singular value may decrease by
a considerable amount, which indicates that downdating can be a sensitive problem
[15]. On the other hand, updating R will increase all its singular values.

Important applications where the recursive least squares problems arise include
speech echo cancellation, speech coding, and adaptive radar signal processing. The
following issues are critical for these applications [1].

1. The modification should be performed with as few operations (real time

applications) and as little storage requirement as possible. Recomputing the QR fac-
torization is too costly since it requires O(pn2) operations, and, thus, a modification
technique must be used.

2. The solution should be accurate up to the limitations of data and conditioning
of the problem, i.e., a stable numerical method must be used. It should be possible
to use a computer with short word length. This rules out the use of the method of
normal equations, which requires twice the word length as methods based on the QR
decomposition.

The purpose of this paper is to discuss accurate and efficient algorithms for down-
dating least squares solutions. We consider the LINPACK algorithm and indicate
that it does not give an accurate solution when the downdating problem is ill condi-
tioned. Then we discuss more accurate algorithms: the downdating algorithm based
on Gram-Schmidt orthogonalization and an algorithm based on corrected seminormal
equations.
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The paper is organized as follows. In 2, we review the algorithms for updating
and downdating the QR decomposition when both Q and R factors are available. In
3, the downdating algorithm based on the Gram-Schmidt (GS) orthogonalization
method is summarized. In 4 and 5, the LINPACK algorithm for downdating the
Cholesky factor and its stability properties are presented. A downdating algorithm
based on the corrected seminormal equation method is described in 6. In 7, we
describe the application of the methods of this paper to the problem of downdating
R-1. Finally, we compare the algorithms discussed in this paper and present the
results of numerical tests in 8.

2. Updating and downdating the QR decomposition. Assume that we
have computed the QR decomposition of (X s) as in (1.2). Then we have

0 p
0 0
yT ?

The row (yT 7) can now be annihilated and the updated factor is computed by a
sequence of plane rotations U GI’. "Gn+I, where Gk is a rotation in the plane
(k, p + 1). We obtain

(2.2) VT 0 p 0
0 0

0yT 77

It then follows that

is the updated factor (. Note that Q is not needed for the construction of U and of
the updated factor R. This algorithm for updating is backward stable [9]. Indeed,
if we construct the upper triangular factor by a sequence of such modifications, the
resulting algorithm is equivalent .to the sequential row orthogonalization method for
computing the QR decomposition.

Assume that we have the QR decomposition

ZT (T I(2.4) (X s)= ) =Q

and want to remove the first row (zT a). We now show that this is equivalent to
updating the QR factorization when a special column e (1, 0,..., 0)T is added to
the left of (X s),

(el X 8)-- 0 .,
Using (2.4) it follows that

QT X
q R

o p
q2 0 0
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where qT =_ (qT q) is the first row of Q. We can now determine a sequence of
plane rotations Jk, k --p- 1,p- 2,..., 1, in the plane (k, k + 1) such that

1 vT T IgT ) 0 p 0 0
q2 0 0

0 0 0

UT Jl"’" Jp-2Jp-.

Here Jk is chosen to annihilate the (k + 1)st component in q. Then we have

1 vT T I0
0 0
0 0 0

where Q QU. Note that by an extra reflection we could ensure that >_ 0, but we
do not assume this in the following. Equating the first columns on both sides we see
that QTe e, so the first row in Q equals el. Hence, Q must have the form

0

and it follows that (v T) (Z ). Droing the first row and column gives the
downdated QR decomposition of

o
0

Note the important fact that in the downdating case, we need the first row of the
square orthogonal factor Q to construct the matrix U. Paie [9] has proved that this
downdating algorithm is mixed stable, i.e., the computed R, , and are close to the
corresponding quantities in the exact factor of

+ E, + el,,

where c and c2 are constants depending on the dimension of X, and # is the round-off
unit.

3. Modifying the GS factorization. In many applications, especially if p >>
n, it is too costly to save and modify the full QR decomposition. When we use the
GS QR factorization, the storage requirement for the Q factor is reduced to pn from
p2, which is for the full QR decomposition. In [5], stable algorithms are derived for
modifying the GS QR factorization of a matrix A when A is changed by a matrix
of rank one, or when a row or column is added or deleted. A principal tool of the
algorithms is the GS process with reorthogonalization. A slightly simplified algorithm
given in Reichel and Gragg [13] relies on the fact that in the full-rank case, one
reorthogonalization is always enough; see Parlett [12].

The algorithm given in 2 for adding a row also applies with trivial modifications
to the GS factorization. Assume now that we have the QR factorization

(3.1) (X s)= ) Q y 0 o
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and want to delete the first row (ZT O" ). Note that (3.1) can be written as

(3.2) y 0
0
0

Following [5], we first apply the GS process (with reorthogonalization) so that el
(1, 0-.., 0)T is orthogonalized to

E l:tp(n+l)
Y ]

Because of the special form of the appended column, the result has the form

(3.3) (qT ) 1) (qT ) ( I 0

0 Q1 y h O0 01 )
for some h e 1(p-1)xl, (, and e R. Here qTql +2+2 ile11122 1, and equating
the first element in the last column in (3.3) qTlq +2+ 1. Hence we have .
If el is linearly dependent on the columns of Q, then we get 0, h 0, and the
orthogonalization will fail. In this case we can take a random vector in R(v-l) x and
reorthogonalize to find a unit vector h that is orthogonal to (Q1 y); see [5].

We now write using (3.2) and (3.3)

2=Q yh O0
and determine a sequence of plane rotations Jk, k n + 1, n,..., 1, in the plane
(k, n + 2) such that

/ U= U= Jn+lJn’"J1Q y h ( h

where Jk is chosen to annihilate the kth component in (qT ). Since orthogonal
transformations preserve length we can make T 1. The transformed matrix has
orthonormal columns and so h 0. It follows that

where

UT 0

with R upper triangular, and the downdated QR decomposition becomes

(3.4) ( g)= (( ))/{/ fi}\0 /\
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Summarizing the above, we get the following algorithm.

GS downdating algorithm. Given

the following algorithm computes the downdated quantities Q, R,

1. Orthogonalize e to ( by the GS process with one reorthogonalization step:
:=

(b) v’=e-Qs
(c) I1 11 >-
(d) else

i. s’ :- T v; v’ v-

determine h with unit length orthogonal to (Q1 y)
iii. else v

(e) := v(1); h := v(2 p).

2. Determine an orthogonal matrix U as a product of Givens rotations such that

(0 0 1)(qlT )U.(3.5) Q1 :=
Q1 y h

3. Update the R factor by uT:

(3.6) ) "-- UT 0
a 0

4. Compute the new solution from R and take t5 as the new residual
norm.

With one reorthogonalization process, the GS downdating algorithm requires
about 7pn + 2.5n2 flops. This can be reduced to 5pn + 1.5n2 flops when fast scaled
rotations [2], [8] are used in (3.5) and (3.6). Note that the data matrix X is never
needed: to delete the first row of X, the R factor and the corresponding row in Q1
are needed. Thus, the storage requirement is about pn + 0.5n2 for ( and R.

4. Downdating the Cholesky factor. There are several algorithms for down-
dating the Cholesky factor of ATA, which is mathematically the same as downdating
the R factor of the QR decomposition of A. These algorithms have the property that
the Q factor is never used. One important algorithm of this type, which uses hyper-
bolic rotations, has been analyzed by Alexander, Pan, and Plemmons [1]. Another
standard algorithm is the LINPACK algorithm due to Saunders [14].

To derive the LINPACK algorithm for downdating R, note that downdating the
ith row of the data matrix (X s by the method in 2 requires the ith row of
the orthogonal factor Q. Also note that the transformations J,+2,..., Jp-1 in (2.5)
do not affect (R u) but the vector q2, which is replaced by el, Iiq2112. Thus,0p

mathematically it suffices to know the first n + 1 components (qT ) of the ith row
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of Q and -_- I[q2112 v/i (llql[[ 2 + 2) to delete the ith row of (X
first row of the QR decomposition (2.4), we have

s ). From the

( )=(qr q) 0 =(q ) R

0
0

It follows that ql and can be computed by solving the triangular system

(RT O)(ql)uT p a

Using the relation uTql uTR-Tz wTz, we obtain

(4.1) ql R-Tz, (o- zTw)/p (p : 0).

Next we should determine a product of plane rotations U such that

(4.2) uT o p o it
/ o o o o [,

The first rotation in the (n + 1, n + 2) plane only affects the 2 x 2 matrix

-s c

and a short calculation gives

(4.3) .2 2 + 2 1 -Ilqlll22, /5 (cr zTw)//, 15 (p2 32)/2.

(Note that in (4.1) need not be computed so the assumption that p # 0 is not
needed.)

Collecting these results we get the following algorithm

LINPACK downdating algorithm. Given R, u, p, w, and (ZT 0"), the following
algorithm computes the downdated quantities/, g, iS, and .

1. Compute ql,’Y, and from

(4.4) RTq z, ( -IIqll)1/, (a- zTw)/’.

2. Determine an orthogonal matrix as a product of Givens rotations such that

(1 zT or)fT(ql R u)(4.5) 0 / g :=
7 0 p

3. Compute the new solution and the residual norm from
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This algorithm requires about 3n2 flops for two triangular solves and updating
in (4.5), which can be reduced to 2n2 flops when fast rotations are used in (4.5).
Unlike the GS downdating algorithm, the LINPACK algorithm does not require the
Q factor. However, the row (zT a) to be deleted should be known to recover the
necessary elements in the Q factor. Thus, for solving recursive least squares problems
with the sliding window method, all the rows in the data matrix X need to be stored
for future downdating. Accordingly, the storage requirement is pn + 0.5n2. This
means that the storage requirement for the LINPACK downdating algorithm can be
about as large as that for the GS-based downdating algorithm for recursive least squares
problems contrary to a widespread misconception. In special cases such as when X
is sparse or its elements can be generated by a formula, the cost of storing X can be
much smaller than that of storing Q.

5. Stability properties of the LINPACK algorithm. It is well known that
downdating the Cholesky factor can be very ill conditioned and can fail. We first note
that

RTR_ zzT RT(I_ qlqT )R T.
If we put I- qlqT LLT, then/ LTR, where

1
(5.2) a(L) -, /= V/1- IIqll 2

Stewart [15] considered the effect of a perturbation 5z in z on the downdated
factor/. He showed that if

where # is the round-off unit, then, neglecting higher-order terms

(5.3)

where 5i ai(/). This shows that the method can break down if 5i/a #1/2, i.e., if
we downdate to an ill-conditioned matrix/. The analysis in [15] also shows that the
downdating problem is ill conditioned if any singular value is reduced significantly (not
necessarily becoming small). This happens, for example, if the row to be downdated
contains an outlier, i.e., an erroneous and large element.

Pan [10] has given a detailed perturbation analysis of the downdating problem
for the Cholesky factor and has proved the following result.

THEOREM 5.1. Let a > 0 be small enough so that the factorization

(e)T[c(e) (R + eE)T(R + eE) (z + ef)T(z + ef)

exists for all e E (-a,a), where E is an upper triangular matrix. Then we have the
bound

(5.5)
]el2(R)C[2n(n/2C + 1)

+ (2n3/2C -{- 2n + 1)]IEII2 ] +

where a(R) is the condition number of R, and C
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The above perturbation analysis shows that using R to form the downdating
transformations may be a much more ill-conditioned problem than downdating the
original matrix X. This is because the original row in X is not perturbed in the
same way as the vector (qT ,), which is computed by solving a triangular system to
determine the downdating transformation in the LINPACK algorithm. Hence, any
method that uses R alone to recover the necessary elements of Q cannot be backward
stable in the same sense as the downdating algorithm that uses Q directly.

We now illustrate the perturbation result, and the possible failure of the LIN-
PACK algorithm using a simple example.

Example 1 Let X where T 1/V/-fi, and let s (11) We may think of the
first row of X as an outlier. Then the QR decomposition of X, correctly rounded to
single precision, is

(11 e 1 0

where e lIT. The LINPACK algorithm will compute

ql TIT 1, [2 1 1 O, J1 I,

and we obtain the downdated factor / 0, and the least squares solution is not
defined. It is easily verified that if we downdate using Q, we get the correct result
/= 1 and 1.

The information from the second row in X is not present in R, only in Q. There-
fore no method working only from R can hope to do better.

6. Downdating using seminormal equations. We now consider a downdat-
ing algorithm in which the method of iterative refinement is incorporated. The method
is based on the seminormal equations (SNE)

RTRw XTS,

for solving a least squares problem min IIxo-ll. This method is generally no more
accurate than the method of normal equations. We instead consider the method of
corrected seminormal equations (CSNE)

RTRw XTS, r 8 Xw,
(6.1)

RTRSw XTr, Wc w + 5w.

Here a corrected solution Wc is computed by performing one step of iterative re-
finement on the solution computed from the SNE. Note that we assume that all
computations are performed in single precision.

Assume that the computed R R is such that there exists an exactly orthogonal
matrix Q such that

X+E=QR,

Then in BjSrck [4] the following error bound is given for the solution c computed by
CSNE.

THEOREM 6.1. Let c be the least squares solution computed by the CSNE
method, and assume that p clnl/2#t < 1, where is the spectral condition number
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of X. Then the following error estimate holds up to terms of higher order in #:

(6.2)
I1,- ,<11 <_ ov,(llll + nll2p iII11)xll

I1’11 n+ /w(nllll + P’ IIXII) + /vlIII,

where

(6.3) a c3#2, c2 2nll2(cl + n), c3 <_ 2nl12(cl + 2n + p12).

Hence, provided that C3tt
2 < 1, the forward error will not be worse than for a

backward stable method.
In [4], it was shown how the CSNE method can be used to update the R factor

when a new column is added. This can be adopted to reconstruct the vector (qT .)
aS follows.

THEOREM 6.2. Let v be the solution to

and R the R factor of X. Then the R factor of (X el) is

(6.4) (R0 q’)’y ql Rv, iml lie,- Xvll2.
The downdated R factor is then obtained by applying orthogonM transformations

to transform the last column into the vector el. We now apply this result to downdate
the au9mented R factor by solving the least squares problem

min,
using the CSNE.

The first step is similar to the LINPACK algorithm. Assuming p = 0, from

UT tO ) (7

we get

Next we solve

which gives

ql R-Tz,

.) (x)_o p

b/p, x R-l(ql u) v Cw.
We have I1 II xll, and and x are only needed to compute Igl Iltll., where

(6.5) t el (X 8) e Xv ), (8 Xw)/p.
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In exact computing it holds that

and is the residual normalized to unit length with first component equal to . Hence
p 0 implies that/ 0, and/5 IIZ@- 112 0. In floating point computation
the division /p, where fl(s- Xw) is the computed residual, may not be safe to
perform if p J= 0 but very small. If we recompute p-//(11112), then if fl(1 + p) 1
the true residual norm certainly is of the order of machine precision. In this case we
put 0 in (6.5) and take/ /5 0. Otherwise, p will equal 114112 with small
relative error, and the division in computing can be carried out safely. Following
(4.3), we then compute

and continue as in the LINPACK downdating algorithm.
We remark that because the condition number of the augmented R factor is large

when p is small, it is important to refine ql before is computed, i.e., to perform the
algorithm in Gauss-Seidel rather than Jacobi fashion!

CSNE downdating algorithm. Given R, u, w, the data (X s) the following
algorithm deletes the first row (zT a) and computes the downdated quantities/,
and @.

1. Compute ql, v and t from

RTq z, Rv ql, t "= e Xv.

2. Update ql, v and compute

RThq xTt, ql := q + 5ql,

3. Set/5 fi := 0 and compute the residual:

If fl(1 + p) yk 1,
(a) normalize the residual: r/p,
(b) modify t:
(c) update and t:
(d) compute

4. Determine an orthogonal matrix UT as a product of Givens rotations such
that

5. Compute the new solution from

R .
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Example 2. Let X be as in Example 1. In the method of seminormal equations,
we compute

ql=l, v=-, "y= T- =e=--.
T 0 1

2 T

There is no need for the refinement steps 2 and 3 here, and we get

e 0 0 1

which is the correct result.
Algorithm CSNE requires three more triangular solves than the LINPACK method,

if the iterative refinement is carried out. Also, four extra matrix times vector multipli-
cations with X and XT are required. Hence, the added computational complexity is
quite high, 4pn + 1.5n2 flops. However, sometimes X may have a special structure
and the matrix-vector multiplications can be performed by fast algorithms. This is
the case, for example, when X is a sparse or Toeplitz matrix. The storage requirement
is the same as that for the LINPACK algorithm.

When the CSNE algorithm is too expensive to use in every step, we suggest a
hybrid algorithm [6], where the CSNE algorithm is used if the downdating is ill condi-
tioned and the LINPACK algorithm is used otherwise. As a measure of conditioning
of the downdating problem for R augmented by the right-hand side u and residual p,
we have used the quantity (cf. [15])

(6.6) 7
2 1 IIqll 2

If ,),2 is less than a user-specified constant tol, then the downdating is performed with
CSNE. Our numerical experiments indicate the hybrid method with tol in the range
[0.25, 0.5] produces much more accurate results than the LINPACK algorithm.

7. Updating and downdating the inverse of R. The problem of updating
and downdating the inverse of the matrix R in the QR decomposition has been stud-
ied in [11] for methods based on orthogonal as well as hyperbolic rotations. One
motivation for working with R- instead of R itself is that such an algorithm can
be parallelized more easily. Furthermore, there are applications (see [11]) where the
elements of the inverse are needed.

The downdating methods described in this paper can be modified to downdate
the inverse of R. We first describe how the inverse and the solution vector w can be
downdated recursively.

Consider the transformation

0 0 k .
By simply inverting the matrices in the first equation in (7.1) we get the following
formula for downdating the inverse S R-"

(1) (10
U=(7.2) S -v 0 S

where v R-lql Sql. Hence the same orthogonal transformation U downdates the
inverse. U can be determined as a product of plane rotations that zeros the diagonal
in S from bottom to top

U dn,n+"" d23J2.
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This determines -1. Using the second equation in (7.1), we can determine

(7.3) (uT f)U--(a T),
and the downdated solution is obtained from .

A different downdating formula for is obtained as follows. Combining (7.2) and
the second equation in (7.1), we see that

and hence

(7.4) w- -v.

Since we assume that rank(X) n, we have - 0. The LINPACK, the CSNE,
and the hybrid algorithms only differ in the way the vector (qlT -),) is computed. For
determining this vector, triangular systems with the matrices R and RT need to be
solved. This can be replaced by the corresponding multiplication by the inverse.
Therefore these methods can also be used in connection with inverse downdating.

For updating the inverse factor, we consider the relation

(7.5) g R u 0
0 p 0

By adding a column el, we write the first part of this equation as

where (pl is the first row of U. We then invert this equation to get

()(01)1 --yTS Uo

Here we first choose U as a product of plane rotations

f] JJ."" J,,n+,
where Ji,i+, i 1,... ,n are chosen to zero elements in the first row from left to

right. The same transformation is then applied to

(.) ( )=( ).

(Compare the last column of (7.5), and note that [ does not affect column n + 2.)
Finally we choose J,+,+2 to zero the element p. This will not affect fi and S and
determines

(7.8) / (2
_

p2)1/2.

Inverse updating algorithm. Given S R-l,u,p,w, the data (X s), the
following algorithm adds a row (yT r]) and computes the updated quantities , , iS,
and .
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(7.9)

1. Determine and

0 g 1

0

where 0 is a product of Given8 rotation8

0 J12J23""" Jn,n+l.

2. Compute/5 and the updated solution from

( + p)/, .

_yTS I11,T

LINPACK inverse downdating algorithm. Given S R-l,u,p,w, the data
(X s), the followi_ng algorithm deletes the first row (zT a) and computes the down-
dated quantities S, ,/5, and "

1. Compute ql, v, and /from

ql STz, v-- Sql, "/-- (1- IIqll)/.
2. Compute" = (- zTw)//,
3. Determine and S from

1 --zT 0
0 S S

where U is a product of Givens rotations

U Jn,n+l"’" J23J12.

4. Compute the new solution from

CSNE inverse downdating algorithm. Given S R-1, u, p, w, the data
(X s), the following algorithm deletes the first row (zT a) and computes the down-
dated quantities S, ,/5, and :

1. Compute ql, v, and t from

ql STZ, V Sql

2. Update v and compute

5ql STXTt,
V :-- V q- 6V,

t ": el Xv.

ql ": ql + 5ql 5v $6ql

t t- Xav, "r :-Iltll.
3. Set ":/5 "=/ := 0 and compute the residual:

r :: 8- Xw,

If fl(1 + p) # 1,
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(a) normalize the residual: P r/p,
(b) modify t: := eT/, t:= t--
(c) update and t:
(d) compute: fi_=

4. Determine and S from

t := t-

1 --zT :--- 0
0 s

U

where U is a product of Givens rotations

U Jn,n+l"’" J23J12.

5. Compute the new solution from

8. Numerical experiments. In a sliding window method, a least squares so-
lution is computed based on the p latest rows of an observation matrix A, where p is
the number of rows in the window matrix [1]. In step k, the new row of observation,
A(k, :), is updated into the QR decomposition, and the existing row A(k- p, :) of
the data matrix is downdated from the decomposition. If an outlier occurs at step
j, then in exact arithmetic its influence will not be seen after step j + p. However,
the downdating problem is very ill conditioned in the step when the outlier is to be
removed, and any algorithm that does not explicitly use Q or the original data X,
e.g., the LINPACK algorithm or a hyperbolic rotation-based algorithm [1], is likely
to introduce a large error into the decomposition.

In the sliding window context, the storage requirements of the four algorithms
presented in the previous sections are the same in the general case, pn + 0.5n2. The
GS algorithm requires the orthogonal factor but not the data matrix in storage, while
the other algorithms require the data matrix but not the orthogonal factor. However,
when X has a special structure, the storage requirement for X can be much smaller
than that for Q.

The computational complexities of the four algorithms for each downdating are
compared in Table 8.1. We give the operation counts (1 flop 1 addition and 1 mul-
tii)lication) for standard and fast [2], [8] Givens rotations. For the hybrid algorithm,
the computational complexity is either the same as that for the LINPACK algorithm
or the CSNE algorithm. The LINPACK algorithm has a clear advantage in computa-
tional complexity. In a sliding window context, the GS algorithm is more expensive
also in the updating stage, since the Q factor needs to be modified. For the CSNE
algorithm the updating stage is the same as for the LINPACK method. Hence for
a complete up/downdating step using standard Givens rotations the GS algorithm
requires 11pn + 4.5n2, but the CSNE algorithm requires only 4pn + 6.5n2 flops. Fi-
nally, note that if, for example, X is Toeplitz the term 4pn in the operation count for
the CSNE algorithm can be reduced by using a fast algorithm for the matrix-vector
products with X and XT.

One application area where downdating is used in connection with the sliding
window method is adaptive filtering. In [3] it is noted that in certain situations this
method does not perform well as rounding errors accumulate and eventually destroy
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TABLE 8.1
Computational complexity of downdating algorithms (flops).

GS 7pn T 2.5n2 5pn + 1.bn2

LINPACK 3n2 2n2

CSNE 4pn + 4.5n2 4pn + 3.5n2

Hybrid 3n2 or 4p’+ 4.5n2 2n2 or 4pn + 3.5n2

the solution. Our numerical tests indicate that these difficulties are not to be ascribed
to the sliding window method itself, but rather to the downdating algorithm used.

Numerical tests using the sliding window method have been performed in Pro-
Matlab with IEEE double precision floating point arithmetic to compare the accuracy
of the four downdating algorithms. The solution obtained from the QR decomposition
of the window matrix was used as a reference and a window of size 8 was used
throughout. In each figure, we present the relative error in Euclidean norm in the
downdated solution vector by the LINPACK, CSNE, hybrid, and GS algorithms. The
spectral condition number az of the window matrix to be downdated and 1/2, which
is a measure of the conditioning of the downdating problem (6.6), are also shown.
The values of 1/-)’2 are from the hybrid method. A plus (+) sign in the plot shows
where iterative refinement is made in the hybrid method. We have used the following
criterion: if /2 < 0.25, then downdating is performed with the CSNE method.

The following test problems are similar to those in [6]. They were also used in
the context of adaptive condition number estimation in [7]. Tests I and II illustrate
the downdating of R and Test III illustrates the downdating of R-1.

Test I. A random matrix A E R55 was constructed with elements taken from a
uniform distribution in (0, 1). An outlier equal to r. 103, where r is random number
from the same distribution, was added in position (18,3). The right-hand side vector
b was taken to be b Axo + br, where br has random elements uniformly distributed
in (0, 10-6), and x0 is 5 1 vector with ones as its components.

The results are shown in Fig. 8.1. It is seen that the relative error in the solu-
tion using the LINPACK algorithm is considerably magnified in the ill-conditioned
downdating step and that it remains on that high level even if the subsequent down-
dating steps are well conditioned. The other algorithms are much less affected by the
ill-conditioned downdating and the errors remain on a low level throughout.

Test II. A 50 5 matrix was constructed by taking a 25 5 Hilbert matrix as
the first 25 rows, and the same rows in reversed order as the 25 last rows. Then a
perturbation from a uniform distribution in (0, ti) was added to each matrix element.
Two different cases were studied, with ti 10-5 and 10-9, respectively. The right-
hand side was constructed as in Test I, but here with a random perturbation in

(0, 10-6).
In Fig. 8.2 we show the results obtained with 10-5. Throughout this test the

downdating problem is rather ill conditioned, so iterative refinement is performed in
most steps in the hybrid algorithm. It is remarkable that the LINPACK algorithm
performs so much worse than the others. This is probably due to the fact that the
window matrix is very ill conditioned, which leads to large errors in the computed
approximations of q. In the CSNE method this vector is refined and much better
accuracy is attained.

In Fig. 8.3 we show the results obtained with 10-9. Here the window matrix
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index of the last row for window of size 8

FIG. 8.1. Test I. The upper graph shows the relative error in Euclidean norm in the downdated
solution vector by the LINPACK (solid line), CSNE (dashed), hybrid (dotted), and GS (dot-dashed)
algorithms. A plus (+) sign in the plot shows where iterative refinement is made in the hybrid
method. The lower graph shows the condition number ax of the window matrix to be downdated
(dotted) and 1//2 (solid line).

is even more ill conditioned, and after some steps the LINPACK algorithm breaks
down because a computed ql has norm larger than 1.

Test III. Two problems were solved. The first is the same as in Test I, and the
second is the same as in Test II with 5 10-5. The results are for LINPACK, CSNE,
and hybrid inverse downdating and are shown in Fig. 8.4.

9. Concluding remarks. We have studied two standard methods for down-
dating least squares solutions: the LINPACK and the GS algorithms; and two new
methods, the CSNE algorithm and a hybrid algorithm CSNE/LINPACK. In terms of
storage requirements the four algorithms are all the same in the general case. How-
ever, when X has a special structure, the storage requirement for the LINPACK and
CSNE algorithms can be much smaller than that for the GS algorithm.

The algorithms differ considerably in efficiency and accuracy. The LINPACK
algorithm is the fastest, but the analysis and the tests show that it can be much
less accurate or even fail. It is clear that the CSNE algorithm is more accurate but
considerably slower than the LINPACK algorithm. However, if X has some special
structure, the difference in efficiency may be less pronounced. The hybrid algorithm
has almost as good accuracy as the CSNE algorithm and it can be much more efficient.
The GS algorithm is comparable in accuracy to the CSNE algorithm, but it is also
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FIG. 8.2. Test IIa. Modified Hilbert matrix with perturbations from a uniform distribution in
(o, o-).

the slowest of the four algorithms.
The reason why the LINPACK algorithm is inferior in terms of accuracy to the

three others is that it uses less information, i.e., only the R factor. The others
use both R and either the Q factor (GS) or the original data matrix X (CSNE and
hybrid). Note that other methods which only use R (e.g., methods based on hyperbolic
transformations) will show a similar loss of accuracy as the LINPACK algorithm.

Our results indicate that in cases where, for example, outliers occur, the CSNE
and the GS algorithms are the safest choices. If accuracy and efficiency are both
important, then the hybrid method may be a better alternative than the LINPACK
algorithm. Further study is needed in deciding how to choose the tolerance used in
the hybrid algorithm to switch between the CSNE and LINPACK algorithms.

We have also shown that the new methods for downdating R can be extended to
downdate R-1. More numerical experiments are needed in this area.
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ITERATIVE CONSISTENCY: A CONCEPT FOR THE SOLUTION OF
SINGULAR SYSTEMS OF LINEAR EQUATIONS*

M. HANKEr
Abstract. This paper deals with the computation of generalized solutions of singular linear sys-

tems of equations by semi-iterative methods. A new concept called iterative consistency is introduced
to characterize linear fixed-point equations which lead to certain prescribed generalized solutions of
the original problem. Several properties of this concept are discussed.

Perturbations of such iteratively consistent fixed-point equations give rise to the computation
of perturbed limit points. These approximants can still be interpreted as appropriate generalized
solutions of the original system. Error expressions and first order derivatives are derived. The results
are illustrated by the successive overrelaxation (SOR) and by the symmetric SOR (SSOR) method.

Key words, singular linear systems, iterative methods, SOR method, generalized inverses

AMS subject classifications. 65F10, 65F20

1. Introduction and definition. Consider the singular linear system of equa-
tions

(1.1) Ax b + e =" I,
A E C"n b,l, e E Cm

Here., b denotes some available approximation of the correct right-hand side ,
e b- b the corresponding error, and x Cn the unknown solution. In engineering
applications it is typically assumed that e has certain statistical properties, e.g., that
e is a random variable with zero mean (cf. Bjbrck [3]).

Appropriate estimates for x in (1.1) are

x A-b,

where here and further on, the term A- is used to denote some arbitrarily specified
generalized inverse of A. The reader should be familiar with the basic terminology of
this subject. The notations used here agree with those used in the standard reference
book by Ben-Israel and Greville [1].

According to the Gauss-Markov theory of linear estimation, it is optimal in a
A(1,2)certain sense to select for A- a weighted generalized inverse "(w,v) ([1, III.3]), where

W-1 is the Hermitian, positive definite covariance matrix associated with e. For
A(1,2) h X Cnx ..(w,v)., e \ (x} arbitrary, it is

lib- Axllv (b- Ax)*W(b- Ax) _< lib-
and

lib AxlIw lib Ax’llw IIxll :-x*Ux< [Ix’ll 2

Thus, x is the unique solution of a generalized least squares problem.
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The idea behind this paper is to compute linear approximations xk fulfilling

(1,2)(1.2) Xk Xkb

More precisely, it will be assumed that xk are polynomial iterates of a fixed-point
equation

(1.3) x Tx + Qb, Q

i.e., there exist polynomials qk-1 of degree k- 1 such that

(1.4) xa q_(T)Qb.

Such Xk may be computed efficiently by a semi-iterative method [7], [6],

Xk #O,k(Txk-1 + Qb) + #l,kXk- +"" + #k,kX0, X0 0,

0,-0, #O,+’’’+k,k=l, k>_0,

where the weights uj,k are the coefficients of the recursive definition of the so-called
residual polynomials

pk(z) 1 + (z- 1)qk-1 (z).

Designing such a semi-iterative method, one must pay special attention to the
difficulties arising from the potential singularity of (1.3): Relevant to this, it has been
shown by Eiermann, Marek, and Niethammer [6] how to select polynomials qk- such
that

qk-1 (T) -- (I T) (d) k - cthe Drazin generalized inverse of I- T.
Comparing (1.2) and (1.4), this leads to the stipulation

(I- T)(d)Qb (1,2) ,
"’(w,v) ’,

and, due to the unknown value of e in (1.1), this requirement should be fulfilled for
every b Cm.

DEFINITION 1.1. The fixed-point equation (1.3) is called iteratively consistent
with A via the generalized inverse A- of A if
(1.5) (I- T)(4)Q A-.

It is called iteratively consistent with A if (1.5) is a weighted generalized inverse of
A.

This definition, which was introduced in the author’s dissertation [9], differs sig-
nificantly from definitions of Young [17], Kammerer and Plemmons [12], and Berman
and Neumann [2]. In these works, b and Qb were assumed to be fixed, and, instead
of (1.5), conditions were imposed on certain sets of generalized solutions to (1.1) and

In the following sections, fixed-point equations are investigated that are itera-
tively consistent with A. Section 2 presents a survey of certain properties of such
equations; some of these results have been derived in an earlier paper with Neumann
[10]. Reasonings of perturbation theoretical nature are included in 3. Section 4 con-
tains some applications that include positive definite preconditionings of the normal
equations and the SOR and the SSOR methods.
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2. Basic properties. In the beginning, the special case is considered where A
is of full column rank. This is a common assumption that, for itself, is of interest.

PROPOSITION 2.1. Let A be of full column rank. If (1.3) is iteratively consistent
with A then T I- QA.

Proof. Let A- denote the weighted generalized inverse in (1.5). Since Af(A)
{0}, it follows that A-A I. Inserting this in (1.5) yields

(I- T)(d)QA A-A I,

whence I- T is regular. Multiplying I- T from the lef verifies the assertion. 0
Compare Proposition 2.1 with analogous characterizations of Young [17, Thm.

3-2.6] and then [5, Thm. 2.2-3] or [10, Thm. C] concerning their definition of consis-
tency.

If T I- QA then the fixed-point equation (1.3) may be written as

(2.1) x x + Q(b Ax)

and thus looks like a preconditioning of the original problem; Q is called the precondi-
tioner. Other fixed-point equations have been derived in the literature from splittings
of A; they are not considered here. However, many of the present results can be
carried over to such equations (cf. [9]): The clue to doing this may be found in [10,
Thm. 4].

In the following theorem ([10, Thm. 2]) iteratively consistent fixed-point equations
with A are characterized.

THEOREM 2.2. The following four statements are equivalent:
(i) The fixed-point equation (2.1) is iteratively consistent with A,
(ii) Af(AQ) (R) T(A) C",
(iii) n(QA) Af(A) Cn,
(iv) index(QA)_< 1 and n(d)Af(Q)= {0}.
Notice that equations of the form (2.1) automatically lead to a {2}-inverse (1.5)

of A ([10, Lemma 1]). Thus, for fixed-point equations of such a form, iterative con-
sistency with A is equivalent to iterative consistency with A via some {1}-inverse of
A.

Let one of the conditions of Theorem 2.2 be fulfilled and define A- as in (1.5).
Then,

(2.2) Af(AQ) Af(A-), n(QA) n(A-)

([10, Thm. 2]) and

(2.3) Af(QA) Af(A), n(AQ) n(A)

([10, Coro. 3]). With the help of these equations, it is easy to characterize those
preconditioners Q for which A- is a {1,2, 3}- or a {1,2, 4}-inverse of A; the case
A- A has been dealt with in [10].

Finally, it must be emphasized that iterative consistency with A implies that
index (QA) _< 1. This enables the construction of efficient semi-iterative schemes (1.4).
Such schemes were explored in [9], and the corresponding results will be published
elsewhere.
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3. Derivatives and error terms of Wedin’s type. The following analysis
concerns the stability of (1.5) relative to perturbations of the preconditioner. There-
fore, it will be convenient to consider perturbations of oblique projectors; closely
related results may be found in Nashed [14] and in Golub and Pereyra [8].

Let B,B E Cnn be such that index(B) index(B) 1; occasionally, B is
required to be a continuous matrix function of w E Cr fulfilling the above properties
in an environment of w 0 with B0 B.

THEOREM 3.1. Let P PT(B),Af(B), Pw PT(B),Af(B). Then

P P B# (B B)(I- P)+ (I- P)(B B)B#.

IfB has a Frdchet derivative DB in w 0 and if the rank of B is constant in an
environment of w O, then P is Frdchet differentiable in w 0 with derivative

DP B#DB(I- P)+ (I- P)DBB#.

Proof. Equation (3.1) is easily checked using the identities

P B#B BB#,

Under the given assumptions, B# --, B# as w --, 0 [4] and the derivative DP can
be obtained from (3.1) by letting w 0.

The following lemma is required to prove the main result of this section.
LEMMA 3.2. Let (2.1) be iteratively consistent with A. Then index(AQ) _< 1 and

(3.2) (QA)#Q Q(AQ)#, (AQ)#A A(QA)#.

Proof. Define A- as in (1.5). It follows from (2.2) and (2.3) that index(AQ) <_ 1
because A- is a weighted generalized inverse.

Now, x Af(AQ) implies Q(AQ)#x 0 as well as Qx Af(A) c Af(QA).
Therefore, (QA)#Qx o, also.

Let x e 7(AQ). Since T(AQ) 7((AQ)), there exists some vector u e Cm

such that x (AQ)2u. As a consequence,

(QA)#Qx (QA)#(QA)Qu QAQu
Q(AQ)#(AQ)u= Q(AQ)#x.

The first equation in (3.2) has thus been verified for x E Cn Af(AQ) n(AQ); the
second equation follows in the same way.

Let Q be an approximation of Q Cm. As before, Q may be a matrix
function of w Cr with Q0 Q. Theorem 3.3 considers the consistency of the
perturbed fixed-point equation

(3.3) x x + Q(b Ax).

THEOREM 3.3. Let (2.1) be iteratively consistent with A via the weighted gener-
alized inverse A- and let T(A-), 32 Af(A-). IfQ Q is suJ:ficiently small,
then (3.3) is iteratively consistent with A. If the latter holds, and if A- denotes the
corresponding weighted generalized inverse of A, then

(3.4) A A- P.(A),n(Q,A)(Q. Q)(AQ)# + (QA)#(Q. Q)P.,n(A).
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IfQ is Frdchet differentiable in w 0 with derivative DQ then the Frdchet derivative
ofA in w 0 exists and is given by

DA- Pf(A),nDQ(AQ)# + (QA)#DQP,n(A).

Proof. Recall that T and Af(A) are complementary subspaces. By Theorem 2.2,
Af(A) -A/’(AQA), whence there exists a positive number a such that

IIAQAxII

_
a v x e n, Ilxll- 1

(11. II always denotes the Euclidean norm or the spectral norm, respectively). If
IIQ- QII < a/IIAII 2, this implies

AQAx O VxEn{0}.
Thus, .hf(AQA) Af(A) so that

n(QA) n hf(A) {0}.
Since dim n(QA) >_ dim n(QA) as Q is sufficiently close to Q, it follows from
Theorem 2.2 (iii) that (3.3) is iteratively consistent with A.

A fundamental equality for weighted generalized inverses is used next (cf., e.g.,
[1, Thm. 2.10c] or [14, p. 348]):
(3.5) A- PT A ,Af A A P A ,Af A

Since Af(A) Af(QA) Af(QA) and 7(A) n(AQ) T(AQ) (cf. (2.3)), it is

Pn(Ah),(A) (QA)#QA, PT(A),(Ah) (AQ)#AQ
Substituting (3.1) for P PTC(A),f(Ah) in (3.5) gives

A- Pn(AZ),(A)A-[Pn(A),f + (AQ)#A(Q Q)Pf,n(A)]
because the last term in (3.1) vanishes. Using Lemma 3.2, one has

A- Pn(Ah),(A)A- + Pn(AT ),f(A)Pn(A-),f(A) (QA)#(Q -Q)Pf,n(A)

Pn(Ah),(A)A- + (QA)#(Q -Q)P,n(A).
Now (3.4) follows in a similar way by inserting (3.1) for P P’R(AZ),N’(A)"

The derivative is obtained from (3.4) by letting w
Theorem 3.3 may be interpreted as follows: Iterative consistency with A is a

property that remains valid under small perturbations of the preconditioner; in a
sense, iterative consistency with A is thus a robust property.

Different proofs are possible to derive (3.4) and the present one may not be the
most straightforward one. It is given, though, because it is based on formula (3.5). In
fact, it will be seen in the following section that in certain special cases the projectors
in (3.5) can be expressed explicitly in terms of Q and Q only.

Formulas of type found in (3.1) and (3.4) are similar to the well-known expression
of Wedin [16] for the difference of the Moore-Penrose inverses of A and B:

B A -Bt(B- A)A + PAr(B)(B- A)*(AA*) + (B*B)t(B- A)*Pn(A)+/-.
The reader may find further formulae of this kind together with some applications in
the survey paper of Stewart [15].

Estimates for the difference of two weighted generalized inverses of the same
matrix A may be found in [14].
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4. Some applications. Let (1.3) have the form

(4.1) x x + D-1A*(b- Ax), D E nn.
If D is Hermitian, positive definite, the preconditioned conjugate gradient method may
be applied for the iteration of (4.1). With such a choice of D, it is easy to see that
(4.1) is iteratively consistent with A.

Let y E m be some arbitrary vector; if

y*AD-A*y [ID-/A*yll O,

then this implies D-I/2A*y 0, whence y T(A) +/-. Therefore,

Af(AD-A*) T(A) +/-

and the assertion follows from Theorem 2.2(ii).
As an example, let D be the (block-)diagonal part of A’A: In this case, (4.1) is

the fixed-point equation of the (block-)Jacobi method for the normal equations system.
Applications to SOR and SSOR theory follow from the investigation of fixed-point
equations of the form

(4.2) x x + wDhA*(b- Ax), D e Cnn,
where D is connected to D in (4.1).

THEOREM 4.1. Let D and D be regular matrices in C"n and Eo Do D.
Assume that (4.1) is iteratively consistent with A via the weighted generalized inverse
A-. Then, the fixed-point equation (4.2) is iteratively consistent with A if and only if
I - P(A),TC(A-)D-1Eo is regular, in which case the corresponding generalized inverse

of A is defined as

(4.3) A (I + Pj(A),TC(A-)D-1Ew)-IA-.

Proof. Denote T T(DA*A) and let

Z I + PAr(A),n(A-)D-E P’R(A-),Af(A) -- PAZ(A),n(A-)D-1DSince D-ID maps T onto T(A-) T(D-1A*A), it follows that

7 -- TO(A-),(4.4) Z- Af(A)--, Af(A).

Let Z be regular. Since (4.1) is iteratively consistent with A, Theorem 2.2(iii) states
that TO(A-) (R) Af(A) C. From (4.4) and the regularity of Z, it follows that

n Af(A) Cn

(note that dimn dim n(A-)). Therefore, (4.2) is iteratively consistent with A.
The respective weighted generalized inverse A5 fulfills (cf. (2.2))

74(A5) n, AZ(Ah) Af(ADhA*) n(A) +/- At(A-).

Using (3.5),

A PT,Ar A A-P A P,AZ A A-
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With the help of (4.4), it is readily checked that

PT ,.M" A Z-1pT A ,.N" A Z,

whence (4.3) follows:

A- Z-1pT(A-),N’(A)(I -4- PN’(A),T(A-)D-1Eo.,)A Z-1A-.
Now, let (4.2) be iteratively consistent with A and suppose x E Af(Z). This

implies

0 (I A- PN’(A),(A-)D-1E)x x A- z

with z E JV’(A). Therefore, x Af(A) and, consequently,

/9-10 (PTg(A-),A/’(A) + PN’(A),n(A-)D-1Do)x PJg(A),n(A-) Dx.

Hence, D-1Dx Tg(A-) so that

xeDh D(n(A-))=n .

By assumption, T V1Af(A)= {0}, which implies Af(Z)= {0}.
COROLLARY 4.2. Under the conditions of Theorem 4.1, (4.2) is iteratively con-

sistent with A via A5 of (4.3) if

In this case, the following estimate is valid:

(4.5) liA A-II < IIP (A), (A-)D-1E II

Proof. If IIP(A),(A-)D-XE[I < then I + PW(A),n(A-)D-E is invertible,
whence (4.2) is iteratively consistent with A via A5 of (4.3). Inserting the convergent
Neumann series expansion gives

A5 -,
=0

whence

IIAZ A-I[ < [IPf(A),(A-)D-XE[I" IlA-II.

This proves (4.5). B
Suppose that the triangular splitting of A*A is given, i.e., let

A*A D- L- L*,

where L is a strictly lower (block-)triangular matrix and D is a (block-)diagonal
matrix. Choosing

D D wL,
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(4.2) is the fixed-point equation of the SOR method relative to (4.6). If

1
D- 2-w
(D-wL)D-I(D -wL*),

then (4.2) corresponds to the SSOR method (cf. [17]). In both instances it follows
from results of Keller [13] that

n(D51A*A) @ Af(DIA*A) Cn, O<w<2,

which proves the iterative consistency of (4.2) with A for w in the given range. The
respective weighted generalized inverses are defined by (4.3). (For the SSOR method,
one should substitute E 2D D.)

Moreover, since E --. 0 as w - 0, the conditions of Corollary 4.2 are fulfilled for
w sufficiently close to 0.

For a more specific example, let A be normalized such that D I. Choose
0 < w < min{2, 1/IILII }. With this choice of w the SOR method converges according
to [13]; denote the limit by . As in (4.5), it follows that

iiAtbl
<_ w

I wllLIl
Using (4.3), the following -posteriori estimate may be obtained:

Analogous results have been developed in [9] for fixed-point equations of the form

x x + wA*D (b Ax),

where Dw E mm is & regular matrix; some of these results have been published in
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Abstract. Let P be an n x n nonnegative matrix. In this paper the authors introduce a method
called the SCANBAS algorithm for computing a union of (Jordan) chains C corresponding to the
Perron eigenvalue of P, such that C consists of nonnegative vectors only and such that at each height,
C contains the maximal number of nonnegative vectors of that height possible in a height basis for
the Perron eigenspace of P. It is further shown that C can be extended to a height basis for the
Perron eigenspace of P. The chains are extracted from transform components of P that are, in turn,
polynomials in P. When the Perron eigenspace has a Jordan basis consisting of nonnegative vectors
only, this algorithm computes such a basis. The paper concludes with various examples computed by
the algorithm using MATLAB. The work here continues and deepens work on computing nonnegative
bases for the Perron eigenspace from polynomials in the matrix already begun by Hartwig, Neumann,
and Rose and by Neumann and Schneider.
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1. Introduction. In this paper we continue an investigation begun by Hartwig,
Neumann, and Rose [6] and Neumann and Schneider [ 1l o. nonnegative and combi-
natorial properties of bases for the Perron eigenspace of a nonnegative matrix, which
can be extracted from certain polynomials in the matrix.

More specifically, let P be an n n nonnegative matrix and p(P) its spectral
radius which is well known to be an eigenvalue of P, called its Perron root. A more
comprehensive explanation and detailed background to some of the concepts used in
this introduction and appropriate references are given in the next sections. Let Z be
the eigenprojection of P at p(P). In [6] it was shown that for sufficiently small > 0,
the matrix

(1.1) J(e) [(e + p(P))I- PI-1Z
is nonnegative and its columns contain a basis of nonnegative vectors for the (gener-
alized) eigenspace of P corresponding to p(P) known as the Perron eigenspace of P.
Furthermore, an algorithm for computing e and hence a method for computing such
a basis was suggested in [6, Thm. 2.2].

In [11] it was observed that since J(e) is an analytic function in P, it is a polyno-
mial in P, so that if P is put, say, in block lower triangular Frobenius normal form,
then J(e) would be a block lower triangular matrix conforming to the block parti-
tioning in the Frobenius normal form of P. Thus combinatorial properties possessed
by certain nonnegative bases for the Perron eigenspace of P that were present in the
first proofs of the existence of such basis for the Perron eigenspace of P obtained by
Rothblum [13] and Richman and Schneider [12] could be extracted from the columns
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of J(e), and this idea led to the investigation in [11]. The combinatorial properties
that the authors of [11] had in mind to recapture from the columns of J(e) were access
relations in the directed graph of P or, more precisely, in the block directed graph
that can be associated with the Frobenius normal form of P known as the reduced
graph of P. Indeed, in [11], it was shown that for sufficiently small e > 0, nonnegative
bases from the columns of JT(e) could be chosen that are strongly combinatorial. (See
2 and [11] for precise definitions of these terms.)

The purpose of this paper is to go one step deeper in search of combinatorial
and algebraic properties of bases that can be extracted from the columns of J(e)
and certain other nonnegative matrices that are polynomials in the matrix P and to
compute such bases. Actually, we think of J()(e) := eJ(e) as a zeroth transform
component of P. Other nonnegative matrices that are polynomials in P, which we
will work with later, are the higher-order transform components

J(k)(e) ek+l(P-- p(P)I)kj(e), k 1,...,- 1.

Here is the index of the Perron root as an eigenvalue of P.
Hershkowitz [7] defines the peak characteristic tuple (1,..., v) of the Perron root

as an eigenvalue of P, and he shows that for each h 1,..., , h is the maximal
number of nonnegative vectors of height h in a height basis for the Perron eigenspace
and that a height basis for the eigenspace exists with that many nonnegative vectors
at each height h 1,..., .

The principal question that we shall answer in this paper is this: Can we extract
from the columns of the transformed components j(0)(e),..., g(v-1)(e), a union C of
nonnegative Jordan chains that contains exactly h vectors of height h, h
where the tuple (,... ,) is the peak characteristics mentioned above? Moreover,
can this union be extended to a height basis for the eigenspace? We achieve this via
scanning process of the transform components that begins by stacking the transform
components on each other from the lowest to the highest. We call this process the
SCANBAS algorithm. The algorithm is set out in 5 after some preparations and
preliminary results from 2-4. We go on to show in Corollary 4 that if (1,...,
is the height characteristic of the Perron root as an eigenvalue of P with k k for
k t,..., , so that by Hershkowitz and Schneider [8, Whm. (6.6)] there is a Jordan
basis for the Perron eigenspace of P corresponding to its Perron root such that all
Jordan chains of length t and higher consist of nonnegative vectors only, then our
SCANBAS algorithm produces such chains. In particular, if the Perron eigenspace
of P has a Jordan basis consisting entirely of nonnegative chains, our SCANBAS
algorithm computes such a basis. In 6 we conclude the paper by presenting various
examples of bases that were produced by our SCANBAS algorithm implemented by
using MATLAB. These examples show that generally C cannot be extended to
Jordan basis for the eigenspace. We end the section with a brief description of the
MATLAB programs that were actually used in the computation of the examples.

Finally, we find it convenient to work and state the results of this paper in terms
of the minus M-matrix A P- p(P); that can be associated with our nonnegative
matrix P.

2. Notations and preliminaries. For a positive integer n, we denote by
the set (1,... ,n}.

In all our considerations we assume that A is an n n real matrix given in a block
lower triangular form with p square diagonal blocks as follows:
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(2.1) A

AI,1 0 0
A2, A2,2 0

Ap,1 A’p,p
where each diagonal block is either an irreducible matrix or the I x i null matrix. The
above form is called the Frobenius normal form of A. It is well known that any square
matrix is symmetrically permutable to such a form. The reduced graph of A, T(A),
is defined to be the graph with vertices {1,..., p}, where (i, j) is an arc from i to j if
Ai,j 0. A vertex in T(A) is said to be singular if Ai,i is singular. Otherwise the
vertex is called nonsingular. The set of all singular vertices in 7(A) will be denoted
by q(A). A sequence of vertices (il,..., ik) in 7e(A) is said to be a path from il to
ik if there is an arc in 7(A) from ij to ij+l for all j E (k- 1/. The path is said to
be simple if il,..., ik are distinct. The empty path will be considered a simple path
linking every vertex i E 7(A) to itself. If there is a path (in 7(A)) from to j, we
write that i j. If i j and there is a path from i to j, we write that i - j.

Let x Rn. We partition x ((x)T,..., (Xp)T)T in conformity with (2.1). Let
e (P/. We say that that the level of i in n(A) is k (ev(i) k) if the maximal

number of singular vertices on a path ending at i is k. We say that the level ofx Rn
is k (lev(x)- k) if

k max{lev(i)] xi 0}.

For an n x n matrix A we denote by:
N(A), the nullspace of A;
E(A), the generalized nullspace of A, viz., N(An);
(A), the index of 0 as an eigenvalue of A, viz., the size of the largest Jordan

block associated with 0. Where no confusion is likely to arise, we write for (A).
We let Z() (A) be the eigenprojection of A corresponding to the eigenvalue 0 and

we put Z(k)(A) AkZ()(A), k 0,... , 1. Where no confusion is likely to arise,
we write Z(k) for z(k)(A), k 1, ,- 1. The matrices Z(k), k O, - 1,
are called the principal components of A (corresponding to the eigenvalue 0). For
background material on the principal components, see Lancaster and Tismenetski
[10, p. 314] and, in the case of nonnegative matrices, see Neumann and Schneider

Let a c_ (n). By A[a] we denote the principal submatrix of A whose rows and
columns are determined by a. Similarly, for an n-vector x, we denote by x[a] the
subvector of x whose entries are indexed by a. For an array C, we use C _> 0 to
denote when all its entries are nonnegative numbers. C > 0 denotes the fact that
C _> 0, but C 0. C >> 0 denotes the fact that all of the entries of C are positive
numbers.

Let P be an n x n nonnegative matrix. The Perron Frobenius theory (cf. Berman
and Plemmons [2]) tells us that the spectral radius of P, given by the quantity

p(P) max{IAI" det(P-AI)=0},

is an eigenvalue of P that corresponds to a nonnegative eigenvector. In particular,
if P is irreducible, then p(P) is simple and the corresponding eigenvector is, up to
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a multiple by a scalar positive. The matrix A P- p(P)I, which has all its off-
diagonal entries nonnegative, is the n n minus M-matrix that we associate with
P and, in several sections of our paper, it will be convenient to work with A rather
than with P. (We call A a minus M-matrix if-A is an M-matrix. For the many
equivalent conditions for a real matrix with nonpositive off-diagonal entries to be
an M-matrix, see Berman and Plemmons [2, Chap. 6].) Suppose now that m
dim(g(A)). It is known that m is equal to the number of singular vertices in T(A).
Rothblum [13] has shown that u(A) is equal to the maximum over all lengths of the
simple paths in T(A), a result we shall refer to as the Rothblum index theorem. Let
(4) {al,... ,am}. Rothblum [13] and, independently, Richman and Schneider
[12] (See also [14]) have shown that E(A) possesses a basis of nonnegative vectors
that is strongly combinatorial in the sense defined in Definition 1.

DEFINITION 1. Let A be the n n minus M-matrix given in form (2.1) and
consider (A).

(i) A nonnegative basis u(1),..., u(’) is a (nonnegatively) proper combinatorial
basis for E(A) if

u(J)[i] >0 -and

u()[a] >> 0

for all i E (p) and j
(ii) A nonnegative basis u(1),..., u(m) is called a (nonnegatively) strongly combi-

natorial basis for E(n) if
>>0 iff i - aj,u(J) [i]
0 otherwise.

Let x e E(A). We say that the height of x is k (ht(x) k) if k is the smallest
nonnegative integer such that Akx 0. The fundament of x is, according to Her-
shkowitz and Schneider [9], the vector Ak-lx. For a set of vectors , {x, y,...} in

E(A), the fundament of S is the set of vectors formed from the fundaments of the
elements of S.

Let A be a minus M-matrix. Then it is known that ht(x) <_lev(x) for all x e E(A),
cf. [8, Cor. (4.17)]. A vector x e E(A) for which ht(x) =lev(x) is called a peak vector.
If x is a peak vector, then lev(Ax) lev(x)- 1 by [9, Prop. 6.5]. Also every non-

negative vector in E(A) is a peak vector.

3. Jordan bases with nonnegative chains. Let A Rn be given as in (2.1).
We shall use the following notation subsequently:

Rn the set of nonnegative vectors in n+
F E(A) R+.
F= N(A)R k=0 .
E span(F), k 0,..., .
S A-E, k 1,...,.

Henceforth, we let A Rnn be a (singular) minus M-matrix of index . Since ev-

cry nonnegative vector in E(A) is a peak vector, we have the following graph theoretic
classification of Fk and Ek.

Fk {X e F lev(x)_k}, k=0,...,u.
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(3.2)

We note that

Ek {x e E(A) lev(x)<_k}, k=0,...,.

(3.3) {0}=E0 C_E1 c_ C_E E(A).

Now by (3.1) and (3.2) and because lev(Ax) =lev(x)- 1 for x e Fk, it follows
that

(3.4) AEk C_ Ek-1, k l, v.

Hence we have

(3.5) {0} c_ S c_ c_ SI E c_ N(A).

DEFINITION 2. (i) (Hershkowitz and Schneider [8, Def. (2.6)]) The height char-
acteristic of A is defined to be the v-tuple

(A) (71(A),...,(A)),

where ?k (A) =dim(N(Ak -dimN(Ak- ), k 1,..., .
(ii) The peak characteristic of A is defined to be the -tuple

(A) ((A),...,(A)),

where k(A) =dim(Sk), k 1,..., .
Where no confusion is likely to arise, we denote the height characteristic of A

by r (,...,) and the peak characteristic of A by (1,...,). In [7,
Def. (4.1)], Hershkowitz defines the peak characteristic of A by letting k -dimEk-
dim(N(Ak-)NEk). Since Sk is isomorphic to Ek/(N((A)k-)NEk), k 1,... ,, it
follows that his definition of the peak charactersitic of A coincides with the definition
given above.

For the sake of completeness, we prove the following proposition that forms part
of [7, Whm. (6.5)]. Recall, cf. [8, Def. (3.1)], that a basis B for E(A) is called a height
basis if the number of basis elements of height k is equal to k, k 1,..., .

PROPOSITION 1. Let A be a minus M-matrix and let B be a height basis for
E(A). Let k be the number of peak vectors in B of height k, k 1,...,. Then
/ <_ , k 1,..., .

Proof. Let 1 <_ k <_ and let x(),... ,x(s) be peak vectors of height k in the height
basis B for E. Then x(),..., x(s) are linearly independent mod N(Ak-l) by [8, Prop.
(3.14)]. Hence Ak-lx(),..., Ak-x() are linearly independent vectors. [:]

Hershkowitz [7, Thm. (6.5)] also proves that for every minus M-matrix, there
exists a height basis that has k nonnegative vectors of height k, for k 1,..., . In
5 we give an algorithm that (in exact arithmetic) computes such a basis.

4. The transform components. We begin by introducing the (e) transform
components of A.

DEFINITION 3. For > 0 and for k 0,...,- 1, we define the kth transform
component of A by
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z(k+l) Z(V-1)
(4.1) g(k)(e) Z(k) + +"" + v--l"

In [6] it was shown that provided e > 0 is sufficiently small, a basis of nonnegative
vectors for E(A) can be chosen from the columns of j(0)(e). Moreover, a method was
given for determining such e’s, cf. [6, Thm. 2.2]. The results of [6] were improved
in [11], where it was shown that provided e > 0 is sufficiently small, the nonnegative
basis for E(A) chosen from the columns of g(0)(e) can be chosen to be strongly
combinatorial. We now strengthen the results of both papers by showing that the
method used in [6] can be adapted to compute e’s that ensure that the columns of
j(0) (e) contain a strongly combinatorial basis and that all transform components are

nonnegative and have interesting combinatorial properties. To this end, for 1 < i, j _<
p and for 0 < k < 1, let (k) be the least element in Z!k. and leti,j

/(k) min{#,k;, 0}

We note that by [11 Thm. 1] (d- 1)
t,j > 0, when d d(i,j) >_ 1. Let

(d-l)

(4.2) tt min
?(k) (-2)
,j + +

where the minimum is taken over all i, j, k such that 1 < i, j < p, 0 < k < - 1, and
d d(i, j) > k. We comment that we here take a ratio p/O, where p > 0, to be

LEMMA 1. Let A be a minus M-matrix and suppose I < i, j < p and 0 < k < -1.
Let 0 <, e min{1, #}, where # is given by (4.2).

(i) If d(i, j) < k, then J(ik,j (,) O.

(ii) /f d(i, j) > k then j!k.) (e) >> 0

Proof. (i) By [11, Lemma 2], if d(i,j) < k, then Z,q; 0 for all q such that
k <_ q < - 1 and the result follows.

(ii) Let d- d(i,j) > k. Then

z(k+i,j 1) Z-I)
,3 -"’+ d-kT1

Thin. 1] --,.Z-) >> 0 and so tz, > 0. Let 0 <e < 1 and let c be theBy [11,
least element in -,,JJ-()(e). Then

Hence a > 0 if

O/ > (k) /(d-2) #i,j
--’Yi,j d--k-2 f.d--k--1

1 () (_) t,i:>-- --d-k-2 "3/ j -- "Jr" j -- d k-1

/(k) (d-2)
i,j + + 7i,j
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and the result follows.

We now make more precise a result mentioned in [11].
COROLLARY 1. Let (1,...,, be the singular vertices of T(A). Let v(J) be

a column of J()(e) chosen from the columns of the ajth block column of g()(e),
j 1,...,m. Then v(1),...,v(m) is a strongly combinatorial basis for E(A) and,
what is more, they satisfy:

(Akv(J))i >> 0

(Akv(J)) 0

if d(i, aj) > k,

if d(i, ay) <_ k.

Proof. We observe that Akv(j) is a column of j(k)(e) belonging to the ajth block
column J(k)(e), k 0,..., v- 1 and j 1,..., m.

We note that this basis satisfies the properties of Rothblum, [13, TAm. 3.1].
Additionally we have the following corollary.

COROLLARY 2. Let v(1),..., v(m) be a basis of E(A) which satisfies the conclusion
of Corollary 1. The subset consisting of those vectors whose level does not exceed k
forms a basis for Ek, k 0,..., v 1.

Proof. It holds that v(),..., V(m) is a strongly combinatorial basis for E(A).

5. The SCANBAS algorithm. From now on we shall assume that e has been
chosen so that the transform components j(k)(e), k 0,...,- 1 satisfy the conclu-
sions of Lemma 1.

Observe that in the algorithm below, the index h is decreased in each iteration.
Thus when we determine the sets ’h and the chains Ci,h, the sets k and Ci,k are
already determined for k h + 1,..., .

THE SCANBAS ALGORITHM

Set h- .
Step 1. Scan j(h-1)(e) to extract a set

JYh (u(h’l’h), U(h’sh’h) }

of null vectors of A, which is maximal with respect to the property that the union h
of -h and the sets ’k, k h + 1,..., is linearly independent.

Step 2. Then for each U(h’i’h), i 1,..., 8h, select the chain

Ci,h (u(’’i’h) J 1,...,h},

which consists of the columns in j(0)(e),..., j(h-1)(e) corresponding to u(h’’h), i.e., if
u(h’’h) is the rth column of J(h-1)(e), then u(j,,h) is the rth column of J(J-1)(e), j
1,...,h.
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If h > 1, reduce h by 1, and repeat.
If h 1, then stop.

Remark. Note that u(j,,h) is the vector of height h- j -F 1 in the ith chain of
length h.

THEOREM 1. Let C be the union of the chains

Then
(i) C consists of nonnegative vectors.
(ii) C is a linearly independent set of vectors.
(iii) Let 1 <_ h <_ . Then Gh t=hJ:k is a basis for Sh.
(iv)
(v) C can be extended to a height basis for E(A).

Proof. (i) Each vector in ( appears in a column in some j(h), h 0,...,- 1,
and these matrices are nonnegative.

(ii) The set G1 defined above is the fundament of C and, by construction, G1 is

linearly independent. Hence C is linearly independent, e.g., Bru and Neumann [3].
(iii) Let 1 <_ h _< . First, let x E h" Then x E ’k for some k, h <_ k <_ . Hence

x is a column of J(k-1)(e) and therefore x Ak-y, where y is a column of j(0)(e).
Since x N(A), it follows that y must be in Fk. Hence x Ak-lEk Sk C_ Sh.

Conversely, let x Sh. Then x Ah-ly, where y Eh and so, by Corollary
2, y is a linear combination of columns of J()(e) that lie in Fh. Hence x is a linear
combination of columns of J(h-)(e) that lie in N(A). Since by the first part of the
proof of (iii), ’k C_ Sh, k h / 1,..., v, it now follows that the set h obtained in
Step 2 of the SCANBAS algorithm is a basis for Sh.

(iv) Let h be the set of all vectors in C of height h. Then the map x Ah-lx
is a bijection of Ch onto ’h, and hence (iv) follows from (iii).

(v) Since, by (iv), Ah-lCh .h and ’h is linearly independent, it follows that
(:h is linearly independent mod Eh-1. Hence we can extend h to a set Bh, which is
a basis Eh mod Eh-. It follows that B U=IBh is a height basis for E(A), cf. [8,
Prop. 3.14].

COROLLARY 3. It holds that

Let x E(A) be a vector of height k. Then the the chain derived from x is
defined to be the set (x, Ax,..., Ak-x}. The chains derived from a subset of E(A)
is the union of all chains derived from the vectors in this set. The technique used
to prove the following important corollary is related to the proof of Hershkowitz and
Schneider [8, Prop. (6.1)].

COROLLARY 4. Let 1 <_ t <_ v and let k , k t,..., v. Then the chains

Ci,h, where 1 <_ i <_ Sh and t- 1 <_ h <_ v, can be embedded (extended) to a Jordan
basis for E(A).

Proof. For k t,... ,v, let 7-/k consist of all vectors u(’i’k) C, 1,... ,sk.

Since ht(u(#’)) k and k, it follows that UV=kAr-kT-lr is a basis for N(A)
mod (N(Ak-)). Now let k t- 1. Then the set of vectors u(’,k), i 1,..., sk, can
be completed to a set 7-/k such that U=kAr-kT-lr is a basis for N(A) mod (N(Ak-)).

v r-kFurthermore, for k 1,..., t- 2, there exist sets T/k such that Jr=kA is a basis
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for N(Ak) mod N(Ak-1). The chains derived from U=lT-lk now form a Jordan basis
for E(A) with the required properties. D

Remark. In [7, Whm. (6.6)] it is shown that there exists a Jordan basis for E(A)
such that all chains of length greater than or equal to t are nonnegative if and only if
k k, k t,..., u. Thus, if a Jordan basis exists such that all chains of length t or
greater are nonnegative, then the SCANBAS algorithm will produce such chains. In
particular, if a nonnegative Jordan basis for E(A) exists (viz., k k, k 2,..., u
or see [9, Thm. 6.6] for many other equivalent conditions), then the SCANBAS
algorithm produces a nonnegative Jordan basis for E(A). Finally, since we always
have v v, cf. [8, Prop. (4.2)], the SCANBAS algorithm always produces a set
of nonnegative chains of length which can be extended to a Jordan basis E(A) by
adding chains of length at most u- 1. The result that there is a Jordan basis for
E(A) such that all chains of length are nonnegative is known; see [8, Cor. (6.12)]
for the existence of such chains.

6. Examples and concluding remarks. We call a set C of vectors a maximal
nonnegative union of chains (MNUC) provided C is a union of nonnegative chains, C
is linearly independent, and C contains h vectors of height h. By Theorem 1, the
SCANBAS alogorithm produces an MNUC. In this section we give several examples
of MNUCs for various matrices and the relation of these MNUCs to Jordan bases.

We call a diagram of pluses with h pluses in row h (counting from the bottom)
the Peak diagram of the matrix. Similarly we call a diagram of stars with h pluses
in row h (counting from the bottom) the Jordan diagram of the matrix. (As is very
well known, the number of stars in each column, read from the left, yields the Jordan
(Segre) characteristic of the matrix.)

Example 1. We begin with an example where the MNUC consists of complete
Jordan chains and may be completed to a Jordan basis by adjoining an eigenvector.

Let

a

(0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0
1 0 1 -1 0 0
1 1 0 0 0 0
1 1 1 0 1 0

\2 1 2 1 1 0

0
0
0
0
0

We put sca scanbas(a). Then

sca

(0
0
0

0 1 00
0 0 0 0
1 1 0 1
1 1 0 1
1 1 0 0
3 3 1 1
6 6 3 2
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Then

0
0
0

o o o 1
0 0 0 0 -1
1 1 0 1 -1

0 1 1 0 1 0
0 1 1 0 0 1
2 3 3 1 1 0
46632 Oj

is a Jordan basis since

a jna=

o o o o o o
0 0 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 2 3 0 1 0
0 4 6 0 3 0,

We observe that the Jordan and Peak diagrams can be combined as

+
+ +
+ + ,.

Example 2. We now give an example of a minus M-matrix whose Perron eigen-
space has a nonnegative Jordan basis and the basis with such specifications produced
by our SCANBAS algorithm. Let

0 0 0 0 0 0
0 0 0 0 0 0

o1 1 0 0 0
2 1 0 0 0
2 1 1 I 0
1 1 2 1 0

Here the SCANBAS algorithm yields the MNUC scb scanbas(b) given by

scb

0 0 1 0 0 0
0 0 0 0 0 1

10 1 1 0 1
0 2 2 0 1
3 5 5 2 3
4 5 5 3 4

This is easily seen to be a nonnegative Jordan basis consisting of two chains each
of length 3.

Example 3. We give an example of a matrix that possesses an MNUC that can
be embedded in a Jordan basis, but where no MNUC can consist of complete Jordan
chains.
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Let

0 0 0 0 0 0
0 0 0 0 0 0

o1 1 0 0 0
c=

1 1 0 0 0
2 1 1 1 0
1 1 1 1 0

Then the index of c is 3 and, if we choose e 1, we obtain the transform components

jOc

1 0 0 0 0 0
0 1 O0 O0

o1 1 1 0 0
1 1 0 1 0
4 3 1 1 1
3 3 1 1 0

0 0 0 0 0 0
0 0 0 0 0 0

o1 1 0 0 0
1 1 0 0 0
4 3 1 1 0
3 3 1 1 0

and

j2c

0 0 0 0 0 0
0 0 0 0 0 0

o0 0 0 0 0
0 0 0 0 0
2 2 0 0 0
2 2 0 0 0

As we can see by inspection of the transform components, our SCANBAS algo-
rithm yields scc scanbas(c) given by

0 0 1 0
0 0 0 0

o0 1 1
scc

0 1 1
2 4 4
2 3 3

This set may be extended to a Jordan basis

0 0 1 0 1
0 0 0 0 -1
0 1 1 0 0
0 1 1 0 0
2 4 4 1 0
2 3 3 0 0
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where

c x jnc=

0 0 0 0 0 0
0 0 0 0 0 0

o0 0 1 0 0
0 0 1 0 0
0 2 4 0 1
0 2 3 0 0

Thus the combined Peak and Jordan diagrams here are

+
+
+ + ,.

We label the columns of jnc (from left to right) by v11, v12, v3, v21, v22, v31.
Then we have the Jordan chains (v13, v12, v), (v22, v2) and (v31). If some MNUC
can be extended to a Jordan basis, then we would also get a combined Peak and
Jordan diagram for c of the form

+
+
+ +.

We shall show that this is impossible; for let (w13, w12, w13), (w22, w21), and
(w31) be another Jordan basis. Note that w3 is a linear combination of v, v2, and
v31 with nonzero coefficients for v3, since w3 does not belong to range(c), see Bru,
Rodman, and Schneider [4] for arguments of this type. But then, by inspection of the
vectors, w31 cannot be nonnegative.

Example 4. We give an example of a matrix for which it is impossible to embed
the chains of any MNUC into a Jordan basis.

Let
(0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0

d- 0 0 1 1 0
0 0 1 1 0
0 0 0 0 0
0 0 2 1 1

\00111
Then the SCANBAS algorithm yields

scd

0 0 0
0 0 0
000
000
000
000
000
1 1 0
1 0 0

0
0
0
0
0
0
0

the MNUC scd scanbas(d)

0 0 0 1
0 0 0 0
0 0 1 1
0 0 0 0
0 1 1
0 1 1
0 0 0
2 4 4

\233

o o
0 0
0 0
0 0

1 0 0
1 0 0
0 0 1
4 1 1
3 0 0
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A Jordan basis for d is given by

jnd

(00010 0 1 0
0 0 0 0 0 0 -i 0 0
00110 1 0 0 1
0 0 0 0 0 -1 0 0 -1
0 1 1 1 0 0 0 1 0
0 1 1 1 0 0 0 -1 0
0 0 0 0 0 0 0 0 -1
2 4 4 4 1 0 0 0 0
2 3 3 3 0 0 0 0 0

Thus the peak diagram for d is

+
+
+ +
+ +

and the Jordan diagram is

We claim that no Jordan basis for d is an extension of an MNUC. We label the
columns of jnd (from left to right)as x.1, x12, x3, x4, x2., x22, x23, x3, x4.

Suppose that there is a Jordan basis whose elements of height 3 are w13 and W23,
where w13 is of form d(w4). Then, w13 is a multiple of x3, while w23 is a linear
combination of x3 and X23, where X23 must have a nonzero coefficient. Hence W23 is
not nonnegative. But if the Jordan basis is an extension of an MNUC, W23 must be
nonnegative. Our claim follows.

Finally, we outline how our SCANBAS algorithm is implemented using MAT-
LAB. The entire process is controlled by a function called scanbas.m whose input
is the minus M-matrix A and whose output is an MNUC. This function first calls
another MATLAB function nnb.m that returns an > 0 and j(0) > 0. The value
value of e > 0, which is returned, is also sufficient to ensure that all higher-order
transform components of A are nonnegative. To achieve its purpose, nnb.m initially
determines the eigenprojection Z() by calling on a function drazin.m. The original
version of drazin.m was written by Professor Robert E. Hartwig of North Carolina
State University. This function computes the eigenprojection via the evaluation of
the Drazin inverse AD, viz., Z() I- AAD, which is carried out using an algorithm
due to Hartwig [5]. (For other methods of computing the Drazin inverse of a matrix,
see the shuffle algorithm due to Anstreicher and Rothblum [1].) We mention that
in drazin.m, the reduction steps used to implement Hartwig’s algorithm are executed
using the [q,r]=qr(.) command of MATLAB, not only for accuracy, but for the conve-
nience of having the reducing matrices that this method needs from step to step [5].
The function drazin.m also returns , the index of A at 0. With Z() and at hand,
nnb.m calls the function macse.m, which computes an e > 0 such that all transform
components are nonnegative. This is done by generating iteratively all the principal
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components of A. With all this data at hand, nnb.m finally computes j(0) and re-
turns the control to scanbas.m which now proceeds to compute an MNUC according
to Steps 1 and 2 of the SCANBAS algorithm given in 5. This segment of scanbas.m
starts by setting up an array W that contains, juxtaposed, all, say up to a multiple,
transform components generated iteratively from j(0). Steps 1 and 2 are now carried
out using a nested for/if loops.
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Abstract. The problem of finding a rank-revealing QR (RRQR) factorisation of a matrix A
consists of permuting the columns of A such that the resulting QR factorisation contains an upper
triangular matrix whose linearly dependent columns are separated from the linearly independent
ones. In this paper a systematic treatment of algorithms for determining RRQR factorisations is
presented.

In particular, the authors start by presenting precise mathematical formulations for the prob-
lem of determining a RRQR factorisation, all of them optimisation problems. Then a hierarchy of
"greedy" algorithms is derived to solve these optimisation problems, and it is shown that the existing
RRQR algorithms correspond to particular greedy algorithms in this hierarchy. Matrices on which
the greedy algorithms, and therefore the existing RRQR algorithms, can fail arbitrarily badly are
presented.

Finally, motivated by an insight from the behaviour of the greedy algorithms, the authors present
"hybrid" algorithms that solve the optimisation problems almost exactly (up to a factor proportional
to the size of the matrix). Applying the hybrid algorithms as a follow-up to the conventional greedy
algorithms may prove to be useful in practice.

Key words, condition estimation, pivoting, orthogonal factorisation, numerical rank, singular
values
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1. Introduction. The problem of finding a rank-revealing QR (RRQR) factori-
sation of a matrix A consists of permuting the columns of A such that the resulting QR
factorisation contains an upper triangular matrix whose linearly dependent columns
are separated from the linearly independent ones. RRQR factorisations are useful in
problems such as subset selection and linear dependence analysis [21], [29], [37], [39],
subspace tracking [6], [14], and rank determination [9]. Further applications are given
in [12] and [17].

To determine a RRQR factorisation one could just adopt the brute force approach
and inspect all possible column permutations until one has found a factorisation to
one’s liking. The operation count, of course, is guaranteed to be combinatorial. Con-
sequently, much effort has gone in designing RRQR algorithms whose operation count
is polynomial in the size of the matrix.

The first such algorithm, the QR factorisation with column pivoting [7], [16],
[19], was developed by Golub in 1965 and by Faddeev, Kublanovskaya, and Faddeeva
in 1966. It makes use of column permutations and orthogonal rotations to maintain
the triangular structure of the matrix. About ten years later a second algorithm was
published by Golub, Klema, and Stewart [20], based on applying the first algorithm
to certain singular vectors of the matrix. At about the same time, a third algorithm
appeared in a paper by Gragg and Stewart [22] that works on the inverse of the
matrix. These three algorithms constitute the basis for all known RRQR algorithms.

Yet, it took another ten years for the next batch of algorithms by Stewart [32],
Foster [17], and Chan [9] to appear. By this time it was known that there are matrices
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for which Golub’s RRQR algorithm [7], [16], [19] can fail arbitrarily badly; Kahan’s
matrix [28] is such an example.

Again the field lay fallow for several years. Recently Hong and Pan [26] proved
that an optimal RRQR factorisation is able to produce an estimate of a singular value
that is accurate up to a factor proportional to the matrix size. This result implies that,
in exact arithmetic and with a combinatorial operation count, RRQR factorisations
have the potential of being accurate and reliable. (Much more than that, though, the
result represents a statement about the relation between matrix columns and singular
values: it says that there are k columns in the matrix that can reproduce, up to a
factor in the matrix size, the kth singular value of the matrix.)

These days, the potential of RRQR factorisations is investigated for use in trun-
cated singular value decompositions [10], [23], Lanczos methods [14], total least squares
[37], and sparse matrix computations [3]-[5], [30]. Stewart has extended the RRQR
factorisation by allowing orthogonal rotations from the right, resulting in the so-cMled
URV decomposition [1], [31], [35], [36].

The state of affairs regarding RRQR factorisations can be summed up as follows.
Despite the variety of algorithms, the problem of what it means to find a RRQR de-
composition has never been clearly defined. Most definitions of a RRQR factorisation
are about as fuzzy as the one we gave in the first sentence of this paper. Relation-
ships or connections among the different RRQR algorithms are not known. All algo-
rithms have the potential of failing badly. For some, we know the matrices where
they fail badly. No criteria, other than a few test matrices, are known for comparing
algorithms and judging their quality. Surprisingly, in numerical experiments, most
RRQR algorithms turn out to be accurate and fast.

In this paper we present a systematic treatment of algorithms for determining
RRQR factorisations. We start by presenting three precise mathematical formulations
for the problem of determining a RRQR factorisation: one is a maximisation problem,
one is a minimisation problem, and a third one is a combination of the two. We
derive a hierarchy of "greedy" algorithms to solve the maximisation problem. It
turns out that algorithms for solving the minimisation problem can be obtained by
running algorithms for the maximisation problem on the inverse of the matrix and vice
versa. This gives two parallel hierarchies of greedy algorithms for determining RRQR
factorisations. We show that the existing RRQR algorithms correspond to particular
greedy algorithms in this hierarchy. Moreover, we present matrices on which the
greedy algorithms, and therefore the existing RRQR algorithms, fail arbitrarily badly.

Finally, motivated by our insight from the behaviour of the greedy algorithms,
we present three "hybrid" algorithms that solve the optimisation problems with an
accuracy given by the bounds of Hong and Pan [26]. Although the worst-case opera-
tion count of the hybrid algorithms may be combinatorial, we have not been able to
find a matrix where this occurs. We present a few numerical experiments to demon-
strate that applying the hybrid algorithms as a follow-up to the conventional RRQR
algorithms may prove to be useful in practice.

2. The problem. In this section we give mathematical formulations of the prob-
lem of determining a rank-revealing QR (RRQR) factorisation of a matrix M.

Let M be a real m n matrix and m >_ n. We assume that the singular values
a(M) of M are arranged in decreasing order

al(M) >_... >_ O’n(M).

We also assume that k is a given integer such that 1 _< k < n and ak(M) > 0. In the
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applications where rank-revealing factorisations are of relevance, ak(M) and ak+ (M)
are usually "well-separated," and ak+l (M) is "small," of the order of the error in the
computation, which means that the matrix has numerical rank k. Although our
algorithms do not use this, it is useful to keep it in mind.

Denote by

MH QR

the QR factorisation of M with its columns permuted according to the n x n permuta-
tion matrix H. The real m x n matrix Q has orthonormal columns, and the real n n
matrix R is upper triangular with positive diagonal elements. We block-partition R
as

where Rll is a k x k matrix.

k n-k
k (R11 R12 )-R,n- k 0 R22

The RRQR problem. The problems to be discussed in this paper are how to choose
permutations H such that

(;rmin(Rll) rk(M

or

amx(R22) a+(M)

or both hold simultaneously. So there are three objectives leading to three different
problems, all of which we refer to as "rank-revealing problems." It is an open question
whether these are really three different objectives. That is, if we find a permutation
such that amin(Rll) a(M), does it imply that rmax(R22) ak+(M)? Our
attempts at answering this question have not yielded sufficiently good answers, and
in this paper we will consider them as three independent objectives.

Satisfaction of the third objective, where both bounds are satisfied simultaneously,
implies that the leading k columns of MH have condition number a(M)/a(M) and
approximate the range space of M to an "accuracy" of ak+l (M).

Before proceeding any further we should be more specific about those signs.
According to the interlacing properties of singular values (Corollary 8.3.3 in [21] ap-
plied to RT) the bounds

(I1) (:rmin(Rll)

_
ak(M),

(I2) amax(R22)

_
rk+l(M)

hold for any permutation II. So the RRQR problems can be precisely formulated as
Problem-I: maxri amin(Rll);
Problem-II: min r amx(R22)

or that both can be solved simultaneously, though that may not be possible all the
time.

Because we believe that the time complexity of these problems is combinatorial,
we are content to find permutations H that guarantee

ak(M)
ami. >
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or

amax(R22) <_ q(n)ak+l(M)

or that both bounds hold simultaneously. Here p(n) and q(n) are low degree polyno-
mials in n. We say that a permutation H that achieves one or both of these inequalities
gives rise to a RRQR factorisation MH QR. An algorithm that attempts to solve
Problem-I is called a Type-I algorithm and has the suffix I in its name. An algorithm
that attempts to solve Problem-II is called a Type-II algorithm and has the suffix II
in its name.

3. Overview of RRQR algorithms. We accomplish two tasks in this paper:
first, we demonstrate that all existing RRQR algorithms form a hierarchy of greedy
algorithms; and second, we present a set of new algorithms that are more accurate
than the existing RRQR algorithms.

The existing algorithms in the literature guarantee that

ffmin (Rll) >
ak(M)

or
n2k amax(R22) _< ak+l(M)n2n-k

where the bounds are worst-case bounds. In practice, however, the existing algorithms
perform quite well and the worst-case bounds are rarely obtained. There also exists
an algorithm [20] with simultaneous worst-case bounds

(Tmin (Rll)

_
ak(M)

n2min(k,n-k) ffmax(R22)

_
(k+l(M)n2min(k’n-k).

In contrast, our new algorithms guarantee

O’min (Rll)
v/k(n- k + 1)

or

amax(R22)

_
crk+l(M)v/(k + 1)(n-

or both. The existence of such RRQR factorisations was established in [26]. Although
we believe that the operation count of our new algorithms is combinatorial in the worst
case, preliminary numerical experiments indicate that they may be fast in practice.

We ignore brute force algorithms for finding permutations H because they do
not exploit any properties of the matrix. Their operation count is therefore always
combinatorial.

Now we start with the presentation of a unified approach to the existing RRQR
algorithms. Our approach simplifies the presentation and analysis of these algorithms,
and it also directly motivates our new algorithms. To this end, we make the following
simplification. If MH QR is a QR factorisation of M for some permutation H, and
if RH QR is a RRQR factorisation of R, then

MHH QQR

is a RRQR factorisation of M. Hence one can ignore the original matrix M and work
with the triangular matrix R instead.
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4. Type-I greedy algorithms. It is our goal to find algorithms to solve Prob-
lem-I

that guarantee

max ffmin (Rll)
II

ak(M)
amin (Rll)

_
p(n)

where p(n) is a low degree polynomial in n. Problem-I is likely to represent a com-
binatorial optimisation problem, and this suggests that a greedy algorithm might do
well.

The basic idea for our greedy algorithm, which we call Greedy-I, is very simple.
The objective of Problem-I is to find k well-conditioned columns of M. So suppose
that we already have < k well-conditioned columns of M. Then Greedy-I picks a
column from the remaining n- columns of M such that the smallest singular value
of the given columns plus the new column is as large as possible. Starting with 0
this is done k times to pick k well-conditioned columns of M. Note that Greedy-I
does not discard a column once it has been chosen.

ALGORITHM GREEDY-I
R() R
For 0 to k- 1 do
Set

n-1

n-1 C

Denote the columns of B and C by bi Bei and c Ce.
1. Find the next column + j of R(l) such that

max (7min min
l<i<n-1 Ci Cj

2. Exchange columns + 1 and + j of R(t), and retriangu-
larise it from the left with orthogonal transformations to
get R(t+1).

In iteration 0, Greedy-I selects the column of R with largest norm. If every-
thing goes right, then R(k) should be a rank-revealed upper triangular matrix. It is
important to keep in mind that the dimensions of A, B, and C change with every
iteration of Greedy-I.

Step 1 of Greedy-I, which selects the next column to be dded to A, is very
expensive. We mke it cheaper, while t the same time retaining the greedy strategy,
by performing step 1 only approximately. Thus the algorithm becomes less greedy
and more efficient. Since Greedy-I cn only find an approximate solution t best,
further approximations will hopefully not make matters much worse.

Before continuing we make a small simplification. If ]]c]], where ]]. repre-
sents the two-norm, then

ffmin 0 C
ffmin 0 i
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This means, only the two-norm of the columns of C matters rather than individual
elements in a column. Therefore the problem amounts to determining the smallest
singular values of an upper triangular matrix of order + 1.

Now we present a sequence of successively less greedy approximations to step 1
of Greedy-I that give rise to most of the existing RRQR algorithms. In other words,
we show that most existing RRQR algorithms can be viewed as approximations to
algorithm Greedy-I.

In the first approximation, the determination of the smallest singular values
min(’) is replaced by directly computable quantities. We choose to approximate
the smallest singular value of a matrix by the reciprocal of the largest two-norm of
the rows of its inverse: if D is a nonsingular matrix of order n and

then

D-1 r2
T

1
Omin (D) < min < (D) v/-.,77--y O’min

l<i<n

Consequently, the smallest singular value of a nonsingular matrix of order n can be
estimated up to a factor of x/.

ALGORITHM GREEDY-I. 1
Replace step 1 in algorithm Greedy-I by:
Find the next column + j of R(z) such that

l<i<n--1 h ()-e A b
0 "7

--1 --1

=min e A bj

where e is the hth row of the identity matrix of order + 1.

An algorithm similar to Greedy-I.1 was proposed by Stewart [34] where, for rea-
sons of efficiency, the Frobenius norm rather than the two-norm is used.

Although we say that Greedy-I.1 is an approximation to Greedy-I, this does not
necessarily imply that Greedy-I reveMs the rank better than Greedy-I.1. It only means
that Greedy-I.1 is less greedy than Greedy-I. In particular, if in iteration Greedy-I
and Greedy-I.1 have the same submatrix A, then the Tmin of the leading + 1 columns
from Greedy-I is larger than or equal to the amin of the corresponding columns from
Greedy-I.1. But there is no guarantee that in the subsequent iteration + 1 the amin
of the leading + 2 columns of Greedy-I will be larger than or equal to the amin of
the corresponding columns of Greedy-I.1. This is because the greedy algorithms are
not allowed to change their minds and to throw out a column selected in a previous
iteration, and the best local choice in one step does not necessarily lead to the global
optimum.

Because

( ) ( _1)A b
-1 A- -A-

0 - 0
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the upper left block A-1 is already available from the previous step, and only
the last column of the inverse needs to be computed for each i, which requires n-
matrix vector multiplications. But carrying the inverse along with us at every stage
is costly in terms of space and we first get rid of that.

If the greedy algorithms have not failed at the/th stage, the leading columns
must be "well conditioned." Hence A must be a well-conditioned matrix. Therefore
min(A) cannot be "small," which in turn implies that no row of A-1 can have a large
two-norm. But if the addition of a new column, say the ith, produces a small singular
value, then the two-norm of some row of the inverse of the corresponding matrix must
be large. But since we assumed that no row of A-1 is large, this must mean that
some component of the last column of the inverse

( -A-lb(’
-1

)
must be large in magnitude. Thus the second approximation to step 1 of Greedy-I,

-1

still avoids the selection of a very bad column.

ALGORITHM GREEDY-I.2
Replace step 1 in algorithm Greedy-I by:
Find the next column + j of R(t) such that

max min
l<i<n--I h

_A-1 -1),;1 h

-1

To eliminate the n- backsolves A-1 bi in Greedy-I.2, we make further use of the
observation that A is probably well conditioned, so IIA-lb 1, and any large value
must come from "yi. Thus the third approximation to step 1 of Greedy-I,

min
-1

still tries to avoid selecting a very bad column. This is nothing but the standard QR
algorithm with column pivoting [7], [19], which is also described in [16].

ALGORITHM GREEDY-I.3 (GOLUB-I)
Replace step 1 in algorithm Greedy-I by:
Find the next column + j of Rq) such that maxl<i<n-t

This algorithm can be implemented efficiently because the column norms 3’i need
only be updated during each iteration, rather than recomputed from scratch [7].

The approximations still to be discussed do not result in algorithms that are
faster than Golub-I; in fact, they may be slower, but they are necessary to derive the
remaining existing RRQR algorithms.

The goal is to make a further approximation to

max " 0I+1
l<i<n-I
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in iteration l, where at is the/th diagonal element in the final upper triangular matrix
in Golub-I. To this end, compute the right singular vector of the submatrix C of R(t)

corresponding to its largest singular value IICII. Therefore the next approximation
consists of finding the (n l) 1 vector v such that

and choosing as the next column the column j that corresponds to the largest com-
ponent in magnitude of v,

l<i<n--I

ALGORITHM GREEDY-I.4 (CHAN-I)
Replace step 1 in algorithm Greedy-I by:
Find the next column + j of R(t) for which Ivjl maxl<i<n-1

This algorithm was discovered independently by Chan and Hansen [11] and is
related to the algorithm in [9]. Its choice of column j can be justified as follows. The
Cauchy-Schwartz inequality gives

As v has n- elements and satisfies Ilvll 1, it must have a component vj for which
Ivy >_ 1/v/n- 1. This is true in particular for the largest component in magnitude of
v. Using this in /j _> I[CII Ivy gives

OZl+l (j (OZl..i..l OZl+ max
v/n l<i<n-I

That is, the 7j from algorithm Chan-I will be almost as large as that from algorithm
Golub-I, if both algorithms were given the same columns in A.

5. Threshold pivoting algorithms. We can make even further approxima-
tions to Chan-I. Algorithms Golub-I and Chan-I can be viewed as selecting large
diagonal elements (pivots) at each stage to keep the smallest singular value as large
as possible. According to the interlacing property (I2) of singular values,
7/+1(M), so

0/+1 )
O’l+l(M)

0 < < k- 1 where o/+ max
v/n l<i<n--I

But all that is really needed is

ffmin(Rll) ak (M),

which means one may be able to get away with choosing pivots that are only as large
as crk(M). That is, instead of trying to achieve

I(Rll)lll , l<_l<_k,

we only try to ensure that

I(R11)ul ak(M), l</<k.
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Golub-I and Chan-I try to keep all the pivots as large as possible at each stage. But
since amin(Rll) will be smaller than the smallest pivot, we are hoping that only the
size of the smallest pivot is important, so that the conditions on the larger pivots can
be relaxed.

Versions of Golub-I based on this approximation also go by the name of "threshold
pivoting," and we now present two such algorithms. The first algorithm represents one
of the first RRQR algorithms [20], [21] and, as we will show later, has the distinction
of being able to solve both Problem-I and Problem-II simultaneously. Our name for
the algorithm derives from the last names of its authors, Golub, Klema, and Stewart.

ALGORITHM GKS-I
Let R UEVT be the singular value decomposition of R with

k n-k

1. Compute V1.
2. Apply algorithm Golub-I to the rows of Vx, VITH QvT.
3. Compute the QR decomposition RH QR, which is the

required rank-revealing factorisation.

To see that this is indeed a threshold pivoting algorithm, partition the singular
value decomposition (SVD) of R as follows

R U ( El 0)(V1 V2 T
0 -2

Substituting the result of step 3, (TRH --/, in step 2 gives

Q,, 1 uTQ"

Since -1 and the leading k columns of represent upper triangular matrices,

Because is the result of QR with column pivoting on a matrix with orthonormal
rows, he largest element in magnitude in the th row of is (1)i and I( l).l
1/. Combining the inequalities gives a lower bound on the pivots,

So algorithm GKS-I behaves like a threshold pivoting algorithm.
We now describe a threshold pivoting algorithm that we call Foster-I because it

is related to an algorithm proposed by Foster (see Algorithm 2 in [17]). For a given 5,
where 5 is presumably about as big as ak(M), Foster-I tries to achieve amin(Rll) 5
by choosing pivots greater than or equal to 5. To this end it searches the rows of
R, bottom up, for an element of magnitude greater than 5. When it finds such an
element it adds the corresponding column to RI and continues the search. As in all
greedy algorithms for Problem-I, once a column has been added to R it is never
discarded again. The algorithm halts when it h finished searching n rows. If it
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succeeds in finding k elements larger than 5, then the first k pivots are at least as
large as 5.

ALGORITHM FOSTER-I
i n, count n, 0
While (count >_ 1) do

Find the maximal element in row i" IRijl max{IRiil,...,
If (IRjl _> i) then

Insert column j between the/th and (l+1)st columns
Retriangularise R
l=l+l

else
i--i-1

count count- 1

Here we have come to the end of our approximations to Greedy-I, which was a
greedy algorithm for solving the Type-I problem

max (min (Rll).
H

6. (Pessimistic) analysis of the greedy algorithms. In the previous sec-
tions we presented a succession of approximations to algorithm Greedy-I with little
formal justification. Now we need to investigate how big ak(M)/amin(R11) from these
algorithms can be. Algorithm Greedy-I represents the "best" method in the greedy
sense, so we expect its worst-case behaviour to be indicative of that of the other greedy
algorithms.

Suppose Greedy-I has already set aside columns

0 C

where A is a matrix. It then chooses as the (1 + 1)st column that column j which
when added to A maximises the smallest singular value, so

(l+l max (Tmin (Tmin
l<i<n-t 0 ci 0 cj

To estimate how small t+l can be we need to compute a lower bound on the
smallest singular value. To this end we compute a lower bound instead for the column
Golub-I would select, given the same A, because this also serves as a lower bound for
the column Greedy-I picks. So assume that Golub-I picks column q. This column has
the largest norm among all columns of C.

Just as in algorithm Greedy-I.1, we estimate (:rmin by the reciprocal of the largest
two-norm of the rows of the inverse

0 7q 0 7-1

The norm of the row with the largest norm among the leading rows of the inverse is
bounded from above by

+
max IleA- ll + +
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where the penultimate inequality is a result of the Cauchy-Schwartz inequality. The
norm of the (1 + 1)st row of the inverse clearly cannot exceed the upper bound on
the maximal norm of the leading rows. Since the maximal row norm of the inverse
approximates the smallest singular value of the matrix, we have

l+i _>
V/2( + 1) al (M) /a.

Using the interlacing property (I2)

al+i(M)
max % >_

l<i<n--I /It-

with the above inequality gives a lower bound for the smallest singular value

al(M) V/2(/- 1)(n- l)

This goes to show that even if the leading columns had been selected so that
was as accurate as possible, there could be a potentially serious deterioration in the
quality of estimation from/th to (1 + 1)st singular value if the (1 + 1)st column is
chosen according to a greedy strategy. This is because a greedy algorithm, once it
has decided on a column, can never get rid of it. And a column that participates
in an accurate estimation of l may not be a column to be included in an accurate
estimation of t+. In particular, the estimate t+ worsens with the ill conditioning
of the leading columns in R(t).

In fact, there exist matrices that almost achieve the above bound. One such
example is the Kahan matrix [28]

1 0 0 1 -c c

,vn 0 s ". 0 1 ".

o o 0 o o C

0 0 8n-- 0 0

where c2 + 8
2 1. Greedy-I, Greedy-I.1, Greedy-I.2, and Golub-I do not cause any

permutation of the columns of Kn. We prove this for Greedy-I by induction. Since
all columns of Kn have unit norm, no column permutations are necessary in the
first iteration of Greedy-I. Suppose no permutations are necessary during the first
iterations, so

Kn__ I Kl bi bn-l l.Cl Cn--l

In the (1 + 1)st iteration Greedy-I selects the (1 + 1)st column by examining

(Tmin
Ci

--(7min
"}/i

"yi lci I, 1 _< _< n- 1.

But all bi are identical for the Kahan matrix, as are all %; hence no permutations are
necessary in iteration + 1.
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Yet Kn is not in rank-revealed form.
singular values are

For n 100, k 99, and c 0.2, the

aoo(Koo) 3 10-9,
a99(K1oo) 0.1482,

(99 4 10-9.

Although the 99th and 100th singular values are well separated, the smallest singular
value of the first 99 columns chosen by the greedy algorithms is exponentially smaller
than a99 (Kloo).

Traditionally, the Kahan matrix has served as an example to demonstrate the
failure of algorithm Golub-I to make the last diagonal element of the same order of
magnitude as aloo(Kloo). But from our discussion it is clear that Golub-I pursues a
different mission: it wants to make (99 " (r99(K100). And it fails in that.

7. (Optimistic) analysis of the greedy algorithms. Now that we have seen
how badly the greedy algorithms do, we wonder why they do so well in practice? This
question seems to be related to other rare matrix events like pivot growth in Gaussian
elimination with partial pivoting. Foster [18] considers this question for QR without
column pivoting. The case of QR with column pivoting seems to be much harder to
analyse, and we can only give informal reasons why the greedy algorithms Golub-I,
Chan-I, and GKS-I are so effective.

The basic idea is to derive a lower bound for ffmin(Rll) of the form

ak(M) O’min(Rll) O’k(M),

where W is a k k triangular matrix with

IwI _< 1, Iw.I 1,

and the inequality is componentwise. The lower triangular matrix in Gaussian elimi-
nation with partial pivoting satisfies these same two properties as the W matrices and
is usually well conditioned. (Or as Kahan [28] would say, "intolerable pivot growth
is a phenomenon that happens only to numerical analysts who are looking for that
phenomenon.") Of course, this does not prove anything and more work is needed in
this regard.

We start with the derivation of the above bound for algorithm Golub-I. Here we
define the matrix W by

Rll DW, D diag(Rll),

where diag(Rll) is a diagonal matrix whose diagonal elements are the same as those
of Rll. The diagonal elements of Rll in Golub-I satisfy I(Rll)iil >_ I(Rll)ijl; hence W
fulfills the required conditions

IW <_ 1, IW,,[ 1.

The interlacing properties (I2) of singular values and the first few inequalities in 5
imply that

ai(M)
1 <_ i <_ k.I(RI ).I >

+ 1’
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Since D is a diagonal matrix, its singular values equal its diagonal elements, so

1
D_

amin(D) II-< o’k(M)"

From (Tmin(Rll) >_ (Tmin(D)(Tmin(W) the desired bound for Golub-I follows

amin(Rll)

_
ak(M)

Next we derive the bound for algorithm Chan-I. The proof is similar to that of
Theorem 3.1 in [9]. We first define the n k auxiliary matrix Z. Its columns are
composed of the right singular vectors vq) associated with the largest singular values
of the lower right block of order n- + 1, (t) of the final triangular matrix R. That22

is, Z is a lower trapezoidal matrix with columns

0

Zet Zt 1 <_ <_ k,

v(O

where (t),,(t)= iiR(2 llu< )and IIv<011 Ilu< )ll 122
matrix W for Chan-I is given by

Then the lower triangular

z=[W|D/\ D=diag(Z Zkk),
\/

where Zii are the diagonal elements of Z.
According to algorithm Chan-I, the first component of v(t) is the largest in mag-

nitude, hence

{W{

_
1, {W,i}- 1.

Moreover, {Iv(O{{-- 1 implies

and

1 1

{{D_l{ rmin(D

_
V"

From the interlacing property (I2)of singular values, II-o  II (), and the
fact that vq) is a right singular vector with

Iv(1)]T r,(t) -22
1

l(1 [u(1)]T,

we get
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Since ZT and R are upper triangular this implies

IIDWTR- < IIZTR-111 < v/ max ZTR-111 <l</<k ak(M)

Hence

IIO- II IIW- 
<

ak(M)

gives the desired bound for algorithm Chan-I

O’min (Rll)

__
ak(M)

At last we derive the bound for algorithm GKS-I, which is also given in [20] and
in Theorem 12.2.1 in [21]. Let R UEVT be the SVD of R and partition

k n-k

V=(Vl V2 ).

Algorithm GKS applies algorithm Golub-I to VT, so

v n= Q ,rlr,
where 1 is a lower trapezoidal matrix. The matrix W for GKS-I is defined by

I=(W)D D=diag(lPil kk)

where Vi are diagonal elements of V1 and W is a lower triangular matrix. Because
1 comes from algorithm Golub-I, its diagonal elements are the largest elements in
magnitude in each column, so IV/il > IVil and the matrix W satisfies the required
properties

IWI 1, IWii[ 1.

Since each column of V1 has unit norm,
matrix R are upper triangular, one gets

Ii] >- 1/x/-, and since WT and the final

IIR  I] < IIR; II
x/llw-lll IIW-TII IID-Xll

Moreover, from 5 we know that (with R now renamed R)

IlfflTR-111 IlNi-111 ak(M)

Combining the last two inequalities yields

O’min (Rll) _> ak(M)
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To summarise, we have demonstrated in this section that the failure of algorithms
Golub-I, Chin-I, nd GKS-I depends on IIW-II, where W is triangular matrix
satisfying

IwI < , Iw.I 1.

The lower triangular matrix L in Gaussian elimination with partial pivoting satisfies
the same properties as W, and it generally turns out that ILL-11[ is small, say, like
O(n). Although this does not prove anything, it does show that M1 these rare matrix
events are closely related. The probability of pivot growth in Gaussian elimination
with partial pivoting is closely related to the probabilities of Golub-I, Chan-I, and
GKS-I failing.

For the above matrices W of order k a tight upper bound on IIW- is [16], [28]

1 V/4k + 6k- 1 < v2 k > 1IIW-ll < 5
and, as illustrated in 6, the Kahan matrix essentially achieves this bound.

8. Unification. After having discussed greedy algorithms for the solution of
Problem-I

max (Tmin (R11 ),
H

we now turn to greedy algorithms for Problem-II

min amx(R22).
H

Fortunately, a simple observation greatly reduces this task.
Section 3 explains why it suffices to solve Problem-I for triangular matrices R and

to consider

/H QR, R= (R11 R12)0 R22

Suppose that/ is nonsingular, invert both sides of the above equation,

HT- ( R-{IO R-llR12 QT

and take transposes on both sides

/-TII Q 11
/:-TloT/:)--T R2T-v22 12-11

Now Problem-II can be formulated as

1
min amax (R22) min
II II (:rmin(R-21)

1

m&x YI O’min (R-21
1

max YI (Tmin (R-2T
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Hence solving Problem-II is equivalent to solving Problem-I for the inverse. We call
this the unification principle as it lets us unify the algorithms and analyses of Problem-
I and Problem-II.

Applying a Type-I algorithm to the inverse gives

-TI: IPllo P12/P22
where Pll is an upper triangular matrix of order n- k, P22 is an upper triangu-
lar matrix of order k, and (hopefully) amin(Pll) an-k(t-T). Hence we need to
make some adjustments as PI should correspond to R2T, which is lower triangular.
Moreover, Pll should really have been the lower right block.

The necessary adjustments are achieved by a sequence of permutations, which
can be accumulated in Q and H. First permute the two block columns and the two
block rows,

0)0 P22
--+

P22 0
--+

P12 Pll

Then reverse the ordering of the columns and of the rows in PI and P22 separately.
This is accomplished by means of permutation matrices Jp of order p that have ones
on the antidiagonal,

0 )P12 Pll -- Jn-kP2Jk Jn-kPllJn-k

Now the resulting matrix has the desired form; it is lower triangular with Pll in the
lower right corner.

Therefore, the postprocessing step consisting of the above permutations proves
that applying a Type-I algorithm to the rows of the inverse amounts to executing a
Type-II algorithm. In fact, we call such an algorithm the Type-H version of the Type-I
algorithm. This notion is completely symmetric with respect to the two types, as one
can equally well construct a Type-I version of a Type-H algorithm to solve Problem-I.

Unification principle. Running a Type-I algorithm on the rows of the inverse of
the matrix yields a Type-II algorithm.

9. Type-II greedy algorithms. In this section we illustrate the unification
principle by exhibiting the Type-II version of algorithm Golub-I, and by proving that
algorithm GKS-I also solves Problem-II.

We use the name Stewart-II for the Type-II version of algorithm Golub-I, as it
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was first proposed in [33], though not quite in the form in which we are presenting it.

ALGORITHM STEWART-II
R() R
For 0 to n- k- 1 do

Set

n-1
n-l ( A B) R(0

C

1. Find the next column j of R(l) such that

max Ile A-ill IlefA-111.lin--I

2. Exchange columns n-1 and j of R(t), and retriangularise it
from the left with orthogonal transformations to get R(t+t)

Clearly, algorithm Stewart-II obtains the right ordering of the columns by sending
the selected columns to the right end of the matrix. In all other matters it is completely
equivalent to running Golub-I on the rows of the inverse:

A few clarifying remarks may be in order. Just because a Type-II version of
an algorithm can be constructed by applying a Type-I algorithm to the rows of the
inverse of the matrix, this does not mean that is also how it should be implemented.
There may very well be a way to reformulate the Type-II version so that it avoids
explicit dealings with inverses.

Furthermore, it is important to realise that a Type-I algorithm and its Type-II
version, in general, come up with different column permutations; and that solving
Problem-I does not entail solving Problem-II. All the unification principle says is that
if there is an algorithm for solving Problem-I, then a simple modification will give an
algorithm for solving Problem-II and vice versa.

There is another advantage of the unification principle. It allows us to carry over
the analyses and worst-case examples for a Type-I algorithm, with suitable modifica-
tions, to its Type-II version and vice versa. A few examples follow.

In 6 we explained that the lower bounds for the singular value estimates from
algorithms Golub-I, Chan-I, and GKS-I can be cast in the form

(:rmin (Rll) _> ak(M)

where W are triangular matrices satisfying

The unification principle therefore admits upper bounds for the singular value esti-
mates from the Type-II versions of Golub-I, Chan-I, and GKS-I of the form

max(R22) <_ o:+l(M)nllw-1ll,

where, again, W are triangular matrices satisfying

IWI _< 1, {W.l 1.
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As for other existing Type-II algorithms, the Type-II version of Chan-I, which we
call Chan-II, was published apparently independently in [22], [9], [17]. The Type-II
version of GKS-I was first published in [20] and will be called GKS-II. The Type-
II version of Foster-I, which we refer to as Foster-II, was first published in [17]. The
detailed exposition of Foster-II in [17] also serves to illuminate our algorithm Foster-I.

We still owe a justification of our claim that GKS-I also solves Problem-II [20],
[21]. Let R UEVT be the SVD of the final triangular matrix R, where

k n-k
k (VII VI2 )n-k V21 V22 V,

This implies

and

1 1--Tmin(R-21) > Tmin(-ly22) O’min(-]-l)(Tmin(Y22)--

so

amin (Rll)

_
ak(M)

According to the CS decomposition, 2.6 in [21],

Since GKS-I attempts to keep IIV sm, it therefore automatically also tries to
keep I[V2 small. Therefore GKS-I solves both, Problem-I and Problem-II.

At last we demonstrate how the worst-case example of a Type-I Mgorithm can be
converted to a worst-case example for its Type-II version. Section 6 illustrates that
the Kahan matrix

1 0 0 1 -c c

Kn= 0 s ". 0 1 ".

". ". 0 ". ". c
0 0 8n-1 0 0

represents a worst case for algorithms Greedy-I, Greedy-I.1, Greedy-I.2, and Golub-I.
It follows from the unification principle that the modified Kahan matrix whose inverse
is given by

1 -c c sn- 0 0

0 1 "’. 0 sn-2 "’.

0 0 1 0 0 1
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maxii O’min (R11 minn ffmax(R22)

Greedy-I

Greedy-I.1

Greedy-I.2

Golub-I

Chan-I

Greedy-II

Greedy-II. 1

Greedy-II.2

Stewart-II

Chan-II

GKS-I GKS-II
Foster-I Foster-II

Fie,. 10.1. The greedy algorithms.

where C2 -- 82 1, represents a worst case for algorithms Greedy-II, Greedy-II.1,
Greedy-II.2, and Stewart-II, the Type-II versions of the respective Type-I algorithms.

10. Summary. This ends our presentation of the existing RRQR algorithms.
We gave three mathematical problems that we called rank-revealing problems,

Problem-I:
Problem-II:

maxH ffmin(R11),
min I (max(R22),

and the third was to solve Problem-I and Problem-II simultaneously. We then exhib-
ited a sequence of successively less greedy algorithms to solve Problem-I. By means of
the unification principle, we demonstrated the existence of Type-II versions of these
algorithms, which are also greedy but solve Problem-II instead. Figure 10.1 illustrates
the two parallel hierarchies made up from the Type-I and Type-II algorithms, where
the corresponding Type-I and Type-II algorithms are next to each other, and each
algorithm is less greedy than the one above it. Each of the existing RRQR algo-
rithms has a place in this hierarchy. Examples of exponential failure of these greedy
algorithms are provided by the Kahan and modified Kahan matrices.

We have ignored the greedy algorithms based on condition number estimators
for triangular matrices, e.g., [2]-[5], [25], [34], because their behaviour depends very
much on the particular condition number estimator.
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The worst-case bounds

min(Rll) > ak(M) IIR2211 < ak+l(M)n2n_k

n2k

reveal that Type-I greedy algorithms work pretty well for small k, while Type-II
greedy algorithms work well when k is close to n. This prompts the question whether
a Type-I and a Type-II greedy algorithm can be combined into a single algorithm
that works all the time. The answer is given in the next section.

11. Overview of the hybrid algorithms. In this section we present algo-
rithms Hybrid-I and Hybrid-II. They are guaranteed to solve Problem-I and Problem-
II, respectively. We also present algorithm Hybrid-III. It is guaranteed to solve both
Problem-I and Problem-II simultaneously.

In particular, Algorithm Hybrid-I guarantees that

ak(M)(rmin(Rll) >_
v/k(n- k + 1)’

rmax(R22)

_
rTmin(R11)V/k(n- k q- 1).

Note that Hybrid-I does not solve Problem-II. According to the unification principle,
the Type-II version of Hybrid-I, which we call Hybrid-II, must guarantee that

(rmax(R22)

_
rk+l(M)v/i/ q- 1)(n-

amax(R22)
rYmin (Rll)

_
v/(k + 1)(n- k)

Note again that Hybrid-II does not solve Problem-I. Hybrid-III does solve both
Problem-I and Problem-II simultaneously, and it guarantees that

ffmin (Rll) _>
v/k(n- k + 1)’

ffmax(22) ak+l(M)v/(k + 1)(n- k).

Of course, the brute force algorithm, which tries every combination of columns,
also solves these problems, but its operation count is combinatorial. What about
the hybrid algorithms? Unfortunately, we lack a complete analysis of the worst-
case operation count of the hybrid algorithms, although we believe that it may be
combinatorial as well. However, preliminary experimental results in 15 demonstrate
that the hybrid algorithms are rather efficient in practice.

As in the previous sections we assume that k is given. Although this may not be
a realistic assumption, a proper choice of k depends very much on the problem to be
solved, and we refer to [20], [33] for the discussion of this issue.

12. Algorithm Hybrid-I. The algorithm Hybrid-I is a combination of Golub-
I and Stewart-II, though in a practical implementation one may want to replace
Stewart-II by Chan-II.

The obvious strategy of running Stewart-II after Golub-I is not guaranteed to solve
Problem-I because Golub-I and Stewart-II almost always produce a unique ordering
of columns, so the result of this strategy would merely equal the result of Stewart-II.

Instead, our idea is to alternate between Golub-I and Stewart-II and to let each
work on a different part of the matrix: Stewart-II works on the (1,1) block of order k,
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and Golub-I works on the (2,2) block of order n-k+ 1 of the matrix. Suppose Golub-I
has picked the best column from the (2,2) block and put it in position k. Stewart-II
then determines whether the kth column is indeed a good column. If not, it puts the
worst column from the (1,1) block into position k. Now it is again Golub-I’s turn
to put the best column from the (2,2) block in position k. This process continues
until Golub-I and Stewart-II agree on the kth column. To understand the resulting
algorithm Hybrid-I, we briefly review Golub-I and Stewart-II.

Golub-I is good at approximating the largest singular value of MH QR. In its
first iteration it finds the "most linearly independent" column of R, i.e., the column
with largest norm. Suppose we permute this column to the first position and retri-
angularise the matrix. Then the first column rile1 of the resulting triangular matrix
approximates the largest singular value of M,

Since Stewart-II is the Type-II version of Golub-I, it is good at approximating
the largest singular value of M-1 by finding the most linearly independent row of
R-. Suppose we permute this row of R- to the last position and retriangularise
the inverse to get the triangular matrix/-1 I:IR-I. Then the last column rnn-1 en
of/-1 approximates the largest singular value of M-,

But since/-1 is triangular, rn is the trailing diagonal element of/ and it approxi-
mates the smallest singular value of M,

(min(M)

_
Irnnl

_
V/-(rmin(M).

We illustrate Hybrid-I on a 5 5 example, where k 3 and the symbol "x"
represents nonzero matrix elements. First we run Golub-I on the (2, 2) block of order
n- k + 1 so that diagonal element rkk has largest norm among all columns of the
(2, 2) block

k-1 k

X X X X X

X X X

rkk X X

X X

Now we enlarge the (1, 1) block from order k- 1 to order k so that the kth
diagonal element can transfer information between the two algorithms. Then we run
Stewart-II on the (1, 1) block of order k so that the (modified) diagonal element
has smallest norm.
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k k+l

x x x

x x

rkk

X X

X X

X X

A run of Golub-I followed by Stewart-II constitutes one iteration. The circled
elements in the (1, 2) block are modified by orthogonal rotations from the left due
to retriangularisation in Stewart-II. They are part of the (2, 2) block for the subse-
quent run of Golub-I and illustrate how one algorithm changes the part of the matrix
associated with the other algorithm. The (1, 1) block input to Stewart-II undergoes
similar changes in column k due to column permutations during Golub-I.

ALGORITHM HYBRID-I(k)
/(0) R, 0
Repeat

+ 1, permuted 0
Set

where A is of order k 1 and 6’ is of order n- k + 1.
Golub-I"

1. ind the column k+j-1 of () such that
2. If Cel < ICej then

permuted 1
Exchange columns k and k + j 1 of (t)
Retriangularise it from the left with orthogonal transformations to
get

C

where A is of order k and C is of order n-
Stewart-II"

3. Find the column j of R(t) such that IleA-1ll maxl<< [leA-l
4. If T -] eA-]< then

permuted 1
Exchange columns j and k of R
Retriangularise it from the left with orthogonal transformations to
get (t+]).

until not permuted
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The final matrix is

R22 R22

where Rll is of order k- 1 and Rll is of order k.
The two if statements assure that permutations are performed only in case of a

strict inequality but not in case of a tie.
We proceed with an analysis of Hybrid-I because it is not clear that Hybrid-

I eventually halts, and that it indeed increases amin(Rll). We first show that if
Hybrid-I halts then

rmin (Rll)_
(k(M)

V/k(n- k + 1)
amax(R22)

_
amin(Rll)V/k(n- k + 1).

Suppose Hybrid-I halts. Then Golub-I applied to R22 does not change the first column
rkkel of R22, where rkk is the kth diagonal element of R. Hence

> >
v/n- k + l v/n- k + l

since R22 is a submatrix of/22. Moreover, Stewart-II applied to RI does not change
the last row rkkeTk of Rll, and

Combining the two inequalities for rkk gives the first desired bound

rmax(R22

_
min(Rll)Vk(n- ]g - 1).

Applying the interlacing property (I2) to R22,

amax(R22) > ak(M)
v/n-k+l v/n-k+l

and combining the previous two inequalities yields the second desired bound

Tmin (Rll)

_
ak(M)

+ 1)

Thus, if Hybrid-I halts, it solves Problem-I.
To prove that Hybrid-I indeed halts, we make use of the fact that columns are

permuted only in case of strict inequalities. The basic idea is to show that det(A)l is
a strictly increasing function during the algorithm. Remember that A is the leading
principal submatrix of order k. Since det(A)l is unique for any given column ordering,
no column ordering repeats if det(A)l is strictly increasing. As there are only a finite
number of column orderings, Hybrid-I must eventually halt.

It remains to show that det(A)l is strictly increasing during Hybrid-I. By as-
sumption from 2 we have that ak(M) > 0. So we can assume that our initial
ordering of columns is such that det(A)l > 0. Stewart-II does not change det(A)
because det(A)l is invariant under application of orthogonal transformations from
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the left to (A B_) and to C; and under permutation of the columns of A and of
the columns of (g). To see how Golub-I affects det(A), we divide Golub-I into two
phases: the first phase keeps det(A)l invariant, while the second one may change
det(A)l. Accordingly, we identify and separate the first column (bT 3"eT1 )T of the
matrix affected by Golub-I,

In the first phase the columns of () are permuted, so that the first column of the
permuted ( has largest norm among all columns of , and then the permuted (7 is
retriangularised to give (. In the second phase, the relevant matrix elements are
and the nonzero elements ( and

k
k+l

Golub-I permutes columns k and k + 1 if 3’2 < O2
_

/2, in which case the matrix
becomes

k
k+l

k k+l
* * * *

c 3’ *

The matrix is retriangularised by eliminating/ via a Givens rotations from the left,
which affects only rows k and k + 1 and results in

k
k+l

k k+l

v/ + x
X *

where the two x represent new numbers. Other than the kth diagonal element, which
changed from 3’ to V/a2 + 2, no diagonal element of A changed. But the kth diagonal
element underwent a strict increase in magnitude since 13’1 < V/a2 + 2, and therefore
det(A)l is a strictly increasing function during Hybrid-I. Consequently, algorithm
Hybrid-I must halt.

Section 15 presents some numerical experiments on the running time of Hybrid-I.

13. Algorithm Hybrid-II. In this section we present algorithm Hybrid-II, the
Type-II version of Hybrid-I. According to the unification principle, Hybrid-II guaran-
tees that
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Tmax(R22)

_
ak+l(M)v/(k + 1)(n- k)

max(R22)amin(Rll)

_
v/(k + 1)(n- k)

From the interlacing properties (I1) and (I2) it follows that Hybrid-I(k+l) guarantees
the same bounds as Hybrid-II(k). Thus, one way to implement Hybrid-II(k) is via
Hybrid-I(k+l).

ALGORITHM HYBIID-II(k)
Hybrid-I(k+l)

Although nonsingularity is needed for the application of the unification principle,
this implementation of Hybrid-II(k) has the advantage of doing without the require-
ment that the matrix be nonsingular. However, to reduce the proof that Hybrid-
I(k+l) halts to the proof for Hybrid-I(k) requires ak+l (M) > 0, which may not be
true. Our proof that Hybrid-II halts does so without this assumption, and it also
enables us to design the more accurate algorithm Hybrid-III by providing additional
insight into the nature of the problem.

The basic idea of the proof is again to demonstrate the strict increase of the
determinant of the leading k x k principal submatrix during Hybrid-II. Unfortunately,
we cannot prove that the absolute value of the determinant of the leading (k + 1) x
(k + 1) block is strictly increasing because that would necessitate the assumption
ak+l(M) > 0. To facilitate understanding of the proof, we first describe in more
detail the implementation of Hybrid-II(k) based on Hybrid-I(k+l).

ALGORITHM HYBRID-II(k)
R() R, 0
Repeat

+ 1, permuted 0
Set

R(t)_(A B)C
where A is of order k and C is of order n- k.

Golub-I:
1. Find the column k + j of R(t) such that IlVejll maxl<i<n-k IlVeill
2. If IlCell < IlVejll then

permuted- 1
Exchange columns k + 1 and k + j of R(t)

Retriangularise it from the left with orthogonal transformations to
get

where is of order k + 1 and is of order n- k- 1.
Stewart-II:
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3. Find the column j of (t) such that Ile-lll-- maxl<i<k+ IleT-ll
4. If %+13 [I < then

permuted 1
Exchange columns j and k + 1 of ()
Retriangularise it from the le with orthogonM transformations to
get R(t+).

until not permuted
The finM matrix is

R22 R22

where/?t is of order k + 1 and RI is of order k.

As in Hybrid-I, the two if statements assure that permutations are performed
only in case of a strict inequality but not in case of a tie.

Again, as we had assumed that ak(M) > 0, we can assume that our initial ordering
of columns is such that det(A)[ > 0. Although this proof is based on Hybrid-I(k+l) it
is slightly different from the proof we gave for Hybrid-I(k) because now we are focusing
on column k instead of column k + 1. Clearly, Golub-I does not affect det(A)l but
Stewart-II does. We divide Stewart-II into two phases. The first phase keeps det(A)[
invariant while the second phase may change det(A)l. Accordingly, we identify and
separate the last column (aT oeT1 )T of the matrix affected by Stewart-II,

In the first phase the columns of ., are permuted, so that the last row of - has
largest norm among all rows of .,-1, and then the permuted -1 is retriangularised
from the right to give .,-1. In the second phase the relevant matrix elements are
the element above it, and the trailing nonero 3’ of ek

k k+l

k
k+l

Since Stewart-II is the Type-II version of Golub-I, it permutes to the last position
the column corresponding to the row with largest norm in the inverse, whose relevant
elements are

k

k+l

k k+l

Stewart-II permutes columns k and k + 1 if

or
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But this is the same situation as in Hybrid-I(k), and it follows that the kth diagonal
element of Rll changes from - to V/2 + 2 while all other diagonal elements of RI
remain unchanged. As we just proved that 171 < V/c2 +/2, det(A)l is strictly
increasing during Hybrid-II.

Because we were able to prove that Hybrid-II halts, requiring only that ak(M) >
0, we can show directly that Hybrid-II(k) satisfies

amax(R22) <_ ak+(M)v/(k + 1)(n- k),

(rmin (Rll)_> (Tmax (R22)
v/(k + 1)(n- k)

The proof is similar to the one that establishes the bounds for Hybrid-I.

14. Algorithm Hybrid-III. Our last new algorithm is Hybrid-III, which sat-
isfies

o’k(M)
amin(Rll) >_

+ 1)’
(Tmax(R22)

_
ak+ (M)v/(k + 1)(n- k).

There are several implementations of Hybrid-III. We present the one that is sim-
plest to describe. This implementation, motivated by the fact that the determinant
of the leading principal submatrix of order k is a strictly increasing function in both
Hybrid-I and Hybrid-II, consists of running Hybrid-I and Hybrid-II in alternation
until no more permutations take place.

ALGORITHM HYBRID-III(k)
Repeat

Hybrid-I(k)
Hybrid-II(k)

Until no permutations occur

The halting argument for Hybrid-III follows easily from the halting of Hybrid-I
and Hybrid-II. We had shown earlier that during Hybrid-I and Hybrid-II, the deter-
minant of the leading k x k principal submatrix is a strictly increasing function. So
it must be true during Hybrid-III also. Hence Hybrid-III halts.

When Hybrid-III has halted, both Hybrid-I and Hybrid-II do not cause any fur-
ther permutations in the matrix. Therefore the bounds guaranteed by Hybrid-I and
Hybrid-II must hold simultaneously now. That is

amin(Rll)

_
O’k(M)

+
amax(R22) _< ak+l(M)v/(k + 1)(n- k)

must be true.
Because we do not know whether the solution of Problem-I also implies the so-

lution of Problem-II or vice versa, it is not clear whether the output of algorithm
Hybrid-I also satisfies the bounds that govern the output from Hybrid-II. In particu-
lar we are therefore not able to compare the operation counts of Hybrid-III with those
of Hybrid-I or Hybrid-II.
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REMARK 14.1. As we mentioned earlier, it is more practical to replace algorithm
Stewart-II in the hybrid algorithms with algorithm Chan-II.

Moreover, there are other ways of implementing algorithm Hybrid-III. For exam-

ple, replacing the Stewart-II part of Hybrid-I with a simpler algorithm results in an

Hybrid-III algorithm: Instead of moving the most linearly dependent column to the
kth position, in turn permute every one of the leading k columns to the kth posi-
tion. Obviously, this algorithm solves Problem-I and Problem-II simultaneously. The
corresponding Type-II version, which involves replacing the Golub-I part of Hybrid-
II, also solves Problem-I and Problem-II simultaneously according to the unification
principle. This idea has been taken up in [32].

However, we believe that the original version of Hybrid-III described at the be-
ginning of this section is more efficient in practice than the latter two (provided it

is properly implemented with good condition number estimators in place of Golub-I
and Stewart-II, and run as a postprocessor to either Golub-I or Chan-II).

15. Some numerical experiments. Although we have demonstrated that the
three hybrid algorithms halt in exact arithmetic, we know very little about their worst-
case running times. In this section we present some preliminary numerical results for
Hybrid-I, which also apply to Hybrid-II and Hybrid-III as the implementations for
the latter two algorithms can be based on Hybrid-I. In practice, the hybrid algorithms
are best run as postprocessors to the more efficient greedy algorithms, like Golub-I or
Chan-II.

In the experiments to follow, we counted the number of iterations in Hybrid-I
when it is run after Golub-I. To prevent cycling in the algorithm due to roundoff errors,
we carried out permutations only if the pivot increased by more than n2 e, where e is the
machine precision. To estimate the dependence of the running time of Hybrid-I on the
matrix size n and the separation of the singular values ak(M)/ak+l (M), we generated
fifty random matrices of size fifty, to which we applied Hybrid-I with k 37. Then
we multiplied the last n- k singular values of these fifty matrices by 0.1 to increase
the separation between the singular values but did not change the singular vectors.
Hybrid-I was applied to these fifty new matrices. The same process was repeated on
one hundred random matrices of size one hundred with k 75. Table 15.1 shows
how many times Hybrid-I required a certain number of iterations. Hybrid-I seems to
require fewer iterations when the gap between ak(M) and ak+(M) is larger, and--in
these experiments, at least--the number of iterations does not deteriorate too much
with increase in matrix size.

16. Conclusion. In this paper we proposed three optimisation problems which
we called rank-revealing QR (RRQR) problems. We presented a unifying treatment
of the existing algorithms by placing them in a hierarchy of greedy algorithms. Fi-
nally, we presented three new hybrid algorithms for solving the three rank-reveMing
problems. Unfortunately, we were not able to estimate the worst-case running time
of the hybrid algorithms.

Most of the discussion for the RRQR factorisations can be extended in a simple
manner to rank-reveMing LU (RRLU) factorisations [8], [27] by replacing orthogo-
nal transformations with elementary Gauss transformations and row interchanges for
partial pivoting. Partial pivoting prevents the ill conditioning of the Gauss trans-
formations. Compared to RRQR factorisations, the bounds for RRLU factorisations
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TABLE 15.1
Hybrid-I run-time estimate.

Matrix size
k--

Avg(ak(M)Sk+"(M)
No. of iter. $

1

9
10
11
12
13
14
15
16
17
18
19

Total

50 50 100 100
37 37 75 75

1.0804 10.804 1.0406 10.406

no. of occurrences

21 25 16
7 8 3
5 3 9
5 4 15 15
4 4 11 6
1 5 13 6
0 0 6 1
1 0 7 5
4 1 4 1
1 0 7 1
1 0 1 1
0 0 0 2
0 0 4 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0

45
8
9

50 50 100 100

are generally worse and, due to pivoting and the resulting fill-in, their operation are
counts higher. It is not clear to us which applications would benefit from RRLU
factorisations.

In a subsequent paper [13] we show that very naturally the hybrid algorithms
give rise to new algorithms for computing the URV decomposition [34]-[36] and also
to a new divide-and-conquer algorithm for the SVD. In fact, using a preceding RRQR
algorithm to accelerate the computation of eigenvalues or singular values is not new,
see for instance [15], [24], [38] where a Jacobi method is preceded by QR with column
pivoting.

In this paper, we present only one algorithm for each of the three optimisation
problems, but one can easily design other kinds of approximate and exact algorithms.
Our motivation for the three hybrid algorithms was to perform column interchanges
based on what we believed would result in a high rate of convergence. But sometimes
one may want to trade off number of column exchanges for maintainance of sparsity
[3], [4], [30] or minimisation of communication costs.

The ideas presented in this paper may aid in the design of special-purpose algo-
rithms. Instead of choosing the best two columns to exchange, one could compromise
and choose a column exchange that maintains sparsity or keeps communication costs
low, while still ensuring that the determinant of the leading k k principal submatrix
increases strictly so that the algorithm halts. We hope that the ideas presented in
this paper prove helpful in developing algorithms for such problems.

Acknowledgments. We thank Franoise Chatelin and Axel Ruhe for helpful
discussions and for bringing reference [16] to our attention.
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SYMMETRIC TOEPLITZ MATRICES WITH TWO PRESCRIBED
EIGENPAIRS*
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Abstract The inverse problem of constructing a real symmetric Toeplitz matrix based on
two prescribed eigenpairs is considered. Two new results are obtained. First, it is shown that
the dimension of the subspace of Toeplitz matrices with two generically prescribed eigenvectors is
independent of the size of the problem, and, in fact, is either two, three, or four, depending upon
whether the eigenvectors are symmetric or skew-symmetric and whether n is even or odd. This result
is quite notable in that when only one eigenvector is prescribed the dimension is known to be at least
[(n -t- 1)/2]. Taking into account the prescribed eigenvalues, the authors then show how each unit
vector in the null subspace of a certain matrix uniquely determines a Toeplitz matrix that satisfies
the prescribed eigenpairs constraint. The cases where two prescribed eigenpairs uniquely determine
a Toeplitz matrix are explicitly characterized.

Key words. Toeplitz matrix, eigenvector, inverse problem
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1. Introduction. A real n n matrix T (tj) is symmetric and Toeplitz if
there exist real scalars rl,..., rn such that

tij rl_jl+1

for all i and j. Clearly a symmetric Toeplitz matrix is uniquely determined by the
entries of its first column. Thus we shall denote a symmetric Toeplitz matrix by T(r)
if its first column is given by the vector r E Rn.

Due to their role in important applications like the trigonometric moment prob-
lem, the Szeg5 theory, and signal processing, many properties of Toeplitz matrices
have been studied over the years. For example, efficient algorithms have been devised
to solve a Toeplitz system of equations in O(n2) time. Brief discussions of algo-
rithms and more references for solving Toeplitz systems can be found in [7, 4.7]. In
this paper, we are more interested in the spectral properties of a symmetric Toeplitz
matrix.

It is easy to see that if Tv Av and A is an eigenvalue of multiplicity one, then
either Ev v or Ev -v, where E (ej) E Rnn is the exchange matrix defined
by

1 ifi/j--n+l,
eij- 0 otherwise.

Accordingly, we call such an eigenvector either symmetric or skew-symmetric. For
eigenvalues of multiplicity greater than one, the corresponding eigenspace has an
orthonormal basis that splits as evenly as possible between symmetric and skew-
symmetric eigenvectors [5, Thin. 8]. Thus it is sensible to say that the eigenvectors
of a symmetric Toeplitz matrix can be split into two classes. More specifically, as any
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symmetric centrosymmetric matrix [2, Thm. 2], a symmetric Toeplitz matrix of or-
der n has [n/2 symmetric and [n/2J skew-symmetric eigenvectors. For convenience,
we use a+ (T) and a-(T) to denote, respectively, the spectrum of eigenvalues corre-
sponding to symmetric and skew-symmetric eigenvectors. Other spectral properties
of Woeplitz matrices can be found in [2], [5], [9], [10], and the references contained
therein.

The inverse Toeplitz eigenvalue problem (ITEP) has been an interesting yet dif-
ficult question studied in the literature. The problem is to find a vector r E Rn
such that the Toeplitz matrix T(r) has a prescribed real spectrum {AI,... ,An}. At
present, the ITEP remains unsolved when n >_ 5 [5]. (See the note added in proof at
the end of this paper.) Partial results and numerical algorithms for the ITEP can be
found in, for example, [31, [6], [81, and [11].

In [2, Thm. 3] it is claimed that any real n x n matrix that has a set of n real
orthonormal eigenvectors, each being either symmetric or skew-symmetric, is both
symmetric and centrosymmetric. Apparently it is another interesting and difficult
problem to identify an orthogonal matrix so that its columns are eigenvectors of some
Toeplitz matrix.

In [4] it is proved that being symmetric or skew-symmetric is sufficient for a single
vector to be an eigenvector of a Toeplitz matrix. In fact, let

So(v) :-- {r e RnlT(r)v--0}

denote the collection of (the first columns of) all symmetric Toeplitz matrices for
which v is an eigenvector corresponding to the eigenvalue 0. It can be shown that
So(v) is a linear subspace with dimension [4, Cor. 1]

(2) dim(S0(v)) n r(v),

where

(3) .(v) .= { [n/2J
if v is symmetric,
if v is skew-symmetric

is called the index of v. Clearly T(r)v Av if and only if r- Aw So(v), where
w [1, 0,..., 0]T is the first standard basis vector in Rn. Thus the set

(4) S(v) := {r e RlT(r)v Av for some

is precisely the direct sum (w) @ So(v).
Suppose now (v(1),..., v(k)}, k >_ 1, is a set of real orthonormal vectors, each be-

ing symmetric or skew-symmetric. Then N=iS(v()) contains all symmetric Toeplitz
matrices for which each vi is an eigenvector. Evidently, w S(v()) for all i. So
N=lS(v()) is at least of dimension 1. We are interested in studying the following
problem.

kProblem 1. Obtain a nontrivial lower bound on the dimension of= S(v(i)).
Toward this end, we show in this paper that for the case k 2, the dimension of

2= S(v()) is almost always independent of of the size of the problem, and, in fact,
is either two, three, or four, depending upon whether the eigenvectors are symmetric
or skew-symmetric.

In view of the ITEP, another interesting inverse problem arises.
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Problem 2. Given a set of real orthonormal vectors, (v(1),...,v(k)}, k _> 1,
each symmetric or skew-symmetric, and a set of real numbers (1,..., Ak}, find a
symmetric Toeplitz matrix T (other than a scalar matrix) such that

(5) Tv(i) )iv(i), i 1,..., k.

We note in Problem 2 that T is required to be Toeplitz; thus the description of the
given eigenpairs cannot be totally arbitrary. For instance, it is improper to request
that all vectors be symmetric while k > [n/2. We recall a conjecture in [5] that a
universal distribution of eigenvalues for Toeplitz matrices should be such that a+ (T)
and a-(T) interlace. Thus a Toeplitz matrix whose spectrum does not satisfy the
interlaced distribution is perhaps more difficult to find [8]. On the other hand, as far
as Problem 2 is concerned, there is a possibility that the remaining unspecified eigen-
pairs could make up the total spectrum so that the interlaced condition is eventually
realized.

For the case k 2, we show in this paper that in each direction in the subspace

2=1 S(v()) there is one and only one Woeplitz matrix for Problem 2. In particular,
we show that if n is odd and if at least one of the given eigenvectors is symmetric, or
if n is even and one eigenvector is symmetric and the other is skew-symmetric, then
the Toeplitz matrix is uniquely determined.

2. An example. As we shall only consider the case k 2 throughout the paper,
it is more convenient to denote, henceforth, the eigenvectors v(1) and v(2) by u and
v, respectively.

We begin our study of the set S(u)N S(v) with the special case where n 3. The
example should shed some insights on the higher dimensional case.

Due to the special eigenstructure of symmetric Toeplitz matrices, it is necessary
that one of the two given eigenvectors, say u, must be symmetric. Denote u
[ul, u2, ul]T where 2ul2 / u 1. It can also be proved that the skew-symmetric
vector - [1/x/, 0,-1/x/]T is a universal eigenvector for every symmetric Woeplitz
matrix of order 3. Thus, given u, we imply from the orthogonality condition that the
second prescribed eigenvector v must be either the second or the third column of the
matrix

Ul

Q u 0 u
1 u2

ul / /

In other words, one symmetric eigenvector completely determines all three orthonor-
mal eigenvectors (up to a + sign). It follows, from [4], that dim S(u)NS(v) 2. (Note
that if the orthogonality condition is violated, then trivially S(u) S(v) (w).)

Let A diag(Al, 2, 3}. We already know QAQT is a centrosymmetric matrix.
It is not difficult to see that QAQT is Toeplitz if and only if

(3u12 1)1 - 2- -- ( 3u12) 3 O.

From (7), the following facts can easily be observed.
LEMMA 2.1. Let 2ul2 + u21 1. Then:
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(i) If A1 and A3 are given scalars, there is a unique symmetric Toeplitz matrix
T such that

u v u v A 0(8) T u2 Ul,/ t2 Ul 0 32 2u Ul

(ii) If ul =t= V//6 and A1 and 2 are given scalars, there is a unique symmetric
Toeplitz matrix T such that

Ul Ul
A1 0(9) T u2 0 u2 0
0 A2

Ul V tl vf

(iii) If ul =l=x/, then there are infinitely many symmetric Toeplitz matrices
T that satisfy (9) if A1 A2; however, i/A # A2, then (9) does not hold for any
symmetc Toeplitz matrix T.

3. General consideration. We now consider the ce for general n. When v is
an eigenvector, the idea of rewriting the matrix-vector product [4]

(10) T(r)v M(v)r

can be very useful. The following lemma can be observed.
LEMMA 3.1. The columns of M(v) have the same symmetry as v has. That is,

EM(v) :l=M(v) if and only if Ev =t=v.
Thus only the first r(v) rows of M(v) need to be considered. For convenience, let

p :- In and let N(v) denote the p n submatrix of the first p rows of M(v). It is
easy to verify that N(v) can be decomposed into blocks

(11) N(v) [h(v),H(v), 01 + [0, L(v), 0] + [0, 0, U(v)],

where h(v) is a p x 1 column vector, /(v) := [h(v),H(v)] (ij(v)) is the p x p
Hankel matrix

(12) hij(v) Vi+j--1,

L(v) [0, L] (li(v)) is the p p lower triangular matrix

v-+l ifl<j<_i,(13) [ij(v) "=
0 otherwise,

and V(v) (uij(v)) is the p (n- p) triangular matrix

(14) uij(v) "= { Vp+i+j-lO ifotherwise.i+ j <_ n p + 1,

We note that the last row of N(v) is identically zero when n is odd and v is skew-
symmetric. The rows of N(u) and N(v) will be used to construct a larger matrix.

Suppose that

T(r)u %1u,
(15)

T(r)v A2v.
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Then the vector r must be such that the linear equations

(16)
N(u)(r Alw) 0,

N(v)(r A2w) 0

are satisfied. If we write

(7)

then the system (16) is equivalent to

=o,

where M(u, v) is the (2p) (n + 1) matrix defined by

[ 0 h(u) H(u)+L(u) U(u) ](19) M(u, v):= h(v) 0 H(v) + L(v) V(v)

Given symmetric or skew-symmetric vectors u and v, a solution to (18) can be
used to construct a Toeplitz matrix in the following way.

LEMMA 3.2. Suppose that [x0, xl,...,Xn]T is a solution to (18). For arbitrary
real numbers A and a, define

(20)
rl "--Xl -r :-- (x for i 2, n,

and

(21) := a(x xo) + .
Then u and v are eigenvectors of the Toeplitz matrix T(r). In other words, S(u)fS(v)
is the direct sum of the subspa_ce spanned by w and the subspace obtained by deleting
the first component from ker(M).

On the other hand, suppose the two eigenvalues A and )2 are prescribed. Then
(21) implies that the constant a in (20) must be

X0 Xl

provided x0 x. The conclusion is made in the following lemma.
LEMMA 3.3. Suppose that x is a nontrivial solution of (18) satisfying xo xl.

Then corresponding to the direction of x, there is a unique solution to Problem 2 when
k=2.

The question now is to determine the null space of A:/(u, v). It is convenient to
use the abbreviated notation h:/= h:/(u, v). It turns out that the dimension depends
upon whether n is even or odd and whether the two eigenvectors are symmetric or
skew-symmetric. In any case, we shall show that//has a nontriviM null space. It is
most interesting to note that the dimension does not depend upon the size of n. We
discuss the following different cases.
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Case 1. n is odd and both eigenvectors are symmetric. When n is odd, the Hankel
matrix H(v) for a symmetric vector v takes the special form

(23) H(v)

V V2 Vp__ Vp
V2 V3 Vp Vp--1

Vp--1 Vp V3 V2

Vp Vp--1 V2 Vl

The corresponding U(v) becomes

(24) U(v) EL(v)-

Vp--1 Vp--2 V2 Vl

vp-2 Vl 0

v 0 0
0 0

It is useful to illustrate the basic structure of 1/with a simple example when both u
and v are symmetric. When n 5, we have

(25) M

0 1 2 3 2 Ul
0 U2 U3 -- Ul U2 Ul 0
0 u3 2u2 2Ul 0 0
Vl 0 V2 V3 V2 Vl
V2 0 Va+V V2 Vl 0
V3 0 2v2 2vl 0 0

The matrix 57/in general is a square matrix of order n + 1. The determinant of h:/
is an algebraic expression involving independent variables Vl,...,Vp, ul,...,Up. It
would not be too surprising if det(//) 0 for generic u and v (see the Appendix).
Nevertheless, under the additional condition that u and v are perpendicular to each
other, we will show by elementary row operations that M is in fact rank deficient.

For any symmetric vector v, let the p x p upper triangular matrix G(v) be defined
by

(26) G(v) :--

2v 2v2 2Vp-1 ’Up
0 2vl 2Vp-2 Vp--1

0 2v V2
0 0 0 0 vl

We also define the 2p x 2p matrix

[I 0 ](27) ( ((u, v) "=
-G(v) G(u)

which, in fact, is the accumulation of a sequence of elementary row operations. We
remark here that the ordering of u and v is immaterial. If u 0, then the roles of u
and v may as well be switched. The extremely rare case where both U vl 0 can
be reduced to a lower dimensional problem. Without loss of generality, therefore, we
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may assume that Ul 0 and, hence, the matrix G(u, v) is a nonsingular matrix. It
follows that the product I]V (/ has the same rank as

We now make an important claim.
LEMMA 3.4. Suppose that n is odd and that the two symmetric vectors u and v

are orthogonal. Then the matrix W is rank deficient. In fact,

(28) p + 1 <_ rank() <_ n.

Proof. The proof is tedious but straightforward. For i 1,..., p, the ith compo-
nent of G(u)h(v) is given by

p-i

(29) 2 E usvt+up_i+lvp.
s=l

t--s=i--1

The first component is trivially seen to be

p-1

(30) 2E usvs + upvp,
s’-I

which is zero because u and v are perpendicular to each other. For the same reason,
the first component of-G(v)h(u) is zero.

The product G(u)U(v) has the same triangular structure as U(v). On the other
hand, the (i, j)th component of G(u)U(v) with i + j _< p is given by

(31) 2 E usvt.
s+t=p--i--j+2

It is important to note that the summation (31) is a symmetric function of u and v.
It follows that the p x (n- p) block

(32) +
is identically zero.

For i 1,..., p and j 1,..., p- 1, the (i, j)th component of G(u)H(v) is given
by

ifj < p-i + 1; or

UsVt + Up--iTlVp--j

p--i

(34) 2 E usvt + Up-i+lvp-j
8""1

t+s=2p--i--j+l

if j _> p- i + 1. The (i, j)th component of G(u)L(v) is given by

p--i

(35) 2 E usvt + u-i+lvn-j

s--1
t--s=i--j--1
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ifj <_i--1; or

(36)
p-i

UsVt -- Up--i+lVp--j
s--j--i+2

t--s--i--j--1

ifj > i-1. Using (33) and (36), it follows that the (1,j)th component of G(u)(H(v)/
L(v)) is given by

p--j p--1 p--j

(37) 2 Z uvt+2 Z uvt+2 Z uvt.
s--1 s=p--j+l t=l

t--s=j t+s=2p--j s--t=j

The first and the last summations in (37) are symmetric to each other. The sec-
ond summation in (37) is a symmetric function of u and v. Overall, (37) is a sym-
metric function of u and v, which will be completely canceled by its counterpart in
-G(v)(H(u) + L(u)).

By now we have proved that the (p + 1)th row of IV is identically zero. If follows
that the null space of M is at least of dimension one.

Using (34), (35), and (36), it is further observed that the (i,p- 1)th component
of G(u)(g(v)+ n(v)) is given by

P

/3s) 2

t+s=p+2-i

which, once again, is a symmetric function of u and v, and will be completely canceled
by its counterpart in -G(v)(H(u) + L(u)). The zero structure of W clearly indicates
that (28) is true.

The following example for the case n 5 illustrates the typical structure of W:

(39) W

0 It ?-t2 t3 t2
0 u2 u3+ul u2 ul 0
0 u3 2u2 2Ul 0 0
0 0 0 0 0 0

2v2u1-v3u2 --2VlU2--v2t3 2v3u1--2Vl u3 0 0 0
v3 u --vi u3 2 v2ui--2vu2 0 0 0

Let W denote the lower left (p- 1) p submatrix of I. That is, W is the matrix
obtained by deleting the first row and the last column of

(40) [G(u)h(v),-G(v)h(u),-G(v)(H(u) + L(u)) + G(u)(H(v) + L(v))].

The rank of IV can be less than n if and only if W is rank deficient, which will
be true if and only if values of ui and vi are such that det(WWT) 0. We note
that det(WWT) is a polynomial in the independent variables ui and vi. We note
also that det(WWT) is not identically zero (see the Appendix for a proof). Thus
rank(W) < n if and only if ui and vi come from a codimension-one surface. We
conclude, therefore, that for almost all u and v satisfying uTv 0, the matrix l is
of rank n. Unfortunately, even for the case n 5 (see (39)), it is fairly complicated
to express the rank deficiency of W in terms of components of u and v. At present
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we cannot provide a further characterization of the set where W is rank deficient.
Given the fact that the orthogonality of u and v has already been used to prove the
rank deficiency of 1, it is conceivably true that the orthogonality condition cannot
be used again to reduce the rank of W.

In conclusion, we have proved the following theorem.
THEOREM 3.5. Suppose that n is odd and that u and v are two symmetric vectors

satisfying uTv O. Then:
1. The dimension of S(u)C S(v) is at least two.
2. For almost all u and v, the dimension of S(u) S(v) is exactly two.
3. For almost all u and v and for any values of ;k and )2, there exists a unique

symmetric Toeplitz matrix T satisfying Tu AlU and Tv A2v.
Case 2. n is odd and both eigenvectors are skew-symmetric. When n is odd, the

Hankel matrix/(v) for a skew-symmetric vector v takes the form

(41) /(v)

Vl V2 Vp-1 0
V2 V3 0 --Vp--1

v_ 0 -va -v
0 --Vp--1 --V2 --Vl

The corresponding U(v) becomes

(42) U(v) -EL(v)

-Vp_l -Vp-2 -v2 -Vl

--Vp--2 --Vl 0

--Vl 0 0
0 0 0

It follows that the last row of N(v) is identically zero. For (18), it is now obvious
that the kernel of M is .of dimension at least two. In fact, we can show the following
lemma.

LEMMA 3.6. Suppose that n is odd and that the skew-symmetric vectors u and v
are perpendicular. Then

(43) p _< rank(W) N n- 2.

Indeed, for almost all u and v, rank(r) n- 2.

Proof. The proof is very similar to that of Lemma 3.4. So we simply outline
a recipe for constructing the transformation matrix that does the elimination. The
details of justification are omitted.

It suffices to consider the 2(p- 1) x (n / 1) submatrix obtained by deleting the
pth and the 2pth rows of M. For a skew-symmetric vector v, define the (p- 1) x (p- 1)
matrix G(v) by

(44) G(v) "=

--Vl --V2 --Vp--2 --Vp--1
0 Vl Vp--3 Up--2

0 Vl V2
0 0 0 0 Vl
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Then construct the 2(p- 1) 2(p- 1) transformation matrix G(u, v) in the same _way
as is defined in (27). It can be proved now that the pth row of the product t?V "= GM
is identically zero. Furthermore, the lower right (p- 1) (p- 1) submatrix of d is
also identically zero. The assertion follows from these observations. []

As an example, for n 5, the matrix takes the form

0 Ul U2 0 --U2 --Ul
0 u2 u -u -u 0
Vl 0 v2 0 -v2 -Vl

v2 0 Vl -v2 -vl 0

and after the transformation the matrix IfV looks like

(46) IfV
0 /,1 U2 0
0 l/,2 Ul --2

--VlUl V2U2 Vlttl -[" V22 0 0
1V2 --Vl?2 0 VlU2 1V2

--2 --1
--Ul 0
0 0
0 0

The third row of IfV is identically zero because uTv O.
We conclude this case by the following theorem.
THEOREM 3.7. Suppose that n >_ 5 is odd and that u and v are two skew-

symmetric vectors satisfying uTv O. Then:
1. The dimension of S(u) V S(v) is at least four.
2. For almost all u and v, the dimension of S(u) N S(v) is exactly four.
3. For almost all u and v and for any values of1 and 2, the symmetric Toeplitz

matrices T satisfying Tu Alu and Tv A2v form a two-dimensional manifold.
Proof. By Lemma 3.6, the dimension of ker(IV) is almost always three. The

first two assertions then follow from Lemma 3.2. The last assertion follows from
Lemma 3.3. []

Case 3. n is odd, one eigenvector is symmetric and the other is skew-symmetric.
A symmetric vector is always orthogonal to a skew-symmetric vector regardless of
what the values of the components are. Thus, unlike the previous two cases, the
orthogonality condition uTv 0 no longer helps to reduce the rank of ]t:/. As/ does
contain an identically zero row, we should have the same conclusion as in Theorem 3.5,
which is given in Theorem 3.8.

THEOREM 3.8. Suppose that n is odd and that u and v are symmetric and skew-
symmetric vectors, respectively. Then:

1. The dimension of S(u) S(v) is at least two.
2. For almost all u and v, the dimension of S(u) V S(v) is exactly two.
3. For almost all u and v and for any values of )l and 2, there exists a unique

symmetric Toeplitz matrix T satisfying Tu )lu and Tv )2v.
Case 4. n is even and both eigenvectors are symmetric. When n is even, the

Hankel matrix H(v) for a symmetric vector v takes the special form

Vl V2 Vp--1 Vp
V2 V3 Vp Vp

Up--1 Vp V4 V3
Up Up V3 V2
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Once again, we define

(4s) .=

Vl V2 Vp--1 Vp
0 Vl Vp--2 Vp--1

0 vl v2
0 0 0 0 vl

and construct G(u, v) according to (27). If the two symmetric vectors u and v are
orthogonal, then it can be shown that the rank of the n x (n / 1) matrix W :- GM
satisfies

(49) p / 1 <_ rank(W) <_ n- 1

and for almost all u and v, the dimension of ker(/t:/) is exactly two. So the following
theorem is true.

THEOREM 3.9. Suppose that n is even and that u and v are two symmetric
vectors satisfying uTv O. Then:

1. The dimension of S(u) S(v) is at least three.
2. For almost all u and v, the dimension of S(u) S(v) is exactly three.
3. For almost all u and v and for any values of) and )2, the symmetric Toeplitz

matrices T satisfying Tu Au and Tv A2v form a one-dimensional manifold.
Case 5. n is even and both eigenvectors are skew-symmetric. When n is even,

the Hankel matrix/(v) for a skew-symmetric vector v takes the special form

v v v_ v
V2 V3 Up --Up

(50) U(v)
Vp_ 1 Vp V4 V3
Vp Vp V3 V2

To construct the transformation matrix G(u, v), the matrix G(v) for a skew-symmetric
vector v is defined in exactly the same way as (48). The conclusion is stated in
Theorem 3.10.

THEOREM 3.10. Suppose that n is even and that u and v are two skew-symmetric
vectors satisfying uTv O. Then:

1. The dimension of S(u) S(v) is at least three.
2. For almost all u and v, the dimension of S(u) S(v) is exactly three.
3. For almost all u and v and for any values of) and )2, the symmetric Toeplitz

matrices T satisfying Tu Au and Tv A2v form a one-dimensional manifold.
Case 6. n is even, one eigenvector is symmetric and the other is skew-symmetri_c.

Just like Case 3, the orth_ogonality condition does not help to reduce the rank of M.
The n (n + 1) matrix M in general is of full rank. The conclusion in Theorem 3.11,
therefore, is similar to Theorem 3.8.

THEOREM 3.11. Suppose that n is even and that u and v are symmetric and
skew-symmetric vectors, respectively. Then:

1. The dimension of S(u) S(v) is at least two.
2. For almost all u and v, the dimension of S(u) S(v) is exactly two.
3. For almost all u and v and for any values o] 1 and 2, there exists a unique

symmetric Toeplitz matrix T satisfying Tu Alu and Tv A2v.
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4. Conclusion. We have shown by symbolic computation that the dimension of
the subspace S(u) N S(v) of Toeplitz matrices with two generically prescribed eigen-
vectors u and v is independent of the size of the problem. We have further shown that
the dimension is either two, three, or four, depending upon whether the eigenvectors
are symmetric or skew-symmetric. All the cases are justified to the extent.that the
transformation matrices that result in the desired elimination are fully described in
terms of the components of u and v. Only one proof (Lemma 3.4) is detailed, but the
rest can be done in a very similar way.

Our result extends a previous result by Cybenko [4] who considers the structure
of Toeplitz matrices with only one prescribed eigenvector. On the other hand, our
discovery that the dimension is independent of the size of the problem is quite a
surprising and remarkable fact.

We also have studied the inverse problem of constructing a Toeplitz matrix from
two prescribed eigenpairs. We have shown that in almost every direction of ker(M),
there is one and only one Toeplitz matrix with the prescribed eigenpairs. In particular,
it is shown that if n is odd and if at least one of the given eigenvectors is symmetric,
or if n is even and one eigenvector is symmetric and the other is skew-symmetric,
then the Toeplitz matrix is unique.

Appendix. In the proof of Theorem 3.5 we need to show that det(WWT) is
not identically zero. This can be done by simply showing that det(WWT) = 0 for a
certain u and v. In particular, choose

1 ifi 1,
ui= 0 ifl<i<_p;

1 ifi =p,
vi= 0 ifl<_i<p.

Then it is easy to see that the (p- 1) x p submatrix W is given by

0 0 0 0 0 0 2
0 0 0 0 0 2 0
0 0 0 0 2 0 0

0 0 0 2 0
0 0 2 0 0 0
1 0 0 0

Obviously W is of full rank p- 1.
With the same choice of u and v, it is also easy to see that

is a solution to (18). Specifically, we have proved that x0 cannot be identical to x
for all u and v.

Similar arguments can be deduced for the proof of other cases.

Note added in proof. As the paper was being printed, Landau announced that he
has proved that every set of n real numbers is the set of eigenvalues of an n n real
symmetric Toeplitz matrix. See [12].
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Abstract. In 1952, A. J. Hoffman [J. Res. Natl. Bur. Standards, 49 (1952), pp. 263-265]
published a bound on the distance from any point to the solution set of a linear system. This bound
subsequently has found applications in the sensitivity analysis of linear/integer programs and the
convergence analysis of descent methods for linearly constrained minimization. A certain constant
in Hoffman’s bound may be interpreted as a condition number for the linear system and, in this
paper, the authors give simple necessary and sufficient conditions for the constant to be uniformly
bounded under perturbations on the problem data. Also, these conditions are related to a uniform
boundedness condition on the vertex solutions proposed by J.-S. Pang.

Key words. Hoffman’s bound, condition number, linear system, perturbation analysis
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1. Introduction. For any m n matrix A and any m-vector a (m >_ 1, n >_ 1),
we denote the polyhedral set

P(A,a) { x e n Ax G a }.

In many practical settings, it is of interest to estimate the Euclidean distance from a
point x to its nearest point in P(A, a) when this set is nonempty. One particularly
useful estimate is given by A. J. Hoffman [Hof52] who showed that this distance is
bounded above by some scalar constant (depending on A only) times the Euclidean
norm of the residual error

[Ax a]+,

where, for any vector z, [z]+ denotes the positive part of z. This bound and its
relatives have been studied quite extensively and important applications have been
found in the sensitivity analysis of linear programs (see [Rob73a], [Rob77]) and in the
convergence analysis of descent methods for linearly constrained minimization (see
[Gof80], [Gii192], [IuD90], [LuW92], [WsB93], [WsL92]). Moreover, the constant in the
bound provides a measure of the "condition" of the linear system Ax <_ a (see [Gof80],
[Man81b]).

Since real-world problems typically have inaccurate data, it is of practical as well
as theoretical interest to know how Hoffman’s bound behaves under perturbations on
the constraint matrix A and the right-hand side a. Specifically, when would the con-
stant in this bound be uniformly bounded under such perturbations? This question
was posed to us by Professor J.-S. Pang [Pan91] who also conjectured that this uni-
form boundedness property would hold if and only if P(A, a) contains a Slater point
and its vertex set is nonempty and is in some sense uniformly bounded under local
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perturbations on A and a. Surprisingly, the above question has been little studied
and the available results mainly treat the case where a is perturbed.

In this paper, we address the above and related questions regarding the behaviour
of Hoffman’s bound under perturbations on the problem data. To be precise, let us
define, for each m x n matrix A and m-vector a such that P(A, a) is nonempty, the
quantity

d(x,P(A,a))(1.1) T(A, a) sup
II[Ax a]/ll

(Here and throughout, we denote, for every vector x and every closed set C in some
Euclidean space,

d(x, C) min yll
yEC

where IlY[[ is the usual Euclidean norm of a vector y.) By the preceding result of
Hoffman, T(A, a) is finite and, in fact, bounded above by a scalar depending on A
only. The quantity T(A, a) may be viewed geometrically as a condition number for
measuring the "sharpness" of the corners of P(A,a) (see [GofS0]), i.e., the larger
T(A, a) is, the sharper is some corner of P(A, a) (assuming that each row of A is
normalized to have a norm of one). We note that in [GofS0] (see Theorem 4.4 therein),
the Loo-norm is used in place of the Euclidean norm but this difference is minor. For
ease of reference, we will refer to T(A, a) as the Ho.ffman condition number for the
linear system Ax <_ a.

We say that the system of linear inequalities Ax <_ a is well-conditioned under
a set of perturbations on the problem data A and a if Ax <_ a remains solvable and
T(A, a) is uniformly bounded under perturbations from this set. This criterion of well-
conditionedness based on a variational principle is more stringent than the traditional
criterion, which only requires that the normalized condition number IIAII. T(A, a) be
less than some threshold value. This criterion is also, in some sense, more natural
since it takes into account the effects of data perturbation and is not dependent on an
(arbitrarily chosen) threshold value. (Like the traditional criterion, it is independent
of scaling on A and a (assuming that the set of perturbations is independent of scaling
on A and a).)

We will distinguish between the following sets of perturbations on A and a. We
say that a set of perturbations is local if the size of the perturbations is restricted to
be less than some scalar (depending on A and a) and is global if no such restriction is
made. We say that a set of perturbations is feasible if the perturbations are restricted
to those that maintain the perturbed system to be solvable. Feasible perturbations are
of interest since they arise in various practical contexts. For example, in the classical
situation where a nonlinear system is linearized around one of its feasible solutions,
any perturbation in the feasible solution would induce a feasible perturbation on the
linearized system.

The main goal of this paper is to establish (computationally tractable) necessary
and sufficient conditions for a linear system to be well-conditioned under any combi-
nation of the preceding set of perturbations. First, we show that the system Ax <_ a
is well-conditioned under feasible local perturbations on A and feasible global pertur-
bations on a if and only if every row-wise submatrix of A is either strongly stable or
has full column rank (see Theorem 2.2). (A matrix M is said to be strongly stable if
Mx < 0 has a solution. See [ManSla] and [BraSS] for applications of such matrices
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to the stability analysis of linear systems.) Similarly, this system is well-conditioned
under feasible local perturbations on A and a if and only if every row-wise submatrix
of A possessing a certain structure is either strongly stable or has full column rank
(see Theorem 2.4). Second, we show that the system Ax <_ a is well-conditioned under
arbitrary local perturbations on A and arbitrary global perturbations on a if and only
if A is strongly stable (see Theorem 3.1). Similarly, this system is well-conditioned
under arbitrary local perturbations on A and a if and only if either A is strongly stable
or the system Ax <_ a is regular and has a bounded solution set (see Theorem 3.3). (A
system Ax <_ a is regular if it satisfies the Slater condition that Ax < a be solvable.)
The "if" part of these results have already been shown by Brady [Bra88, Chap. 5], but
the "only if" part was not known. Third, we relate one of the (algebraic) characteri-
zations of well-conditionedness to a geometric characterization, conjectured by Pang,
involving a uniform boundedness condition on the vertex solutions. In particular, we
show that the latter condition together with a regularity assumption on the system
implies the well-conditionedness of the system under arbitrary local perturbations on
the problem data, but the converse does not hold (see 4). Fourth, we show that all
of the above results extend to the case where linear equalities are also present in the
system (see 5), and we discuss how these results can be applied to determine whether
a polyhedral set has a well-conditioned algebraic representation (see 6).

We briefly survey related results. Many estimates of the Hoffman condition num-
ber T(A, a) have been proposed, beginning with the original work of Hoffman [Hof52]
with subsequent refinements made by Robinson [Rob73a], Mangasarian [Man81b],
Mangasarian and Shiau [MASS7], Cook et al. [CGST86], and, most recently, by Li
[Li91] and Bergthaller and Singer [BeS91]. (Also see the early work of Rosenbloom
[Roshl] for a local estimate.) Unfortunately, these estimates typically involve the
solution of an optimization problem and are too complicated to be useful for a per-
turbation analysis. In a different direction, Robinson [Rob75a] (also see [Rob77] and
Lemma 3.2 in this paper) showed that the system Ax <_ a remains solvable under local
perturbations on A and a if and only if it is regular. This implies that regularity is
a necessary condition for a system of linear inequalities to be well-conditioned under
(arbitrary) local perturbations on the problem data. However, it is not sufficient (see
Theorem 3.3). Another direction in which Hoffman’s bound has been extended is the
sensitivity analysis of linear systems. In particular, Hoffman’s bound implies that a
solution of a linear system changes in a Lipschitzian manner relative to changes on
the problem data, with the Lipschitz constant depending on the solution. Robinson
[Rob75a] (also see [Rob72] and [Rob73b]) showed that the latter dependence can be
removed to some extent if the system is regular. Daniel [Dan73], [Dan75] proposed re-
stricting the allowable perturbations as an alternative way to remove the dependence.
Further elaborations of Robinson’s result are given by Brady [Bra88]. Our results
can be applied to sharpen some of the results above although, for brevity, we will not
discuss such applications here. Finally, Hoffman’s bound has also been extended to
convex programs and to systems of convex inequalities. The first result of this kind
was given by Robinson [Rob75b] under a Slater condition and assuming bounded-
ness of the solution set. This result was then extended by Mangasarian [Man85] to a
system of differentiable convex inequalities in which the boundedness assumption is
replaced by an asymptotic constraint qualification, lJrther extensions were made by
Auslender and Crouzeix [AuC88], among which is the release of the differentiability
assumption. It is unclear whether our analysis can be extended to the convex case.

We adopt the following notations throughout. All vectors are column vectors and
superscript T denotes transpose. For any vector x E n and any I C 1,..., n}, we
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denote by xi the ith component of x and XI the vector with components xi E I (with
the xi’s arranged in the same order as in x). For any two vectors x and y of the same
dimension, we denote by (x, Y/ the usual Euclidean inner product of x with y, i.e.,
(x, y) xy. Thus, the Euclidean norm of x is given by Ilxll-- V/(X, x. For any
m n matrix M and any I C_ {1,..., m}, we denote by Mi the ith row of M and by
Mx the submatrix of M obtained by removing all rows i I; we denote by IIMII the
matrix norm of M as induced by the vector norm I1" (i.e., IIMII maxllxll= IIMxll).
We say that a sequence of matrices {Mr} converges to M ("{Mr} --. M" for short)
if IIMr MII -- 0 as r --. oc. For any I C_ {1,2,...}, we denote by III the number of
elements of I. Finally, we say that a set of perturbations on A and a is semilocal if
the perturbations on A are local but the perturbations on a are global.

2. Well-conditionedness under feasible perturbations In this section we
study the well-conditionedness of the system Ax <_ a under feasible perturbations on
A and a, i.e., perturbations under which Ax <_ a remains solvable. We divide the
analysis into two subsections. In 2.1, we show that this system is well-conditioned
under feasible local perturbations on A and feasible global perturbations on a if and
only if, for every nonempty I C_ (1,...., m}, the submatrix AI either is strongly stable
or has full column rank (see Theorem 2.2). In 2.2, we show that this system is well-
conditioned under feasible local perturbations on A and a if and only if, for every
nonempty I c_ (1,...,m} such that either Ax <_ a, Aix ax or Ax <_ O, Ax
0, x 0 is solvable, the submatrix AI either is strongly stable or has full column
rank (see Theorem 2.4). Moreover, these characterizations of well-conditionedness
simplify considerably under some mild assumptions on the solution set P(A, a) (see
Propositions 2.3, 2.5, 2.6).

2.1. Well-conditionedness under feasible semilocal perturbations First
we state and prove a key property of matrices that are either strongly stable or of
full column rank. This property will be used in the proof of the main result of this
subsection, namely, Theorem 2.2.

LEMMA 2.1. Let E be an n matrix (1 >_ 1).
(a) If there exists an n-vector u with Eu > O, then for every 1-vector >_ O, we

have

mini{Eiu}
I111 IIErll"

(b) If E has full column rank, then for every 1-vector >_ O, there is an J c_
{1,..., l} with IJI --n and Ej invertible such that

Proof. Fix any/-vector 0 >_ 0. If ETo 0, then the claims follow trivially. Thus,
it suffices to consider the case where ETo O. Using the Cauchy-Schwarz inequality
and the nonnegativity of , we have

II01111[EE:r0]+II > <o, [EETO]+) > <O, EETO)= liE:r011,
so’dividing both sides by IIETOIIIIOIi gives

(2.1) II[EETO]+II> IIET011
IIET011 --II011
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(a) Suppose that there is an n-vector u with Eu > 0. Using the Cauchy-Schwarz
inequality and the nonnegativity of 9, we have

Thus, I]ETtII/II]I min,{Eu}/]]u]]. Using this to bound the right-hand side of (2.1)
yields the desired inequality.

(b) Suppose that Eh rank n. Then, by Carathodory’s Theorem (see [Roc70]),
there exists an n-vector u 0 and a subset J {1,...,1} with J] n and Ej
invertible such that (Ej)T ET. Since (2.1) holds for any E and any nonnegative
vector with ET O, it also holds when E and are replaced by, respectively, Ej
and . This gives

][[Ej(Ej)Tp]+[[ > [[(Ej)Tp[[

The right-hand quantity is clearly bounded below by minllll= II(Ej)TII; the lea-
hand quantity is, using (Ej)T ETo, equal to II[EETO]+II/llETOI which is clearly
bounded above by II[ ET ]+II/IIET II. This proves the desired inequality.

Given below is the main result of this subsection, which establishes a necessary and
sufficient condition for the system Ax a to be well-conditioned under feible local
perturbations on A and feible global perturbations on a. The proof of sufficiency
is bed on bounding T(A,a) by [I(AI)TAI[/ll[AI(AI)TA]+I[ for some nonzero vector
A 0 and some I {1,..., m}. Then, Lemma 2.1 is invoked to bound the latter. The
proof of necessity amounts to constructing a set of feible local perturbations on A
and feible global perturbations on a under which T(A, a) is not uniformly bounded
(see (2.5) and (2.6)).

THEOREM 2.2. Well-conditionedness under feasible semilocal peurbations). For
any m x n matx A, the following conditions are equivalent.

(a) For each nonempty index set I {1,..., m), we have that either Alx < 0 is
solvable or AI has full column rank.

(b) There exist scalars 6 > 0 and Z > 0 such that, for any (A’, a’) with ]]A’-A[ <
and A’x a solvable, we have T(A’, a’) .

Proof. (a) (b). Suppose that condition (a) holds. For each nonempty I
{1,..., m) such that Aix < 0 is solvable, let uI be any n-vector with AluI > O.
Define the scalars:

(2.2) p=n{p{AiI}/,l,} p=n {rain II(Aj)rull}{Ivll=l

where the minimization with respect to I is taken over all nonempty I {1,..., m}
for which Aix < 0 is solvable (with p if no such I exists); the minimization
with respect to J is taken over all nonempty J {1,..., m} for which [J[ n and
Aj is invertib]e (with p2 if no such J exists). Notice that pl is positive.

Consider any m x n matrix A satisfying

(2.3) IIA’- All < min{p ,

and any m-vector a’ for which A’z a’ is solvable (so P(A’, a’) is nonempty). Fix any
n-vector P(A’, a’) and let z denote the orthogona] projection of x onto P(A’, a’)
(so I1- d(, P(A’, a’))). Let I denote the nonempty set of indices i {1,..., m}
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Then, Az a and the Kuhn-Tucker conditions associated withfor which Az a.
this projection yield x- z (AI)T) for some A > 0, so

(2.4) d(x, P(A’, a’))

Since condition (a) holds by hypothesis, it suffices to consider only the following two
cases.

Case 1. Axx < 0 is solvable. Then, uI is defined and (cf. IIA’- All < pl/2 and
AiuI > O) A’IuI > Axu/2 > 0, so we can apply Lemma 2.1(a) with E A to obtain

where the last inequality follows from (2.2).
Case 2. AI has full column rank. Then, for any subset J of I with [J] n and

Aj invertible, we have from the triangle inequality and (2.2) and (2.3) that

min ][(Ab)TI][ > min II(gg)Ttll- ll(Aj)T- (Ab)TII > P2
P2 P...2

Ilvll=l --Ilvll=l 2 2"

This shows that A has full column rank, so A also has full column rank. Then, we
can apply Lemma 2.1(b) with E A and, together with the above relation, obtain
that

where J is some subset of I with J]- n and Aj invertible.
Since either the above relation or the relation in Case 1 holds, the right-hand side

of (2.4) is bounded above by the maximum of 2/pl and 2/p2. Then, (2.4) yields

d(x,P(A’,a’)) {2 2}
Our choice of x above was arbitrary, so the above inequality holds for all n-vectors
x P(A’, a’). Taking the supremum of both sides over all x . P(A’, a’) and using
(1.1), we obtain T(A’,a’) <_ max{2/pi,2/p2}.

(b) = (a). Suppose that condition (a) does not hold. Then, there exists some
nonempty I

_
{ 1,..., m} such that Aix < 0 has no solution and AI lacks full column

rank. Fix any m-vector a such that Ax < a has a solution and let 2 be any such
solution. Since AIx < 0 has no solution, by the Farkas Lemma (see [Roc70] or [Sch86]),
there exists a nonzero vector >_ 0 with (AI)TOI 0. Also, since A lacks full column
rank, there exists a nonzero z with Az 0. Normalizing if necessary, we will assume
that I]0ii1 1 and ]]z]] 1. Using I, 0i, and z, we construct below a set of local
perturbations on A and global perturbations on a such that the perturbed systems are
solvable but whose respective Hoffman condition numbers are not uniformly bounded.
The key is to perturb each row of A by a scalar multiple of zT and, because zT is
orthogonal to these rows, this will induce in the solution set of the perturbed system
a corner whose "sharpness" is inversely proportional to the size of the perturbation.

By reordering the rows of A and a if necessary, we can assume that

AI
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where I denotes the complement of I relative to (1,..., m}. For each scalar e > 0,
we define the perturbed matrix A by:

(2.5) A AI + izT, Ai Ai,

and the perturbed right-hand side a by:

(2.6) a A2 + e((z, 2) + e)O, a ai + 2e[Aiz]+.

Let x 2 / ez. We claim that x belongs to P(A, ae). To see this, notice that

Ax (A + eOizT)(2 + ez)
A2 + e((z, 2> + )0
o,i

where the second equality follows from Aiz 0 and Ilzll 1, and the last equality
follows from the definition of a. Similarly, we have

Aix Ai( + ez)
<_ ai / 2e[Aiz]+

ai,

where the inequality follows from Ai2 <_ ai and Aiz <_ 2[Aiz]+; the last equality is
due to the definition of ai.

Since (A_)ToI 0 and I[1[ 1, we have from (2.5) that

(AeI)TOI (AI + OIzT)ToI --Z.

This together with 0 >_ 0 and (2.7)-(2.8) implies that z is a normal to the polyhedral
set P(A, a) at x. Thus, if we move along the direction z from x and then project
back onto P(A, ae), we always get xe. In particular, the projection of x + ez onto
P(A, a) is x, so that

(2.9) d(x + ez, P(A, a)) llzll .
On the other hand, we have from the definitions of A and a (cf. (2.5) and (2.6))
that

A(x + ez) (AI + eOzT)(2 + 2ez)
AI2 + e((z, 2) + 2e)O
a +

where the second equality follows from Azz 0 and llzll 1. Similarly,, we have

Ai(x + ez) Ai(2, + 2ez)
<_ ai + 2e[Aiz]+
a
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where the inequality follows from Ai <_ ai and Aiz <_ [Aiz]+. Combining the above
two relations yields

[A(x + ez) a]+

so that II[A(x + a]/ll This togethe wit (2.9) implies

d(x + ez, P(A, he)) 1

+
Because the right-hand side tends to infinity e 0, it follows (cf. (1.1)) that
T(A, a) e O. Since A A as e 0, this shows that condition (b) cannot
hold.

In genernl, condition (a) in Theorem 2.2 is quite difficult to verify. The next result
shows that, in the case where the system Ax a has an unbounded solution set, this
condition simplifies considerably.

PROPOSITION 2.3. For any m x n matrix A such that Ax 0 has a nonzero
solution, condition (a) in Theorem 2.2 holds if and only if the system Ax < 0 has a
solution.

Proof. The "if" direction is obvious. To prove the "only if" direction, suppose
that condition .(a) in Theorem 2.2 holds. By hypothesis, there is a nonzero n-vector
x satisfying Ax O. Let I be the set of indices i such that Ax 0. Then, the
submatrix A must lack full column rank, so condition (a) in Theorem 2.2 implies
that there is an n-vector x’ satisfying Aix’ < 0. For any scalar e > 0 sufficiently
small, we have that A(x + ex’) < O.

Checking the solvability of Ax < 0 amounts to solving the linear program
min{ Ax #e } with e denoting the m-vector of all l’s, for which many effi-
cient algorithms exist. Checking whether Ax 0 h a nonzero solution can similarly
be accomplished by solving a single linear program, w pointed out to us by one of
the referees and by R. eund. In particular, one first determines if A h full column
rank. If not, then Ax 0 trivially has a nonzero solution; if A does have full column
rank, then it can be seen that the linear program max{ <e, u> Ax+u O, 0 u e }
h a positive optimal cost if and only if Ax 0 h a nonzero solution (also see
[FRT85]). Thus, the conditions in Proposition 2.3 can be checked relatively eily.

2.2. Well-conditionedness under feasible local perturbations. Below we
give a necessary and sufficient condition (see condition (a) in Theorem 2.4) for the
system Ax a to be well-conditioned under feible local perturbations on A and
a. This condition is similar to condition (a) in Theorem 2.2, but only requires that
Aix < 0 be solvable or AI h full column rank for certain special index sets I (rather
than for every I). (Roughly speaking, the special index sets are those I for which,
under small perturbations on A and a, the perturbed system can be satisfied with the
inequalities indexed by I equalities. See the proof of (a) (b) in Theorem 2.4.) The
proof techniques are, for the most part, similar to those used in proving Theorem 2.2.
The major departure comes in proving the necessity of the condition, in which a new
set of "destabilizing" perturbations must be constructed to handle the ce where the
solution set is unbounded (see (2.11)).

THEOREM 2.4 (Well-conditionedness under feasible local perturbations). For any
m x n matrix A and any m-vector a such that Ax a is solvable, the following
conditions are equivalent.
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(a) For each nonempty index set I c_ {1,..., m} such that either Ax <_ a, Aix
ai or Ax <_ O, Aix O, x 0 is solvable, we have that either AIx < 0 is solvable or

At has full column rank.
(b) There exist scalars 5 > 0 and > 0 such that for any (A’, a’) with II (A’, a’)-

(A, a)l < 5 and A’x <_ a’ solvable, we have ’(A’, a’) <_ .
Proof. (a) = (b). First, we claim that there exists a scalar > 0 (depending on

A only) such that, for any nonempty I c_ {1,..., m} and any (A’, a’) with II(A’, a’)-
(A,a)l < fi, solvability of the system A’x <_ a’,Aix ai implies the solvability of
either Ax <_ a, Aix ai or Ax

_
O, Aix O, x O. To see this, suppose the contrary

so that, for some nonempty I C_ {1,..., m} and some sequence (A1, al), (A2, a2),...
converging to (A, a), there exists a sequence z, z2,.., satisfying Arz <_ a, AIzr ai
for all r and yet neither Ax <_ a, Atx ai nor Ax <_ O, Aix O, x 0 is solvable.
Since Ax <_ a, Aix at is not solvable, the sequence {zr} must be unbounded (for
otherwise any cluster point of {zr} would be a solution to this system). Thus, we
have

Az Azr

0,lim --,osup iiZrli
< O, r--,olim ilzrll

so any cluster point of the bounded sequence {z/llzll } soves Ax <_ O, Aix O, x O.
This contradicts the hypothesis that the latter system is unsolvable.

The remainder of the proof is essentially identical to the proof of (a) (b) in
Theorem 2.2, except that in (2.3) we take IIA’-All to be, in addition, less than ft. The
latter, together with condition (a), guarantees that either Case 1 or Case 2 therein
holds.

(b) = (a). Suppose that condition (a) does not hold. Then, there exists some
nonempty J c_ {1,... ,m} such that either Ax <_ a, Ajx aj or Ax <_ O, Ajx 0,
x 0 is solvable, but Ajx < 0 is not solvable and Aj lacks full column rank. Since
Ajx < 0 is not solvable, by the Parkas Lemma (see [Roc70] or [Sch86]), there exists a
nonzero vector Og 0 with components 0i, i E J, satisfying (Aj)Toj O. Let I C_ J
be the set of indices i with 0 > 0 and let Oi be the vector obtained by removing from
0J all components 0, i I. Then, 0I > 0 and (AI)TOI 0. Since I C_ J, we also
have that At lacks full column rank and that either Ax <_ a, Atx ai or Ax <_ O,
Atx O, x 0 is solvable. We consider the following two cases.

Case 1. Ax <_ a, Alx ai is solvable. Then, there is an 2 with A2 _< a and
At2 hi. Exactly as in the proof of Theorem 2.2, we construct matrices A and
vectors a" according to (2.5) and (2.6), with I, 2 and 0t as given above, so that
A --. A and T(A, a) oc as e $ 0. Because AI2 at, (2.6) implies, in addition,
that a --, a. Hence condition (b) cannot hold.

Case 2. Ax <_ a, Aix ai is not solvable. Then, the system Ax <_ O, Aix 0
has a nonzero solution. Let z be any such solution. Normalizing if necessary, we can
assume that Ilzll 1. Since Ax <_ a is solvable by hypothesis, there exists an n-vector
with A2 <_ a. Since Ax <_ a, Atx ai is not solvable, we have AI2 at. Using

I, z, and 2, we construct below a set of local perturbations on A and a such that
the perturbed systems are solvable but whose respective Hoffman condition numbers
are not uniformly bounded. As in the proof of Theorem 2.2, the key is to perturb
each row of AI by a scalar multiple of zT. First, by reordering the rows of A and a if
necessary, we will assume that

A= A a=
a



PERTURBATION ANALYSIS OF A CONDITION NUMBER 645

where I denotes the complement of I relative to {1,..., m}. Correspondingly, we
define an m-vector b given by

(2.10) bi ax Ax’2, bi O.

Notice that b >_ 0 and bi =/= O. Fix any scalar e > 0 with 1/e > (z,’2/. We associate
with e the perturbed matrix

(2.11) A A + e.bzT.

(Thus A --. A as e --. 0.) Let

(2.12) x "2 + az,

with

(2.13)

We claim that z is a normal to the set P(A, a) at xe. To see this, notice that

Ax a (A + ebzT)(’2 + az) a

A’2 + e((z, "2) + a)b + aAz a

_[ Ai’2 ai + aAiz
where the last inequality follows from (2.10) and Aiz 0. Since 1 e((z,’2) / a) by
(2.13) and Az <_ 0, we obtain

(2.14) AIx a, Aix <_ ai.

Thus, the first III inequalities of Ax <_ a are binding at xe. Also, we have from (2.11)
and (AI)T{gI 0 that

(A)To. (A)ToI + ez(bi, 0i) e(b, Oi)z.

Since bx is nonnegative but nonzero and Oi > 0, we have (b, 0) > 0 so z is a positive
combination of the columns of (Az)T. This together with (2.14) shows that z is a
normal to the set P(A, a) at x so if we move along the direction z from x and then
project back onto P(A, a), we always get x. In particular, the projection of x + ozz
onto P(A, a) is x*, which implies

d(x + ozz, P(A, a)) ozllzll oz.

On the other hand, we have from using (2.14) and (cf. (2.11), IIzll 1 and Aiz O)
AIz ebi, and (cf. (2.11), (2.10), and Aiz <_ O) Aiz <_ 0 that

As e --. 0, we have oze -- 1 (cf. (2.13)) so the right-hand side of (2.16) is bounded
above, implying that the left-hand side of (2.16) is bounded above. On the other
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hand, we also have a -- oc (cf. (2.13)), so the left-hand side of (2.15) tends to
Combining these two observations yields

d(x + az, P(A, a)
II[A(x + oz) a]/ll

so (cf. (1.1)) T(A, a) oc, as e O. Thus, condition (b) cannot hold.
As with Theorem 2.2, Theorem 2.4 is not a practical result since condition (a)

therein is very difficult to verify. Nonetheless, the following proposition shows that
in the case where the system Ax <_ a has multiple solutions, this latter condition
simplifies considerably.

PROPOSITION 2.5. For any m n matrix A and any m-vector a such that the
system Ax <_ a has at least two solutions, condition (a) in Theorem 2.4 holds if and
only if either Ax < 0 has a solution or Ax <_ a is regular (i.e., there exists an x with
Ax < a) and has a bounded solution set.

Proof. First, we prove the "if" part. If Ax < 0 has a solution, then condition
in Theorem 2.4 holds trivially. Suppose instead that the system Ax <_ a is regular
and has a bounded solution set. Then, A2 < a for some 2 and, for every nonempty
I c_ {1,...,m}, the system Ax <_ O, AIx 0, x 0 has no solution. On the other
hand, for every nonempty I C_ { 1,..., m} such that Ax <_ a, Axx ai has a solution,
say z, we have AI(.- z) < 0 and so the system Axx < 0 is solvable. This shows that
condition (a) in Theorem 2.4 holds.

Next, we prove the "only if" part. Suppose that condition (a) in Theorem 2.4
holds. We first show that the system Ax <_ a is regular. Let y and z be two distinct
solutions of Ax <_ a. Let (y + z)/2 and let I be the set of indices i such that
Ay Az a. Then, AI2 ai and A2 < a for all i I. Thus, if I is empty, then
2 solves Ax < a. Otherwise, we have from Az(y- z) 0 that AI lacks full column
rank, so condition (a) in Theorem 2.4 implies that Aiu < 0 for some u. Then, we
have A(2 + eu) < a for any scalar e > 0 sufficiently small. Hence, in either case the
system Ax <_ a is regular.

If the system Ax <_ a has a bounded solution set, then the "only if" part immedi-
ately follows. Otherwise, there is a nonzero n-vector z satisfying Az <_ O. If Az < 0,
then again we are done. Otherwise, let I denote the set of indices i for which Az 0.
Then, z solves Ax <_ O, Aix O, so condition (a) in Theorem 2.4 implies that AIx < 0
has a solution, say z. (A cannot have full column rank since Ax 0.) It is easily
seen that A(z + ez) < 0 for any scalar e > 0 sufficiently small, so the "only if" part
follows.

In the case where Ax _< a has a unique solution, condition (a) in Theorem 2.4
can again be simplified, albeit only slightly.

PROPOSITION 2.6. For any m n matrix A and any m-vector a such that the
system Ax <_ a has a unique solution, say x*, condition (a) in Theorem 2.4 holds
if and only if, for each nonempty index set I C {1,...,m} with Aix* hi, either
Aix < 0 is solvable or AI has full column rank.

Proof. Since Ax <_ a has a unique solution, the system Ax <_ 0, Aix 0 cannot
have a nonzero solution for any nonempty I C_ {1,..., m}. Thus, in condition (a) of
Theorem 2.4 it suffices to consider only those nonempty I for which Ax <_ a, Aix ai
is solvable or, equivalently, Aix* hi.

Although the characterization of well-conditionedness under feasible local pertur-
bations is weaker than that under feasible semilocM perturbations (compare condition
(a) in Theorems 2.2 and 2.4, respectively), the two characterizations are, surprisingly,
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equivalent in some sense. In particular, notice that when a 0, condition (a) in
Theorem 2.4 reduces to condition (a) in Theorem 2.2 (since, for every nonempty
I C {1,..., m}, the system Ax <_ a, Alx ai has a solution, namely, the zero vec-

tor). Then, we immediately obtain from Theorems 2.2 and 2.4 the following result.
COPOLLAIY 2.7. For any m x n matrix A, the system Ax <_ a is well-conditioned

under feasible local perturbations on A and feasible global perturbations on a if and
only i] it is well-conditioned under feasible local perturbations on both A and a when
a=O.

3. Well-conditionedness under arbitrary perturbations. In this section,
we continue with our study of the well-conditionedness of a system of linear inequali-
ties under perturbations on the problem data. In contrast to the previous section, we
no longer restrict the perturbations to be feasible and, as a consequence, the charac-
terizations of well-conditionedness simplify significantly. In particular, we show that
the system Ax <_ a is well-conditioned under local perturbations on A and global
perturbations on a if and only if A is strongly stable. Similarly, we show that this
system is well-conditioned under local perturbations on A and a if and only if either
A is strongly stable or Ax <_ a is regular and has a bounded solution set. The proof
of these results is, in great part, based on the results from the previous section.

Below we give the first main result of this section, characterizing when the system
Ax <_ a is well-conditioned under local perturbations on A and global perturbations
on a. Its proof is based on Theorem 2.2 and the well-known fact that Ax <_ a is
solvable for all a if and only if A is strongly stable.

THEOREM 3.1 (Well-conditionedness under semilocal perturbations). For any
m x n matrix A, the following conditions are equivalent.

(a) Ax < 0 is solvable.
(b) There exist scalars > 0 and, the system A’x <_ a’ is solvable and T(A’, a’) <_ 3.
Proof. (a) => (b). Suppose that condition (a) holds. Then, condition (a)in

Theorem 2.2 clearly holds, so, by Theorem 2.2, there exist scalars 1 > 0 and > 0
such that, for any (A’,a’) with IIA’-All < 1 and A’x <_ a’ solvable, we have
T(A’, a’) <_ . Let z be any fixed n-vector satisfying Az < 0. Then, for any A’ with

IIA’- AJl < 2 min{-Az}/(211z[I), we have A’z < 0, so A’x <_ a’ is solvable (since
it contains az for any a sufficiently positive). Take to be the minimum of 6 and
(2.

(b) => (a). Suppose that condition (a) does not hold, so the system Ax < 0 has
no solution. Then, for any m-vector a’ with a’ < 0, the system Ax <_ a’ also has no
solution, so condition (b) cannot hold.

As was noted in the introduction, the (a) => (b) part of Theorem 3.1 is not new
and was proved by Brady (see [Bra88, Thm. 5.4.13]), complete with estimates of the
scalars 6 and in condition (b). We have included this part for completeness.

Although Theorem 3.1 treats the case where a is perturbed globally, it also offers
some insight into the case where a is perturbed only locally. Suppose that condition
(a) in Theorem 3.1 fails, so there exists a nonzero m-vector _> 0 with ATo O.
Then, if <a, /<- 0, a local perturbation of a can result in (a, /< 0 in which case (cf.
the Parkas Lemma) Ax <_ a has no solution. Thus, the only unresolved case occurs
when (a, > > 0 and this is the case on which we focus below. For this purpose, we
need the following result of Robinson [Rob75a, Thm. 3] (also see [Rob77, Lemma
3] for a simpler version of the result) which uses the Slater condition to characterize
solvability of the system Ax <_ a under local perturbations on A and a.
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LEMMA 3.2. For any m n matrix A and m-vector a, the following conditions
are equivalent.

(a) The system Ax <_ a is regular (i.e., there exists an x with Ax < a).
(b) There exists a scalar 5 > 0 such that for any (A’, a’) with II(A, a) (A, a)l <

5, the system Ax

_
a is solvable.

By combining Lemma 3.2 with Theorems 2.4 and 3.1, we obtain the second main
result of this section, characterizing when the system Ax <_ a is well-conditioned under
local perturbations on A and a.

THEOREM 3.3 (Well-conditionedness under local perturbations). For any m n
matrix A and any m-vector a, the following conditions are equivalent.

(a) Either Ax < 0 is solvable or Ax

_
a is regular and has a bounded solution

set.
(b) There exist scalars 5 > 0 and > 0 such that for any (A’, a’) with II(A’, a’)-

(A, a)l < 5, the system A’x <_ a’ is solvable and T(A’, a’) <_ .
Proof. (a) = (b). Suppose that condition (a) holds. If Ax < 0 is solvable, then

condition (b) holds by Theorem 3.1. Otherwise, suppose that Ax <_ a is regular and
has a bounded solution set. Let 2 be any n-vector satisfying A2 < a. We now verify
that condition (a) in Theorem 2.4 holds. Since Ax <_ a has a bounded solution set, it
suffices to verify that, for each nonempty I C_ {1,..., m} such that Ax <_ a, Axx ai
is solvable, we have that AIx < 0 is solvable. For any such I and any x satisfying
AIx hi, we have AI(2- x) < 0, so Aix < 0 is solvable. Hence condition (a) in
Theorem 2.4 holds. Then, by Theorem 2.4, there exist scalars til> 0 and/ > 0
such that for any (A’, a’) with II(A’, a’)- (A, a)l < 51 and A’x <_ a’ solvable, we have
T(A, a) <_ . Since Ax < a is regular, Lamina 3.2 implies that there is a scalar 52 > 0
such that Ax <_ a’ is solvable for all (A, a) with II(A’, a) -(A, a)l < 52. Take i to
be the minimum of 51 and 52.

(b) =: (a). Suppose that condition (a) does not hold, so Ax < 0 is not solvable
and the system Ax <_ a either is not regular or has an unbounded solution set. If
Ax <_ a is not regular, then condition (b) cannot hold by Lamina 3.2. Thus, it suffices
to show that, when Ax <_ a is regular and has an unbounded solution set, condition
(b) cannot hold. Let z be any nonzero n-vector satisfying Az <_ O. Since Ax < 0 is
not solvable, we have, via the Parkas Lamina, that there exists a nonzero m-vector
0 >_ 0 with ATo O. Let I denote the set of indices i for which 0i > 0. Since
0 (z, ATO) (Aiz, Ox), we obtain from Aiz

_
0 and 0I > 0 that Aiz O, so

AI lacks full column rank. In addition, since (AI)TOI O, the Parkas Lemma states
that Aix < 0 is not solvable. Thus, we have found a nonempty I c_ {1,..., m} such
that Ax <_ O, AIx 0 has a nonzero solution but Aix < 0 is not solvable and AI
lacks full column rank. Then, condition (a) in Theorem 2.4 does not hold, so, by
Theorem 2.4, condition (b) therein does not hold. Since the system Ax <_ a is regular
so, by Lemma 3.2, condition (b) in Theorem 2.4 holds if and only if condition (b)
holds, this shows that condition (b) cannot hold. [:l

We close this section with a comparison of the characterization of well-condi-
tionedness under feasible perturbations on the problem data (condition (a) in Theo-
rems 2.2 and 2.4) and under arbitrary perturbations on the problem data (condition
(a) in Theorems 3.1 and 3.3). Clearly, if condition (a) in Theorem 3.1 (respectively,
Theorem 3.3) holds, then condition (a) in Theorem 2.2 (respectively, Theorem 2.4)
holds. Surprisingly, the converse also holds for certain linear systems. In particular,
if the system Ax _< 0 has a nonzero solution, then Proposition 2.3 shows that condi-
tion (a) in Theorem 2.2 holds if and only if condition (a) in Theorem 3.1 holds. In
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other words, a system of linear inequalities having an unbounded solution set is well-
conditioned under arbitrary semilocM perturbations on the problem data if and only
if it is well-conditioned under feasible semilocal perturbations on the problem data.
Similarly, if the system Ax <_ a has multiple solutions, then Proposition 2.5 shows
that condition (a) in Theorem 2.4 holds if and only if condition (b) in Theorem 3.3
holds. In other words, for a system of linear inequalities having multiple solutions, the
release of the feasibility restriction on the local perturbations does not affect whether
the system is well-conditioned.

4. Relation to uniform boundedness of vertex solutions. As was pointed
out in 1, the Hoffman condition number T(A, a) may be interpreted as a measure of
the "sharpness" of the corners (or, more formally, the tangent cones) of the solution set
for Ax <_ a. Thus, the well-conditionedness of the system Ax <_ a may be interpreted
geometrically as a uniform boundedness condition on the sharpness of the corners of
its solution set (under perturbations on A and a). What other geometrical conditions
are related to well-conditionedness? J.-S. Pang [Pan91] conjectured that the uniform
boundedness of the vertex solutions may be one such condition. Intuitively, Pang’s
conjecture is reasonable since, in the case where the solution set is full dimensional, a
corner can be unbounded in sharpness only if its vertex is unbounded. In this section,
we verify that the preceding intuition is essentially sound. In particular, we show, by
using Theorem 3.3, that Pang’s uniform boundedness of vertices condition, together
with some mild assumptions on the system, implies the well-conditionedness of the
system under local perturbations on the problem data. On the other hand, we show
that the implication does not go in the other direction and we indicate exactly where
the failure occurs.

We say that a system Ax <_ a satisfies the uniform boundedness of the vertex
solutions (u.b.v.) condition if there exist scalars > 0 and > 0 such that, for any
(A’, a’) with II(A’, a’) (A, a)l < , the vertices of P(A’, a’), if any exist, all have
Euclidean norm less than . Notice that Ax <_ a need not have a vertex solution
to satisfy the u.b.v, condition, so long as none of the vertex solutions created by
perturbation goes off to infinity.

The u.b.v, condition may be viewed as an alternative criterion for a system of
linear inequalities to be well-conditioned in a variational sense. This condition, as
defined above, is geometrical in description. Below we give an equivalent algebraic
description of this condition which, coupled with Theorem 3.3, will enable us to show
that the u.b.v, condition, together with some mild assumptions on the system, implies
the well-conditionedness of the system Ax <_ a under local perturbations on A and a.

THEOREM 4.1. For any m n matrix A and any m-vector a such that the system
Ax <_ a is regular and has a vertex solution, the following conditions are equivalent.

(a) There exists a nonzero n-vector z such that Az <_ 0 and the rows of AI are
linearly dependent, where I { i e {1,..., m} Aiz 0 }.

(b) Ax <_ a does not satisfy the u.b.v, condition.
Proof. (b) == (a). Suppose that condition (b) holds. Then, there exists a sequence

A1,A2,... converging to A, a sequence a1,a2,... converging to a, and a sequence
xl,x2,.., with Ilxrll--. oc and xr being a vertex of P(A,a) for all r. Thus, Ax <_
’ar for all r and, by passing into a subsequence if necessary, we can assume that there
is a nonempty I C_ {1,..., m} of size at least n such that Arxr a for all r. This
together with Ilxrll c implies

A*x* Ax 0,lim r--.oosup li.Xr [[
<_ O, --.oolim []xr II
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so, upon letting z be any cluster point of (xr/llx"ll} and using Ar -- A, we obtain
Az <_ 0 and Aiz O. Since z O, AI must have rank strictly less than n. Since Ax
has at least n rows, this implies the rows must be linearly dependent.

(a) = (b). Suppose that condition (a) holds, so there exists a nonzero n-vector
z such that Az <_ 0 and the rows of AI are linearly dependent, where I ( i E
(1,..., m} Aiz 0 }. First, we claim that we can, without loss of generality,
assume that AI has a rank of exactly n- 1 (so III >_ n). We argue this constructively.
Since Ax <_ a has a vertex solution, the polyhedral cone ( x n Ax <_ 0 } cannot
contain a straight line. Thus, this cone can be generated by a finite number of extreme
rays, which we denote by zl,..., zk (see [Sch86, 8.8]). Since z clearly belongs to this

cone, we can express it as z ik=l Oizi, for some nonnegative scalars 1,..., Ok, not
kall zero. Fix any index j with Oj > 0. Then, 0 Aiz = OiAIz <_ OjAiz <_ 0,

so that AIzj O. Let J denote the set of indices i for which Aizy 0. Then, I c_ J.
Since zJ is an extreme ray, the rank of Aj is exactly n- 1 (see [Sch86, 8.7]). Now
replace z by zJ and I by J.

Normalizing if necessary, we will assume that Ilzll 1. Also, since Ax <_ a is
regular, there exists an n-vector 2 with A2 < a. Finally, since the rows of Ax are
linearly dependent, there exist an index j I and scalars ,i, i I with i j, such
that

Then, we perturb A and a almost exactly as in the proof of Theorem 2.4 with z, 2,
and I as given above, except for a slight difference in the jth row. More precisely,
let b be given by (2.10) and, for each scalar e > 0 with 1/e > (z,21, we define x by
(2.12)-(2.13) and A and a by

(4.2) A A + ebzT + e2eJ zT a a + ee

where eJ denotes the m-vector whose jth component is i and whose other components
are all 0. Then, it is readily seen that, as e 0, we have A - A, a a and (cf.
(2.12) and (2.13)) IIxll c. Thus it only remains to show that x is a vertex solution
of Ax <_ a for all e > 0 sufficiently small. Now, it can be verified by following the
proof of Theorem 2.4 (compare with (2.14)) that

Ax ai, Aix <_ ai

for all e > 0, so it suffices to show that A has rank n for all e > 0 sufficiently small.
It is straightforward to verify, using (4.1) and (4.2), that

ieI,iyj ieI ,iyj

for all e > 0. Since the quantity inside the brackets is nonzero for all e sufficiently
small, this implies that zT is in the space spanned by the rows of A for all e > 0
sufficiently small. Since A is obtained from A by adding to every row some scalar
multiple of zT (cf. (4.2)), this implies that the rows ofA are also in the space spanned
by the rows of A for all e > 0 sufficiently small. Since the rows of AI together with
ZT have rank n, this completes the proof. [:]
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Combining Theorems 3.3 and 4.1, we obtain the following corollary showing that
the u.b.v, condition, together with regularity and the existence of a vertex solution,
implies the well-conditionedness of the system Ax <_ a under local perturbations on
A and a.

COROLLARY 4.2. For any m x n matrix A and any m-vector a, if the system
Ax

_
a is regular, has a vertex solution, and satisfies the u.b.v, condition, then

condition (b) in Theorem 3.3 holds.
Proof. Since Ax <_ a is regular, by Theorem 3.3, it suffices to show that either

there exists an n-vector x with Ax < 0 or there does not exist a nonzero n-vector z with
Az <_ O. We argue by contradiction. Suppose the contrary, so there exists a nonzero
m-vector >_ 0 with AT 0 (cf. the Farkas Lemma) and a nonzero n-vector z with
Az

_
O. Let I denote the set of indices i with Oi > 0. Since 0 <z, ATt?) <Aiz, I>,

we obtain from AIz <_ 0 and I > 0 that Aiz O. Also, since (AI)T O, the rows
of AI are linearly dependent. Then, by Theorem 4.1, the system Ax <_ a does not
satisfy the u.b.v, condition, a contradiction.

Theorem 4.1 and Corollary 4.2 help to pinpoint where the u.b.v, condition fails to
be necessary for the well-conditionedness of the system Ax <_ a under local perturba-
tions on A and a. First, this system can be well-conditioned under such perturbations
without having a vertex solution. (Consider the system x / 0.x2 _< 0.) Second, even
when this system is regular and has a vertex solution, it can be well-conditioned un-
der such perturbations without satisfying the u.b.v, condition. From Theorems 3.3
and 4.1 we see that this would happen precisely when, for every z specified by con-
dition (a) in Theorem 4.1, the rows of AI fail to contain the origin in their convex
hull, where I { i e {1,...,m} Aiz 0 }. An example of such a system is

xl <_1, x<_0, x2_<0.

5. Systems with equalities and inequalities. In this section, we extend the
results of previous sections to linear systems in which equalities are also present. In
particular, we consider a system of the form

(5.1) Ax <_ a, Bx b,

whereAisanmnmatrix (m_> 1, n>_ 1), B is an n matrix (l >_ 1), aisan
m-vector and b is an/-vector. Accordingly, we let

P(A,B,a,b) { x e n iAx <_ a, Bx b },

and define the Hoffman condition number for (5.1) as the quantity

(5.2) T(A, B, a, b) sup
xP(A,B,a,b)

d(x,P(A,B,a,b))
lAx a]+
Bx-b

whenever P(A, B, a, b) is nonempty. Analogous to the case when only linear inequal-
ities are present, we are interested in finding necessary and sufficient conditions for
(5.1) to be well-conditioned (or, equivalently, T(A, B, a, b) to be uniformly bounded)
under a given set of perturbations on A, B, a, and b. We show below that the results
from the previous sections extend in a fairly straightforward manner to this general
situation.

The idea of our analysis is to reduce the system (5.1) to one without linear
equalities, at which time the results of 2 and 3 can be applied. To motivate our
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reduction, suppose that B has full row rank. It will turn out that, excepting some
simple cases, this is a necessary assumption for well-conditionedness (see Lemma 5.2
and the proof of Theorem 5.5). Then, by rearranging columns if necessary, we can
write

(5.3) A=[Ar As], B=[Br Psi,

for some matrices A, As, B, and Bs with B invertible. We partition

accordingly. Then, by using equation Bx b to eliminate x, we see that an solves
the system (5.1) if and only if s solves the reduced system

(As Ar(B)-IB)x <_ a- A(B)-Ib,

and r (Br)-l(b- Bss). Below we show that regularity conditions and the
Hoffman condition number for the two systems (5.1) and (5.4) are intimately related.
By exploiting this relationship, we can then extend the results of 2 and 3 to the
general system (5.1).

LEMMA 5.1. Consider any m x n matrix A and any .lj x n matrix B with full
row rank. Partition A and B according to (5.3) with B invertible. Let A As-
A(B)- B and 5 a A(Br)- b. Then, the following results hold.

(a) For any m-vector a and 1-vector b and any (possibly empty) index set I c
{1,..., m}, the system Ax <_ a, Aix ai, Bx b has a solution if and only if the
system lxs <_ 5, IXs 51 has a solution. The same holds when all inequalities are
replaced by strict inequalities.

(b) For any (possibly empty)index set I c {1,...,m}, the system Ax <_ O,
Aix O, Bx 0 has a nonzero solution if and only if the reduced system xs <_ O,
Aixs- 0 has a nonzero solution.

(c) For any (possibly empty) index set I C {1,...,m}, the system Aix < O,
Bx 0 has a solution if and only if the reduced system Alxs < 0 has a solution.

(d) For any (possibly empty) index set I c_ {1,..., m}, the matrix

has full column rank if and only ifA has full column rank.
(e) There holds

1 [ T(A, B, a, b) ](5.5) II(Br)_BsII + 1 2(1+ IIAr(B)-IlI) -II(B)-II <_ T(A, 5) <_ T(A, B, a, b).

Proof. (a) It is easily verified using (5.3) and the definition of A and 5 that the
vector
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solves the system Ax <_ a, AIx ai, Bx b if and only if 8 solves the system
iXs

_
5, IXs 51, and 2r (Br)-t(b- B88). The same argument applies when

the inequalities in the systems are all replaced by strict inequalities.
(b) and (c) The argument is entirely analogous to that for part (a).
(d) It is easily seen using (5.3) and the definition of A that the vector

solves the system Aix O, Bx 0 if and only if 28 solves the system Aix8 0 and. -(B,.)-tB828. Thus, one system has a nonzero solution if and only if the other
does.

(e) Fix any n-vector

x

_
P(A, B, a, b).

Xs

By letting 28 be the element of P(A, 5) nearest to x8 and using the fact that

(B.)-t (b B828) ]Xs

solves Ax <_ a, Bx b, we obtain

d(x, P(A, B, a, b)) <_ xr -(B.)-t(b-
Xs Xs

(S.)-t(Bx b + B8(8
Xs Xs

+ 1)11, a:,ll
+ 1)d(xs, P(, 5)).

so that

II[Ax 1+11 II[Ax a + Ar(Br)-l(b Bx)]+]l
_< II[Ax a]+[I + [IA.(B)-IIIIBx bll.

Adding IIBx bll to both sides and using the fact I111 + I111 -< ]1 [I fo ny two
vector8 a and , we obtain

(5.7) IIBx- bll / II[,x -a]+ll < /(1 + IIA(B)-II) lAx- a]+
Bx-b

Also, simple algebra using (5.3) gives

Ax a / A(B)-t(b- Bx) (As Ar(B)-tBs)x8 (a A(B)-lb) fix8 5,
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Dividing the left-hand side of (5.6) by the right-hand side of (5.7) and then using
(5.6), (5.7), and the fact (aX //)/(X + ti) _< a + 3/ti for any four nonnegative scalars
a, , X, 5 such that the two fractions are defined (with the convention 0/0 0), we
obtain

1 d(x, P(A, B, a b))
lAx hi+
Bx-b

< [I(B)-II + (II(B)-BI[ + 1)d(xs, P(A,5))

The choice of x above was arbitrary, so the above relation holds for all x
P(A, B, a, b). Taking the supremum of both sides over all x

_
P(A, B, a, b) and

observing that the xs corresponding to x is not in P(A, 5), we obtain (cf. (1.1) and
(5.2))

T(A,B,a,b)
_

II(B.)-lll + ([[(B)-B,[[ + 1)r(A, a).

Rearranging terms and the first inequality in (5.5) is proved.
To prove the second inequality in (5.5), fix any xs

_
P(A, 5). By letting 2 be the

element of P(A, B, a, b) nearest to

and observing that 2s solves (5.4) so it is in P(A, 5), we obtain

(5.8)

Also, using the definition of x and (5.3), we have Bx b so

(5.9)
(5.1o)

ll[(A A.(Br)-IB)xs (a- Ar(B.)-Ib)]+]l
[Ax 5]+ II,

Dividing the left-hand side of (5.8) by the right-hand side of (5.10), we obtain

d(x_, P(A, 5)) < d(x, P(A, B, a b))
[[ [Ax 5]+ tl [Ax-a]+Bx_b

The choice of xs above was arbitrary, so the above relation holds for all x

_
P(A, 5).

Taking the supremum of both sides over all xs

_
P(A, 5) and observing that the x

corresponding to x is not in P(A,B, a, b), we obtain (cf. (1.1) and (5.2))

T(A, 5) <_ T(A, B, a, b).

This proves the second inequality in (5.5).
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5.1. Well-conditionedness under feasible perturbations. Lemma 5.1,
though essential to our analysis, covers only the case where B has full row rank.
We need in addition the following lamina to cover the case where B lacks full row
rank. According to this lemma, that B has either full row rank or full column rank is
a necessary condition for the system (5.1) to be well-conditioned under feasible local
perturbations on the problem data. The proof of this is patterned after that of (b)
= (a) in Theorem 2.2.

LEMMA 5.2. Suppose that the system Ax <_ a, Bx b has a solution. For there to
exist scalars > 0 and > 0 such that T(A, B’, a, b’) <_ for all (A, a) and (B’, b’)
with II (A’, a’) (A, a)II + II (B’, b’) (S, b)II < 5 and A’x <_ a’, S’x b’ solvable, it is
necessary that B has either full row rank or full column rank.

Proof. Suppose that B has neither full row rank nor full column rank. We will
show that there cannot exist any scalars ti > 0 and > 0 with the stated properties.

Since B lacks full row rank and full column rank, there exist a nonzero/-vector
and a nonzero n-vector z satisfying BTo 0 and Bz 0. Normalizing if necessary, we
will assume that I111 Ilzll 1. Let 2 be any solution of the system Ax <_ a, Bx b
and let I denote the set of indices i for which Ai2 hi. Then, AI hi, Ai2 < ai and
B2 b, where I denotes the complement of I relative to {1,..., m}. By reordering
the rows of A and a if necessary, we can assume that

Ai
a--

hi.
For each scalar e > 0, we define the perturbed right-hand side a by

ai ai + 2e[Aiz]+, ai hi,

and, similarly, we define

B B + eOzT, + z) +

Clearly, B -- B, a -- a and b -- b as e -- 0. Let x + ez. Then,

Alx AI2 + eAiz <_ ai + 2e[Aiz]+ a
and, for e sufficiently small,

Aixe Aic + eAiz < ai.

By a similar calculation, we also have that Bex be. Thus, the vector x belongs
to P(A,Be, ae, be) for all e sufficiently small. Finally, we have from (Be)To (B +
OzT)To eZ that z is a linear combination of the columns of (Be)T, which, together
with (5.11) and (5.12), implies that z is a normal to the polyhedral set P(A, Be, ae, be)
at xe, for all e sufficiently small. Then, if we move along the direction z from x and
then project back onto this set, we always get xe. In particular, the projection of
x + ez onto P(A, Be, ae, be) is xe, so that

d(x + ez, P(A, B, a, b)) Ilezll.

By a calculation similar to that used in (5.11) and (5.12), we see that A(x + ez) <_ a
for all e sufficiently small, in which case [A(x + ez) a]+ 0. Also, we have from
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Bz 0 and Ilzll 1 that B(x / ez) b -t-e2O. Combining these two results with
the relation above and using Ilzll- I111- 1, we obtain

d(x / ez, P(A, Be, ae,
[A(x + ez) ae]+
B (x + ez) b

for all e sufficiently small. By (5.2), the left-hand side in the above relation is bounded
above by (A, B ae, be). Thus, T(A, B

By combining Lemmas 5.1 and 5.2 with Theorem 2.2, we obtain the first main
result of this section, which may be viewed as an extension of Theorem 2.2 to the
general system (5.1).

THEOREM 5.3 Well-conditionedness under feasible semilocal perturbations). For
any rn n matrix A and any n matrix B, the following conditions are equivalent.

(a) B has either full column rank or full row rank and, if B has full row rank,
then, for each nonempty index set I c_ {1,...,m}, we have that either Azx < O,
Bx= 0 is solvable or

has full column rank.
(b) There exist scalars 5 > 0 and Z > 0 such that, for any (A’, a’) and (B’, b’) with

I[A’- All + liB’- BII < 5 and A’x <_ a’, S’x b’ solvable, we have T(A’, S’, a’, b’)
Proof. We consider two separate cases. First, suppose that B has full row rank.

Partition A and B according to (5.3) with Br invertible, and let As Ar(Br)-
Then, the following statements are equivalent.

Condition (a) holds 4== satisfies condition (a) in Theorem 2.2,

(by Lemma 5.1(c)-(d)),
T(, 5) is uniformly bounded under feasible

local perturbations on A and feasible global

perturbations on 5, (by Theorem 2.2),
T(A, B, a, b) is uniformly bounded under feasible

local perturbations on A, B and feasible global

perturbations on a, b, (by Lemma 5.1(e)),

== condition (b) holds.

The third equivalence also uses the observation that any feasible local perturbation
on A and feasible global perturbation on 5 translates into a feasible local perturbation
on A, B and a feasible global perturbation on a, b (more precisely, we associate with
each perturbed version of and 5, say and 5, the following perturbed versions
of A, B, a, b respectively: A’ JAr A8 / (’- )], B’ B, a’ a + (5’ ), and
b b); and vice versa. Second, suppose that B lacks full row rank. If condition
(b) holds, then, by Lemma 5.2, B must have full column rank. Conversely, if B has
full column rank, then, upon letting I be any nonempty subset of {1,..., l} with Bx
invertible, we see that P(A, B, a, b) comprises the single point (Bx)-Ib whenever it
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is nonempty, in which case

d(x,P(A,B,a,b)) Ilx- (B,)-b, II <_ II(B,)-iIilBx bl[

This implies T(A,B,a,b) <_ [[(BI)-I[[ (cf. (5.2)), so -(A,B,a,b) is uniformly
bounded under feasible local perturbations on A,B and feasible global pertur-
bations on a, b.

Analogous to Proposition 2.3, in the case where the system (5.1) has an un-
bounded solution set, condition (a) in Theorem 5.3 simplifies to: B has full row rank
and the system Ax < O, Bx 0 has a solution. For brevity, we omit the proof.

By combining Lemmas 5.1 and 5.2 with Theorem 2.4, we obtain the second main
result of this section, which may be viewed as an extension of Theorem 2.2 to the
general system (5.1).

THEOREM 5.4 (Well-conditionedness under feasible local perturbations). For any
m n matrix A and any n matrix B such that the system Ax <_ a, Bx b is

solvable, the following conditions are equivalent.
(a) B has either full column rank or full row rank and, if B has full row rank,

then, for each nonempty index set I c_ {1,..., m} such that either Ax <_ a, Aix ai,

Bx b or Ax <_ O, AIx O, Bx O, x 0 is solvable, we have that either Aix < O,
Bx 0 is solvable or

has full column rank.
(b) There exist scalars 6 > 0 and > 0 such that for any (A’, a’) and (B’, b’)

with II(A’, a’) (A, a)l + II(B’, b’) (S, b)l < and A’x <_ a’, S’x b’ solvable, we
have T(A’, B’, a’, b’) <_ .

Proof. The proof is essentially identical to that of Theorem 5.3, except that
"feasible global perturbations," "Theorem 2.2," and "Lemma 5.1(c)-(d)" are replaced
by, respectively, "feasible local perturbations," "Theorem 2.4," and "Lemma 5.1(a)-
(d)."

Analogous to Proposition 2.5, in the case where the system (5.1) has multiple
solutions, condition (a) in Theorem 5.4 simplifies to: either B has full row rank and
the system Ax < O, Bx 0 is solvable or the system (5.1) is regular (i.e., B has full
row rank and Ax < a, Bx b is solvable) and has a bounded solution set. In the
case where (5.1) has a unique solution, this condition can again be simplified as in
Proposition 2.6, albeit only slightly.

5.2. Well-conditionedness under arbitrary perturbations. By combining
Lemma 5.1 with Theorem 3.1, the third main result of this section, which may be
viewed as an extension of Theorem 3.1 to the general system (5.1), readily follows.

THEOREM 5.5 (Well-conditionedness under semilocal perturbations). For any
m n matrix A and any n matrix B, the following conditions are equivalent.

(a) B has full row rank and the system Ax < O, Bx 0 is solvable.
(b) There exist scalars 6 > 0 and > 0 such that for any (A’, a’) and (B’, b’) with

IIA’-AII+IIB’-BII < , the system A’x <_ a’, B’x b’ is solvable and T(A’, S’, a’, b’) <_

Proof. First, suppose that B has full row rank. Then, by applying the argu-
ment used in the proof of Theorem 5.3 with the word feasible removed and with
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"Theorem 2.2" and "Lemma 5.1(c)-(d)" replaced by, respectively, "Theorem 3.1" and
"Lemma 5.1(c) with I {1,... ,m}," we see that condition (a) holds if and only if
condition (b) holds. Second, suppose that B lacks full row rank. Then, there is some
/-vector b’ for which Bx b’ has no solution, so that Ax <_ a’, Bx b’ has no solution
for any m-vector a’. Hence, both conditions (a) and (b) fail to hold.

As with Theorem 3.1, the (a) => (b) part of Theorem 5.5 is not new (see [Bra88,
Thm. 5.4.13]) and is included for completeness only. Also, we note in passing that
condition (a) in Theorem 5.5 is simply the Mangasarian-Fromovitz constraint quali-
fication condition applied to the system (5.1) (see [MaF67]). This shows yet another
application of this well-known constraint qualification condition.

By combining Lemma 5.1 with Theorem 3.3, we obtain the fourth main result
of this section, which may be viewed as an extension of Theorem 3.3 to the general
system (5.1).

THEOREM 5.6 (Well-conditionedness under local perturbations). For any m x n
matrix A, any x n matrix B, any m-vector a and 1-vector b, the following conditions
are equivalent.

(a) Either B has full row rank and the system Ax < O, Bx 0 is solvable or the
system (5.1) is regular and has a bounded solution set.

(b) There exist scalars > 0 and > 0 such that for any (A’, a’) and (B’, b’) with
II(A’,a’) -(A, a)l + II(B’, b’) (B, b)l < , the system A’x <_ a’, B’x b’ is solvable
and T(A’, B’, a’, b’) <_ .

Proof. The proof is essentially identical to that of Theorem 5.5, except that
"global perturbations," "Theorem 3.1" and "Lemma 5.1(c)" are replaced by, respec-
tively, "local perturbations," "Theorem 3.3," and "Lemma 5.1(a)-(c)." [:]

Analogous to the definition given in 4, let us say that the system (5.1) satisfies
the u.b.v, condition if there exist scalars > 0 and > 0 such that, for any (A’, a’),
(B’, b’) with tI(A’, a’) -(A, a)l / II(B’, b’) -(B, b)l < , the vertices of P(A’, B’, a’, b’),
if any exist, all have Euclidean norm less than . By combining parts (a)-(b), (d) of
Lemma 5.1 with Theorem 4.1, we readily obtain the final result of this section, which
is an extension of Theorem 4.1 to the general system. (5.1).

THEOREM 5.7. For any m x n matrix A, any x n matrix B, any m-vector a
and any 1-vector b such that the system (5.1) is regular and has a vertex solution, the
following conditions are equivalent.

(a) There exists a nonzero n-vector z satisfying Az <_ O, Bz 0 and the rows of

are linearly dependent, where I- { E {1,..., m} Aiz- 0 }.
(b) The system (5.1) does not satisfy the u.b.v, condition.
As a corollary of Theorems 5.6 and 5.7, we have that the system (5.1) is well-

conditioned under local perturbations on (A, a) and (B, b), whenever it is regular, has
a vertex solution, and satisfies the u.b.v, condition.

6. Conclusion and extensions. In this paper, we have studied in detail the
well-conditionedness of a linear system under eh of four sets of perturbations on
the problem data. In particular, we gave a necessary and sufficient condition for
the system to be well-conditioned under each set of perturbations. We also related
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well-conditionedness (under one of the sets of perturbations) to Pang’s uniform bound-
edness condition on the vertex solutions.

We are presently investigating applications of our results to a number of problems,
amongst which are (i) the sensitivity analysis of convex programs/complementarity
problems, (ii) the convergence analysis of descent methods for nonlinearly constrained
minimization, and (iii) the derivation of local error bounds for nonlinearly constrained
problems. Also, a question closely related to our work concerns the classification of
those polyhedral sets that admit a well-conditioned algebraic representation. Some
preliminary results in this direction have been obtained, but much remains to be done.
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A SECOND-ORDER PERTURBATION EXPANSION FOR THE SVD*

RICHARD J. VACCARO
Abstract. Let A be a rank-deficient matrix and let N be a matrix whose norm is small com-

pared with that of A. The left singular vectors of A can be grouped into two matrices U1 and U2
whose columns provide orthonormal bases for the p-dimensional column space of A and for its n-p
dimensional orthogonal co_mplement. The left singular vectors of ft. A + N can also be partitioned
into the first p columns, U1, and the last n-p columns 2. When analyzing a variety of signal
processing algorithms, it is useful to know how different the spaces spanned by U1 and U1 (or U2 and
U2) are. This question can be answered by developing a perturbation expansion for the subspace
spanned by a set of singular vectors. A first-order expansion of this type has recently been developed
and used to analyze the performance of direction-finding algorithms in array signal processing. In
this paper, a new second-order expansion is derived and the result is illustrated with two examples.

Key words, singular value decomposition, perturbation expansion, singular subspaces

AMS subject classifications. 15A18, 15A52, 15A60

1. Introduction. Let A be an m n matrix of rank p, where p < min(m, n).
The singular value decomposition (SVD) of A can be partitioned as follows:

(1) A=[Us U+/-][E 0] [VsH]0 0 VH

where the columns of U and U+/- provide a basis for the column-space of A and its
orthogonal complement, respectively. The matrix A could be complex valued, and the
superscript H means complex conjugate transpose. The column-space of A is called
the signal subspace in the signal processing literature, and we will use the subscript s
to refer to this subspace. The signal subspace S of the matrix A is the span of the p
columns of Us. We will refer to the orthogonal complement of the signal subspace by
the abbreviated title orthogonal subspace in this paper. The orthogonal subspace S+/-

is the span of the n p columns in U+/-. Thus,

S de= span(Us) and S+/- de span(U+/-).

In practice, the matrix A is not available, but only a noise-corrupted matrix

/i=A+N.

An SVD of the perturbed matrix A can be partitioned similar to that in (1)

A=[O 0
0

where Os has p columns and O+/- has n-p columns. Although will generally have
full rank, it will be "close" to a matrix of rank p (if N is small), and the p-dimensional
subspace spanned by the columns of Os will be called the perturbed signal subspace

(3) = span([s).
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We also define the perturbed orthogonal subspace +/- as

(4) S-+/- de span(+/-).

We would like to know how different the perturbed subspace (S) is from the
unperturbed subspace S (S+/-) as a function of the noise matrix N.

In a series of papers, the performance of algorithms for estimating the directions-
of-arrival of plane waves impinging on an array of sensors was studied [2]-[6]. Many
algorithms in array signal processing can be expressed in terms of an SVD of a matrix
formed from array data. The performance of such algorithms can be analyzed using
a perturbation expansion for the SVD. This was done in [2]-[6] using a first-order
expansion to derive expressions for the variance of estimated directions-of-arrival.
However, a first-order expansion will always predict zero bias when the additive noise
is zero mean, because the resulting perturbation terms are linear in the noise matrix.
To analyze bias, a second-order perturbation expansion is necessary. This is one
motivation for the second-order expansion that is derived in this paper.

For the purpose of performance analysis, the matrices A and N are individually
known. In a statistical performance analysis, only the statistics of N are known (e.g.,
its elements are independent and identically distributed (i.i.d.)). In any case, the
perturbation formulas derived in this paper, which are functions of the perturbation
matrix N, can be used directly for performance analysis. A second use for the pertur-
bation formulas is the development of new signal processing algorithms. In this case
only the matrix A is observed, but the matrix N is described statistically, up to a scale
factor. The first-order perturbation expansion has been used to derive algorithms for
signal estimation [7] and for direction-finding in array signal processing [11].

2. A second-order perturbation expansion.

2.1. Preliminaries. To be useful, the perturbed subspaces must not be "too
far" from the unperturbed subspaces. This will be true if the noise matrix N is
"small enough." In this case, basis vectors for the perturbed signal and orthogonal
subspaces can be found by appropriately combining the unperturbed singular vectors,
as shown in the fo_llowing lemma.

LEMMA. Let A A/N with SVDs ofA and given by (1) and (2), respectively.
Assume that IINII2 is less than the smallest nonzero singular value of A. Let the
perturbed signal and orthogonal subspaces be defined by (3) and (4), respectively. Then
S+/- is spanned by the columns of U+/- + UsQ and is spanned by the columns of
Us + U+/-R, where Q and R are matrices whose norms are of the order of IINII.

The proof of this lemma can be found in [5], and this result is also implicit in
a paper by Stewart [8]. In the lemma the assumption that IINII2 is less than the
smallest nonzero singular value of A is equivalent to assuming a high signal-to-noise
ratio. If the signal-to-noise ratio is not high enough, the subspaces of the perturbed
and unperturbed matrices A and A may be quite different (e.g., they may not have
the same dimension), and so the perturbation expansions given in the lemma are not
useful. The case when IINII is greater than the smallest nonzero singular value of A
is treated using other techniques in [10].

The main result of this paper is the derivation of expressions for the coefficient
matrices Q and R, which are correct up to second-order terms in the noise matrix N.
Before presenting that derivation, we first show two preliminary calculations.

The lemma above gives bases for the perturbed signal and orthogonal subspaces.
However, it is easy to show that the given bases are not orthonormal. In particular,
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for the orthogonal subspace, we have

(uH + QHuH)(u+/- + UQ) (I + QHQ).

The above equation shows how the basis for the perturbed orthogonal subspace can
be normalized, and a similar equation holds for the perturbed signal subspace. The
result is that an orthonormal basis for the perturbed orthogonal subspace is given by

(U+/- + UsQ)(I + QHQ)-I/2

and an orthonormal basis for the perturbed signal subspace is given by

(Us + U+/-R)(I + RHR)-1/2.

We now show that the coefficient matrices Q and R are related in a simple way.
Because the perturbed signal and orthogonal subspaces are orthogonal to each other, it
must be true that the (unnormalized) basis vectors given in the lemma are orthogonal.
That is,

(U + QHuH)(u + U+/-R) O,

R+QH O,

or

R _QH.

Thus in the derivation that follows, we only need to compute Q to some desired
accuracy, and then use the above equation to get R.

2.2. Derivation of the perturbation expansion. Let the matrices A and
have SVDs given by (1) and (2), respectively. We can expand the SVD of . to get

A + N ssH + +/-+/-ff.
Premultiply the above equation by (U + UsQ)H to get

(6) (U + QHu)(UV + N) (U +QHu)().

om the lemma we know that (U + UsQ) and U span the same space, and thus
their columns are related by a nonsingular matrix X as follows:

(7) + U Q)X.

We can now simpli (6) using (7) to yield

UN + QH(sV + UN)= (U + QHu)(zz)
Xz + QHQXz

We use the notation "" to mean "equal up to terms of order IlYll ’’ for i0,, or
2. The last line in the above equation is obtained by noting that Q and are
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first-order terms, and so the omitted term from the second line is third order. After
taking conjugate transposes of both sides of the above equation and letting

(8) M NHVs W VsEs,

we can solve for Q to obtain

(9)

Q 2__ -M(NHU+/- + +/-IxH)
2-_MtNHU+/- Mt+/-IxH
2

T1 T2

where T1 and T2 are implicitly defined in the above equation. Since T1 has N as a
factor, a first-order expression for Q is obtained by using a zeroth-order expansion of
M in the term T1. Similarly, since ]+/- is a first-order term, a first-order expression
for Q is obtained by using zeroth-order expansions for M and +/- in T2. The zeroth-
order expansion of M is obtained by setting N to zero in the definition of M and
computing

Mt (MHM)-IMH o= [(Vss)H(vss)l_lsVi-i ;1vH"

Substituting this into (9) yields the previously known result (see [4], [6])

Q L F_,’ VI-INHu+/-

For future reference, we define this first-order expression for Q to be Q1; that is,

(10) Q1 --F-IVHNHu+/-.

We can use (9) to generate a perturbation expansion of second order by using a

first-order expansion ofM in (9), and also considering the term T2. It can be shown
that T2 contains only two second-order terms, and these terms sum to zero. Thus

(11) T2 ---2- 0.

The derivation of (11) is tedious, but it is similar to the calculation of the T1, which
we give below.

The required first-order expansion of M is obtained as follows

(12)
Mr= [(UHN + NsVsI’I)(NHUs + VsNs)l-l(UsI-IN + NsVsH)

[UNNHUs + UNVsNs + I3svHNHu + P2]-I(UHN + NVH)
[N-2UHNNHUs + N-2UHNVNs + ,-IVHNHus + I]-IN-2(UN + NsV).

Consider approximating the expression in the last line of the equation above. Since
we only need a first-order expansion of M, the first term in brackets can be omitted.
The inverse can be represented by the Neumann expansion

(13) (I / y)-1 I- Y / y2
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If we let Y be the terms linear in N in the first bracketed term of (12), keep up to

the linear term in (13), and substitute the resulting expression for M into T1 in (9),
we get

Q 2_ -[I- F_,-IVNHUs Z;2UHNVsZ,slF-2[UN / FsV]NHU+/-.

The above equation is correct up to second-order terms, but it also contains some
third-order terms that can be deleted. The result is, after some simplification, a
second-order expression for Q which is denoted Q2

(14) Q2 Q / F-2UI-INV+/- V+/-H + F- vHNHus F-, -( vH NHu+/-

From the above development, we know that

span(U+/- / UsQ2) and 2__ span(Us U+/-QH2).

However, the basis vectors in the above equation are not orthonormal up to second
order. They can be normalized as shown in (5). The normalization only has to be
computed up to second-order terms. The result for the orthogonal subspace is

1 H(I + QHQ)-/2 2_ I- -Q1 Q1.

Applying this normalization and dropping terms higher than second order yields an
orthogonal basis for the perturbed orthogonal subspace

(15) S+/-_2 span U+/- I--QIQ +UsQ2

where Qt is defined in (10) and Q2 is defined in (14). The corresponding result for
the perturbed signal subspace is

_2 span Us I Q1Q U+/-Q

3. Statistics of estimated projection matrices. Once the signal and orthog-
onal subspaces of a data matrix are estimated, many signal processing tasks require
projection onto an estimated subspace. Thus it is useful to characterize the estimated
orthogonal projection matrix.

To be specific, we consider the orthogonal subspace in this section. From (2), the
projection onto the estimated orthogonal subspace is given by

For future reference, we define the projection matrices for the unperturbed signal and
orthogonal subspaces as

Ps UsUH and P+/- u+/-uH+/-
respectively. Suppose we want to characterize P+/- in terms of the unperturbed projec-
tion matrices and the noise matrix N. For example, if we assume that the elements
of N are i.i.d, random variables with variance r2, we can calculate the expected
value of/5+/-. Using the subspace perturbation expansions developed in the previous
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sections, we can approximate the perturbed projection matrices as follows. Using the
first-order expression, we get

[:’+/- = (U+/- + UsQ1)(U+/- + UsQI)H de= P1.

This expression is exact to first order and contains some, but not all, of the second-
order terms, as shown by expanding the expression as

H H(16) P1 u+/-uH + U_QH1UH + UsQiU + UQQ u
A similar approximation for the perturbed projection matrix can be obtained using
the second-order perturbation expansion follows

QIQI)+Us QQ)+ H.
If we expand this equation, keeping up to second-order terms, the result, which we
denote P2, is

(17) P2 UU UQQiU +U H HQ U +UQU +UQQU.
To take expected values of P and P2, we need to be able to compute the expec-

tation of the following matrices:

Q1 - vslINHU+/-

(18)
QH QI UH+/- NVF-(2VHNHU+/-,
Q1QH Z:VsHNHu+/-uH_t. NVsF_,-[

Q2 Q -(F,,-2UI-INV+/-V+/-H + Z-( VNHUF- vsH NHU+/-

The required expectations can be derived using the following result from [3]

(19) E[NHNHI 11112a2I
for any constant vector and matrix N consisting of i.i.d, random variables with
variance a2. (If N contains complex elements, we assume that the real and imaginary
parts are i.i.d, with variance a2/2.) It is also shown in [3] that

(20) E[NHaattNH] O.

We can also show that for real-valued noise samples,

(21) E[NaTN] a2oT.
It is easy to see that the expected value of Q1 is zero. Equations (19)-(21) can be
used to calculate the expected values of the other matrices in (18). As an example,
we derive the expected value of Q2 as follows:

(22) E[Q2]-- --2usHE[NV+/- V+/-HNH]u+/- -VE[NHUs-VsHNH]U+/-.
The first expectation on the right-hand side of the above equation using (19) is

(23)

q

E[NV+/- V+/-HNH] E[Nv+/-ivH+/-iNHI
i--1

q

-’llV_L, ll2a.2I-- qa2I,
i--1
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where v+/-i is the ith column of V+/-, and q n-p (see (1)). The second expectation
on the right-hand side of (22) is zero if the noise samples are zero-mean i.i.d, complex
random variables from (20). For real-valued noise samples, this expectation can be
evaluated using (21) as

p

E[NTUs;1VsTNT 1 E[NTus T TvaiN]
i--1

grsi

(24) P a2

Vsi?s
i=10"si

where asi is the ith singular value of A and ui and vi are the ith columns of U and, respectively. Substituting (23) (and (24) if Y is real-valued) into (22) yields

(25) E[Q2] O.

The expectations of QHIQ1 and QQH are determined in a similar fashion to be

(2
(26) E[QHI QI] --I, and E[QQH qa2F2,

x

where x equals the sum of the squares of the singular values of A. Using (25) and
(26), the expected values of the first- and second-order expressions (16) and (17) can
be computed to yield

E[P] U+/-U + qa2UsE-2UsI-I do p (a)

In the next section, we give an example to compare the accuracy of these expressions.
The results of this section can be extended to handle noise matrices with correlated
elements using results from [9].

4. Examples and discussion. We give two examples in this section to demon-
strate the validity of our results. In the first example, we compare the results predicted
by (27) with sample expectations in a simulation experiment. In the second example,
we compute the distance between the actual perturbed subspace, and the perturbed
subspace generated by a first- or second-order perturbation expansion.

4.1. Expected value of a projection matrix. To demonstrate the results of
the previous section, consider the following matrix:

1 2 3 4 9.4868 0 0 0
A- 1 2 3 4 -[Us U+/-] 0 0 0 0 v

1 2 3 4 0 0 0 0 v+/-

where

U 0.5774 and U+/- 0.4082 0.7071
0.5774 0.4082 -0.7071
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The projection matrices for the signal and orthogonal subspaces are

0.3333 0.3333 0.3333]Ps-usuT 0.3333 0.3333 0.3333
0.3333 0.3333 0.3333

and

0.6667 -0.3333 -0.3333
P+/- U+/-UT -0.3333 0.6667 -0.3333

-0.3333 -0.3333 0.6667

Suppose that instead of the matrix A, only the perturbed matrix

(28) . A + aN

were available, where the elements of N are i.i.d. Gaussian random variables with
zero-mean and unit variance. An SVD for A gives bases for the estimated signal and
orthogonal subspaces

(29) [8 +/-]T,

and the projection matrix for the estimated orthogonal subspace is

(30) /5+/- +/-T.
The following simulation was performed. Values of a from 0.2-2 in increments of

0.2 were generated and used to form matrices A as in (28). For each value of a, 10,000
realizations of the noise matrix N were generated, and the corresponding projection
matrices were computed using (29) and (30). The estimated projection matrices

were averaged to produce a matrix P+/- (a) for each value of a. The experimentally
determined matrices P+/-(a) were compared with the theoretical expressions in (27)
by computing the following error norms:

e() IIP+/-(a)- Pl()ll,

e2() IlP+/-()- P2(a)ll2.

The error norms el(a) and e2(a) result from using the first- and second-order per-
turbation expansions, respectively, for the perturbed orthogonal subspace. For com-
parison, we also consider an error norm corresponding to a zeroth-order perturbation
expansion, namely,

eo(a) liP+/- (a) P+/- 112.
Note that the error norms ei(a) are the distances between the actual average perturbed
subspace and the average subspace predicted by a perturbation expansion of order i.

We can gain some insight into the functional form of the error norms by looking at
(16) and (17). Specifically, we see from (16) that the zeroth-order projection matrix
U+/-UT does not model terms that are first- and second-order in N (recall that Q1 is
linear in N). However, since first-order terms in N have zero mean, the zeroth-order
projection matrix incurs errors of second order. From the manner in which the data
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Standard deviation of noise elements

FIG. 1. The error norms ei(a) defined by (55) and (56) for 1,2,3. The solid lines are
experimentally computed curves; the circles are least-squares polynomial fits.

is constructed in (28), we see that the norm of N is proportional to a.
functional form of eo(a) is essentially quadratic in a

Thus the

+

In a similar way we can compare (17) and (16) and see that the first-order ap-
proximation P1 contains some but not all of the terms that are second order in N.
Thus el (a) will also be approximately a quadratic function of a

+
We would suspect that a < ao since P contains some second-order terms while Po
does not.

Finally, we recall that P2 is exact up to second-order terms. Since third- and
fifth-order terms have zero mean, the error norm e2(a) should be approximately pro-
portional to a4

2() a2a +
The above conclusions on the functional form of the error norms are verified in

the simulation results in Fig. 1. In this figure, the solid lines are the experimentally
computed curves ei(a) for i 0, 1, 2. The circles show the functional forms deduced
above with the optimal amplitudes. The amplitudes for a least-squares fit were found
to be

ao 2.4 x 10-2 quadratic,

a 1.2 x 10-2 quadratic,

a2 7.0 10-4 quartic.

We can draw several conclusions from Fig. 1. First we see that both e (a) and
e2(a) are proportional to a2. The only difference is that e2(a) has a smaller constant.
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Thus the advantage of using a first-order perturbation expansion over a zeroth-order
expansion is a scale factor in the error norm, which for this example equals 0.5.
However, since e2(a) is proportional to a4, there is a substantial benefit to using a
second-order expansion. For example, e2(a) < 0.01 for a < 1.9 whereas the same
error bound for el(a) requires a < 0.92, and for e(a) requires a < 0.66. We also
see from (27) that the expressions resulting from a second-order expansion are not
necessarily more complicated than those from a first-order expansion.

4.2. Distance between subspaces. For each realization of the noise matrix N,
the results of a first- or second-order perturbation expansion can be used to obtain a
basis for the perturbed orthogonal (or signal) subspace. That is

U+/- __0 span(U+/-) def

def r]lU+/- = span(U+/- +UsQ)

0+/- _2__ span(U+/- + UsQ2) de,
where Q1 and Q2 are given as functions of the noise matrix N in (10) and (14),
respectively.

For each realization of N, a basis for the actual orthogonal subspace U+/- can be
obtained from an SVD of . In this section we compute the distance between the
actual perturbed subspaces computed by an SVD of A and the subspaces generated
by perturbation expansions of order zero, one, and two. These distances are denoted
by

(31) disti (o) def dist(+/-, ’_), i 0, 1, 2.

The distance between two subspaces S and $2 is defined to be [1]

dist(S, $2) de lip1 P211,

where Pi is the orthogonal projection matrix onto Si.
We plot E[dist(a)] versus a in Fig. 2. Since the zeroth-order expansion neglects

linear terms, we expect E[dist0(a)] to be linear. Since first- and second-order expan-
sions neglect second- and third-order terms, respectively, we expect E[distl (a)] to be
quadratic and E[dist2(a)] to be cubic. That is in fact what we see in Fig. 2. The
circles show the functional forms deduced above with the optimal amplitudes. The
amplitudes for a least-squares fit were found to be

(0 1.4 10- linear,

a 2.8 x 10-2 quadratic,

O2 7.2 10-3 cubic.

4.3. Discussion. We are currently using the second-order expansion to analyze
the performance of sensor array processing algorithms for direction-of-arrival estima-
tion. The analysis in [2]-[6] used the first-order expansion. By using the second-order
expansion derived in this paper, we hope to be able to develop performance expres-
sions that are accurate at lower signal-to-noise ratios and that predict bias.
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FIG. 2. The distances between the actual perturbed subspace and the subspaces generated by
perturbation expansions of orders O, 1, 2. The solid lines are experimentally computed curves;
the circles are least-squares polynomial fits.

REFERENCES

[1] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, 2nd ed., The Johns Hopkins
University Press, Baltimore, MD, 1989.

[2] F. LI AND R. J. VACCARO, MUSIC performance prediction by matrix approximation at high
SNR, in Proc. 1989 Conf. Information Sciences and Systems, The Johns Hopkins University,
Baltimore, MD, March 1989, pp. 447-481.

[3] , Analysis of MUSIC and Min-Norm for Arbitrary Array Geometry, IEEE Trans.
Aerosp., Electron. Syst., AES-26 (1990), pp. 976-985.

[4] , SVD and Signal Processing, II, Analytical Performance Prediction of Subspace-Based
Algorithms for DOA Estimation, R.J. Vaccaro, ed., Elsevier Science Publishers, 1991,
pp. 243-260.

[5] , Unified analysis for DOA estimation algorithms in array signal processing, Signal Pro-
cessing, 25 (1991), pp. 147-169.

[6] , Sensitivity analysis of DOA estimation algorithms to sensor errors, IEEE Trans.
Aerosp., Electron. Syst., AES-27 (1992), pp. 708-717.

[7] A. A. SHAH AND D. W. TUFTS, Estimation of the signal component of a data vector, in Proc.
IEEE Conf. on Acoustics, Speech, and Signal Processing, March, 1992, pp. 393-396.

[8] G. W. STEWART, Error and perturbation bounds for subspaces associated with certain eigen-
value problems, SIAM Rev., 15-33 (1973), pp. 727-764.

[9] , Stochastic perturbation theory, SIAM Rev., 32 (1990), pp. 579-610.
[10] D. W. TUFTS, A. C. KOT, AND R. J. VACCARO, SVD and Signal Processing, II, The Threshold

Effect in Signal Processing Algorithms Which Use an Estimated Subspace, R.J. Vaccaro,
ed., Elsevier Science Publishers, New York, 1991, pp. 300-321.

[11] R. J. VACCARO AND Y. DING, Optimal subspace-based parameter estimation, in Proc. IEEE
Conf. on Acoustics, Speech, and Signal Processing, Minneapolis, MN, 1993, pp. IV-368-
IV-371.



SIAM J. MATRIX ANAL. APPL.
Vol. 15, No. 2, pp. 672-691, April 1994

() 1994 Society for Industrial and Applied Mathematics
020

PROBABILISTIC BOUNDS ON THE EXTREMAL EIGENVALUES
AND CONDITION NUMBER BY THE LANCZOS ALGORITHM*

J. KUCZYISKI AND H. WONIAKOWSKI
Abstract. The authors analyze the Lanczos algorithm with a random start for approximating

the extremal eigenvalues of a symmetric positive definite matrix. They present some bounds on the
Lebesgue measure (probability) of the sets of these starting vectors for which the Lanczos algorithm
gives at the kth step satisfactory approximations to the largest and smallest eigenvalues. Combining
these bounds gets similar estimates for the condition number of a matrix.

Key words, extreme eigenvalues, Lanczos algorithm, condition number, random start

AMS subject classification. 65

1. Introduction. There are many algorithms for approximating the extremal
eigenvalues of n n symmetric positive definite matrices. Algorithms based on a fac-
torization of A usually require O(n3) arithmetic operations and if n is large then such
algorithms are too expensive. On the other hand, large matrices are usually sparse
and the matrix-vector multiplication Av can be performed cheaply. This suggests
that algorithms based on vectors Av for some vectors vi may be efficient.

The Lanczos algorithm is probably the most popular algorithm that uses a few
vectors Avi for approximating eigenvalues. In particular, at the kth step it gives
approximations to the largest eigenvalue A1 and to the smallest eigenvalue An of A
as the maximal and minimal Rayleigh quotient (Ax, x)/(x,x) over nonzero vectors x
from the kth Krylov subspace Ak span(b, Ab,... ,Ak-lb), where b 0. Of course,
the quality of such approximations strongly depends both on the matrix A and on the
starting vector b. It is known (see [15]) that a poor choice of the vector b can cause a
bad behaviour of the Lanczos algorithm. The analysis of the Lanczos algorithm for a
fixed vector b may be found in many books and papers, particularly, [2],[5],[7],[8],[10]-
[12], and [14]-[16]. The analysis of the Lanczos algorithm for a random vector b can be
found in [9], where average case and probabilistic estimates on the largest eigenvalue
are given. These estimates are independent of the distribution of the eigenvalues of A.

In 2, we first translate the estimates of [9] for approximating the smallest eigen-
value An of A. We estimate the average relative error of the Lanczos algorithm over
all starting vectors b. We also provide an upper bound on the Lebesgue measure
(probability) of the set of those b’s from the unit ball for which the Lanczos algorithm
fails to give an -approximation to the smallest eigenvalue at the kth step.

In 3, we present new probabilistic estimates for the Lanczos algorithm for ap-
proximating the largest and smallest eigenvalue of A. These estimates depend on the
distribution of the eigenvalues of A.

In 4, we apply estimates on the smallest and largest eigenvalue to approximate
the condition number, cond A, of A in the two-norm,

condA A1
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An approximation to the condition number of a matrix is often wanted when one
deals with matrix calculations; see [1] and [4]. We provide bounds on the probability
of the set of these b’s for which the Lanczos algorithm gives at the kth step the
approximation k of the condition number of A such that

_< cond A <_ a

for any a > 1. In many cases, only a rough approximation of cond A is needed. Then
a may be quite large, say, a 10.

A similar problem of approximating the condition number has been considered
by Dixon [3] for arbitrary matrices and by using modified power and inverse power
methods. His results are computationally applicable if the vector A-lz can be com-
puted cheaply for any vector z. This is the case when a factorization of A is given.
However, if n is large and the matrix A is given only via the subroutine performing a
matrix-vector multiplication, the vector A-lz may be approximated by an iterative
method but its computation may be expensive. In this case, the Lanczos algorithm
is preferable since it does not use the vector A-lz.

2. Lanczos algorithm for approximating extremal eigenvalues. Let A
AT > 0 be an n n symmetric positive definite matrix with eigenvalues I(A) _>
A2(A) _> _> An(A) > 0. The kth step of the Lanczos algorithm produces approxi-
mations to the largest and smallest eigenvalues of A defined as

k (A, b, k) max
(x, x)

"x e Ak, x 0

and

(Ax, x)
k=(A,b,k)=min (x,x)

x e Ak,x = O

where Ak span(b, Ab,..., Ak-b) for some nonzero vector b. Without loss of gener-
ality we may assume that b e Sn {b e Tn: lbll- 1}, where I1" II is the Euclidean
norm of vectors.

First we discuss the error of the Lanczos approximation k to the smallest eigen-
value An. The most natural error criterion is probably the relative error (k An)/An.
It is shown in Remark 1, 6, that unfortunately even the average value of

(A, b, k) An(A)
An(A)

with respect to the uniform distribution of b, is arbitrary large for some matrices A.
Therefore we have to switch to a different error criterion. One may consider

the relative error with respect to the largest eigenvalue (k An)/A, or the gap ratio

(k-n)/(-n). In Remark 2, 6, it turns out that the results both for the average
error and probabilistic failure are the same for these two error criteria. Therefore we
only consider the relative error with respect to the largest eigenvalue, i.e.,

e(A, b, k) (A, b, k) An(A)
AI(A)

It is easy to see that there exist vectors b and matrices A for which the error e(A, b, k)
can be arbitrary close to 1. Indeed, (A,b,k) <_ ,k(A) and An(A) <_ (A,b,k) and
therefore

e(A, b, k) < (A, b, k)/(A, b, k) <_ 1.
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In general, this bound cannot be improved since if b is an eigenvector belonging to
the largest eigenvalue AI(A), then for all k, (A, b, k) (A, b, k) AI(A), and yet
An (A) can be arbitrary close to 0.

Thus, we cannot guarantee that the error of the Lanczos algorithm is smaller than
1 for all matrices A and all vectors b. Moreover, if b is orthogonal to the eigenspace
generated by the smallest eigenvalue, then the Lanczos error e(A, b, k) > 0 for all k.
On the other hand, if b is not orthogonal to this subspace, then e(A, b, k) 0 for
k >_ m, where m denotes the number of distinct eigenvalues of A.

It is clear that if we pick the vector b randomly according to the uniform dis-
tribution over the unit sphere, then with probability one b is not orthogonal to the
eigenspace of An. This suggests that for any symmetric positive definite matrix, the
average relative error of the Lanczos algorithm with respect to vectors b should be
small for large k. Also, the measure of the set of these b for which the Lanczos al-
gorithm fails to compute a good approximation to the smallest eigenvalue should be
small.

Let tt be the uniform distribution over the unit sphere Sn with #(Sn) 1. By
the average relative error of the kth step of the Lanczos algorithm, we mean

e(A, b, k) (db).

Let

fprob (A, k, e) # {b e S, e(A, b, k) > e}

denote the probability that the kth step of the Lanczos algorithm fails to approximate
the smallest eigenvalue with relative error at most . For brevity we call this the
probabilistic failure.

We now present an upper bound on the average error of the Lanczos algorithm.
It turns out that this bound is the same as the one obtained in [9] for the Lanczos
algorithm approximating the largest eigenvalue A1. For simplicity, as in [9], we assume
that n > 8 and k > 4.

THEOREM 1. Let A be a symmetric positive definite matrix.

(a) Let m denote the number of distinct eigenvalues of A. Then for k >_ m,

eaVg(A, k) 0,

for k E [4, m- 1],

eaV(A’k) < O’103 (ln(n(k-1)a)k-1
lnn2.575
k- 1]

(b) Let p,p < n, denote the multiplicity of the smallest eigenvalue An, and let
An-p be the second smallest eigenvalue of A. Then

eVg(A, k) < 2.589 V/-d11- V/(An-P An)/(Al An) )1 + V/(An_p- An)/(A1 An)

k-1

Proof. For the proof it is enough to apply Theorem 3.2 of [9] to the matrix
B )II-A.
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Theorem 1 states that eaVg(A, k) 0 for k _> m, which means that the Lanczos
algorithm converges in m, m _< n, steps. For k < m the average relative error, is
bounded by 2.6 In2 n/(k- 1)2. We do not know if this bound is sharp. Numerical
tests suggest that for some matrices A we have

eaVg(A, k) O(k-2).

Part (b) of Theorem 1 contains nonasymptotic bounds in terms of the gap ratio of
the matrix A.

We now turn to the bound on the probabilistic failure of the Lanczos algorithm
for the smallest eigenvalue.

THEOREM 2. Let A be a symmetric positive definite matrix.
(a) Let m denote the number of distinct eigenvalues of A. Then for any e e (0, 1],

fprob(A,k,e)=0 for k >_ m,

fPrb(A, k,e) _< 1.648 x/ e-(2k-1)V for any k.

(b) Let p, p < n, denote the multiplicity of the smallest eigenvalue An and let )n--p
be the second smallest eigenvalue of A. Then for e > O,

fprb(A k, e) <1.648 X/-/ (1- V/-(An-P- An)/(AI An) I1 +

k-1

Proof. For the proof it is enough to apply Theorem 4.2 of [9] for the matrix
B=AI-A.

Theorem 2 gives upper bounds on the probabilistic failure of the Lanczos algo-
rithm for approximating the smallest eigenvalue. For k _> m fPb(A, k, e) 0,
which means that the Lanczos algorithm converges in m steps, where m _< n. For
k < m, the probabilistic failure is bounded by 1.65 e-(2k-1)v.

Suppose we wish to find an e-approximation to the smallest eigenvalue with a
a-failure, i.e., fPD(A, k, e) <_ . Then from Theorem 2 we conclude that we have to
perform at most roughly

k Fin (3n/ /

steps. Note a weak dependence on t and the strong dependence on e.

3. Bounds dependent on distribution of eigenvalues. In this section we
provide new probabilistic bounds on extemal eigenvalues that depend on distribution
of eigenvMues of the matrix A. For any symmetric positive definite matrix A, consider
two sets

Lk {b e Sn (A,b,k) <_ A(A) _< O(A,b,k)} for 0 > 1

and

Mk {b e Sn (A,b,k) <_ An(A) _< (A,b,k)} for < 1.

Obviously, the first inequality in the set Lk and the second one in Mk hold for any
vector b e Sn. We now find lower bounds on #(Lk) and #(Mk). We begin with #(Lk).
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THEOREM 3. For any symmetric positive definite matrix A let m denote the
number of distinct eigenvalues of A. Then for k >_ m, or >_ cond A,

#(Lk) 1,

and .for k < m and 1 < < cond A,

#(Lk) >_ 1- 2 r((n j)/2 + 1) 1

vr((n- j + 1)/2) v/O_ 1 u2(k_l)(V/-)
2 F(n/2) 1

vr((n- 1)/2) x/O- 1 U2(k-1)(x/)’
where the index j is defined by Aj < )1/0 < )j--1, 2 <_ j <_ n, Uk is the Chebyshev
polynomial of the second kind of degree k, and F is the Euler F-function.

Proof. The idea of the proof is similar to the proof of Theorem 4.2 in [9]. Let
b- -in=l bivi, where vi, i 1,..., n are orthonormal eigenvectors of A. Consider the
set

L’k Sn Lk {b e Sn A1 (A) > O(A, b, k)}.

Then we have

fLk b Sn )l > 0 sup
PT

2 2n bi P (A)

where Pk denotes the set of nonzero polynomials of degree smaller than k.
Assume that k > m. Then the set (A1,..., An} contains m distinct elements

{tl, ..., tm}, A1 tl > > tm and for the polynomial P(x) Hi=2(xm ti) the
supremum takes the value A1 for bl 0. Thus, since 0 _> 1, the set L is empty with
probability one. Thus lz(Lk) 1 as claimed.

Assume now that k < m. Then after simple calculations, we get

L {be S," sup
PE79k

n biP(,)(OA,-I) }2 2

E,=I b2i p2(Ai < 0

Observe that the supremum is negative if and only if the enumerator is negative. Thus

{ n }Lk b Sn sup E b2p2(Ai)(Ai ,1) ( 0
PE i:1

Assume that O _> condA. Then 0Ai ,1

_
0 for all i 1, 2,..., m and the set L is

empty. Thus #(Lk) 1 as claimed.
Assume now that 0 < cond A. Note that using a continuity argument, we may

restrict ourselves to polynomials for which P(A1) 0. Let xi Ai/A1 and Q(x)
P(Alx)/P(A1). Then x (0, 1] and

E 2 2sup biQ (xi)(Oxi-1) < O
Qep(1) i--I

where Pt(a) {w e Pt: w(a) 1}.
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Clearly, for any polynomial Q E P(1), we have

L c b e Sn E b2Q2(xi)(Oxi 1) < 0
i--1

From the definition of the index j, we have Oxj <_ 1 < Oxj_l and

Let

Wk(Xy,O) inf max Q2(x)(1 Ox).
QeTk(1) xE[O,x]

We now find an upper bound on wk(xj, 0). It is easy to check that

w(xj,O) inf m Q2(x)(1- x),
Qep(e) e[0,]

where Oxj 1. Let

() V(_)()

where U2(k-) is the Chebyshev polynomial of the second kind of degree 2(k- 1).
Since U2(k-) is even, is a polynomial of degree k- 1. Obviously (0) 1, so

k(0). Then

wk(xj,O) < max U(k_) (1 -()2)= 1 -
since U2(k_i)(t)l- t2 1 and this inequality is sharp (see, e.g., [13]). We note in
passing that if > os2(/(2(2k 1))), then wk(xj, O) a (see the proof of Theorem
4.2 of [9]). Clearly,

where 2 a/(0 1).

{ n }
Let c be the Lebesgue measure of the unit ball in T, c r/2/F(1 + i/2). As

’in [9], Remark 7.2, instead of integrating over the unit sphere Sn, we may integrate
over the unit ball lbll <_ 1 with respect to normalized Lebesgue measure,

# beS Eb>-2b 1

_
X b > b db,

cni=j
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where x(Z) is the characteristic function of the set Z. Then

c 1,11 <l--Lb > b

The last integral is the measure of the ball in -j--2, and

tt(Lk) <_

Changing variables by t i=j bi and x b, formula 4.642 of [6] yields

#(ffk) <- 2cj_2 Cn-j+l (It- j -- 1)
Cn

j01 f01 fl--2X2 t2 --2)/2x(t2 > )(1 x2 tn-j dx dt

< (n j + 1) (1 x2 t"- dx dt
Cn

2 cj-2 Cn-j+l fl_< (n j + 1)/ (1 t2)j/2-1 tn-j+l dt
Jo

Cj--2Cn--j+l (n-j + 1)B((n-j + 2)/2,j/2),
Cn

where B(i,j) r(i)r(j)/r(i + j) is the beta function. Finally,

#(L) <_ fl (n j + 1)r((n j)/2 + 1)
vZdF((n-j + l)/2 + l)

and

#(L) <_ 2 F((n j)/2 + 1)
vr((.- j + 1)/2)x/’O- 1 g2(k_l)(O)’

which completes the first inequality of Theorem 3.
Let

2 F((n j)/2 + 1)
s Vr((n- j + 1)/2)"

Then

#(Lk) >_ 1- sj/g’O- 1/U2(k_l)(X/),
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and since sj is a decreasing function of j, the proof is completed. [:]

We now explain how Theorem 3 is related to Theorem 4.2 of [9]. Observe that
using formula (13) of [9] for n > 8, we get

2 2r(n/2)
8n < 8n--1 1 < < s2 Vr((n- 1)/2)

< 0.824 fin 1

Take j 2. Then from Theorem 3 it follows that for any 0 > 1, we have

{b t n" ,’1 (A) _< (A, b, k)} >_ 1 0.824
v/n 1

V- 1 )r(k_l) (V/)
Let 0 1/(1 e) for some e e (0, 1). Then

#(Lk) # {b e S= Xi(A) (A’b’k)
<

> 1 0.824 v/(n 1)e
x/’l e U2(k_l)(1/v/l e

Observe that

U2(k_I)(1/V/1- e)= 0.5V/1--e)/e ((I+.v/I_e.V_) 2k-1
and after some calculations, we obtain

U2(k_l)(1/v/1 ) 0.5 V/(1 e)/ e-1 (1 c2),

where c ((1- v/)/(1 + v))k-i/2. Thus we get

b e Sn 1(A) (A, b, k)
AI(A)

_> 1 1.648 x/n i c(1 c2)-1.

Recall that Theorem 4.2 of [9] yields

b _
Sn 1 (A) (A, b, k)

)1 (A) < e} >_ 1 1.648Vc >_ 1 1.648ve-(2k-1)vG.

Thus for j 2, Theorem 3 gives essentially the same bound as Theorem 4.2. For
j > 2, the bound of Theorem 3 is better. Usually we do not know the index j.
However, for large 0 or for many eigenvalues close to the largest eigenvalue 1, the
index j is large and sj becomes independent on n. In this case, #(Lk) goes quickly to
1 even for very large n.

We now find a lower bound on the probability of the set Mk. Recall that

Mk {b e S, r((A,b,k) <_ An(A) < (A,b,k)} for r < 1.

THEOREM 4. For any symmetric positive definite matrix A, let m denote the
number of distinct eigenvalues. Then we have

#(Mk) l for k > m or r/<l/condA
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and for any k < m and any 1/cond A < 7 < 1,

#(Mk) >_ 1--
2F(j/2)

/r((j- 1)/2)

-1U:(_.) (v/i + (1 r)/( cond A 1))

2 F(n/2) icondA 1

Vr((n 1)/2) 1-7 2(k-) (41 + (1- )/0?condA- 1)),
where the index j is defined by ;kn/ij-1 < ?

_
n/,j, 2 <_ j <_ n.

Proof. The proof of Theorem 4 is similar to the proof of Theorem 3. As before,
we consider the set M,

M Sn Mk {b e Sn An(A) < (A,b,k)}.

Using the same notation and reasoning as in the proof of Theorem 3, we can easily
get

inf 2 2

e(
=1

bQ (z)(nz- 1) > 0

where now xi )i/;Xn, 1 Xn <_ Xn--1 _< _< Xl condA. Clearly, if k _> m or if
r <_ An/;l l/x1, then #(M)= 0 and the first part of Theorem 4 is proved.

Assume now that k < m and l/x1 < < 1. We have 1/Xj_l < r <_ 1/xj and, as
in Theorem 3, we can show that

tt(M[) <_ # b e S, -bQ(x)(xi- 1) > bQ(1)(1-
i=1

for any Q E Pk (1). Hence

#(M)<_# bS’ab>b(1-?)
i--1

where

a inf max (Q2(x)OTx- 1)).
QePk(1) xe[1/v,cond A]

Changing variables by y (cond A- x)/(condA- l/q), we get

a ((- 1) inf max (Q2(y)(1- y))
Qepk(5) y[O,l]

where n cond A and 5 ( r]) / (( 1) > 1. Using the estimate of wk (xj, 0) from
the proof of Theorem 3, we obtain
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and consequently

I(M) <_ I b e Sn Zb > U(k_l)(vf) (1 )/( 1) b2n
i--1

As in the proof of Theorem 3, we thus conclude that

2F(j/2) IricondA-1#(M) <
vr((j 1)/2) 1 w U2--1) 1 + w cond A 1

which completes the first inequality of Theorem 4. To get the second inequality, it is

enough to observe that

2r(n/2)2r(j/2) <s# r((j- 1)/2) r((n- 1)/2)

for j 2, 3,..., n. Hence the proof is completed.
We now show how Theorem 4 is related to Theorem 2. Clearly, for n 8, we

have

2 2 r(n/2) < 0.824n 1.s l sn: r((n-)/)
Take j n. Then from Theorem 4 it follows that for any if" 0 < < 1, we have

(be S "(A,b,k) A(A)} 1 0.824 (n- 1)z/U2(k-1)(l + 1/z ),

where z (ffcondA-1)/(1 if). Let if= 1/(1 + condA) for some e (0, 1). Then

A(A)

>_1 0.824 v/(n 1)(1 - 1/condA)//U2(k-) (y/1 + /(1-- 1/condA)).
Since

(v/i + ’1}) 0.5 v/c-1 (1- c2),u.(_l)

where now

c= ((1- V/](i- 1/condA))/(1 + V/e/(1- 1/condA))) k-1/2

(see the proof of Theorem 4), we get

# {b E Sn" (A, b,A(A)k)An(A) ( } _> 1 1.648n lc (1 c2)-1

Recall that Theorem 2 yields

# (b Sn" (A, b,Al(A)k) An(A) <g} >1--1.648V/- (1--f’)k-1/2_
> 1 1.648Ve-(2-1)v.
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Thus even for j n, Theorem 4, generally gives a better bound than Theorem 2.
Let us stress that if we know that j is small, which is the case for small 7 or cluster
eigenvalues, the bound of Theorem 4 is even more attractive than that of Theorem 2.

The bound given in Theorem 4 depends on the condition number of A, which is
not known. We can avoid this difficulty if we know an upper bound of the condition
number of the matrix A. The following corollary holds (the proof is the same as the
proof of Theorem 4).

COROLLARY 1. Let M be any number, M > 1. For any symmetric positive
definite matrix A of size n

_
8 such that cond A <_ M let m denote the number of

distinct eigenvalues. Then we have

# Mk l for k >_ m or 7 <_ l/M

and

2 r(n/2) ffM 1 --1#(Mk) _> 1
vr((n 1)/2) --? U2(k-1) ( V/1 + (1 )/(TM 1))

1
_

_> 1 0.824v i -- U(-I (v/1 + (1 r)/(rM,- 1))
for k < m and l/M < 7 < l.

4. Estimating the condition number Al/An. We now apply the results of
the previous section and Theorem 4.2 of [9] to estimate the condition number of a

matrix. Since k (A,b,k) and k (A,b,k) are the Lanczos approximations
to the largest and to the smallest eigenvalues of A correspondingly, we estimate the
condition number condA by ak k/k, gk

_
condA. Clearly, the quality of this

estimation depends on the starting vector b. We now give a lower bound on the
measure of the set of vectors b for which cond A <_ aak for a > 1. Let

Zk {b e Sn cond A _< cak }.

Then we have the following theorem.
THEOREM 5. Let A be a symmetric positive definite matrix A and let m denote

the number of distinct eigenvalues of A. Then

#(Zk)=l for k_m,

for any k and any > 1

#(Zk) _> 1 1.648 V inf (t),
0<’t< 1--!/a

k

where

(t)--e-(2k-1)Vll-tak-1/c - e-(2k-1)x/7.

Proof. The proof for k _> m follows immediately from the corresponding parts of
Theorem 4.2 in [9] and Theorem 2. Assume now that k is any integer. Consider the
sets

W (b ( n" )1

_
/(1 El)}
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and

{b E Sn’An >_ k-
for any El, E2 E (0, 1). From Theorem 4.2 of [9] it follows that

#(W) > 1 (1 (El) 1 1.648 V e-v-(2k-1)

while from Theorem 2 we have

/(1) > 1 2(E2) 1 1.648 V/ e-(2k-1)v.

Let

and E2 such that k E2 > 0. Then W N ]Y C Y (W f C W f’l Y) and

,(w Y) _> u(w ?) u(w) + u(w ?)

> 1 1(E1) - 1 2(E2) 1 1 (1(E1) q-

Thus, since k E2 > 0 we have1--el

# l b Sn cond A 1
ak1 E1

> 1 (el(E1) --Maximizing the right-hand side of the last inequality under constraints

0 < E1 < 1, 0 < E2 < 1, 0 < E2/(1- El) < 1/Ck, 1- E1- E2gk l/a,

we complete the proof by taking E2 t and E1 1 1/a- tak. F1

The first part of Theorem 5 states that the Lanczos algorithm at the mth step
recovers the condition number of a matrix with probability one. This confirms our
intuition that for sufficiently large k the Lanczos algorithm may fail only on a set of
measure zero.

The second part of Theorem 5 gives a lower bound on the probability that the
condition number of a matrix is not greater than a ak for a > 1. It may happen that
this bound is negative, especially when ak grows too rapidly with respect to k (see
Table 1 where the approximated minimum of the function is shown) or for a close
to one or n huge. However, for k _> n, ak cond A with probability one no matter
what was happening with k for k < n.

It is difficult to calculate the exact value of the infimum of the function in the
interval (0, (1 1/a)/Rk) (note that k,a, and ak are known), but it is quite easy to
find a satisfactory approximation of it numerically. Indeed, having calculated ak we
can perform a few steps of the bisection method applied to the first derivative on
the interval (0, (1 1/a)/a). Table 1 displays an approximation of the minimum of
the function for a 10 for some values of k and ak. The first column contains values
of k. The next four columns show an approximation of the minimum of , (/)min (k, k)
for x/, Rk k, Rk k2, and Rk k3, respectively.
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k Cmin (k,)
10 0.00025
20 O.O000O02
3O 0
4O 0
5O 0
60 0
7O
8O

TABLE 1

Cmin (k, k) Cmin (k, k Cmin (k, k3
0:00612 0.184 0.585
0.00039 0.163’ 0.667
0.00005 0.158 0.714
0.000009 0.156 0.745
0.000002 0.154 0.768
0.0000006 0.7850.153

0’.1530 0.0000002 0.799
0 0.0000001 0.152 0.810

To apply Theorem 5 for #(Zk) we have to compute ak. It is possible to estimate

#(Zk) without computing gk. It can be done by combining Theorems 3 and 4. Indeed,
observe that for a /, we have Lk Mk C Zk, and

#(Zk) >_ #(Lk F Mk) #(Lk) + #(Mk) #(Lk U Mk) >_ #(Lk) + #(Mk) 1.

Thus, to find a lower bound on #(Zk), we need to find lower bounds on #(L}) and
#(Mk). Applying Theorems 3 and 4 we get the following theorem.

THEOREM 6. For any symmetric positive definite matrix A let m denote the
number of distinct eigenvalues. Let a be any number, a > 1. Then for any numbers
0 and ? such that 0 > 1, 0 < < 1 and a-- 0/7, we have

#(Zk) I for k >_ m or (O >_ condA and <_ l/condA)

and

#(Zk) >_ 1-

where 0 < cond A or 7 > 1/cond A and j and i satisfy"

Theorem 6 yields a bound on the measure of the set Zk that depends on the
indices i and j as well as cond A. Usually they are unknown. However, the indices i, j
can be replaced by n, and cond A can be replaced by an upper bound M. Using the
second inequality of Theorem 3 and Corollary 1, we then get the following theorem.

THEOREM 7. Let A be any symmetric positive definite matrix of the size n >_ 8
such that condA <_ M. Then under assumptions of Theorem 6, we have

I(Zk)=l fork>_m or (O_M and <_I/M)

and

t(Zk) >_ 1- 2 r(n/2) ( (0 1)-/ U,-x/F((n- 1)/2) 2(k-1)

1 g,_ 1+ i ;7 u(k-1) (,-- + (1 )/(M 1)z)
> 1- 0.824 ((0 1) -1/2 - -1U2(k_l)( + (1 1/ZU2(k-1 + ))
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for l < O < M or l/M < < l, where z= (M- l)/(1-7).
Note that the better bound M on cond A is given, and the better bound on the

measure of the set Zk is obtained.
Obviously, any number a > 1 can be decomposed as a 0/r/, M > 0 > 1, 1/M <

< 1 in many ways. To get the best probability bound one can maximize it over
and v/under the constrains a /7, M > 0 > 1, 1/M < < 1. It can easily be done
numerically.

5. Numerical results. We tested several matrices with many pseudorandom
starting vectors b. Without loss of generality [9] we restricted ourselves only to di-
agonal matrices. Vectors b were generated in the same way as in [9]. The tests were
performed on XT and 486 personal computers with the round-off unit of order 10-7.
All calculations were done in the single precision. The diagonal form of matrices
reduced the effect of round-off errors.

The purpose of the numerical tests was, in particular, to verify the sharpness of
the bound of Theorem 1 and to check the quality of the bounds of Theorems 5 and
7. We first report our results for the matrix of dimension n 250 with eigenvalues

Ak 1 / cos
2n

k-- 1,...,250.

Hence, Ak’s are the shifted zeros of the Chebyshev polynomial of the first kind of
degree 250. This distribution of eigenvalues is difficult for the Lanczos algorithm [15].
We have selected several values of and ten pseudorandom vectors b and for each of
them we run the Lanczos algorithm for k 1,..., k*, where k* was the minimal k for
which the relative error e(A, b, k) was no greater than . We compared the relative
error with k-2. For each b and k we observed

0.20 _< e(A, b, k) k2 <_ 1.23.

In Table 2 we report the average errors achieved after (k- 1) steps of the Lanczos
algorithm for some values of k displayed in the first column. The second column
shows the average errors defined as

.ave
lO

1-- Z e(A, hi, k),
i--1

where bi is the ith pseudorandom vector. The third column contains upper bounds
on the Lanczos errors from Theorem 1, i.e.,

up 0.103 (ln (n(k 1)a))
2

k-1

The fourth column shows the ratio rl up/ave, while the last column displays
how rl is related to the (probably unnecessary) factor r2 rl/ln2(n(k- 1)4) in the
theoretical bound.

k-1 gave
10 0.005276
20 0.001379
30 0.000688
40 0.000387
50 0.000244
60 0.000165
70 0.000145

TABLE 2

gup
0.2235
0.0789
0.0419
0.0265
0.0185
0.0137
0.0107

rl r2
42.36 0.195
57.22 0.187
60.87 0.166
68.53 0.167
75.76 0.184
83.23 0.174
73.95 0.146
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Small changes in the last column of Table 2 may suggest that the error of the
Lanczos algorithm for the matrix with Chebyshevian distribution of eigenvalues be-
haves like k-2 and the factor roughly ln2(n(k- 1)4) is probably an overestimate in
the upper bound.

Table 3 shows for five values of how many steps were needed to achieve the
relative error no greater than . The first row contains the values of , the second
row the average number kave of performed steps with kave -iii k(A, bi)/10, where
k(A, b) was the number of steps needed for the pseudorandom vector b. The third
row indicates the minimal k kup such that

0.103 /ln(n(k-1)4)/2 <e’k-1
which is ,one of the two theoretical bounds of Theorem 1 for the Lanczos algorithm.
The fourth row presents the ratio r kUp/kve.

TABLE 3

e 110 3 7.510 4 510 4
k 35.5 41 49.9
kup 287 339 429
r 8.08 8.27 8.6

2.510 4 2.010 4
65.5 69.2
638 724
9.74 10.46

Note that the theoretical bound exceeds the actual value by a factor of at most
11. Observe also that all kUp’s are greater than n 250 and the second bound of
Theorem 1 gives a better estimate.

We also tested matrices of dimension 250 with other distributions of eigenvalues
in the interval (0, 2). The following distributions were tested:

the quadratic, 2 (1 i/251) 2 and 2 (1 (i/251)2);
the uniform, Ai 2 (1 i/251);
the logarithmic, Ai 2 log(252- i)/log252;
the expotential, Ai 2 e- /, Ai 1 + e i, i 1,..., 250.

For all these matrices we have observed faster convergence to the smallest eigenvalue
than for the matrix with Chebyshevian distribution. For some matrices the difference
was significant.

We were also interested in checking the quality of the bound on the condition
number presented in Theorems 5 and 7. As before, for each matrix we selected
several pseudorandom vectors b and ran the Lanczos algorithm both for the smallest
and for the largest eigenvalues with k 1, 2,..., k*, where k* was the minimal k for
which this algorithm gave approximations with a prescribed accuracy. In all tests,
i.e., for all matrices, all starting vectors and all k, the number c was fixed to be
equal to 10. We now describe some tests on the bound of Theorem 5. The infimum
of the function from Theorem 5 was computed numerically. The matrices most
intensively tested were the matrices that arise as discretizations of a two-dimensional
Laplace operator. We first report some results for the matrix A of the size 256 (16
points in each direction). The condition number of this matrix is 116.461 Table
4 shows some results obtained for ten pseudorandom vectors bi, i 1, 2,..., 10. The
first column contains twelve values of k. The next one indicates the average of the
condition numbers obtained for vectors bi, i.e.,

condave
10

1- E(A, bi, k)/(A, bi, k),
i--1
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while the third one shows the standard deviation ,cond of the empirical condition10
number. The last two columns concern the bound on the probability given in Theorem
5, namely, the average, probave, and the standard deviation, alPb, of the bound of
probability for the vectors b.

TABLE 4

k-1
5
10
15
20
25
30’
35
4O
45
5O
55
6O

cond
21.533
57.481
85.442
102.793
111.690
116.163
’116.451
116.457
116.457
116.457
116.457
116.457

10
5.997

19.465
21.391
19.770
12.074
’0.782
0.018’
0.0017
0.0017
0.0017
0.0017
0.0017

prob
-2.692
-1.178
-0.230
0.349
0.701
0.866
’0.944
0.977
0.990
0.996
0.998
0.999

prob
10
0.913
0.885
0.448
0.199
0.062
O.OO2
0
0
0
0
0
0

Observe that the first three elements of the fourth and fifth columns should be
replaced by zeros, but we think it is interesting to see how the bound of Theorem 5
increases with k.

Table 4 shows that the average bound on the probability is close to 1 for k larger
than 30. Note that for these k’s, the average condition number is nearly equal to the
exact condition number of this matrix. We stress that the corresponding standard
deviations are very small. For k smaller than 20, the average bound of the probability
was quite small (or even negative) although for k _> 7 and all pseudorandom vectors
b, the computed condition number, /k satisfied: k/k <_ condA <_ lOk/k.

For the matrix A of the size 1024 (32 points in each direction) the corresponding
table is (the condition number of this matrix is 440.6886...).

TABLE 5

k-1
5
10
15
20
25
3O
35
4O
45
5O
55
6O
65
70

cond
24.195
66.358
123881
181.720
233.467
279.179
321.968
375.354
420.228
434.603
439.324
440.310
440.556
440.622

:rcond10
1.625
8.380

’30.943
56.008
71.’980
80.741
82.043
62.747
32.238
11.’736
2.548
0.684
0.156
0.042

prob
-7.338
-4.223
-3.053
-2.11’5
-1.347
-0.752
-0.314
--0.049
0.191
0.452
0.643
0.771
0.854
0.907

prob
10
0.496
0.743
1.256
1.312
1.093
0.834
0.588
0.316
0.120
0.033
0.005
0.001
0
0

Note that for k > 8 and all pseudorandom vectors bi, the computed condition
number, k/k satisfied: k/k <_ cond A <_ 10 k/k, while the corresponding proba-
bility is positive for k > 42. This suggests that the lower bound on the probability
given in Theorem 5 is rather poor for this matix.

We have also tested matrices with distributions of eigenvalues described earlier.
For instance, for Chebyshevian distribution the bound on the probability was negative
(usually between -7 and -3). Note that for this matrix the approximations k/ of
the condition number satisfying: k/t: <_ cond A 101371 _< 10k/ were observed
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(on average) for k larger than 70. Let us stress that for all pseudorandom vectors bi,
the numbers k* were smaller than 80. Similar results were observed for the quadratic
distribution of eigenvalues Ai 2 (1 -i/251)2, i 1,... ,250 (for this matrix the
condition number is equal to 62500).

For other distributions we obtained better results. Note that the condition num-
bers were much smaller than the condition number for the Chebyshevian distribu-
tion. For instance, for the logarithmic distribution the bound on the probability was
on average greater than 0.9 for k larger than 9. The condition number of this ma-
trix is 7.9715 and for each k we got the empirical condition number k/k satisfying

_< condA _<
We now turn to the bounds for the condition number of a matrix given by Theorem

7. As before, the number ( was fixed to 10 and 0 and ? were chosen to maximize
(numerically) the second bound of Theorem 7. Table 6 shows some results for the
matrix A of the size 256 that arises as a discretization of a two-dimensional Laplace
operator and for ten pseudorandom vectors hi, i 1,..., 10 (compare with Table 4).
The first three columns contain values defined in the description of Table 4. The last
two columns display the bound on the probability given in Theorem 7 with M
condA (prob(1)) and i-- 100condA (prob(100)), respectively. To speed our tests,
for k-1

_
75 we did not compute approximations to the extreme eigenvalues. Instead,

we use bounds on (Zk) from Theorem 7 with a69. Thus, we slightly decreased the
actual bound on #(Zk) and this is denoted by "_" in the second column and by "_"
in the third column.

TABLE 6

5
i0
15 84.451
20 103.419
25 11i.676
30 116.162
35 116.447
40 116.456
45 116.456
50 116.456
55 116.456
60 i16.456
65 116.456
70 116.456
75 > 116.456
80 > 116.456
85 ’> 116.456
90 > 116.456
95 > 116.456
100 > 116.456
110 > 116.456
120 > 116.456
130 > 116.456
140 ’ 1i6.456
150 k 116.456

cndaVe 10-cnd prob( 1
21.307 6.444 -1.40i
55.979 19.397 0,800

20.874
19.902
12.069
0.781
0.020
0.013
0.013
0.013
0.013
0.013
0.0i3
0.013
0.013
0.013
0.013
0.013
0.013

< 0.013 1
< 0.013 1
< 0.013 1
< 0.013 1
< 0.013
< 0.013

0.984

prob(100)
-45.042
-21.’575’
--13.191

0.9988 "81792
0.99991 -6.057
0.99999 -4.202

1 -2.881
1 --1.915

1.198

-0.050
0.23}0
0.4236

1 05869
1 0’6871

0.7627
0.8202
0.8’36
0.8968
0.9407
0.9660
O.9804
0.9888

1 0.9935

We observed that the probability bound of Theorem 7 with M cond A is larger
than 0.9 for k >_ 12. The fact that relatively early we can be almost sure that the
Lanczos algorithm produces a good approximation to the condition number of this
matrix is due to the fact that we have used a perfect bound for the condition number,
namely, the condition number itself. To contrast this, we see that the probability
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bound gets much worse (the fifth column) if we use Theorem 7 with M 100 cond A.
Let us stress that for all k _> 7, the approximations ,sk k/k to the condition
number satisfied

k _< condA _< 10k.

For the matrix A of the size 1024 (32 points in each direction) the corresponding
table (Table 7) is as follows (compare with Table 5).

k-1
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
20O
210
220
230

cond
66.358
181.720
279.179
375.354
434.603

TABLE 7

:rcond10
8.380

56.008
80.741
62.747
11.736

prob(1) prob(lO0)
-2.695 -88.952
0.758 -42.527
0.984 -26.218
0.999 17.680
I -12.381

440.310 0.684 1 -8.801
440.622 0.042 1 -6.256
440.641 0.023 1 -4.410
440.641 0.023 1 -3.047
440.641 < 0.023 1 -2.035
440.641 < 0.023 1 -1.278
440.641 < 0.023 1 -0.710
440.641 < 0.023 1 -0.283
440.641 0.023 1 0.035
440.641 1 0.2760.023

0.023
0.023
0.023
0.023
0.023
0.023

440.641
440.641
440.641
440.641
440.641
440.641

1 0.455
1 0.591
1 0.693
1 0.769
1 0.827
1 0.870

440.641 < 0.023 1 0.902
440.641 < 0.023 1 0.926

We now briefly report some results for other matrices. The size of the matrices
was chosen to be equal to 250. For the quadratic distribution of eigenvalues Ai
2(1- i/251)2, i 1,..., 250 in the interval (0, 2) we obtained much worse probability
bounds. For M cond A, the bounds were negative up to the 140th step and they
reached 0.786 at the 201st step. For M 100condA, the bounds were all negative
and at the 201st step they reached -25.02. Note that for all k > 71, the approxi-
mated condition numbers k satisfy

k _< cond A 62500 _< 10sk.

Slightly worse results were obtained for the shifted Chebyshev distribution of the
eigenvalues. Better results were obtained for matrices with the quadratic distribution
of eigenvalues

1, 250.

The condition number of this matrix is equal to 125.749. Only five steps were
needed to get the desired approximations to the condition number of this matrix. The
probability bounds for M cond A and M 100 cond A were positive after 9 and 62
steps. They were greater than 0.5 after 11 and 76 steps, and greater than 0.9 after
15 and 106 steps, respectively.
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6. Final remarks. Remark 1. We now report a result for the average relative
error with respect to the smallest eigenvalue. That is, define

avg (A, k) =/s (A, b, k) An
Cmin An #(db).

We will show that this error is unbounded in the class of all symmetric positive definite
matrices. Indeed, using the same notation as in the proof of Theorem 3, we get

avgemin(A,k)

Assume that the matrix A has n distinct eigenvalues and let Ai- An >_ 5 > 0 for
i 1,...,n- 1. Then we have

where

(A,k)= fB (1-- sup
b2nP2(An) )db.

Note that the function is shift invariant, i.e., (A + aI, k) (A, k) for all
and (A, k) > 0 for k <_ n- 1. Take now the matrix A- aI, where a < An. Then for
a - An, we have

eminaVg A aI, k) _> (A, k) - +.
Thus for any k no greater than n- 1 and any positive number M there exists a
symmetric positive definite matrix A such that

avg
emin (A, k) > M.

Remark 2. We now consider a gap ratio as the error criterion instead of the
relative error with respect to the largest eigenvalue, i.e., we want to find such that- An(A)

A1 (A) An(A)

Note that the gap ratio for the Lanczos algorithm approximating the smallest eigen-
value is shift invariant, i.e.,

(A + aI, b,k) An(A + aI)
AI(A+aI)-An(A+I)

(A, b, k) An(A)
A(A)- An(A)

Using a continuity argument, we can conclude that the bounds given in Theorems 1
and 2 hold, since

(A)- An(A) (B)- An(B)
A(A) An(A) )I(B) An(B)’

whereB=A-AnI, B=BT>_OwithAn(B)=O.
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AN ERROR MODEL FOR SWARZTRAUBER’S PARALLEL
TRIDIAGONAL EQUATION SOLVER*

NAI-KUAN TSAO

Abstract. Error models for two algorithms based on Cramer’s rule are given for tridiagonal
systems. The results show that if the exact xi of the solution vector x is expressed as det p/det q
where p and q are matrices formed from the original coefficient matrix and the right-hand side vector,
then the computed xi can be expressed as det I5/det , where det 5 and det are perturbed det p
and det q, respectively, using either the parallel or the sequential algorithm. The relative error of
each product in the determinantal expansion of det i5 and det can also be bounded easily.

Key words, tridiagonal matrix, determinant, parallel algorithms, linear equations, error anal-
ysis

AMS subject classifications. 65F05, 68A20, 15A15

1. Introduction. In [1], Swarztrauber described a parallel algorithm that is
based on an efficient implementation of Cramer’s rule for solving general tridiagonal
equations. His basic algorithm can be described as follows. For a given tridiagonal
system

bl Cl

a2 b2 c2

Ax=y, A= =_[aj bj cj], al=Cn=O,

Cn--1
an bn

X--- [Xl X2 Xn]T ITY [Yl Y2 Yn

let us denote by di the determinant of the leading by i submatrix of A, fi the
determinant of the trailing (n- i + 1) by (n- i + 1) submatrix of A, t the determinant
of the leading i by i submatrix of A with column i replaced by the first i components
of y, and u the determinant of the trailing (n -t- 1) by (n + 1) submatrix of A
with column i replaced by the last (n- i + 1) components of y. Then the following
theorem can be proved [1].

THEOREM 1.1. Given the sequences di, fi, ti, and ui defined above, then the so-
lution xi is given by

Xl ul/dn, xi (di-lui aifi+iti-)ldn, 1 < < n, xn tnldn,

where
di bidi- aici-ldi-2, do 1, d bl, i > 1,

ti -aiti_ -t- di_lyi, t y i > 1,

fi--bifi+-ai+cifi+2, fn+- l, fn-bn, < n,

*Received by the editors April 15, 1992; accepted for publication (in revised form) November
10, 1992.

fDepartment of Computer Science, Wayne State University, Detroit, Michigan 48202 (tsao(C)
pandora, cs. wayne, edu).

692



ERROR MODEL FOR TRIDIAGONAL EQUATION SOLVER 693

ui---ciui+l + fi+lyi, un =yn, i < n.

A sequential algorithm based on the above theorem is given below.

ALGORITHM Swl
dl---bl; el--C1
for i 2 to n do
d fl(bd-i aie-l ); ei fl(cd_l

fn bn gn an
for i- n- 1 downto 1 do

tl -"Yl
for i 2 to n do

ti fl(-aiti-1 +
Un Yn
for i--n- 1 downto 1 do

ui fl(-ciui+l +

for i 2 to n- 1 do
x fl((--gt-I + di-lU)/dn)

where fl(.) is used to denote the computed result of the enclosed argument.

For n 2k, k > 0, Stone’s recursive doubling technique [2] can be used to
parallelize the calculation of the vectors d, e, f, g, t, and u using the following algorithm.

ALGORITHM Sw2
for i 1 to n do (in parallel)

[bc]oi) =-a,; /’)=-ci; Qi)=
-a 0

for j 1 to k do
2J-1

for i 0 to n- 2J step 2J do (in parallel}
/.(+)(+1(... (i-l),,,(i-{-2/) (i+2/) fl \ i+l i+l+l )i+1"(i+2) fl \Ui+l "i++1

/r)(+)r(+))
for j 0 to k do (in parallel}

l-- 2J; [d e]- [1 0]Q);
gn-+l -n-+l 0

for j k- 1 downto 1 do
2-1

for i 2 to n- 2J step 2 do (in parallel}
D(i+l) fi-l+l fl i-t+l[di+ ei+]- fl [di ei]i+l }; gi-+l gi+l

d0=l; fn+l l
for i 1 to n do (in parallel)
ti)- fl(di-lyi); ui)-

for j 1 to k do
2-1

for i 0 to n- 2J step 2J do (in parallel)

) / (+) (+0.(+))/’/(iT2/) (ir21)/(iTl) (i+2z) fl ui+i-t-1/(i-t-2/) fl ki+l+l - ti_l_lOi_ i-I i-l [i-l-I
for j--k- 1 downto 1 do
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2J-1
for i 2J to n- 2 step 2J do (in parallel}

t+) fl ti+ W iT1 1 ) i-IT1 1+1 li-ITliT1

XI fl (n)/dn); Xn fl
for i 2 to n- 1 do {in parallel}

Note the required ti and ui in Algorithm Swl are given ti) and (n) respectively,"i
in Algorithm Sw2.

The experimental numerical equivalence of Algorithm Sw2 and the usual Gaus-
sian elimination method h been demonstrated in [1]. In this paper we carry out
the error analysis of the above two algorithms and show that if the exact xi of the
solution vector x is expressed det p/det q where p and q are matrices formed from
the original coefficient matrix and the right-hand side vector, then the computed xi
can be expressed as det /det , where detp and det are perturbed det p and det q,
respectively, using either the parallel or the sequential algorithm. The relative error
of each product in the determinantal expansion of det p and det can also be bounded
eily. Some preliminary results are given in 2. The error analysis of Algorithms
Swl and Sw2 are presented in 3 and 4.

2. Some preliminary results. For convenience, determinants will be used to
express the various computed results from Algorithms Swl and Sw2. To this end, let

D,Z

be used to denote the determinant of a submatrix formed by the common elements of
rows , 2,..., k and columns 5, 52,..., 5k of the matrix A. For contiguous rows or
columns, they are denoted by

or

If row indices are the same as the column indices, then only the column indices will
1:2,4be used. Thus Di:2,a is the same as Di:2,a. We shall also use Di:i(k) for i < k < j to

denote DI with column k, i <_ k <_ j, replaced by a column formed by yi, y+i,..., y.
As an example, let n 4. Then we have

bl
a2 b2 D2:a(3)

b2 y2

a3 y3

ya
C3

We have the following lemmas.
LEMMA 2.1. If exact computations were possible, then

i:k Dk+l:J i < j, i < k, k < j.D:i Di:kDk+l: Di:k_l,k+l,k,k+2:j,

Furthermore, for 1 < i < j < n,

Di:j_l,j+ cjDi:j-
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Fli:j--1 i+l:j
aicjn:Jl,i+l:j_l,j+l cj,i_l,i+l:j_ ini+l:j_l,j+ ni+l:j-1.

Proof. The second part of the lemma is easily obtained by definition. For the
first part we have

Di:j

bi

ai+l bi+l Ci+l

ak bk Ck

ak+l bk+l Ck+l

ak/2

aj bj

Now partition the matrix in the above expression into two parts: one formed by the
first k- i + 1 rows and the other formed by the last j- k rows. Let Hk-i+l, and Hj-k
be used to denote the determinant of any submatrix formed by choosing k- i + 1
columns of the first part, and the corresponding complementary set of columns (there
are j- k of them) of the second part, respectively. Now Di:j can be expressed as a sum
of Hk-i+lHj-k (with appropriate signs) over all possible ways that k- i + 1 columns
can be chosen from j i + 1 columns of the first part as long as Hk-i+H-k O. In
this case there are only two choices: selecting from the first group k i + 1 columns so
that H-i+l Di:k, Hj-k Dk+: and the sign is positive; and selecting from the

i:kfirst group the first k- i plus the k- i+2-nd column so that Hk-i+l Di:k_,k+1,

Hj-k r+l:J and the sign is negative. The sum of these two products is then Di:j.k,k+2:j
Thus the lemma is proved.

LEMMA 2.2. If exact computations were possible, then the computed results of
Algorithm Sw2 are such that

i+2l) [ D+l:i+2/
i+1

__1Di+l:i+2
i,i+2:i+21

i+l:i+21 ]i+1:i+2/- 1,i+21+1

lDi+l:i+21
i,i+2:i+21-1,i+2/+

where

1-2-1, i-0,1(2),2(2J),...,n-2J, n-2, j--1,2,...,k.

Proof. We prove by substitution. By definition

(2.1) (i+21) [qlli+1 K

q21

q12 / O(i+l) (i+2/)
"i+l "i+l+l"

q22
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Since

+O [ Di+l:i+l
i+l

l.)i.4_l:i+l
i,i+2:i+l

i+21) [ Di+l+l:i+2l
i-4-1d-1

lDi+l+l:i+2
i+l,i+l+2:i+21

Equating both sides of (2.1) then gives us

i+l:iTl ]i+l:iTl-l,i+l+l

IDi+l:iTl
i,i+2:i+l-- 1,id-Id-1

i+l+l:i+2l ]iA-lA- :iA-2/- 1,i+21+

lDi+lA-l:i+21
"iA-I,iTl+2:i+21 ,i+2/+

l’)i+l:i+l l’)i+l+l:i+2l Di+qll Di+l:i+IDi+l+l:i+21 -i+l:i+l_l,i+l+l.,-i+l,i+l+2:i+21 1:i+2/

by Lemma 2.1. Similarly, Lemma 2.1 can be used again to give

r t-i+IA- :i+2/ /i+ :i+l 1Di+lA- :i+2/
q12 Ji+l:i+l.ti+l+l:i+2l_l,i+2l+l -,-..i+l:i+l_l,i+l+l i+l,i+l+2:i.4_21

( 1:i+/ 1Di+l+l:i+2l--1)c+2t D+l:+tD+t+:+2t-1 D++l:+t_l#++li+#++2:i+2_l
l’)i+l:i+21Ci+2lDi+l:i+2l-1 "i+l:i+21-1,i+21+l"

The remaining identities can be verified similarly. This completes our proof.

3. Error analysis of Algorithm Swl. Given a normalized floating-point sys-
tem with a Y-digit base f mantissa, the following equations can be assumed to fa-
cilitate the error analysis of general arithmetic expressions using only +,-, ,, or /
operations [3]

(3.1) fl(x#y) (x#y)A, # e {+,-,.,/},

where x and y are given machine floating-point numbers and fl(.) is used to denote
the computed floating-point result of the given argument, and

A=l+e,
for rounded operations,
for chopped operations.

We call A the unit A-factor. For simplicity, we assume that the given matrix A and
right-hand side vector y are exact.

We first look at the computation of di and ei. The basic equations are the
following:

do 1, dl bl el al di fl(bidi-1 -aiei-1), ei fl(cidi-1), i > 2.

By applying (3.1) to the above equations, we obtain do 1,

d2 b2dlA2A3 a2elA1A3
bl Cl

e2 c2blA4
bl

a2AIA3 c2A4
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Note the added A1A3 factor to a2 in the expression for e2. Since usually the various
A-factors are unknown, the generic form Ak is used to denote a product of possible k
different A-factors. Thus we have

(3.2a) d2
bl Cl

a2A2 b2A2
e2

bl

a2A2 c2A

Similarly,

(3.2b) d3 b3d2A2 a3e2A2
d2

a3A2 b3A2

bl el

a2A2 b2A2 c2A

a3A2 b3A2

(3.2c) e3 c3d2A

bl Cl

a2A2 b2A2

a3A2 c3A

By induction we then obtain the following theorem.
THEOREM 3.1. The computed di and ei using Algorithm Swl satisfy (3.2) for

i 2, 3. And generally for 3 < i <_ n they are such that

bl C1

a2A2 b2A2 c2A

ai_lA2 bi_lA2 ci-1A

aiA2 biA2

bl Cl

a2A2 b2A2 c2A

ai_2A2 bi_2A2 ci_2A

ai_lA2 bi_lA2

aiA2

By similar reasonings, one can obtain the following theorem.
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THEOREM 3.2. The computed fi and gi using Algorithm Swl are such that

biA2 ciA2

gn-1

ai+lA bi+lA2 ci+A2

an-A bn-A2 Cn-A2

an-- i On- A2

bn

an

an-2A

aA cA

bi+lA2 Ci+lA2

ai+2A bi/2A2 ci/2A2

an-lA bn-1 A2 Cn-1 A2

1 <_i<_n--1,

bn_A2 (n_lA2

an bn

l<_i<n-2.

an bn
The computation of ti and uj are more complicated. For t2, we have

b yl

t2 fl(-a2tl + dlY2) -a2tlA2 + dly2A2

d2 t2

a3A2 y3A2

bl Cl

(3.3a)
a2A2 y2A2

Similarly for t3, we have

Now

a2A2 b2A2

Although the expressions for d2 and t2 share the same a2A2 in the above equations,
they are most likely different because d2 and t2 are computed in separate occasions.
Thus strictly speaking, one cannot write the equality

(3.3b)

b c yl

t3 a2A2 b2 A2 y2A2

a3A2 y3A2
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However, the above equality is valid if the right-hand side is interpreted as a compact
representation of the sum of products contained in the expansion of the determinant.
Because then a2A2 can be part of many different products and one can assign different
values for A2 if necessary. Henceforth the above interpretation of equality will be used
in our discussions. Note that the new interpretation does not affect the validity of
Theorems 3.1 and 3.2.

For Un--1 and Un--2, we have

(3.3c) un-1

Yn bn
tn--2

Yn_2A2 Cn_2A2

Yn_lA2 bn_lA2 Cn_lA2

Yn an bn

In general, we have the following theorem.
THEOREM 3.3. The computed ti and uj using Algorithm Swl are such that t2,

t3, Un-1, and Un-2 satisfy (3.3) and for 3 < i <_ n and 1

_
j < n- 2,

(3.4) ti

a2A2 b2A2 c2A y2/k2

ai_2 A2 bi_2A2 ci_2A yi_2 A2

ai_lA2 bi_lA2 yi_lA2

aiA2 yiA2

yA cA

yj+IA2 bj+l A2 cj+lA2

yj+2A2 aj+2A bj+2A2 ci+2A2

Yn_lA2 an-1A bn_l A2 Cn_lA2

Yn

Proof. By construction we have

an bn

ti fl(-aiti_l + di-lyi) -aiti-l A2 + di_lyiA2.

Now the structure of di-1 is given in Theorem 3.1. If we assume that Theorem 3.3 is
true for ti_ 1, then the above expression is exactly equivalent to the expression obtained
when expanding the right-hand side determinant of (3.4) by its last row. Hence (3.4)
is valid. Similar reasonings can also be used to verify the expression for uj. This time
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the expansion of its right-hand side determinant is by its first row. This completes
our proof.

From Theorems 3.1, 3.2, and 3.3 one can obtain the following theorem.
THEOREM 3.4. The computed xi for 1 <_ i <_ n are such that

Xl=
d d’ I=

y2A3 b2A2 c2A2

y3A3 a3A b3A2 c3A2

yn-:A3 an_lA bn_:A2 Cn_lA2

ynA an bn

Xn-- dn d-’

bl Cl

a2A2 b2A2 c2A y2A3

an_2A2 bn_2A2 cn_2A yn_2A3

an_lA2 bn_lA2 Yn_lA3

anA2 ynA3

Xi

di-1

where

bl Cl

C2 A

b_2A

ai_ A2

Ci-2/

bi-1 A2

Yl A3

y2 A5

yi_2 A5

y_A

yA

yi+2/k

y-IA

C/,

b+iA Ci+ ]

Ci+ 2
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Proof. Results for x and xn are straightforward by using Theorem 3.3. For
one can expand i using a similar approach as described in the proof of Lemma 2.1 to
show that

di_ ti_ A3

d_uiA3 t_gA3
g uA3

This completes our proof. E]

4. Error analysis of Algorithm Sw2. To give consistent and compact ex-
pressions similar to Theorems 3.1-3.4 for Algorithm Sw2, we introduce the relation -<
as follows: If for a certain matrix B, we have

A(det B)

p* det B Z P
j=l

where p’s are exact products of error-free data and A(det B) is the total number of
such products in det B, then

(det B) A(det B)

p-f/(detB)- Z pA;_ pA--det/ if -y_<j for allj.
j=l j=l

In other words, j is an upper bound of /. Thus, for example,

bl

a2A2 b2A2

blA C1

a2A2 b2A2

bA cA

a2A2 b2A2

Furthermore, we use the following model in evaluating a general 2 2 determinant:

xA yA
zA wA

1,2 ,k is used to denote the computed determinantFor simplicity, the same 1,2 ,
of a submatrix formed by the common elements of rows/1,/2,..., fk and columns
5, i2,..., tik of the matrix A.

)(iT2/)Consider the computation of i+t for n 8 first. It proceeds as follows: stage

1, the computation of Q2), Q(3a), Q(56), Q(78); stage 2, the computation of Qa), Q(5S);
stage 3, the computation of QS). We give the computed Q2), Q4), and Q4) first.

Q)= Q(aa)= Da’ Qa)=
:a

0 0 -D23:, -D23:54 0

where

Dl:2
bl A ClA

a2A b2A
D3:4

b3A c3A

a4A b4A

b 0

a2A c2A

bA

a2A c2A
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b3A

0 baA

a3

0 C4A

a3A
___

0

and

:2A)(D23:AD:a D:2D3:aA2 D{:D32:A2 (D:2A)(D3:4A)- (D{,3

bA cA

a2A2 b2A2

b3A2 c3A2

a2A2 C2A2

a3A2 c3A2

0 baA

blA clA

a2A2 b2A2 a2A2

a3A2 b3A2 c3A2

1:4 3:4/2 /’1:2/-}3:4A2 _<D1:3,5 Di:2D3,5 ,32,5

biA clA

a2A2 b2A2 c2A2

a3A2 b3A2

a4A c4A

Similar expressions can also be obtained for Q6) and Q(s). We show only the computed

-D5::s 0 0

where

Ds:s _--<

b5A

aA bA c6A

aTA2 bTA2 cTA2

asA bsA

5:8D4,6:s

_ aA cA

b6A2

aTA2

C6A2

b7A2 C7A2

bsA
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Dl:s

bA

a2A2 b2A2 c2A2

a3A2 b3A2 3A2

a4A2 baA2 c4A2

a5A2 bsA2 csA2

a6A2 b6A2 c6A2

aTA2 bTA2 c7A2

asA b8A

In general, the following theorem can be obtained easily by induction.

THEOREM 4 1 The computed "i+1 are such that for

l=2J-1, i=0,1(2J),2(2J),...,n-2J, n=2k, j=l,2,...,k,

where

(i+21)
i+l

1Di+l:i+21
i+l:i--21

-}i+l:i--21
i,i+2:i+21

Di+l,i+2
b+lA c+IA

a+2A b+2A

i+l:i+21

]i+1:i+2/- 1,i+21+1

IDi+l:i+21
-i,i+2:i+21-1,i+21+1

Di+l,i+2 _.
i+1,i+3

bi+lA 0

a+2A

D+l,+2 .
i,i+2

a+A ci+A

0 b+2A
D+l,+2 -4i,i+3

a+A 0

Ciw2A2

ai+21_l A2 bi+21_l A2 Ci+21--1 A2

ai+2tA b+2tA
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Di+l:i+2} ..< f-}i+l:i+21
i-l:i-2l- l,i+21+ i+l:i+21-1,i+21+

b+A c+A

a+2A2 b+2A2 c+2A2

ai+21_2A2 bi+21-2A2

ai+21-1 A2

Ci+21--2A2

bi+21-1A2

ai+21A ci+2lA

Di+l:i+2l ..< f-}i+l:i/21
i,i+2:i+2l i,i+2:i+21

ai+lA ci+IA

bi+2A2 ci+2A2

ai+3A2 bi+3A2 ci.{_3A2

ai+21-1A2 bi+21-1A2 ai+2/-1A2

ai+21A bi+21A

Di+l:i+21 ..< f-}i+l:i+21
i,i+2:i+21-1,i+21+ i,i+2:i+21-1,i+2l+

a+A c+A

bi+2A2 ci+2A2

ai+3A2 bi+3A2 ci+3A2

ai+2-2A2 bi+21_2A2 ci+2/_2A2

ai+21_lA2 bi+21_lA2

ai+2lA ci+2lA

Before we turn our attention to other parts of Algorithm Sw2, we need to define
some additional terms. For any positive integer i, let i be expressed in powers of 2 as
follows:

i 2sl - 2s2 --... - 2s, 0 <_ 81 < 82 < < 8j, 1 <_ j.
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Then we can define the following vectors:

e(28) Vp

p-1

q(i)

.qi)
q(281) A- e(281)

(282 (282)q(282) -+- e -- e

q(28-1) A- e2"-1 -4- e(28-1)

q(2") 4- e
"(28t) is the pth column of a 2s by 28 identity matrix,where each q(

and

[ ]q(2) [0] q(21) 1 q(28) -1) for sj > 2.
1 q(2"

One can also easily establish the following bounds:

(4.1) 1 < q) < [log2 n], 1 < j g i.

As an example, let i 7 20 / 21 / 22 then

q(1) + e(1)
q(7) q(2) -4- e1) - e(1) [1, 3, 2, 3, 3, 2, 2] T

q(4) + e(4)

We have the following theorems.
(i4-2/) ,(i+2/) +(iT2/) (i4-2/)THEOREM 4.2. The computed ,+ + + and m+ are such that

Ior
2J- i 0,1(2J),2(2J),..., n-2 n=2k j=1,2,.., k,

a(i-l-2/) (i-l-2/)
i+1 ---- ti+a+A bi+lA Ci+lA

a+2A2 bi+2A2 ci+2A2

ai+21_2A2 bi+2l_2A2 ci+2/_2A2

ai+21-1A bi+2/-ii

ai+21A
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/(i+2/) k(i-t-2/)

ci+A

b+2A c+2A

a+3A2 bi+3A2 c+3A2

ai/21_l A2 bi+21_lA2 ci/21_lA2

a+2A b+2tA c+tA
(i+2/) ,(i-t-2/)where i+1 and li+l are expressed as the determinant of an upper and lower

triangular matrix, respectively. Also,

t(i+2l) (i-t-2/)
i+I i+i

bA

a2A2 b2A2 c2A2

Yi+l
Aq()

u(i+2/) (i+2/)
i+ " i+

YiT1Aq2’)

(2/)

Yi+2q. bi+2A2 ci+2A2

(2/)
Yi+3Aq3 ai+3A2 bi+3A2 ci+3A2

(22)
Yi+21Aq.

(i+2/)Proof. We prove by substitution. For i+1 we have

[ (+0,(+2) ,(+),(i+2) (+) (+2)
i+1

(i+2/) fl ki+ iTl+l) i+l iTl+lA ai+ aiTl+1A.

ai+21_2A2 bi+21_2A2 ci+21_2A2 Yi+21-2 Aq3

(2/)
ai+21-1A2 bi+21-1A2 Yi+2l-1Aq2

.(22)
ai+21A yi+2l/xul

an_l A2 bn_l A2 Cn_lA2

a,A bnA
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Now

ai+lA bi+iA CiT1A

ai+2A2 biT2A2 ci+2A2

aiTl_2A2 biTl_2 A2 Ci+l_2A2

ai+l_lA2 bi+l_lA2

ai+tA2

(+t)because the right-hand side expression in the above equation is a modified +l with
its last two rows multiplied by A. Similarly,

ai+l+l A2 bi+l+l A2 ci+/+lA2

ai+l+2A2 bi+l+2A2 ci+/+2A2

((i+2/)
ai+21_2A2 bi+21_2A2 ci+21_2A2

ai+21-1A bi+21-1A

Hence

/(i+2/)For i+t we have

Now

0(i-t-2/) .. &(iWl) A,(i-t-2/) (i+2/)
i+l i+l iTI+l

A -- i+l
blA cA

a2A2 b2A2 c2A2

".. Yi+lAq)

ai+2lA

ai+l_lA2 bi+l_lA2 yi+l_lAq0

q(t)
ai+lA Yi+i/x

ai+l_2A2 bi+l_2A2 Ci+l_2A2
-()

Yi+l_2Aq3
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(i+20 and,(i+2)A2 one can multiply one of the A-factor to the first row of ch++1and in ,i++l
the other one to the next to the last row and obtain

ai++A2 bi++A2 ci++A2

&(i+21) A2
i+/+1 ai+21_2A2 bi+21_2A2 ciT2l_2 A2

ai+2z_lA2 bi+2Z_l&,2

a+2A

$(i+2/)AFurthermore, the A-factor in i+t+l’-" can be multiplied to the last column of i+/+1(i+2/)
to obtain

i+l+1A

A Aa2 b2 c2 A2

/2 /2 hql) +
a-l+l A2 b+ l+ (i-{- l+ Yi+/

Now

(i+2/) i -+- A,(i+2/) A2(i+/)
i+/+1 i+/+1 -i+1

bl A Cl i

a/2-2 b/2-2

a+ l--1/2

Ci+ 2/--2/2 Yi+ 2/--2/qil) +

bi+21_i / Yi+21_i
/q(2)+1

ai+ 2lA yi+ 2l /
ql) +

a2A2 b2A2 c2A2

Yi+liq0

ai+lA2 bi+,A2 yi+lAq)

Yi+l+lAq’)+1

ai+21_l A2 bi+21_l A2

ai+2lA
()

Yi+2lAql +1
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since one can expand the above determinant by splitting the last column into two
parts with nontrivial parts formed by the vectors

Yi+lAq)

yi+iAq1

yi+l+lAq)+1

,,()
Yi+2lZl +1

$(i-t-2/) (i+2/) A2(i+/)and their sum is precisely i++lA / (i+lTl’-" i+l Furthermore, by using the recur-
sive definition

q(2) [q(2-l) - e(2j-) ]q(2j-)

the nontrivial parts of the last column can be expressed as

(2/) (2/) T
Yi+lAq. Yi+iAq}t) yi+t+iAq}:) Yi+21/kq

Thus
[(+:*) A + .(+2)A2(+) #+2,
i+l+l i+l-t-l Oi+l i+l

The validity of the expressions for i+2 and i+2
i+1 .i+ can also be proved using similar

reasonings. This completes our proof.
The following theorems can also be proved easily by induction.
THEOREM 4.3. The computed di, ei, and t) for n >_ i >_ 2 are such that

bA cA

a2A2 b2A2 c2A2

ai_A2 bi_lA2 ci_A2

aiA biA

blA

a2A2 b2A2 C2A2

ai_2A2 bi_2A2 ci_2A2

ai_lA2 bi_lA2

aiA



710 NAI-KUAN TSAO

blA ClA

a2A2 b2A2 c2A2
_()

y2A-I

ai_2A2 bi_2A2 Ci_2A2 Yi-2/kqa--
()

ai-lA2 bi-1/k2 yi-1Aq()
()

aiA yiAql

THEOREM 4.4. The computed fi gi, and un) for n- 1 >_ i >_ 1 are such that

bA cA

a+A2 b+A2 ci+A2

a,_A2 b,_A2 Cn_lA2

anA bnA

aA cA

bi+l A2 c+A.
ai+A2 b+2A2 c+2A2

a,_A2 b,_A2 c_A2

anA bnA

yiAq"-+) cA

yi+l Aq(:
"-+)

bi+lA2 ci+1A2
(-+)

A2y+2A% a+2 bi+2A2 c+2A2

(,-+)

Yn--1

(n-- i---I)
ynA,-+

a._A2 b._A2 Cn_l A2

From Theorems 4.1-4.4 one can easily obtain the following theorem.
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THEOREM 4.5. The computed x for 1

_
i

_
n are such that

Xn

where

ylAl+q) ciA

y2A+q() b2A2 c2A2

y3Al+q() a3A2 b3A2 c3A2

Yn_lAl+q(l an_l /k2

ynA+q’)

Cn--1A2

blA

a2 A2 b2A2 c2A2

a_2A2 bn_2A2 c_2A2

an- A2 bn-1A2

ani

ylAl+q(’)

1-- _(n)
y2A

Yn_2 /k l+q(a’)

Yn_l /k +q(’)

ynAl+q’)

and

di_l ti-1)A3
u(n)Aa
dn dn

where
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bl A cl A

a2A b2A C2 A2

yl A3+q’.
I)

_(-)

A Ab+ Ci+

A3+ _(n-i+l)q,_ A2 A2 A2Yn-1 an-1 an-1 On--1

ynA3+q(nn--ii++11) anA b,A

5. Concluding remarks. From Theorems 3.4 and 4.5 we see that although the
computed solution component x cannot be expressed as the exact answer of a neigh-
boring system of the original matrix A and the right-hand side vector y, nevertheless
the computed solution component is of the form p where p and q are sums of prod-q
ucts of the perturbed input data. Furthermore, if the exact solution component xi is
expressed as

j:l PJ
Xi -X(DI:n)

A..k--1 qk

then

where

)(Dl:n) )(Dl:n(i)) f IlSwl if i 1,

q-=ll, v-=/llfr2<-<--’k:l j--1 {n[Swl if i n,

By using Theorems 3.4, 4.5, and (4.1), one can easily bound the relative error of pj
or qk as follows:

I/YJ PJ{ < A2n+l 11 < (2n + 1)u + O(u2)
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I/. P.I < A’+a’ 11 _< (2n + [logz nq)u + O(uZ),Ipl

Iqk qk _< IzX(,,-)- 11 _< 2(n- 1)u + O(u2),Iqkl

[Ok- qkl < iA2(n_l)_ 11 < 2(n- 1)u + O(u2).

The above first-order bounds can thus be used to sess the relative importance of
errors caused by the computation versus those caused by the inherent data error.

Acknowledgment. The author wishes to thank the anonymous referee for giving
numerous suggestions that greatly helped to improve the presentation of this paper.
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SENSITIVITY OF THE STATIONARY
DISTRIBUTION OF A MARKOV CHAIN*

CARL D. MEYER

Abstract. It is well known that if the transition matrix of an irreducible Markov chain of
moderate size has a subdominant eigenvalue which is close to 1, then the chain is ill conditioned in
the sense that there are stationary probabilities which are sensitive to perturbations in the transition
probabilities. However, the converse of this statement has heretofore been unresolved. The purpose
of this article is to address this issue by establishing upper and lower bounds on the condition
number of the chain such that the bounding terms are functions of the eigenvalues of the transition
matrix. Furthermore, it is demonstrated how to obtain estimates for the condition number of an
irreducible chain with little or no extra computational effort over that required to compute the
stationary probabilities by means of an LU or QR factorization.

Key words. Markov chains, stationary distribution, stochastic matrix, sensitivity analysis,
perturbation theory, character of a Markov chain, condition numbers

AMS subject classifications. 65U05, 65F35, 60J10, 60J20, 15A51, 15A12, 15A18

1. Introduction. The problem under consideration is that of analyzing the
effects of small perturbations to the transition probabilities of a finite, irreducible,
homogeneous Markov chain. More precisely, if Pnn is the transition probability
matrix for such a chain, and if 7r

T (71"1, 7r2, 71"n) is the stationary distribution
nvector satisfying rTp rT and i=1 ri 1, the goal is to describe the effect on

rT when P is perturbed by a matrix E such that P + E is the transition
probability matrix of another irreducible Markov chain.

Schweitzer (1968) provided the first perturbation analysis in terms of Kemeny
and Shell’s "fundamental matrix" Z = (A + eTrT)-1 in which A = I- P and e is
a column of l’s. If Act denotes the group inverse of A [Meyer (1975) or Campbell
and Meyer (1991)], then

Z (A - eTrT) -1 ACt + e’a"T.
But in virtually all applications involving Z, the term en"T is redundant; i.e., all
relevant information is contained in ACt. In particular, if T (’1, ’2, ’n) is
the stationary distribution for 15 P + E, then

(1.1)
and

(1.2)

rT (I + EA#) -1

 ’TII I1 11
in which II*ll can be either the 1-, 2-, or oc-norm. If the jth column and the (i,j)-
entry of A# are denoted by A.#j and a, respectively, then

(1.3) [ rj -< tlEII IIA 
*Received by the editors April 6, 1992; accepted for publication (in revised form) October 30,
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DDM-8906248.

North Carolina State University, Mathematics Department, Raleigh, North Carolina 27695-
8205 (meyer@math.ncsu.edu).
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716 CARL D. MEYER

and

(1.4) max < II ll max
j i,j

This bound is about as good as possible--see Ipsen and Meyer (1994) for a discussion
of optimal bounds. Moreover, if the transition probabilities are analytic functions of
a parameter t so that P P(t), then

(1.5)
darT

= art dPA# and dTrj arT dP A#.
dt dt dt -- *J"

The results (1.1) and (1.2)are due to Meyer (1980), and (1.3) appears in Golub and
Meyer (1986). The inequality (1.4)was given by Funderlic and Meyer (1986), and
the formulas (1.5) are derived in Golub and Meyer (1986) and Meyer and Stewart
(1988). Seneta (1991) established an inequality similar to (1.2) using the coefficient
of ergodicity rl(A#) in place of II A# II.

These facts make it absolutely clear that the entries in A# determine the extent
to which art is sensitive to small changes in P, so, on the basis of (1.4), it is natural
to adopt the following definition of Funderlic and Meyer (1986).

DEFINITION 1.1. The condition of a Markov chain with a transition matrix P
is measured by the size of its condition number, which is defined to be

where a is the (i, j)-entry in the group inverse A# of A I-P. It is an elementary
fact that , is invariant under permutations of the states of the chain.

For chains of moderate size, it is not difficult to show (see the proof of Theorem
2.1 given in 4) that if there exists a subdominant eigenvalue of P which is close to
1, then g must be large. However, the converse of this statement has heretofore been
unresolved, and our purpose is to focus on this issue. More precisely, we address the
following question.

If the subdominant eigenvalues of an irreducible Markov chain are well sep-
arated from 1, can we be sure that the chain is well conditioned? In other
words, do the subdominant eigenvalues of P (or equivalently, the nonzero
eigenvalues of A) somehow provide complete information about the sensi-
tivity of the chain--or do we really need to know something about the singular
values of A?

The conjecture that g- maxi,j al is somehow controlled by the nonzero eigenvalues
of A is contrary to what is generally true--a standard example is the triangular
matrix

(1.6)
,1 -2 0 0 0
0 1 -2 0 0

0 0 1 . 0 0

0 0 0 1 -2
0 0 0 0 1

1 2 4 2n-2 2n-1

0 1 2 2n-3 2n-2

0 0 1 "’. 2,-4 2n-3

0 0 0 1 2

0 0 0 0
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for which maxi,j IT-:]ij is immense for even moderate values of n, but the eigenvalues
of T provide no clue whatsoever that this occurs. The fact that the eigenvalues are
repeated or that T is nonsingular is irrelevant--consider a small perturbation of T
or the matricds

_
(0 0) and #= (0 0 )0 T 0 T-:

We will prove that, unlike the situation illustrated above, irreducible stochastic ma-
trices P possess enough structure to guarantee that growth of the entries in A# is
controlled by the nonzero eigenvalues of A I- P. As a consequence, it will follow
that the sensitivity of an irreducible Markov chain is governed by the location of its
subdominant eigenvalues.

2. The main result. In the sequel, it is convenient to adopt the following
terminology and notation.

DEFINITION 2.1. Let P be the transition probability matrix of an n-state
irreducible Markov chain, and let

a(P)- (1, ,k2, ,k3,...,

denote the eigenvalues of P. The character of the chain is defined to be the (nec-
essarily real) number

X (I &2)(l &3). (I &).
It will follow from later developments that

(2.1)

A chain is said to be of "weak character" when X is close to 0, and the chain is said
to have a "strong character" when X is significantly larger than 0.

If

0 C T

(e.g., this may be the reduction to Jordan form) where the spectral radius of C is
less than 1, then

A-T-I( 0 0 )’I’ and A#-’r-l( 0 0
0 I-C 0 (I-C)-: T

[Campbell and Meyer (1991)], so

X det (I- C) and X
-: det (I- C) -1.

In other words, X and X-: are the respective determinants of the nonsingular parts
of A and A# in the sense that

-det (A/n,A)) and

where A/n(A denotes the linear operator defined by restricting A to R(A). It is

also true that X-: det (Z) where Z is Kemeny and Shell’s "fundamental matrix."
The main result of this paper is the following theorem which establishes the

connection between the condition of an irreducible chain and its character.

The character was denned by Meyer (1993) to be X n-:(1 A2)(1 A3)’" (I An), which
is the normalization of the definition given here.
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THEOREM 2.1. For an irreducible stochastic matrix Pnn, let A I- P, and
for j, let 6ij(h) denote the deleted product of diagonal entries

If 6- maxi,j 6ij(A) (the product of all but the two smallest diagonal entries), then
the condition number t is bounded by

26(n- 1) 2(n- 1)< < <
n min[1-il X X

The proof of this theorem depends on exploiting the rich structure of A, some
of which is apparent, and some of which requires illumination. Before giving a formal
argument, it is necessary to detail the various components of this structure, so the
important facets are first laid out in 3 as a sequence of lemmas. After the necessary
framework is in place, it will be a simple matter to connect the lemmas together in
order to construct a proof; this is contained in 4.

By combining Theorem 2.1 with (1.4) and the other facts listed in 1, we arrive
at the following conclusion.

THEOREM 2.2. The condition of an irreducible Markov chain is primarily gov-
erned by how close the subdominant eigenvalues of the chain are to 1. More precisely,
if an irreducible chain is well conditioned, then all subdominant eigenvalues must be
well separated from 1, and if all subdominant eigenvalues are well separated from 1 in
the sense that the chain has a strong character, then it must be well conditioned.

It is a corollary of Theorem 2.1 that if max.#l I$i] << 1, then the chain is not
overly sensitive, but it is important to underscore the point that the issue of sensitivity
is not equivalent to the question of how close maxi#l I$il is to 1. Knowing that some
I$il 1 is not sufficient to guarantee that the chain is sensitive; e.g., consider the
well-conditioned periodic chain (or any small perturbation thereof) for which

P 1 0 0 and A# 1

010
0 1-1.

-1 0 1

3. The underlying structure. The purpose of this section is to organize
relevant properties of A I- P into a sequence of lemmas from which the formal
proof of Theorem 2.1 can be constructed. Some of the more transparent or well-known
features of A are stated in the first lemma.

LEMMA 3.1. If A I-P where Pnn is an irreducible stochastic matrix, then
the following statements are true.
(3.1) A as well as each principal submatrix of A has strictly positive diagonal

entries, and the off-diagonal entries are nonpositive.
(3.2) A is a singular M-matrix of rank n- 1.
(3.3) If B (k < n) is a principal submatrix of A, then each of the following

statements is true.
(a) B is a nonsingular M-matrix.

(b) B- _>0.
(c) det (B) > 0.

(d) B is diagonally dominant.

() dCt (n) _< _<
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Proof. These facts are either self-evident, or they are direct consequences of well-
known results--see Berman and Plemmons (1979) or Horn and Johnson (1991). []

Part of the less transparent structure of A is illuminated in the following sequence
of lemmas.

LEMMA 3.2. If Pun is an irreducible stochastic matrix, and if Ai denotes the
principal submatrix of A- I- P obtained by deleting the th row and column from
A, then

i--1

Proof. Suppose that the eigenvalues of A are denoted by (#, t2, ttn}, and
write the characteristic equation for A as

gn-1x /

_
+ / cx + c0 0.

Each coefficient cn- is given by (-1) times the sum of the product of the eigen-
values of A taken k at a time. That is,

(3.4) a--(-1) E #iPi’"#i.
l<_il<’"<ik<_n

But it is also a standard result from elementary matrix theory that each coefficient
Cn-k can be described as

c_k (-1)k E(all k x k principal minors of A).

Since 0 is a simple eigenvalue for A, there is only one nonzero term in the sum (3.4)
when k n- 1, and hence

a (-1)n-1##3"" "#n (-1)n-1(1 =)(1 a)’" .(1 )

(-1)-E det (A).
i-1

Therefore,

E det (Ai) H (1 ) X. []

i=1 k=2

LEMMA 3.3. If Ai denotes the principal submatrix of A- I- P obtained by
deleting the th row and column from A, and if ri is the th stationary probability,
then the character of the chain is given by

det (Ai)
’i

Proof. This result follows directly from Lemma 3.2 and the fact that the station-
ary distribution rT is given by the formula

det (A)
det (hi), det (h), act (A)

[Golub and Meyer (1986)or Iosifescu (1980), p. 12a]. rl

The mean return time for the kth state is R 1/rk [Kemeny and Snell (1960)],
and, since not all of the ’ ’s can be less than l/n, there must exist a state such that
R <_ n. By combining this with (.ac) and (a.ae), an interesting corollarywhich
proves (2.1)is produced.
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COROLLARY 3.1. If R denotes the mean return time for the klh state then

0 < det (Ai) < X _< min Rk <_ n for each i- 1, 2,..., n.

LEMMA 3.4. If A I- P where Pnn is an irreducible stochastic matrix, and
/f Bk (k < n) is a principal submatrix of A, then the largest entry in each column
of B-1 is the diagonal entry. That is, for j- 1,2,..., k, it must be the case that

[B-1]jj _> [B-1]ij for each 7 j.

At least two different proofs are possible, and we shall give both because each is
instructive in its own right. The first argument is shorter and more probabilistic, but
it rests on a result which requires a proof of its own. The second argument involves
more algebraic details, but it is entirely self-contained and depends only on elementary
concepts.

Probabilistic proof. Without loss of generality, assume that B is the leading
k k principal submatrix of A so that P has the form

Consider any pair of states and j in the set S {1, 2,..., k}, and let Nj denote
the number of times the process is in state j before first hitting a state in the com-
plement S {k -t- 1, k -t- 2, n}. If Xn denotes the state of the process after n
steps, and if

hij P(hitting state j before entering Xo i),

then

1 ifi-j,(3.5) E[Nj X0 i]- dij + hijE[Nj Xo j] where dij 0 if/ j.

This statement (which appears without proof on p. 62 in Kemeny and Snell (1960))
is intuitive, but it is not trivial. The theory of absorbing chains says that

[B-]# E[Nj Xo -i],

so for j we have [B-]ij hij[B-1]jj <_ [B-1]jj. [3

Algebraic proof. Assume that B is the leading k x k principal submatrix of A,
and suppose the states have been arranged so that the jth state is listed first and the
ith state is listed second. The goal is to prove that [B-1111 >_ [B-1121. Because

B-l] 11 ---- act (Bll) and [B -1121 -- -det (B 2)
det (B) det (B)

where Bij denotes the submatrix of B obtained by deleting the ith row and jth
column from B and because Lemma 3.1 guarantees that det (B) > 0, it suffices to
prove that

det (Bll) -k- det (B12) >_ 0.
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Denote the first unit vector by eT (1, 0,..., 0), and partition B as

1 pll -P12

B-
-p21 1-p2

--Pkl --Pk

--Plk
-Pk [’ 1 Pl

bl
1 pk

In terms of these quantities, det (Bll)+ det (B12) is given by

det (BI) + act (BI) act (b Iba I"" Ib) + act (b Iba I""
= det (b2 + bl [ba I"" [bk)
= det (Bll + bleT)

det (B) (1 + eTBi-bl).
Lemma 3.1 also insures that det (B) > 0, so the proof can be completed by arguing
that

1 + eTBi-lbl _> 0.

To do so, modify the chain by making state 1 as well as states k + 1, k + 2,..., n
absorbing states so that the transition matrix has the form

( 1 0 0 0 0

P21 P22 P23 P2k P2,k+l P2n
Pal P32 P33 Pak P3,k+ Pan

P P2 P3 Pk P,+ Pn

0 0 0 0 1 0

0 0 0 0 0 1

0

0/Q a= -bl0 0 In-k
It follows from the elementary theory of absorbing chains that the entries in the matrix

(I Q)-I( bl R) B-I ( bl

represent the various absorption probabilities, and consequently all entries in -B-lbl
are between 0 and 1 so that

0 _< 1 + eTBi-lb <_ 1.

Note. Although it may not be of optimal efficiency, the algebraic argument given
above is also a proof of the statement (3.5).

LEMMA 3.5. If A I- P where Pnx, is an irreducible stochastic matrix, and
if Bkx (k < n) is a principal submat.rix of A, then

max/ 5i(B) 1
0 < det (B) _< <

maxi,j [B-]ij maxi,j [B-1]ij
where 6r(B) denotes the deleted product 6,.(B) blb2.. "bkk/brr.
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Proof. Lemma 3.4 insures that there is some diagonal entry [B-litr
of B-1

such that

(3.7) [B -1] -max[B-1]ij.rr i,j

If Brr is the principal submatrix of B obtained by deleting the rth row and column
from B, then (3.3e) together with (3.7)produces

det(B)- det(Br) < 5r(B) 5r(B)
[B-litr [B-litr maxi,j [B-litj

< max./ 5i(B) < 1

maxi,j [B-litj maxi,j [B-1]ij"

LEMMA 3.6. For an irreducible stochastic matrix Pnxn, let Aj be the principal
submatrix of A I- P obtained by deleting the jth row and column from A, and
let Q be the permutation matrix such that

Aj cj IQTAQ
d ajj

If the stationary distribution for QTpQ is written as l)T rTQ (FT, rj), then
the group inverse of A is given by

(I eFT)A-I (I eFT)
A# Q

_FTA,-I(I eFT)

--zj(I eFT)A’le) QT
j FTAIe

where e is a column of 1 ’s whose size is determined by the context in which it appears.

Proof. The group inverse possesses the property that (T-AT)# T-A#T
for all nonsingular matrices W [Campbell and Meyer (1991)], so

Aj cj )
#
QTA# -Q Tdj ajj

Since rank(QTAq) n 1, it follows that ajj d’Alcj 0, and this is used to
verify that

(Aj c/)
#

(A
-1

0)-(l-ebT) (I-eT)
d aj 0 0

( (I eFT)A-I(I eFT)

-FTA-: (I eFT)
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4. Proof of the main theorem. The preceding sequence of lemmas are now
connected together to prove the primary results stated in Theorem 2.1.

The upper bound. To derive the inequalities

2i(n- 1) 2(n- 1)(4.1) m.a.x a/l <

_
begin by letting Q be the permutation matrix given in Lemma 3.6 so that for : j,
the (i,j)-entry of A# is the (k, n)-entry of QTA#Q where k -n. In succession, use
the formula of Lemma 3.6 and Hhlder’s inequality followed by the results of Lemmas
3.5 and 3.3 to write

< IIA; II <  )max [Af]

< 2rj(n- 1)maxi ii(Aj) < 2rj(n- 1)6
det(Aj) det(Ai)

26(n- 1) < 2(n- 1)

Now consider the diagonal elements. The (j,j)-entry of A# is the (n,n)-entry of
QTA#Q, so proceeding in a manner similar to that above produces

< =# IIA)- II < 1)max [Af t]
Cx:) r8 r8

< rj(n- 1)max/6i(Aj) < rj(n- 1)6
det (Aj) det (Aj)

6(n-l) < (n-l)

thus proving (4.1).
The lower bound. To establish that

n min I1- Ail -< ?Dx
Ai#l

make use of the fact that if Ax #x for # 0, then A#x p-tx [Campbell and
Meyer (1991), p. 129]. In particular, if A - 1 is an eigenvalue of P, and if x is a

corresponding eigenvector, then Ax (1 A)x implies that A#x (1 A)-lx, so

1
i! ||c i,j jI



724 CARL D. MEYER

5. Using an LU factorization. Except for chains which are too large to fit
into a computer’s main memory, the stationary distribution rT is generally computed
by direct methods; i.e., either an LU or QR factorization of A I- P (or AT
is computed [Harrod and Plemmons (1984); Grassmann et al. (1985); Funderlic and
Meyer (1986); Golub and Meyer (1986); Barlow (1993)]. Even for very large chains
which are nearly uncoupled, direct methods are usually involved--they can be the
basis of the main algorithm [Stewart and Zhang (1991)], or they can be used to solve
the aggregated and coupling chains in iterative aggregation/disaggregation algorithms
[Chatelin and Miranker (1982), Haviv (1987)]. In the conclusion of their paper, Golub
and Meyer (1986) make the following observation.

Computational experience suggests that when a riangular factorizaion of
An xn is used to solve an irreducible chain, the condition of the chain seems
to be a function of the size of the nonzero pivots, and this means that it should
be possible to estimate with litlle or no extra cost beyond that incurred in
computing rT. For large chains, this can be a signifieanl savings over the
O(n2) operations demanded by traditional condition estimators.

Of course, this is contrary to the situation which exists for general nonsingular matri-
ces because the absence of small pivots (or the existence of a large determinant) is not
a guarantee of a well-conditioned matrix--consider the matrix in (1.6). A mathemat-
ical formulation and proof (or even an intuitive explanation) of Golub and Meyer’s
observation has heretofore not been given, but the results of 2 and 3 now make it
possible to give a more precise statement and a rigorous proof of the Golub-Meyer ob-
servation. The arguments hinge on the fact that whenever rT is computed by means
of a triangular factorization of A (or AT), the character of the chMn is always an
immediate by-product. The results for an LU factorization are given below, and the
analogous theory for a QR factorization is given in the next section.

Suppose that the LU factorization 2 of A- I- P is computed to be

A LU
rT 1 0 0

If An is the principal submatrix of A obtained by deleting the last row and column
from A, then An is a nonsingular M-matrix, and its LU factorization is An LnU.
Since the LU factors of a nonsingular M-matrix are also nonsingular M-matrices
[Berman and Plemmons (1979), Horn and Johnson (1991)], it follows that L and
Un are nonsingular M-matrices, and hence L _> 0 and U >_ 0. Consequently,
rT

_
0, so the solution (obtained by a simple substitution process with no divisions)

of the nonsingular triangular system xTLn -rT is nonnegative. This together with
the result of Lemma 3.3 and Theorem 2.1 produces the following conclusion.

THEOREM 5.1. For an irreducible Markov chain whose transition matrix is P,
let the LU factorization of A- I- P be given by

c)A LU-
rT 1 0 0

2 Regardless of whether /k or AT is used, Gaussian elimination with finite-precision arith-
metic can prematurely produce a zero (or even a negative) pivot, and this can happen for well-
conditioned chains. Practical implementation demands a strategy to deal with this situation, and
Funderlic and Meyer (1986) and Stewart and Zhang (1991) discuss this problem along with possible
remedies. Practical algorithms involve reordering schemes which introduce permutation matrices,
but these permutations are not important in the context of this section, so they are suppressed.
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If xT is the solution of xTLn --rT, then each of the following statements is true.
The stationary distribution of the chain is

(5 1) rT_ 1
(xT 1).-+llxll

The character of the chain is

(5.) x
t (u) (1 + Ilxlll) det (Un).

The condition number for the chain is bounded above by

(5.3) a <
2g(n- 1)rrn
det (Un)

26(n- 1) 2(n- 1)
(1 + Ilxll,) dCt (U.) -< (1 + Ilxil,) det (U,)"

The condition number for the chain is bounded below by

n-1 n-1

(5.4) r <
.= , (+llxll) = .= ,,,-

where Uii is the th pivot in Un.
Proof. Statements (5.1), (5.2), and (5.3)are straightforward consequences of the

previous discussion. To establish (5.4), first recall from Lemma 3.6 that

a#nn "xn wTAle a’n wTu!Lle > 0.

Since UI>_ 0 and LI>_ 0, it follows that TuI and Lle can be written as

Lle (1, 1 +/32 1 +/3_1

where each ai and /3i is nonnegative, and consequently (setting a0 -/30 0

n-1 n-1

TAle TU;1Lle Zi=l
(ri + ci)(luii + 13i) >_ i uiir-i

Therefore,

n-1
_

a#nn 7rn TUILle
_

.= tii

n-11

)2 Uii"(1 / Ilxlll .=

As mentioned before, the pivots or the determinant need not be indicators of the
condition of a general nonsingular matrix. In particular, the absence of small pivots (or
the existence of a large determinant) is not a guarantee of a well-conditioned matrix.
However, for our special matrices A I- P, the bounds in Theorem 5.1 allow the
pivots to be used as condition estimators.
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COROLLARY 5.1. For an irreducible Markov chain whose transition matrix is P,
suppose that the LU factorization of A I- P and the stationary distribution rT

have been computed as described in Theorem 5.1. If the pivots Uii are large relative to
r in the sense that rn/det (U) is not too small, then the chain is well conditioned.

If there are pivots Uii which are small relative to rnrri in the sense that

n-1

7rn E 7ri/uii
i-1

is large, then the chain is ill conditioned.

6. Using a QR factorization. The utility of orthogonal triangularization is
well documented in the vast literature on matrix computations, and the use of a QR
factorization to solve and analyze Markov chains is discussed by Golub and Meyer
(1986). The following theorem shows that the character of an irreducible chain can be
directly obtained from the diagonal entries of R and the last column of Q, and this
will establish an upper bound using a QR factorization which is analogous to that in
Theorem 5.1 for an LU factorization. A lower bound analogous to the one in Theorem
5.1 is not readily available.

THEOREM 6.1. For an irreducible Markov chain whose transition matrix is P,
the QR factorization of A- I- P is given by

(Qn c )(Rn -Rne) (QnRn -QnRne)A QR-
dT qn 0 0 dTRn -dTRne

If q denotes the last column of Q, then each of the following statements are true.
The stationary distribution of the chain is

(6.1) T =
qT

qin

The character of the chain is

(6.2) X -I[qll det (Rn).

The condition number for the chain, is bounded above by

26(n- 1) 2(n- 1)(6.3) g < Ilqe (K) -< Ilqll det (R)"

Proof. The formula (6.1) for rrT is derived in Golub and Meyer (1986). To prove
(6.2)., first recall the result of Lemma 3.3, and observe that

(detA)
2 (det QR) (det Qn) (detRn)

Use the fact that QQT I implies QnQuT + ccT I to obtain

(det Q)2 det (Q,QT) det (I ccT) 1 cT c qn,
and substitute this into the previous expression to obtain (6.2). The bound (6.3) is
now a consequence of the result of Theorem 2.1.
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7. Concluding remarks. It has been argued that the sensitivity of an irre-
ducible chain is primarily governed by how close the subdominant eigenvalues are to
1 in the sense that the condition number of the chain is bounded by

26(n- 1)< <
n min I1 -Ail

Although the upper bound explicitly involves n, it is generally not the case that
25(n- 1)/X grows in proportion to n. Except in the special case when the diagonal
entries of P are 0, the term 5 somewhat mitigates the presence of n because as n
becomes larger, 5 becomes smaller.

Computational experience suggests that 25(n-1)/: is usually a rather conserva-
tive estimate of , and the term 5/X by itself, although not always an upper bound
for , is often of the same order of magnitude as . However, there exist pathological
cases for which even 5/X severely overestimates . This seems to occur for chains
which are not too badly conditioned and no single eigenvalue is extremely close to 1,
but enough eigenvalues are within range of 1 to force X-1 to be too large. This sug-
gests that for the purposes of bounding above, perhaps not all of the subdominant
eigenvalues need to be taken into account. In a forthcoming article, Seneta (1993)
addresses this issue by an analysis involving coefficients of ergodicity.

When direct methods are used to solve an irreducible chain, standard condition
estimators can be used to produce reliable estimates for , but the cost of doing so
is O(n2) operations beyond the solution process. The results of Theorems 5.1 and
6.1 make it possible to estimate with the same computations which produce rT.
Although the bounds for produced by Theorem 5.1 are sometimes rather loose,
they are nevertheless virtually free. One must balance the cost of obtaining condition
estimates against the information one desires to obtain from these estimates.

8. Acknowledgments. The exposition of this article was enhanced by sugges-
tions provided by Dianne O’Leary, Guy Latouche, and Paul Schweitzer.
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Abstract. It is shown that a matrix can be strongly inertia preserving without being diagonally
stable.
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1. Introduction. All matrices in this note are real. For a square matrix A let
i+(A) be the number of eigenvalues with a positive real part, io(A) the number of
pure imaginary eigenvalues, and i_ (A) the number of eigenvalues with a negative real
part. As usual, the triple

In A {i+(A), io(A), i_ (A)}

is the inertia of A. We further denote by Bo(A) the class of all positive semidefinite
matrices B with

(BA)ii 0, i 1,...,n,

and let

rA min (rank B; 0 B e Bo(A) } if Bo(A) {0},
where

rA OC if Bo(A)
An n n matrix A is (positive) stable if i+(A) n. Motivated by the classical

Lyapunov theorem, which says that A is stable if and only if there exists a posi-
tive definite matrix X such that AX + XAT is positive definite, we say that A is
Lyapunov diagonally stable if there exists a positive diagonal matrix D such that
AD + DAT is positive definite. Furthermore, A is Lyapunov diagonally semistable if
there exists a positive diagonal matrix D such that AD+DAT is positive semidefinite,
and A is Lyapunov diagonally near stable if it is Lyapunov diagonally semistable but
not Lyapunov diagonally stable. For applications of these classes of matrices see [3]
and [5].

We say that a matrix A is inertia preserving if In AG In G for every invertible
diagonal matrix G and strongly inertia preserving if In AG In G for every (possibly
singular) diagonal matrix G.

Observe that A is strongly inertia preserving if and only if every principal sub-
matrix of A is inertia preserving.
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Research Fund.

Department of Mathematics, Technion-Israel Institute of Technology, Haifa, Israel 32000
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In [2] it is shown that every Lyapunov diagonally stable matrix is strongly inertia
preserving. Using an example given in [5], we show that the converse is not true by
proving that a Lyapunov diagonally near stable matrix with rA

_
3 is strongly inertia

preserving. We conjecture that Lyapunov diagonally semistable matrices are strongly
inertia preserving if and only if rA

_
3.

2. Lyapunov diagonally semistable matrices with rA_ 3. We use the fol-
lowing result.

THEOREM 1 ([2, Corollary 5.4]). A Lyapunov diagonally semistable matrix A is
inertia preserving if and only if for every B E Bo(A) of rank not exceeding 2 and for
every diagonal invertible G, the matrix BAG is skew symmetric only when B O.

We start with a lemma in which A need not be Lyapunov diagonally semistable.
LEMMA 1. Let A[a] be the principal submatrix of a square matrix A based on the

indices in (. Then

rA[a]

_
rA.

Proof. If B0(A[a]) {0}, then rA[] c. Otherwise, let 0 C E B0(A[a])
be of minimal rank. Let B be a matrix of the same order as A such that B[(]
C and all other entries of B are zeros. Then, B Bo(A) and rA

_
rank B

rank B[] rA[].
THEOREM 2. If A is Lyapunov diagonally semistable and rA >_ 3, then A is

strongly inertia preserving.
Proof. If rA

_
3, then the only matrix of rank _< 2 in Bo(A) is the zero matrix,

so by Theorem 1, A is inertia preserving. By Lemma 2 and Theorem 1 all principal
submatrices of A are inertia preserving, so A is strongly inertia preserving.

By Theorem 3.4 of [6] or Theorem 3.1 of [4], a Lyapunov diagonally semistable
matrix is Lyapunov diagonally stable if and only if rA cc (Bo(A) {0}). In [5] it
is shown that the matrix

10 0 1 0 5 8
-4 5 10 0 -3 -2
6 -6 4 -4 5 -4
8 4 4 4 6 4

-2 7 -1 -2 2 14
0 5 6 2 -3 4

is Lyapunov diagonally semistable with rA 3. Thus, it is an example of a strongly
inertia-preserving matrix that is not Lyapunov diagonally stable.

3. Lyapunov diagonally semistable matrices with rA_ 2. We start with
a proposition where it is not assumed that A is Lyapunov diagonally semistable.

PROPOSITION 1. A matrix A has a singular principal submatrix if and only if
rA--1.

Proof. Suppose rA 1. Then there exists a nonzero vector x such that (xxTA)ii
0, for all i. Let a be the support of x, that is, a {i; xi 0}. Then A[a], the principal
submatrix of A based on the indices in a, is singular.

Conversely, suppose A[a] is a singular principal submatrix of A. Let x Rn be a
nonzero vector such that

x[{1,2,...,n} a] 0 and x[a]TA[a] O.

Then xxTA 0, so xxT Bo(A) and rA 1.
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For Lyapunov diagonally semistable matrices, we suggest the following.
CONJECTURE 1. Let A be Lyapunov diagonally semistable. Then A is strongly

inertia preserving if and only if rA > 3.
To prove the conjecture, it suffices by the previous section and the above propo-

sition to show that if rA 2, then A cannot be strongly inertia preserving.
A partial result in this direction is as follows.
PROPOSITION 2. If A E Nax3 is Lyapunov diagonally semistable and if rA 2,

then A is not inertia preserving.
Proof. We shall prove that there exists a nonzero matrix B Bo(A) and an

invertible diagonal matrix G such that BAG is skew symmetric; so, by Theorem 1, A
is not inertia preserving.

Let B be a rank 2 matrix in Bo(A). Then

BA= [ ]0 a b
c 0 d
e h 0

We show that there exists an invertible diagonal matrix G diag {gl,g2,g3} such
that

BAG + GATB O.

Indeed, the system
cgl + ag2 O,
egl + bg3 0,

fg2 + dg3 0

has a nontrivial solution gl, g2, g3, since

det e 0 b --det c 0 d
Ofd efO

det BA,

and det BA- 0 as rank B 2.
To show that gl, g2,93, are nonzero, it is enough, without loss of generality, to

prove the impossibility of the following two cases:
(a) 1 O, 2 # O, g3 O.
(b) gl g2 0, 93 7 0.
In the first case

ag2 O,
bg3 O,

f92 -4- dg3 O,
where g2 and g3 are nonzero. Consequently, a- b- O, so

BA-
0 0 O]c 0 d
efO

Thus, BIA 0, where B1 denotes the first row of B.
By Proposition 1, A is nonsingular; hence B1 0, so

0 0 O]0 b22 b23
0 b23 b33
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Since the 3 3 matrix A has no singular principal submatrices and since a Lya-
punov diagonally semistable matrix is Lyapunov diagonally stable if and only if it has
no singular principal submatrices (see [1]), the matrix A[2, 3] is Lyapunov diagonally
stable. This implies that B[2, 3] 0 in contradiction to rank B 2.

In case (b),
bg3 O,
dg3 0,

where g3 is nonzero. Thus,
0 a 0]BA- c 0 0
e f O

We now use the fact that A is Lyapunov diagonally semistable, so AD + DAT is
positive semidefinite for a positive diagonal matrix D, which implies (see [4], [6]) that

(1) B(AD + DAT) O.

Since the third columns of BA and BAD equal zero, it follows by (1) that the
third column of BDAT also vanishes, so the third column and row of AD lie in the
one dimensional null space of B. Observe that by Proposition 1, a33 is nonzero, so the
third column and the third row of AD are equal. Let

AD=
k m]n p q
m q t

Then

AD + DAT
2k 1 + n 2m]1 + n 2p 2q
2m 2q 2t

I(AD +DAT)[2,3]. But by (1) rank (AD+ DAT) 1, soThus, AD[2,31
(AD + OAT)J2, 3] is singular. This implies that AD[2, 3] and A[2, 3] are singular,
in contradiction to the assumption that rA 2.
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DYNAMICAL SYSTEMS THAT COMPUTE BALANCED
REALIZATIONS AND THE SINGULAR VALUE DECOMPOSITION*
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Abstract. The tasks of finding balanced realizations in systems theory and the singular value de-
composition (SVD) of matrix theory are accomplished by finding the limiting solutions of differential
equations. Several alternative sets of equations and their convergence properties are investigated.
The dynamical systems for these tasks generate flows on the space of realizations that leave the
transfer functions invariant. They are termed isodynamical flows. Isodynamical flows are general-
izations of isospectral flows on matrices. These flows evolve on the actual system matrices and thus
remove the need for considering coordinate transformation matrices. The methods are motivated
by the power of parallel processing and the ability of a differential equations approach to tackle
time-varying or adaptive tasks.

Key words, balanced realization, singular value decomposition, gradient flow, differential equa-
tion, dynamical systems

AMS subject classifications. 93B20, 93B40, 15A18, 65F15

1. Introduction. In current practice, the problems of finding a balanced real-
ization for a linear control system, as well as achieving an SVD of a matrix are solved
using algebraic matrix manipulations, implemented in standard computer programs.
Balanced realizations are a useful tool in systems theory to increase numerical ro-
bustness, and they allow a sensible model order reduction to be performed. This
operation has been widely studied [10], [11] and computation methods have been de-
scribed. Certainly, these methods are widely used, reliable, and well understood. On
the other hand, recent advances in neural network theory and associative memories
have shown that gradient-type algorithms can lead to effective and fast methods for
algebraic tasks such as principle component analysis. This latter task is equivalent to
the SVD. It follows that gradient flows can be an effective tool for SVD, although the
full possibilities and limitations of this approach are not yet fully clear.

Brockett [1], again motivated by the renewed interest in neural networks, paral-
lel processing, and analog computing, has also shown that other linear algebra and
combinatorial problems can be solved in terms of the limiting solutions of ordinary
differential equations (ODEs) that are gradient flows on orthogonal matrices. In [2] a
systematic approach to balanced realizations of linear systems was developed, which
treats balanced realizations as the global minima of objective functions, defined on
the set of all realizations of a given transfer function. Aspects of this work are gener-
alized in [3] for the task of finding an SVD using gradient flows on unitary matrices.
In an earlier paper [4], it is shown how certain types of balancing problems can be
solved using gradient flows on positive definite matrices with an exponential rate of
convergence. Such algorithms are possibly suitable for application to time-varying
systems [5].

In this paper, a systematic attempt is made to construct and analyze dynami-
cal systems that are capable of achieving balancing or the SVD. Based on the cost

Received by the editors November 25, 1991; accepted for publication (in revised form) September
23, 1992. This work was partially supported by Boeing (BCAC).

Department of Mathematics, University of Regensburg, 93040 Regensburg, Germany
(helmke@vaxl. rz. uni-regensburg, d400. de).

Department of Systems Engineering, Research School of Physical Sciences, Aus-
tralian National University, GPO Box 4, Canberra ACT 2601 (jane(C)oberon.dsto.gov.au,
ibm10lCrsphyl, anu. edu. au).

733



734 U. HELMKE, J. B. MOORE, AND J. E. PERKINS

function approach developed in [2], we propose several different gradient flows that
solve the problem of finding a balanced realization, given an initial system realiza-
tion. Each of these equations has an exponential rate of convergence and we compare
their respective rates. It is envisaged that for particular applications there will be one
gradient flow that will give a better convergence rate than other algorithms. First
we review the linear and quadratic gradient flows of [4] that evolve on P TT > 0,
where T is the state space transformation matrix that gives the balanced realiza-
tion. The next solution method we consider are differential equations that evolve on
the actual transformation matrix T. This solution method is of interest because it
circumvents the need to find T given P TT.

Next we propose alternative ODEs that solve the balanced realization problem.
These differential equations, termed isodynamical flows, evolve on the actual system
matrices (A, B, C) rather than having the intermediate step of transformation ma-
trices. They have the obvious advantage of immediacy as well as giving a clearer
indication us to how the system is evolving. This is the first time a direct method
to compute balanced realizations, without computing any balancing transformations,
has been given. The class of all isodynamicM flows can be viewed as a generalization
of the isospectrM flows, studied in matrix theory, as in [1], [3], [6], [7], [9], and their
references.

In 2 gradient flows that give the transformation matrices for balanced realizations
are studied, and in 3 related ODEs are developed for a direct evolution of the system
matrices. In 4 flows achieving the SVD of a matrix are studied, and in 5 conclusions
are drawn. The Appendix summarizes important results about gradient flows on
manifolds.

2. Gradient flows for balancing transformations. In this section we con-
sider the problem of computing balancing coordinate transformations via differential
equations. While a part of this problem has been already considered in [4], we review
some of the material developed in [4] and emphasize some new points as well.

We consider linear dynamical systems in continuous or discrete time

{ (t)y(t)--Ax(t)+Bu(t) or { xk+yk -Axk+Buk
defined by the system matrices (A, B, C) )nn nm }pn. Such a system
is called asymptotically stable if the eigenvalues of A are in the open complex left
half-plane or in the open unit disc, respectively. For any asymptotically stable system
(A,B,C), the controllability and observability gramians Wc and Wo are, respectively,
defined in discrete time and continuous time by the symmetric matrices

(2.1a) W EAkBB’A’, Wo E A’kC’CAk’
k=0 k=0

(2.1b) W eAtBBetA’dt, Wo etA’C’CeAtdt.

For unstable systems the controllability and observability gramians are likewise
defined by finite sums or integrals rather than by the above infinite sums or integrals.
In the following we will assume asymptotic stability of A; however, all results hold
mutatis mutandis in the unstable case using finite gramians. To emphasize the de-
pendence of the gramians on (A, B, C), we also write We(A, B) and Wo(A, C) for the
controllability and observability gramians of (A, B, C).
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In the sequel we fix an initial asymptotically stable controllable and observable
realization (A,B, C) E n nm pn of a given transfer function G(s)
C(sI-A)-IB (s)pm. Thus, by Zalman’s realization theorem, see, e.g., Zailath
[8], all other minimal realizations of G(s) are of the form (TAT-, TB, CT-) for a
uniquely determined invertible coordinate transformation T.

Any linear change of coordinates in the state space by an invertible trans-
formation T GL(n, ) changes the realization according to (A,B, C) - (TAT-,
TB, CT-) and thus transforms the gramians via

(2.2) Wc - TWcT’, Wo (T’)-WoT-.
We call a state space representation (A, B, C) of the transfer function balanced

if Wc Wo. This is more general than the usual definition of balanced realizations,
(see Moore [10]), which requires that W Wo diagonal. In this case we refer to
(A, B, C) as a diagonal balanced realization, which is thus one particular realization
of our class of balanced realizations.

To obtain a quantitative measure of how the gramians change for the various
realizations of a transfer function, we consider the function

(T) tr(Wc(TAT-,TB) + Wo(TAT-, CT-))
(2.3)

tr(TWcT’ + (T’)-1WoT-)
tr(WcT’T + Wo(T’T)-)
tr(Wg + WoP-)

with

(2.4) P T’T.

Note that O(T) is the sum of the eigenvalues of the controllability and observabil-
ity gramians of (TAT-, TB, CT-) and is thus a crude numerical measure for the
controllability and observability of (TAT-, TB, CT-).

2.1. Balancing flows of positive definite matrices. Let :P(n) denote the set
of positive definite real symmetric n n matrices P PP > 0. T)(n) is an open, convex
subset of the set of all symmetric n n matrices and is diffeomorphic to Euclidean
space (1/2)n(n+l). By (2.3) we are led to study the function

(2.5) " P(n) --. , (P) tr(WcP + Wop-1).

For a proof of the following results we refer to [4] and [9].
LEMMA 2.1 ([4], [9]). Let W, Wo be the controllability and observability grami-

ans (2.1) of an asymptotically stable minimal realization (A, B, C). Then the func-
tion (n) --, , (P) tr(WcP / Wop-1), defined on the set P(n) of posi-
tive definite symmetric matrices, has compact sublevel sets, i.e., for all a then
{P e P(n) tr(WcP+ WoP-) <_ a} is a compact subset of P(n). In particular, there
exists a minimizing P P’ > 0 for the function " P(n) -, defined by (2.5).

While Lemma 2.1 establishes the existence of a minimizing Po P > 0 for the
function (2.5), Theorem 2.2 provides a more constructive approach towards finding
the minimum by showing that it is the globM attractor for the grlient flow on P(n).

THEOREM 2.2. Linear index gradient flow ([4]). Let We, Wo denote the control-
lability and observability gramians (2.1) of an asymptotically stable, controllable, and
observable realization (A, B, C).
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(a) There exists a unique P P > O, which minimizes " /)(n) --, , (P)
tr(WcP + WoP-1), and T p2 is a balancing transformation for (A, B, C). This
minimum is given by

p W[1/2(lzl/21z i71/21/2 1/2,, ,,o,, W[

(b) The gradient flow (t) (P(t)) of" P(n) is given by

(2.6) P P-WoP- Wc.
For every initial condition Po P > O, P(t) exists for all t 0 and converges
exponentially fast to P as t with a lower bound for the rate of exponential
convergence given by

min(Wc)3/2(2.7) p 2
Amx(Wo)/2,

where Amin(A) respectively Amax(A) denote the smallest, respectively largest, eigen-
value of A.

In the sequel we refer to (2.6) as the linear index gradient flow. Instead of min-
imizing (P), we might as well consider the minimization problem for the quadratic
index function

(2.8) (P) tr((WcP)2 + (Wop-1)2)
over all positive definite symmetric matrices P P > 0.

Since, for P T’T, (P) is equal to tr[(TWT’)2+ ((T’)-IWoT-1)2], the
minimization problem for (2.8) is equivalent to minimizing tr[(Wc(TAT-,TB))2+
(Wo(TAT-, CT-))2] over the set of all realizations (TAT-,TB, CT-) of a given
transfer function G(s) C(sI- A)-B. Thus (P) is the sum of the squared eigen-
values of the controllability and observability gramians of (TAT-, TB, CT-). Note
also that

tr[(TWcT’)2 + ((T’)-IWoT-1)2] ]]TWT’- (T’)-IWoT-I]2 + 2tr[WWo].

Thus minimizing this quadratic index function is equivalent to minimizing the least
square distance TWcT’ (T’)-WoT- 2.

THEOREM 2.3. Quadratic index gradient flow ([4]). Under the same hypotheses
as for Theorem 2.2, we have:

()

P W[1/2(lzl/21z lzl/21/2,, ,,o,, W[/

is the uniquely determined P P(n) which minimizes P(n) andT p2
is a balancing transfoation for (A, B, C).

(b) The gradient flow P(t) (P(t)) on P(n) is

(2.9) 2P-WoP-WoP- 2WcPWc.

For all initial conditions Po P > O, the solution P(t) of (2.9) exists for all t 0 and
converges eonentially to P. A lower bound on the rate of exponential convergence
is

> 4 min(W )
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We refer to (2.9) as quadratic index gradient flow. The above results show that
both algorithms converge exponentially fast to P. Both algorithms are rather slow
if the smallest singular value of Wc is near to zero, i.e., if the system is nearly un-
controllable. In contrast to this behaviour, (2.7) shows that the convergence of the
linear index flow becomes relatively fast if )max(Wo); that is, the 2-norm IIWol12 of the
observability gramian is small. Similarly, the bound (2.10) for the rate of convergence
of the quadratic index flow is independent of Wo and therefore we expect a certain
amount of robustness of our algorithms in the case where the observability properties
of the system are poor.

In general, the quadratic index flow seems to behave better than the linear in-
dex flow, at least if the smallest singular value of the associated Hankel operator
of (A,B, C) is greater than 1/2, i.e., if Amin(WoWc) > 1/4. This is supported by the
following simulations.

Simulations. The following simulations show the exponential convergence of the
diagonal elements of P towards the solution matrix P and illustrate what might
affect the convergence rate. In Figs. l(a)-(c) we have

7 4 4 3 5 2 0 3

Wo=W3=
4 4 2 2

and Wc=W4=
2 7 -1 -1

4 2 4 1 0 -1 5 2
3 2 1 5 3 -1 2 6

so that )tmin(WoWc) , 1.7142 > 1/4. Figure l(a) concerns thelinear index flow, while
Fig. l(b) shows the evolution of the quadratic index flow, both using P(0) P1,
where

1 0 0 0 2 1 0 0

P(0)=PI= 0 1 0 0 P(0)=P2= 1 2 1 0
0 0 1 0 0 1 2 1
0 0 0 1 0 0 1 2

Figure 1 (c) shows the evolution of both algorithms with a starting value of P(0) P2.
These three simulations demonstrate that the quadratic algorithm converges more
rapidly than the linear algorithm when )tmin(WoWc) > 1/4. This rapid convergence
rate is achieved at the expense of twice the number of matrix multiplications in
calculating the gradient.

In Fig. l(d),

7 4 4 3 5 4 0 3

Wo=WI= 4 4 2 2
and W=W2=

4 7 -1 -1
4 2 4 1 0 -1 5 2
3 2 1 3 3 -1 2 6

so that Amin(WoWc) 0.207 < 1/4. Figure l(d) compares the linear index flow be-
haviour with that of the quadratic index flow for P(0) P1. This simulation demon-
strates that the linear algorithm does not necessarily converge more rapidly than the
quadratic algorithm when )min(WoWc) < 1/4, because the bounds on convergence rates
are conservative.

2.2. Gradient flows for balancing transformations. In the previous section
we studied gradient flows that converged to Po T2, where To is the unique
symmetric positive definite balancing transformation for a given asymptotically stable
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FIG. 1. Comparison of linear and quadratic flows on P(t). (a) Linear index flow when
min(WoWc) > 1/4. (b) Q?adratic index flo72)8 Jghen min(WoWc) > -.1/4 (c) Linear and quadratic

flow8 ?1)hen )min(WoWc) > 1/4. (d) Linear and quadratic flow8 when )min(WoWc) < 1/4.

system (A, B, C). T is then obtained as the unique symmetric positive definite
square root of Po. In this section we address the general problem of determining
all balancing transformations T E GL(n, ) for a given asymptotically stable system
(A, B, C), using a suitable gradient flow on the set GL(n, ) of all invertible n n-
matrices. This allows us to compute balancing transformations without squaring
down an operator; cf. [11].

Thus for T GL(n, ), we consider the cost function (I) GL(n, ) --. defined
by

(2.11) (I)(T) tr(TWcT’ + (T’)-IWoT-1)
and the associated gradient flow (I)(T) on GL(n, ). Of course, to define the
gradient of a function, we must specify a Riemannian metric with respect to which
the gradient is defined; see the Appendix. Here, as in the previous section, we endow
GL(n, ) with its standard Riemannian metric

(2.12) (A, B) 2tr(A’B),
i.e., with the constant Frobenius inner product (2.12) defined on the tangent spaces
of GL(n, .).

THEOREM 2.4. Let Wc and Wo denote the controllability and observability grami-
ans of the asymptotically stable, controllable and observable realization (A, B, C).
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(a) The gradient flow (T) of GL(n, ) --, is

(2.13) 2 (T’) -1Wo(T’T)- -TWc,

and for any initial condition To e GL(n, ), the solution T(t) of (2.13), T(0) To
exists in GL(n, ) for all t >_ O.

(b) For any initial condition To e GL(n, ), the solution T(t) of (2.13) converges
to a balancing transformation Too E GL(n, R), and all balancing transformations can
be obtained in this way for suitable initial conditions To GL(n, ).

(c) Let Too be a balancing transformation and let In(Too) denote the set of all
To e GL(n,), such that the solution T(t) of (2.13) with T(O) To converges to
Too as t -- o. Then In(Too) is an immersed invariant submanifold of GL(n, ) of
dimension n(n + 1)/2 and every solution T(t) e In(Too) converges exponentially fast
in In(Too) to Too.

Proof. GL(n, ) is an open subset of nn and therefore the tangent space of
GL(n, ) at T can be identified with the -vectorspace of all real n n matrices

nn. The Frchet derivative of GL(n, ) , at T is the linear operator
on the tangent space of GL(n, ) at T defined by

DIT( 2tr[(WcT’ T-(T’)-WoT-)] 2tr[(TWc (T’)-Wo(T’T)-I)’]

for all c Nnxn.
(2.12) is

Thus the gradient of with respect to the Riemannian metric

v(T) TWc- (T’)-IWo(T’T)-.
To prove that the gradient flow (2.13) is complete, i.e., that the solutions T(t) exist
for all t >_ 0, it suffices to show that GL(n, ) -. + is proper, i.e., that the
pre-image O-(K) of any compact subset K C N+ is compact in GL(n, ). More
generally, a continuous map f X --. Y between topological Hausdorff spaces is called
proper if the inverse image of f-l(K) of any compact subset K C Y is compact. Let
P(n) {P GL(n, )IP P’ > 0}. By Lemma 2.1, P -. tr(WP + WoP-l) is a
proper function on P(n). By the polar decomposition, the set of invertible matrices
T corresponding to a fixed matrix T’T is compact. More generally, we conclude that
the map GL(n, ) --. P(n), T -, T’T is proper. Thus is the composition of proper
maps and therefore it is also proper. This shows (a). To prove (b), we note that by
(a) and a well-known property of gradient flows, any solution T(t) converges to an
equilibrium point Too of (2.13).

(TL)-1Wo(TLToo)-1 TooWc (Too)-1WoTo TooWT’
and hence Too is balancing. This shows (b).

To prove (c), we use the following lemma, where

(2.14) E := {Too e GL(n, )l(TToo)Wc(TToo)= Wo}

denotes the set of equilibria points of (2.13).
LEMMA 2.5. The tangent space of E at Too E is

(2.15) TToo E {S N’xnls’Too + T’ooS 0}.
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Proof. Let P denote the unique symmetric positive definite solution of PWcP
Wo. Thus E (TIT’T P} and therefore TTE is the kernel of the derivative of
T - TT-P at T. Thus S E TTE if and only if ST + T’S O.

Let

and

(P) tr(WcP + WoP-1)

A(T) T’T.

Thus (I)(T) (A(T)). By Theorem 2.2, see also [4] and [2],
(i) DlP O.
(ii) D2d/)]p > O.

Let X denote the matrix representing the linear operator DA[T (S) T’S +
StT. Using the chain rule, we obtain

(2.16) D2]T X’ D2d/)lp X

for all To E E. By (ii) and (2.16), D2(]T k 0 and D2(IT degenerates exactly
on the kernel of X, i.e., on the tangent space TT E. Thus (I) is a Morse-Bott func-
tion; see the Appendix. Thus Proposition A.3 implies that every solution T(t) of
(2.13) converges to an equilibrium point. Moreover, the equilibrium set E is normally
hyperbolic.

It follows from the theory of stable manifolds (see, e.g., Irwin [12]) that In(T) is
the stable manifold of (2.13) at T and thus is an immersed invariant submanifold of
GL(n, ) of dimension dim GL(n, ) dime n2 n(n 1)/2 n(n + 1)/2. Since
the convergence is always exponential on stable manifolds, this completes the proof
of (c).

Now consider the following quadratic version of our objective function (I). For
T e GL(n, ), let : GL(n, ) be defined by

(2.17) (T) tr((TWcT’)2 + ((T’)-IWoT-1)2).

The gradient flow b- (T) on GL(n, ) is easily computed to be

(2.18) (T’)-1Wo(T’T)-Wo(T’T)- TWcT’TWc.
The same arguments as for Theorem 2.4 show that for all initial conditions To

GL(n, ), the solution T(t) GL(n, ) of (2.18) exists for all t >_ 0 and converges
to a balancing transformation for (A, B, C). Thus we can also use (2.18) or suitable
discretized versions to compute balancing transformations for a given asymptotically
stable minimal realization (A, B, C). We illustrate the behaviour of the gradient flows
(2.13) and (2.18) by means of the following simulation experiments.

In Fig. 2 the diagonal entries of T(t) are plotted. Figure 2(a) uses Wo W,
Wc W2 and a starting value of To P, in (2.13). Figure 2(5) has the same value
for the gramians, but has a starting value of

1 3 4 2
4 3 2 5
3 2 4 1
2 4 3 4
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FIG. 2. Comparison of linear and quadratic index flows on GL(n, ). (a) Linear flow on T
when )min(WoWc) < 1/4. (b) Quadratic flow on T when Amin(WoWc) < 1/4. (c) Linear flow on T
when )min(WoWc) > 1/4. (d) Quadratic flow on T when ikmin(WoWc) > 1/4.

It can be observed that these To values give different final solutions, both of which
are generalized balancing transformations. Figures 2(c)-(d) use Wo W3, Wc W4
and a starting value of To P1. Figure 2(c) uses (2.13) while Fig. 2(d) uses (2.18).
Note that in this case, (2.18) converges more rapidly than (2.13).

2.3. Diagonal balancing transformations. Here we address the related issue
of computing diagonal balancing transformations T for a given asymptotically stable
minimal realization, i.e., T satisfies

TWcT’ (T’)-WoT- diagonal.

Any such diagonal balancing transformation T is of the form T O. T, where

To p./2 is the uniquely determined positive definite symmetric balancing transfor-
mation whose existence is guaranteed by Theorem 2.1 and where O is an orthogonal
matrix that diagonalizes TWcT (T)-WoT.

Let us consider a fixed diagonal positive definite matrix N diag(A1,... ,An)
with distinct eigenvalues/k > > An > 0. Using N, a weighted cost function for
balancing is defined by

(2.19) N(T) tr(NTWcT’ + N(T’)-IWoT-1).
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The following lemma characterizes the diagonal balancing transformations as the
critical points of the weighted cost function ON on GL(n, ).

LEMMA 2.6. Let N diag(A1,..., An) with A > > An > 0 and let Wc, Wo de-
note the controllability and observability gramians of an asymptotically stable minimal
realization A, B, C) Then

(a) T E GL(n, ) is a critical point ofON: GL(n, ) --. , ON(T) tr(NTWcT’+
N(T’)-WoT-1), if and only if T is a diagonal balancing transformation, i.e.,

TWcT’ (T’)-1WoT-1 diagonal.

(b) ON GL(n,) has compact sublevel sets. In particular, a global
minimum Tmin E GL(n, {) of ON: GL(n, ) exists.

Proof. The Frdchet derivative of ON GL(n, ) at T is the linear map
defined by

DONIT() 2tr(NWcT’ N(T’)-iWoT-IT-1)
2tr[(NTWc- (T’)-IWoT-iN(T’)-I)’],

and therefore the gradient of ON(T) with respect to the Riemannian metric (2.12) on
GL(n, ) is

(2.21) ON(T) NTWc -(T’)-IWoT-1N(T’)-.
It follows that T GL(n, ) is a critical point of N if and only if ON(T) 0, i.e.,
if and only if

(2.22) NTWcT’ (T’)-1WoT-1. N.

By symmetry of TWIT’ and (T’)-WoT-, we obtain from (2.22) that

(2.23a)
(2.23b)

N2TWT TWcT’N2,
N2(T’)-IWoT-1 (T’)-IWoT-1N2.

Any symmetric matrix that commutes with N2 must be diagonal, since N2 has distinct
eigenvalues. Thus we see that (2.22) is equivalent to TWcT’ (T’)-WoT-1
diagonal. This proves (a). For (b) note that ON(T) < a implies

IIWo/2T-N/2112 <_

for the Frobenius norm IlXll tr(XX’). Hence IITII < , lIT-111 < c2 for positive
constants c, c2 that depend only on N, W, Wo and a. Thus {T GL(n, ) ON(T) <
a} is a closed subset of the compact set {T e GL(n, )IIITII < Cl, IIT-1]I < c2} and
therefore also compact. This shows that ON GL(n, ) -- has compact sublevel
sets. But any continuous function f GL(n, ) + with compact sublevel sets
has a minimizing T GL(n, ). This completes the proof of Lemma 2.6.

From Lemma 2.6 and by (2.20), similar arguments as for Theorem 2.4(a) and (b)
show the following theorem.

THEOREM 2.7. Let lc, Wo be the controllability and observability gramians of
the asymptotically stable, controllable, and observable realization (A,B,C) and let
N diag(A1,..., )n) with A1 > > A, > O. Then
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(a) gradient flow V ON(T) of the weighted cost function (N: GL(n, ) --,

is

(2.24) (T’)-IWoT-1N(T’) -1 NTWc.
For all initial conditions T(O) e GL(n, ), the solution T(t) e GL(n, ) of (2.24)
exists for all t >_ O.

(b) For any initial condition T(O) e GL(n, ), the solution T(t) of (2.24) con-
verges to a diagonal balancing transformation Tc of (A, B, C).

(c) Suppose that the singular values 0 < dl < < dn of the Hankel operator
of (A,B, C) are distinct. Then the stable equilibrium of (2.24) are characterized by
(T)-IWoT TWcT D, where D diag(dl,...,dn) is diagonal and the
diagonal entries are in reverse ordering to those of N. Moreover, the gradient flow
(2.24) converges exponentially fast to the 2n stable equilibria with a convergence rate
lower bounded by

min((TxT)-1) min[(di dj)(j ,i) 4di)i].
i<j

All other equilibria are unstable.
Proof. Parts (a) and (b) follow easily from Lemma 2.6, using similar arguments as

for Theorem 2.4. To prove (c), consider the linearization of (2.24) at an equilibrium
point T; that is, where (T)-IWoT TWcT D and

i?- -NrlT1D(T -1 DrlT1N(T -1

(T)-lrl’Dg(T)-1 DN(T)-I?’(T)-1.

Let rTl, then

(TT) =-ND- D(N- (’DN- DN’
and thus, using Kronecker products and the vec notation, and recalling that vec(ABC)

(C’(R) A)vec(B), then

[(TT) (R) I]vec() -[D (R) Y + g (R) D]vec() ION (R) I + I (R) Dg]vec((’).

Consider first the special case when TT I, and is denoted *"
(2.25) vec(*) -[D (R) N + N (R) D]vec(*) [DN (R) I + I (R) DN]vec(*’).
Then for < j,

and for all i,

[ "* I [di’Y+’id’; d + djj di,,j --t- idj j*i

By assumption, ,i > 0, and di > 0 for all i. Thus (2.25) is exponentially stable if
and only if (d -dj)(,j ,) > 0 for all i,j,i < j, or equivalently, if and only if the
diagonal entries of D are distinct and in reverse ordering to those of N. In this case,
(2.25) is equivalent to (2.26)

(2.26) vec(*) -’vec(*)
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0.5 1.5 2.5

FIG. 3. Evolution of the diagonalizing transformation T.

with a symmetric positive definite matrix " ’ > 0.
Consequently, there is exponential convergence with a rate given by Amin(’) as

follows:

)min(’)--min mini<j ,min
diAi + djAj diAj + Aidj

,mini

min(mini<j[dj +d dj/ -d/], min[4d])

min(mini<j[(di dy) (Ay Ai)], mini[4diAi]).

Relaxing the assumption TT I is possible since TT is positive definite
so that (TT (R) I) is positive definite. Thus exponential stability of (2.26) assures
exponential stability of

[(TT) (R) I]vec() -gVvec().

The rate of exponential convergence is given by Amin[((TT)-1 (R)/)9’]. Now since
A A’ > 0, B B’ > 0 implies Arnin(AB) > Amin(A)Amin(B), a lower bound on the
convergence rate is given from

min[((TTc)-1 (R) I)’]

_
)min[(Tcx)Tc) -1 (R) I])min(-)

)min[(Tx)Ttc) -1] min(mini<j [(di di)(j Ai)], mini[4di)i])

as claimed.

Simulation. In Fig. 3 the diagonal elements of T(t) are plotted. The flow (2.24)
is allowed to evolve with Wo W1, Wc W2, N diag(5, 4, 3, 2), and initial matrix

To as before. At t- 3,

T(t)

-0.9788 0.6595 -0.1033 0.6623
-0.0807 -0.1124 -0.7002 0.5847
0.1079 -0.4691 0.4256 0.1943
0.7586 0.5177 0.4245 0.3909
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and this transformation gives

0.4554
0.0017
0.0006
-0.0005

0.4553
0.0021
0.0009
0.0014

0.0017 0.0006 -0.0005
2.7493 0.0034 -0.0000
0.0034 3.3641 -0.0034
-0.0000 -0.0034 11.3114

0.0021 0.0009 0.0014
2.7496 0.0042 0.0007
0.0042 3.3625 0.0081
0.0007 0.0081 11.3090

Notice that although convergence has not been completed, the gramians are diagonally
dominant with increasing elements.

3. Differential equations for balanced realizations. In this section we con-
struct certain ordinary differential equations

A= f(A,B, C)
g(A, B, C)

0 h(A, B, C)

evolving on the space of all realizations (A,B,C) of a given transfer function G(s),
with the property that their solutions (A(t),B(t), C(t)) all converge for t - cx to
balanced realizations (A, B, C) of G(s).

Let G(s) E (s)pm denote an asymptotically stable strictly proper real ratio-
nal transfer function of McMillan degree n. Thus G(s) has its poles either in the
open left half-plane or in the open unit disc, respectively. We denote by (A, B, C) E
n(n+m+p) an asymptotically stable, controllable, and observable realization of G(s),
i.e., G(s) C(sI- A)-IB.

Let

(3.1) nG= {(A,B, C) e ’(n+m+p) G(s C(sI- A)-IB}

denote the set of all minimal state space realizations of the transfer function G(s).
By Kalman’s realization theorem, [8]

(3.2) TOG {(TAT-1,TB, CT-1) ’(+m+) T GL(n,)}

for any fixed initial realization (A, B, C) 7v. Thus 7a is an orbit of the GL(n, )-
similarity action (A, B, C) (TAT-, TB, CT-) on nx(n+m+p).

We consider the function

defined by

(3.3) (I)(A, B, C) tr(Wc(A, B) + Wo(A, C)),

i.e., by the sum of the eigenvalues of the controllability and observability gramians of
(A, B, C). The following proposition summarizes some important properties of 7
and (I)" TG --. .

PROPOSITION 3.1. It holds that
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(a) 7G is a smooth, closed submanifold of n(n+m+p)
TG at (A, B, C) E 7 is

The tangent space of

T(A,B,C)na {(XA- AX, XB,-CX) X e nn).

(b) The function ( TG --. defined by (3.3) is smooth and has compact
sublevel sets.

Proof. Ta is an orbit of the GL(n, )-similarity action

a GL(n, ) n(n+m+p) __> nx(nWm-l-p)

(T, (A,B, C)) -. (TAT-1,TB, CT-1)

and thus, by a general result about algebraic Lie group actions (see, e.g., Appendix
C in [9]) is a smooth submanifold of the Euclidean space n(n+m+p). By Lemma
3.3 [2], Ta is a closed subset of n(n+m+p) if (A, B, C) is controllable and observable.
Explicitly, by realization theory, 7 is a fiber of the continuous map

(3.5)
f. n(nTmTp) _+ Hpm

i=0

(F, G, H) -+ (HFiG e

and therefore closed.
To prove (b) and (3.4), we consider the diffeomorphism

(3.6)
a" GL(n, )

T (TAT-, TB, CT-)
(this requires that (A, B, C) is minimal). The derivative of a at the identity matrix
is the linear map X (XA- AX, XB,-CX), which maps nn onto T(A,B,C)G.
This proves (3.4). Furthermore, with P T’T,

O(a(T)) tr(TWc(A,B)T’ + (T’)-Wo(A, C)T-)
tr(WcP + WoP-),

and the result now follows from Lemma 2.1, i.e., that the function P -+ tr(WcP +
WoP-1) on the set of positive definite symmetric matrices has compact sublevel
sets.

We now address the issue of finding gradient flows for the objective function
(I) 7 --. relative to some Riemannian metric on 7. While there are several
possible choices for a Riemannian metric on the realization space 7G, the following
one leads to a particularly simple expression for the gradient.

In the sequel, we use the Lie bracket notation

(3.7) [A, B] AB BA

for n n matrices A, B.
Given two tangent vectors (.[XI,A],XB,-CX) and ([X2, A],X2B,-CX2)

T(A,B,C)G we define

(3.s) <<([X1,A],XIB,-CX), ([X2, A],X2B,-CX2)>> "= tr(XX2).
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To prove that (3.8) defines an inner product on T(A,B,C)TG, we need the following
lemma.

LEMMA 3.2. Let (A, B, C) be controllable or observable. Then (IX, A], XB,-CX)
(0, O, O) implies X O.
Proof. If XB 0 and AX XA, then X(B, AB,...,An-IB) O. Thus

controllability implies X 0. This is also true for observability. El
It is now easily seen, using Lemma 3.2, that (3.8) defines a nondegenerate sym-

metric bilinear form on each tangent space T(A,B,C).G and in fact a Riemannian
metric on 7c. We refer to this as the normal Riemannian metric on

To determine the gradient flow of 7c --* with respect to the normal
Riemannian metric, we need a lemma.

LEMMA 3.3. Let N E nn be a real symmetric n n matrix and let
be defined by bN(A, B, C) tr(NWc(A, B) + NWo(A, C)) for all (A, B, C) e Tic.

Then the Frdchet derivative ofbN at (A, B, C) 7"c is the linear map DCbN (A, B, C)
T(A,B,C)]’G defined by

(3.9) DaPN(d, B, C)([X, A], ZB, -CX) 2tr[(Wc(A, B)N NWo(A, C))X]

for X n.
Proof. Let a GL(n, ) --. Tic be the diffeomorphism defined by a(T)

(TAT-1,TB, CT-I). The derivative of a at the identity matrix In is the linear
map X -. ([X,A],XB,-CX) on nn. By the chain rule for the composed map
(I)g or defined by

N(cr(T)) tr(NTWc(A,B)T’ + N(T’)-Wo(A, C)T-),

ve have

DeN(a(In))([X, A], -XB, CX) D(ON o a)(In)X
2tr(NXW(A, B) NWo(A, C)X)
2tr[(W(A, B)N NWo(A, C))X]

for all X nxn. The result follows. El
THEOREM 3.4. Let Tic be the objective function defined by (A, B, C)

1/2tr(Wc(A,B) + Wo(A, C)).
(a) The gradient flow (i -gradAtb(A, B, C),/ -gradBO(A, B, C),

-gradAC(A,B, C)) of for the normal Riemannian metric on Tic is

A [A, Wo(A, C) Wc(A, B)]
(3.10) / (Wo(A, C)- W(A, B))B= C(Wc(A,B) Wo(A,C)).

For every initial condition (A(0), B(0), C(0)) e 7c, the solution (A(t),B(t), C(t)) e
7"c of (3.10) exists for all t > 0 and converges for t --. +c to a balanced realization

(A, B, C) of G(s):

Wo(A,

(b) Convergence to the class of balanced realizations is exponentially fast.
(c) The transfer function of any solution (A(t),B(t), C(t)) of (3.10) is indepen-

dent of t.
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Proof. By definition of a gradient,

grad(A, B, C) (gradAO(A, B, C), gradsO(A, B, C), gradcO(A, B, C))

is characterized by the properties (see the Appendix)

(3.11a) gradO(A, B, C) T(A,B,c)Tc,
and
(3.115) D(A,B, C)([X,A],XB,-CX) ((grad(A, B, C), ([X,A],XB,-CX)I

for all X E nxn. By Proposition 3.1 and Lemma 3.2,

(3.12) grad(A, B, C) ([A, A], AB,-CA)

for a uniquely determined A E nn. Applying Lemma 3.3 for N 1/2In, we see that
(3.11b) is equivalent to

tr[(Wc(d,B) Wo(A, C))Z] ((([A, hi, AB,-CA), ([A,X],XB,-CX)}
tr(A’X)

for all X nn. Thus

A We(A, B) Wo(A, C)

and gradO(d,B, C)= ([A, A], AB, -CA). This proves (3.10). Since (3.10)is minus
the gradient flow of , (A(t),B(t), C(t)) decreases on any solution of (3.10). By
Proposition 3.1(5), {(A,B,C) e TaI(A,B,C)< O(A(O),B(O),C(O))} is a compact
subset of 7c, which is invariant under the flow of (3.10). Therefore (A(t), B(t), C(t))
stays in that compact subset and thus exists for all t _> 0. The equilibria of (3.10) are
characterized by Wc(A, B) Wo(A, C), i.e., by the balanced realizations. This proves
(a), except that we have not yet established convergence to an equilibrium point.

To prove (b), we consider the diffeomorphism a GL(n, ) -- defined by
a(T) (TAT-t, TB, CT-t) for any (A, B, C) e Ta. At each critical point, (A, B, C)
of (I) "7( -- , a induces an invertible congruence transformation between the Hes-
sian of 7a --, at (A, B, C) and the Hessian of o a at In. By (2.16) and the
proof of Theorem 2.4(c), the Hessian of o a at In is positive semidefinite and degen-
erates exactly on the tangent space (at In) of the set of balancing transformations.
Therefore the Hessian of at a balanced realization (A, B, C) is positive semidefi-
nite and degenerates exactly on the tangent space of the set of balanced realizations
at (A, B, C). (N.B. By Lemma 2.5, the set of balanced realizations of G(s) can be
shown to be a smooth submanifold of 7.) This proves (b). As (I) Ta - is
now seen as a Morse-Bott function, we can apply Proposition A.3 to conclude that
(A(t), B(t), C(t)) converges to an equilibrium point.

Part (c) is obvious, as the flow evolves on 7. [:]

We emphasize that Theorem 3.4 gives, for the first time, a direct method to
compute balanced realizations, without computing any balancing transformations.
We regard this as one of the really new insights that can be obtained by our ODE
methods.

Remark. As is shown in the above proof, any flow on symmetric matrices

ii -[A, A(A, B, C)]
3= -A(A, B, C)B
7 +CA(A, B, C),
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where A(A, B, C) e nn is an arbitrary matrix valued function of (A,B, C), leaves
the transfer function

G(t,s) C(t)(sIn A(t))-lB(t) C(O)(sIn A(0))-IB(0)

of the system invariant. We therefore term these flows isodynamical and a more
systematic analysis of such flows is given in [9]. Obviously, these flows leave the
eigenvalues of A(t) invariant and in fact generalize the class of isospectral flows on
matrices, obtained by letting B 0, C 0; see, e.g., [1], [3], and the references
therein.

Simulations. Figures 4(a)-(c) show the evolution of the system matrices (A, B, C)
using this algorithm. In this example, the starting matrices are chosen to be

-3 0 0 2 2
(3.13) A= 0 -2 0 B= 3 C’- 1

0 0 -1 1 3

and after ten "time intervals" the gramians are equal to three significant figures.
A similar "isodynamical flow approach" works also for obtaining diagonal bal-

anced realizations. Here we consider the weighted cost function

(3.14)
1

ON(A, B, C) -tr[N(W(A, B) + Wo(A, C))]

for a real diagonal matrix N.
THEOREM 3.5. Let ON 7G be the objective function defined by (3.14) for

N 1/2diag(A1,...,An),A1 >"" >/k > 0.
(a) The gradient flow

( --gradAON(A B, C),/ --gradBON(A, B, C), -gradcON(A, B, C))

of ON with respect to the normal Riemannian metric on 7 is

A [A, NWo(A, C) We(A, B)N]
(NWo(A, C)- Wc(A, B)N)B
C(Wc(A, B)N- NWo(A, C)).

For every initial condition (A(0), B(0), C(0)) E 7a, the solution (A(t),B(t), C(t)) e
Ta of (3.15) exists for all t >_ 0 and converges for t --, +ec to a diagonal balanced
realization (fi,,/), 0) of G(s), i.e., W(t, [) Wo(fii, 0) diagonal.

(b) Suppose that the singular values of the Hankel of (n, B, C) are distinct. Then
(3.15) has exactly 2n locally asymptotically stable equilibrium points (A, B, C), charac-
terized by Wc(fil, [) Wo(, )=diagonal, with the diagonal elements in the reverse
order to that of N. All other equilibria are unstable.

(c) The transfer function of every solution (A(t),B(t), C(t)) of (3.15) is inde-
pendent of t.

Proof. The proof runs similarly to. that of Theorem 3.4, now applying Lemma
3.3 for N 1/2diag(,l,..., An) and using Proposition A.3. The only points we must
check are that the equilibria of (3.15) are just the diagonal balanced realizations and
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FIG. 4. Evolution of the system matrices (A, B, C).
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their stability. But the equilibria of (3.15) are the critical points of
and hence correspond to those of (I)N O a GL(n, ) . The result now follows
from Lemma 2.6, and Theorem 2.7.

Simulations. Figure 5 shows the evolution of the matrices (A,B, C) for (3.15),
with starting condition given in (3.13), and N diag(3, 2, 1). After 30 "time intervals"
the solution gives

[ ] [2.7720 0 0 2.7750 0 0
Wo 0 0.1367 0.0214 Wc 0 0.1367 0.0212

0 0.0214 0.0048 0 0.0212 0.0067

as opposed to the true balanced solution Wo Wc diag(0.0021, 0.1401,2.7744).
The convergence in this case can be expected to be slow because the smallest Hankel
singular value is near zero.

4. Application to SVD. The common linear algebra problem of SVD can be
solved using differential equations. Gradient flow solutions for SVD have been studied
in [3], [4], [6], and [7]. Here we consider SVD to be a special case of the balanced
realization task.

THEOREM 4.1. Given an m n matrix H of rank r with distinct singular values
or1 > > at. Let N be an r r diagonal matrix with distinct positive diagonal entries.
Let Xo E mr and Yo rn be matrices of full rank r such that H XoYo. Then
the solution (Z(t),.Y(t)) of

(4.1a) ) X(NYY’- X’XN), X(O) Xo,
(4.1b) (X’XN- NYY’)Y, Y(O) Yo

exists for all t >_ 0 and satisfies H X(t)Y(t) for all t >_ O. The solution (X(t), Y(t))
converges to (X, Y) such that H XYo andXX YY D diagonal.
Moreover, there are 2r stable equilibria that have the diagonal elements ofD in reverse
order to those of N. All other equilibrium points are unstable.

Furthermore, this factorization yields H USV, where U XD-/2, S D,
V D-/2Y, UU I, VV= I.

Proof. In Theorem 3.5, set A 0 and let B, C be full rank matrices. Clearly,
(A,B, C) is controllable and observable. Then Wc B’B, Wo CC’ and (3.15) is

equivalent to

(4.2) [ -(CC’N- NB’B)B, C(CC’N- NB’B).

The equilibria of (4.2) are characterized by B’B CC’ diagonal, and the stable
equilibria are such that B’B is in reverse order to N.

As (4.2) preserves the transfer function, CB is constant. Hence (4.1) with X C
and Y B converges to a diagonal balanced matrix factorization H XooY. By
choosing U XD-/2,S D, V D-/2Y, then

USV=XD-/2DD-1/2y XY H, U’U D-1/2Y’ Y D-1/2 I

and VV D-1/2YoY.D-1/2 I. The full singular value decomposition can be
obtained by extending U and V to make them orthogonal.
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5. Conclusions. There are a number of distinct ODEs that evolve to give the
solution to the task of finding a balanced realization of a system or to the task of find-
ing the SVD of a matrix. Each differential equation has distinct transient behaviour
but all have exponential convergence ’rates of the factors. The dynamical systems for
balancing gramains that were investigated evolve on either spaces of state coordinate
transformation matrices T, its square P T’T, or on manifolds of the actual system
matrices (A, B, C). Similar equations for SVD are studied and are a special case of
the balancing equations. Different convergence properties make some algorithms more
attractive in certain problem settings. These solution methods may be useful when
using analog or parallel computers.

Appendix. Riemannian metrics and gradient flows. Let M be a smooth
manifold and let TM and T*M denote its tangent and cotangent bundle, respectively.
A Riemannian metric on M is a family of nondegenerate inner products <, >x, defined
on each tangent space TxM, such that <,> depends smoothly on x E M. Any
(nondegenerate) inner product on }n also defines a Riemannian metric on n (but
not conversely) and thus induces a Riemannian metric on every submanifold M of
n.

Let (I) M {R be a smooth function defined on the manifold M and let D(I)

M --+ T*M denote the differential, i.e., a section of the cotangent bundle T*M. To
define the gradient vector field of (I), we fix a Riemannian metric <, > on M. The
gradient (I) of (I) is then characterized by the following properties:

Compatibility condition (a). D(x) (7(I)(x),) for all e TxM.
Tangency condition (b). (I)(x) TxM for all x M.
The following result is well known.
PROPOSITION A.1. There exists a uniquely determined vector field on M

such that (a) and (b) hold.
Note that the gradient vector field depends on the choice of the Riemannian

metric; changing the metric will also change the gradient.
It follows immediately from the definition of (I) that the equilibria of the differ-

ential equation

(A.1) a(t) V (x(t))

are precisely the critical points of (I). Moreover, the linearization of the gradient flow
(A.1) around each equilibrium point is given by the Hessian of (I) and thus has only
real eigenvalues.

For any solution of (A. 1),

dt

and therefore O(x(t)) is monotonically decreasing. The following standard result is

often used in this paper.
PROPOSITION A.2. Let ( M --, be a smooth function on a Riemannian

manifold with compact sublevel sets, i.e., for all c the sublevel set {x M ((x) <_
c} is a compact subset of M. Then every solution x(t) e M of the gradient flow (h.1)
on M exists for all t >_ O. Furthermore, x(t) converges to a connected component of
the set of critical points of

Note that the condition of the proposition is automatically satisfied if M is com-

pact. Moreover, in suitable local coordinates of M, the linearization of the gradient
tiow (A.1) around each equilibrium point has only real eigenvalues.
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Let M be a smooth manifold and let M --. be a smooth function. Let
C(O) C M denote the set of all critical points of . We say is a Morse-Bott
function provided the following three conditions (i), (ii), (iii) are satisfied.

(i) M -- has compact sublevel sets.
(ii) C(O) [-J=l Nj with Nj disjoint, closed, and connected submanifolds of

M, such that is constant on Nj,j 1,..., k.
(iii) Ker(Hess)x TxNy for all x E Ny,j 1,..., k.

Actually, the original definition of a Morse-Bott function also includes a global topo-
logical condition on the negative eigenspace bundle defined by the Hessian, but this
condition is not relevant to us.

Recall that the w-limit set L(x) of a point x E M for a vector field X on M is the
set of points of the form limn- Ct (x), where (t) is the flow of X and tn
Similarly, the c-limit set L(x) is defined by letting tn --* -cx instead of

PROPOSITION A.3.
(a) Suppose M -- has isolated critical points. Then L,(x), x M, consists

of a single critical point. Therefore every solution of the gradient flow (A.1) converges
for t +cx to a critical point of .

(b) Let M -- be a Morse-Bott function on a Riemannian manifold M.
Then the w-limit set Lw(x), x M, for the gradient flow (A.1) is a single critical
point of . Every solution of the gradient flow (A.1) converges as t --, +x to an
equilibrium point.
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NONSYMMETRIC EIGENVALUE PERTURBATIONS*
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Abstract. A characterization is given for the spectrum of a symmetric matrix to remain real

after a nonsymmetric sign-restricted border perturbation, including the case where the perturbation
is skew-symmetric. The characterization is in terms of the stationary points of a quadratic function
on the unit sphere. This yields interlacing relationships between the eigenvalues of the original
matrix and those of the perturbed matrix. As a result of the linkage between the perturbation and
stationarity problems, new theoretical insights are gained for each. Applications of the main results
include a characterization of those matrices that are exponentially nonnegative with respect to the
n-dimensional ice-cream cone, which in turn leads to a decomposition theorem for such matrices. In
addition, results are obtained for nonsymmetric matrices regarding interlacing and majorization.

Key words, trust region problems, nonsymmetric perturbation, secular function, secular an-

tiderivative, eigenvalues, interlacing, exponential nonnegativity, majorization, inverse eigenvalue
problems

AMS subject classification. 15A18

1. Introduction. Suppose that B is a real symmetric (n- 1) (n- 1) matrix.
Then the classical Rayleigh Principle and Courant-Fischer Minimax Theorem relate
the eigenvalues of B to the stationary points of the quadratic function

(x) xBx

with respect to the constraint set

Sn-1 {X E Rn-1 xtx

In particular, if we introduce the Lagrangian function

(1.1) L(x, )) ,(x) )(xtx 1),

then the Lagrange equation

(1.2) OxL(x,)) =0

becomes

(1.3) Bx )x O.

If x and satisfy the Lagrange equation and x Sn-1, then we shall say that A and
x are a Lagrange multiplier and an associated stationary point of (.) with respect to
Sn-1, respectively. Thus there is a one-to-one correspondence between the eigenvalues
of B and the Lagrange multipliers. Furthermore, the stationary points, including the
maximum and minimum points, can be found by determining the unit eigenvectors of
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B. The lack of convexity in the constraint does not cause difficulties in locating the
constrained maxima and minima, since such points correspond to the maximum and
minimum eigenvalues, respectively.

The eigenvalues of symmetric border perturbations of B have well-known prop-
erties. In particular, the eigenvalues 5 >_ 52"." >_ 6, of the n n matrix

(1.4) A=
r t

interlace the eigenvalues of B, which we denote "1 >_ 2 -- -- "n--1. That is,

(See, e.g., pp. 94-97 in Wilkinson [24].)
Nonsymmetric border perturbations of B are not as well understood. For exam-

ple, the n n matrix

(1.6) A at t

which is a skew-symmetric perturbation for t 0, may possess either a complex or
real spectrum, and may be either diagonalizable or derogatory.

On the other hand, the important problem of finding the Lagrange multipliers
and stationary points of the general quadratic function

(1.7) #(x) x Bx 2rl x

on Sn-1 has been extensively studied in the literature. In particular, we shall consider
the "trust region" problems

Pnin min{#(x) x E Sn-}

and

Pmax max{#(x) x e Sn-1}.

Such problems arise during the calculation of the step between iterates in an important
class of minimization algorithms called "trust region methods." (The step in trust
region algorithms is actually calculated with a constraint of the form II Gy <- 0, for
some nonsingular matrix G and > 0. However, complementary slackness and the
change of variables x (1/)Gy lead to the form of our trust region problems.) The
theory has been discussed in Forsythe and Golub [5], Golub [9], Gander [6], Sorensen
[21], Fletcher [4] and Gander, Golub, and von Matt [7]. Furthermore, numerical
techniques for solving trust region problems are given in [21], Mo% and Sorensen [18],
[4], Coleman and Hempel [3], [7], and Golub and von Matt [10].

In the present work, we establish new connections between spectral properties
of a nonsymmetrically perturbed symmetric matrix and the stationarity properties
of a specific trust region problem. We provide explicit criteria for the spectrum of
the perturbed matrix to remain real, as well as eigenvalue interlacing properties. We
shall consider certain sign-restricted nonsymmetric border perturbations, including
the case (1.6). Our approach, in essence, is to regard the perturbation of a matrix as

a linear perturbation of a purely quadratic form. As a result of the interplay between
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the trust region and perturbation problems, new theoretical insights are gained for
each.

In the next section we summarize required known facts concerning trust region
problems, some of which involve the so-called secular function associated with #(.).
In addition, we shall make use of the secular antiderivative function associated with
#(.). This is a key tool which we employ to relate results on trust region problems
to perturbation theory. The main results are then given in 3, including interlacing
relationships for a nonsymmetrically perturbed matrix.

Section 4 contains applications of our main results. These include a characteriza-
tion of matrices which are exponentially nonnegative with respect to the n-dimensional
ice-cream cone, which leads to a decomposition theorem for such matrices. In addition,
results are given for nonsymmetric matrices regarding interlacing and majorization.

2. Trust region problems.

2.1. Some known results. For the real symmetric (n- 1) (n- 1) matrix B
and the real (n- 1)-vector , consider the quadratic function #(.) given by (1.7) on

Sn-1. Then the Lagrangian function is

(2.1) L(x, ) xtBx- 2rffx- )(xtx- 1).

In all that follows, our terminology regarding Lagrange multipliers and stationary
points is as in 1, with the appropriate Lagrange equation replacing (1.3). Presently,
the Lagrange equation is

(2.2) (B AI)x rl O,

The set of Lagrange multipliers of #(.) with respect to Sn-1 will be denoted by A,
and for E A, the associated set of stationary points will be denoted by Su(A).

Useful properties concerning trust region problems are summarized in the follow-
ing theorem.

THEOREM 2.1. Part 1. The vector x Rn-l, with xtx 1, is a minimum

(maximum) point of #(.) over Sn-1 if and only if there exists a scalar ) such that
x and ) together satisfy the Lagrange equation (2.2), with the matrix B- )I being
positive (negative) semidefinite.

Part 2. The set A of Lagrange multipliers of #(.) with respect to Sn-1 is finite.
Let A be given by

A1 > A2 > > Ak,

and let x S )i i=1,2,...,k. Then

> >... >

In particular, the minimum (maximum) of#(.) over Sn-1 is attained at any stationary
point associated with k (1).

Part 1 of the above theorem is due to Sorensen [21]; see also pages 101-102 in
Fletcher [4]. Part 2 is due to Forsythe and Golub [5]; also see the discussion of Case
b below.

Again denoting the spectrum of B by ’),1 >_ 3’2 >_ >_ %-1, let P be an orthog-
onal matrix such that

(2.3) PtBP D diag(3’l,,),’2,..., 3’n--l),
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the diagonal matrix with diagonal elements 71,72,..., 7n-1. Then the Lagrange equa-
tion (2.2) becomes

(2.4) (D- AI)& .
where

ptx, pt.

The set of Lagrange multipliers A is not changed by this transformation of the La-
grange equation, and for every x E Rn-l, we have

t(&) := &tDc- 2t& #(x).

We now introduce the condition

(2.6) i #0 Vi=l,2,...,n-1,

or equivalently.

(2.7) no column of P is orthogonal to 7.

There are two cases to consider.
Case a. Condition (2.6) holds. Then (2.4) implies that if A E A, it must be the

case that D- AI and B- AI are invertible. Also, the sets S(A) and S#(A) are then
the singletons

(2.8) x’ (B- A/)-lr/

and

(2.9) &x (D AI) l ptx

respectively. Furthermore, in the present case, A is the set of solutions to the implicit
secular equation

1 rlt(B ,I)-2] O,

which has the same solution set as the explicit secular equation

(2.11) f.() I 0.

Continuing to utilize the terminology of [71, we shall call f(.) the secular function
associated with #(.).

In Case a, unique solutions to "Pmin and Pmx are given by xx and xx, re-
spectively, from formula (2.8). Furthermore, in view of Part 1 of Theorem 2.1, the
invertibility of B- AkI implies

(2.12) Ak < 7n--1,

while the invertibility of B- ,kl I implies

(2.13)
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Case b. Condition (2.6) does not hold. In [5] it was proven that in this case,
A . t_J F, with/ being the solution set of the explicit secular equation, and where

r > 0},

where we adopt the convention 0/0 0 in defining ft,(’)" For each A e , B- AI is
invertible and S,(A) is the singleton x given by formula (2.8). For each 7 e F, the
set S(7) is an (m, 1)-dimensional manifold, where m, is the multiplicity of the
eigenvalue

In Cse b, it is possible that 7 A, implying that A occurs strictly to the right
of the mximl root of fz(.). Note that this can happen only if

7=A 0.

Furthermore, then fz (A) > 0, implying that S, (An_), the set of solutions to the
trust region problem P" is notmax

implying that Ak occurs strictly to the left of the minimal root of f(.). This is

possible only if

A =0.

It may then happen that f(A) > 0, implying that S(Ak), the set of solutions to
the trust region problem Pmin, is not a singleton.

2.2. The secular antiderivative. For the general quadratic function (.) given
by (1.7), consider the function

=
with the convention 0/0 0. Then the singularities of gz(.) are the same as those of
the secular function fz (.), and what is more,

(2.15)

at every nonsingularity A. We shll cM1 gz(.) the secular antiderivative function
associated with p(.).

The following lemma will be used in the next section to establish connections
between trust region problems and perturbation theory. The lemm sserts that
in Case a, the secular antiderivative’s values on the Lagrange multiplier set A re

precisely the values of (.) on the corresponding set of stationary points, as given by
(2.8). A variant of this result may be found in 2 of Forsythe and Golub [5], where it

is used in proving Part 2 of Theorem 2.1 above.
LEMMA 2.1. Assume that condition (2.7) holds (i.e., Case a), and let A.

Then

where x (B AI)- .
Pro@ Using the fct that (2)t2 1, we obtain
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At this point it will be useful to discuss the graph of the function g (.) in Case a.
Clearly g(.) possesses a singularity at each eigenvalue ’i, i 1, 2,..., n- 1. Also,
g(A) --. oc as A $ /i, while g(A) -oc as T ’, for each 1,2,..., n- 1. Let
i be such that +1 < . Then there is at least one root of g(.) in (+1, /i). It is
readily checked that g () < 0, and consequently is monotone decreasing in this
interval. It follows that g(.) has at most one point of inflection on (’i+, ’), which is
possibly also a critical point. Should there be a point of inflection in (/i+, /i), then
on that interval g(.) is strictly convex to the left of this point, and strictly concave
to the right of it. Hence g(.) has either zero, one, or two critical points on (,i+,
with the possibility of only one critical point being accounted for by the existence of
an inflection which is also critical. By again considering g(.), we find that g(.) is
strictly convex on the semi-infinite interval (,, x), while we have strict concavity on
the other semi-infinite interval, namely (-oc, n-1). Now, since g(A) --.
and as A --, c, we conclude that g(.) has a unique critical point, namely, A on

(1, c). Similarly, since g() -- -c as " "n- and as -- -x), we see that g(.)
has a unique critical point, namely, Ak on (-oc,fn_). (Note that this agrees with

(2.12) and (2.13).)
In Case a, it is clear that the set of critical points of the secular antiderivative

function g(.) is A. Furthermore, in view of our previous discussion, we then have

(2.17) #1-- g()l) > t2-----g,(2) >"" > #k- g(k),

where we have adopted the notation

# #(x), i 1,2,...,k

for the stationary values of #(.) on Sn-.
The preceeding discussion is summarized in Fig. 1, which illustrates the graph of

a typical secular antiderivative function when (2.7) holds and the are distinct.

3. Main results. In what follows, we will be considering the border perturbation
of the real symmetric (n- 1) x (n- 1) matrix B given by

(3.1) A t

where c and are real (n- 1)-vectors and t R. Letting P be an orthogonal matrix
which diagonalizes B as in (2.3), we define

Then
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FIG. 1.

where

& pta, pt.

Let us assume that

(3.4) &i/3i>0 Vi=l,2, ,n-1.

Since a permutation can be built into P, we can without loss of generality assume
that

(3.5)

where

D diag(’,’2,...,
D diag(9, 92,..., 9),

&i3i=O Vi=l,2,...,,

&3>O Vi=l,2,...,fi,

and

t+=n-1.

Furthermore, we can assume the ordering

9 >- 9 >"" >- %.
Remark 3.1. (i) Note that condition (3.4) holds if a =/3; that is, when A is given

by (1.6).
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(ii) It is possible, of course, that either or may be zero. It is readily shown
that

(3.6) 0 = no eigenvector of B is orthogonal to c or

Consider the submatrix of given by

We associate with A the quadratic function

The secular antiderivative function associated with #(.) is then

(3.9)

From the structure of i,, we see that the characteristic polynomial of A is

(3.10) p(A) p(A) H( A),
i=1

where

(3.11) /(/) det(-

In view of (3.10), it is clear that each of the diagonal entries of/) is an eigenvalue
of A. Therefore to completely determine the spectrum of A, it is necessary only to
determine the spectrum of A. The following key lemma describes this spectrum in
terms of the secular antiderivative function associated with #(.), and is the basis of
our linkage between trust region problems and perturbation theory.

LEMMA 3.1. The real eigenvalues of A that differ from the values are the
solutions of

(3.12) g#(/k) t.

Proof. Let/ E R where A : i for all 1, 2,..., . From the Schur complement
formula (see [12], p. 22), we then obtain

(3.13) det(fi. M) det(D M)[t- ) + t(D -/kI)-l(],

from which it follows that the real eigenvalues of A differing from the
are the solutions of

(a.14) t- ,X + ’ o.
=1

In view of (a.9), this is equivalent to (3.12).
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Let us denote the set of Lagrange multipliers of #(.) with respect to Sn by A, and
let this set be given by

Since condition (2.6) holds for #(.), we are presently in Case a. Therefore the set of
critical points of g#(.) is A, and moreover, in view of (2.17), we have

(3.15) /51 g#(A1) >/22 g#(A2) >"" >/2m g#(Am),

where the stationary values of #(.) on Sa are denoted

1,2,...,m.

Here

1,2,...,m,

with /being the -vector whose ith component is (&i/) 1/2.
The next theorem provides a qualitative description of the eigenstructure of the

matrix A given by (3.1), when condition (3.4) holds. Realness of the spectrum of
A is characterized in terms of the graph of gp(.), and in particular, in terms of the
stationary values of the quadratic function #(.). Should the spectrum be real, the
interlacing relationships between the eigenvalues of A and B are described. Prior to
stating the result, we require some further terminology and notation.

Let E . We shall say that is a type-1 critical point of gp(.) if it is a critical
point that is also an inflection. Otherwise, we call A a type-2 critical point of g#(.).
From the discussion of the secular antiderivative function given in 2.2, it is clear that
the number of type-2 critical points is even, since these points occur pairwise upon
the particular bounded intervals (i+1,) where they exist, and in addition, there is a
single type-2 critical point in each of the semi-infinite intervals (-c, e) and
these are An and A1, respectively. Let us denote the sets of type-1 and type-2 critical
points of g#(-) by/’ and/", respectively. Then

We shall write the set A’ as .. > .$ >... > .’

while the set ." will be written as

Here

w + 2v + 2 m,

with w or v possibly being zero. We denote the set of stationary values corresponding
to A’ as {#}o=1, while the set of stationary values corresponding to A" is written as
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It will be convenient to define the following closed intervals:

It is important to note that, in view of (3.15), the intervals defined above are mutually
disjoint.

THEOREM 3.1. Let B be an (n- 1) (n- 1) real symmetric matrix, and let A
be the perturbation of B given by (3.1). Assume that condition (3.4) holds, and that
ft is of the form (3.5). Let fit(.) be given by (3.8). Then the following hold:

1. There exist n- 2 real eigenvalues {.5i}_2 of A, including all the eigenvalues
of [9 and- 1 eigenvalues of fit, which interlace the n- 1 ordered eigenvalues {9’i}i=in-1
of B; that is,

2. The remaining two eigenvalues of A (which are eigenvalues of A), say 5a and
5b, are real if and only if

(3.17) te {’} u {-} u {-,} u { 0 ’}.=
3. Furthermore, 5 and 55 are real and distinct if and only if t is in the interior

of one of the v + 2 intervals in (3.17). In this case, the + 1 eigenvalues of A are
real and distinct.

4. If (3.17) holds, we have the following relations involving and b, where we
assume a <_ b:

() t > # # < 5 < < 5 < t.
(b) t 1 1 a 1 5b t.
(c) t pg_, < & g_ &.
(d) t e (p’, pg_) g < & < X_ < & or < ’ < & < ’_.

(f) t p . p &.
(g) t #. t _< 5. . 5 < %.

Furthermore, in each of the statements (c)-(f), all values on the right-hand side

of are contained in a single interval of the form (z/j+l, /j).
Proof. Consider the graph of g#(.), a typical example of which is given in Fig. 2.

We see that if ’i+1 < 9, then (3.12) has at least one solution 5 in (9+i, 9), which,
in view of Lemma 3.1, is an eigenvalue of A. Furthermore, since the characteristic
equation of A is given by

det(-AI)= (,i-A) t-A+ .a/ _0,
i=1 i=1 i :]

it follows that if 9i has multiplicity k as an eigenvalue of D, then 9i is an eigenvalue
of A with multiplicity k 1. Hence

(3.18) ql > 5-i > 9 >"" > %-i >_ $-i >_ %,
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FIG. 2.

where the - 1 numbers 6i, are eigenvalues of A. Part 1 of the theorem now follows
readily. Parts 2 and 3 are consequences of part 4, which follows directly from consid-
eration of the graph of g# (.), as in Fig. 2. There the relevant values of t are indicated,
with the subscripts on t corresponding to (a)-(h) above. (Note that there are two
possibilities for (d).) That {5b t in (a) and (b) follows from the graph and the fact
that the trace of is the sum of the eigenvalues of fi,, as does the inequality t _< a
occurring in (g)and (h). El

Remark 3.2. In Theorem 3.1, we can replace #(.) with any quadratic function of
the form.

where i =El, since this change does not alter the Lagrange multipliers or critical
values of #(.) with respect to Se.

Theorem 3.1 gives a detailed description of the eigenstructure of the perturbation
A under assumption (3.4), and in particular, a complete characterization of when
the spectrum of A is real. However, to apply the result, one requires an orthogonM
diagonalization of B, and this may not be readily available. In the following corollary,
sufficient conditions for realness of the spectrum of A are given, without reliance on
an orthogonal diagonalization, in case A is given by (1.6); that is, when

COROLLARY 3.1. Let B be an (n- 1) (n- 1) real symmetric matrix, and
consider the perturbation of B given by

(3.19) A at t

where ee is a real (n- 1)-vector. Define

it(x) x Bx 2oetx.

Let

(3.21) #l=max{#(x) xtx=l}
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and

(3.22) #k min{#(x) xtx 1}.

Then either of the conditions

(3.23) t _> #1

or

(3.24) t _< #k

are sufficient for the spectrum of A to be real.
Proof. As was noted in Remark 3.1, condition (3.4) holds for the present pertur-

bation. Now observe that #(.) and #(.) have the same secular function and secular
antiderivative, where #(.) is given by (3.8) with (i i for i= 1, 2,..., . Since the
roots of the secular function fg(.) are the critical points of the secular antiderivative
gg (.), the discussion of Cases a and b in 2.1 tells us that

A1 AI

From Part 2 of Theorem 2.1, we then have

(The last two inequalities can also be deduced directly from the definitions of the
functions #(.) and #(.).) The result now follows from Theorem 3.1, and in particular,
from part 4, (a), (b), (g), and (h). [3

The values #1 and #k in Corollary 3.1, which are the optimal objective function
values of the trust region problems Pmax and Pmin, respectively, may be efficiently
determined numerically by the method of Mor6 and Sorensen [18].

In Corollary 3.2, we give a Gersgorin-like sufficient condition for realness of the
spectrum of A given by (3.19). We use the notation I1" I1 for both the euclidean norm
of an (n- 1)-vector and the spectral norm of an (n- 1) x (n- 1) matrix.

COROLLARY 3.2. Let B and A be as in Corollary 3.1. Then a sufficient condition

for the spectrum of A to be real is

(3.25)

Proof. This follows from the fact that (3.25) implies that either (3.23) or (3.24)
hold, and Corollary 3.1.

We conclude this section with another result regarding the perturbation (3.19).
This elementary result is independent of Theorem 3.1, and yields further connections
between trust region problems and nonsymmetric perturbations.
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THEOREM 3.2. Let B, A, and I(’) be as in Corollary 3.1. Then ) E A (that is,
is a Lagrange multiplier of #(.) with respect to Sn-1) with x S,(A), if and only if

) is an eigenvalue of A with associated eigenvector

in which case lx[I 1 and t= #(x).
Proof. Upon premultiplying the Lagrange equation

(3.26) Bx Ax 0

by x and using the fact that xtx 1, we obtain

(3.27) #(x) + ctx A 0,

i.e., the following eigenvalue-eigenvector equation holds

Conversely, suppose that the above eigenvalue-eigenvector equation holds, with t
#(x). Then the Lagrange equation (3.26) and (3.27) clearly hold. Premultiplying by
x again and substituting for A yields xtBx-atx (#(x) +atx)xtx 0, which implies
that x

4. Applications.

4.1. Exponential nonnegativity. In this subsection it will be seen that the
main results of 3 can be applied to characterize those matrices that are exponen-
tially nonnegative with respect to the n-dimensional ice-cream cone and to provide a
decomposition theorem for such matrices.

Let us denote the n-dimensional ice-cream cone by

Kn {y Rn <- y2n’ Yn >- O}
Equivalently,

Kn {y Rn ytQny < O, Yn >-- 0},

where Qn diag(1, 1,..., 1,-1). We shall denote the matrix exponential by

etA E(tA)J/j!,
:/=0

and the boundary of Kn by OK,. The following further notation and terminology
will be utilized:

H(Kn) {A: AK, c K,}.
e(Kn) {A: e’A C H(Kn) Vt _> 0}.

e(OKn) {A: etA(OKn) C OKVt >_ 0}.
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These sets will be referred to as the Kn-nonnegative matrices, exponentially Kn-non-
negative matrices, and exponentially OKn-invariant matrices, respectively. It is readily
verified that both H(Kn) and e(OKn) are subsets of e(Kn). Although our discussion
will be essentially self-contained, the reader is referred to Berman and Plemmons
[2] and nerman, Neumann, and Stern [1] for general facts concerning these sets of
matrices.

Notice that A E e(Kn) if and only if for any initial point yo Kn, the solution
y(t) etAyo of the initial value problem

d
-y(t) Ay(t);

satisfies y(t) Kn for all at >_ O. Similarly, A e(OKn) means that y(t) OKn for
all Yo y(O) OKn.

We require the following lemma of Stern and Wolkowicz [22], in which e(Kn) and
e(OK) are characterized in terms of tangency-like properties of the vector field {Ay}
relative to the surface

OK {y e Rn ytQny O, Yn >-- O}.

LEMMA 4.1. Let A be a real n n matrix.
necessary and su]ficient condition for A e(Kn) is

Then the following hold: 1. A

(4.1) ytQnAy <_ 0 Vy e OKn.

2. A necessary and suJficient condition for A e(OKn) is

(4.2) ytQnAy- 0 Vy OKn,

which is in turn equivalent to A being of the form

(4.3) A=lG+algt gla
for some real (n- 1)-vector g and real number a, where the (n- 1) (n- 1) matrix

G is skew-symmetric.
We next use Corollary 3.1 to characterize e(Kn) in terms of the maximal critical

value of a specific trust region problem, as well as in terms of the realness of the
spectrum of a certain matrix.

Suppose that A e(Kn), or equivalently, that (4.1) holds. Let us partition A as

A1 c )(4.4) d ann

Then condition (4.1) becomes

(4.5) xtAlx + (c dt)x ann <_ 0 Vx e Sn--1.

Let us define

(4.6) B A1 /A
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From (4.5) it follows that (4.1) is equivalent to

where

#(x) "= xtBx- 2atx <_ ann

d-c
(4.8) c ---.
Defining

#=max{#(x) xtx=l}

(4.9) #1 <_ ann.

Now, in view of Corollary 3.1, (4.9) implies that the spectrum of the matrix

U (c- d)/2 )(4.10) Ar (dt ct)/2 ann

is real. We shall call Ar the regularization of A.
The preceding discussion is summarized in the following result.
THEOREM 4.1. Let A be a real n n matrix. Then the following hold: 1. A is

exponentially Kn-nonnegative if and only if (4.9) holds.
2. A necessary condition for A to be exponentially Kn-nonnegative is that the

spectrum ofA be real.
Example 4.1. In this example,

-1 1 1
4 2 3
0 1 aa3

Therefore

(4.11)

We wish to determine those values of a33 for which A E e(Kn). The regularization of
A becomes

AT 2 -1

1/2 1 a33

(X) --X -- 2X22 -- 5XlX2 Xl 2X2.

At this point, one could employ the algorithm of Mor(! and Sorensen [18] to compute
#1. Alternatively, one can find an orthogonal diagonalization of B with MATLAB,
and then generate the graph of gu(’)" The eigenvalues of B are thusly found to be
A1 3.4155 and A2 -2.4155, while an orthogonal matrix that diagonalizes B is

.8702 .4927
-.4927 .8702

Then

-.0576
1.1166 )"

as in (3.21), we see that (4.7) becomes
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It follows that

.05762 1.11662
(-2.4155- ) (3.4155- )"

Note that the present example is Case a (since no component of pto is zero). We
used MATLAB to graphically determine #1 5.67.

Hence

A E e(Kn) ==v a33 >_ 5.67.

Furthermore, if a33 satisfies this inequality, then the spectrum of Ar is guaranteed to
be real.

Our main objective in the remainder of this subsection is to prove that every
exponentially Kn-nonnegative matrix may be (nonuniquely) represented as the sum
of a Kn-nonnegative matrix and an exponentially OKn-invariant matrix. Formally,
this decomposition result is stated as follows.

THEOREM 4.2. One has

(4.13)

In proving this theorem, we make use of Theorem 4.1. We also require the fol-
lowing result, which provides characterizations of II(K,) and e(Kn) in terms of def-
initeness conditions. (For a real symmetric matrix C, the notation C _< 0 indicates
that C is negative semidefinite.)

THEOREM 4.3. Let A be a real n n matrix. 1. Assume that rank(A) > 1. Then
a necessary and su]ficient condition for

A e n(K ) {-YI(Kn)}

is the existence of # >_ 0 such that

(4.14) AtQnA- ttQn

_
O.

2. A necessary and suJficient condition .for A e(K,) is the existence of’ R
such that

(4.15) QuA + A Q ,’/Q <_ o.

Part 1 of Theorem 4.3 is due to Loewy and Schneider [14], while part 2 is due to
Stern and Wolkowicz [22].

We now shall prove the decomposition theorem.
Proof of Theorem 4.2. Let A e(Kn). By part 2 of Theorem 4.1, we know that

the spectrum of Ar is real, and we can choose 5 > 0 such that all eigenvalues of

=A+6I
are positive. Let F be an open disk in the open right-half complex plane, centered at
> O, such that the entire spectrum of lies within F. Inside F, one can express a

branch of the function f(/k) &!/ as

(4.16) f()
i--0
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where the coefficients c are all real. According to the theory of matrix functions (see,
e.g., [8]), A has a real square root given by

(4.17) /2 Eci( I)i.
i--0

Let us write

(4.18) A ft, + C,

where

l l A1-At c+d I(4.19) C
c + d 0

Then C E e(OKn), and, in view of Lemma 4.1, it follows that A and Ar are exponen-
tially Kn-nonnegative.

Since QnAr is symmetric, so is Q. Then part 2 of Theorem 4.3 implies the
existence of - such that

(4.20) QnI 7Qn

_
O.

From the fact that the spectrum of 1/2 is real and positive, it follows that

(4.21) (tl/2).t[Q ZQn]l/2
_

O.

Now, (4.17) implies that the matrix Qnft1/2 is symmetric, and therefore (4.21) yields

(4.22) Qn-i2 /QnfI <_ O.

Again using the symmetry of QnA, it follows that

(4.23) ttQn /Qn <_ O.

We can assume without loss of generality that >_ 0, since 5 can be increased, if
necessary. Then upon combining (4.20) and (4.23), we arrive at

(4.24) fltQnfl 2Qn
_

O.

Since rank(A) n, part 1 of Theorem 4.3 implies

(4.25) E H(Kn) U {-n(Kn)}.

Then (4.25) yields

e-.n e gn U {-Kn},

where en (0, 0,..., O, 1)t. We can assume that 5 has been chosen suiFficiently large
to ensure that

(4.26) tnn ann -I-5

_
O.

Hence (4.25) and (4.26) imply that Aen Kn. We conclude that

(4.27) A- C E H(Kn).
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Since C E e(OKn), it follows that

(4.28) A H(Kn) + e(OKn).

This completes the proof.
Example 4.2. Let

-1 0 0 /0 -2 2
0 0 0

Here

(Ay, Q3y} -(y2-1)2_<0 VyK3,

and therefore A is exponentially K3-nonnegative. Then

-1 0 0 /Ar 0 -2 1
0 -1 0

and following the proof of Theorem 4.2, Ar + 5I H(K3) provided that 5 is
chosen sufficiently large. Indeed, if we take 5 2, then

1 0 0 /0 0 1
0 -1 2

It is readily checked that (fly, Q3fty) -2(y2-1)2 <_ 0 and (y)3 >_ 0 for all y K3.
Hence H(K3), and therefore A E H(K3)+ e(OK3).

Remark 4.1. Given an n n exponentially Kn-nonnegative matrix in the regu-
larized form At, define

5" min{5 e R’Ar + 5I e n(Kn)}.

Let us denote the eigenvalues of Ar by A1 _< A2 _< _< ,n It is conjectured that

This is precisely the minimal value of 5 that will ensure that the spectral radius of
the matrix A / 5I is in its spectrum. Therefore this conjecture relates to the result
of Vandergraft in [23], which asserts that a matrix leaves a proper cone invariant only
if its spectral radius is an eigenvalue. (The cone K is said to be proper provided
that it is closed, convex, possesses nonempty interior, and K N {-K} {0}.) Note
that 5" is generally less than the "sufficiently large" value of 5 used in the proof of
Theorem 4.2 to ensure various properties, including the existence of a real square root
ft/2 (A + 5I) /2. As an illustration, consider the matrix Ar in Example 4.2. The
spectrum of A is {-1,-1,-1}, and therefore 5" 1. Then

0 0 0 /Ar+5*I= 0 -1 1 H(K3),
0 -1 1
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but this matrix does not possess a real square root.
Remark 4.2. An interesting open problem is to determine whether the decompo-

sition (4.13) holds for any proper cone K C Rn; that is

(4.29) e(K) n(K) + e(OK).

It is not difficult to verify (4.29) for the class of ellipsoidal cones; these are the linear
homeomorphisms of Kn. Also, results in Schneider and Vidyasagar [19] may be ap-
plied to verify (4.29) for the class of polyhedral proper cones, and to show that for a
general proper cone K, we have

(4.30) e(K) 1](K) + e(OK),

where the bar denotes closure. Hence (4.30) implies that conjecture (4.29) is equivalent
to closedness of H(K)+e(OK). The sets H(K) and e(OK) can be shown to be a proper
cone and a subspace, respectively, in the space of n n matrices. Such a sum is not
necessarily closed, and the conjecture therefore remains unsettled.

4.2. Interlacing and majorization. Given two real n-vectors x and y with
component orderings

(4.31) xl >_ x2 >_’" >_ Xn

and

(4.32) Yl >_ y2 >_’" >_ Yn,

we say that x is majorized by y (notationally, x -< y) provided that

xl _<y,
x+x2 <_yl+y2,

x + x2 +’" + Xn- <_ y + Y2 + + Yn-1,

X + x2 + + Xn Yl + Y2 +’’" + Yn.

The following is a classical theorem of Schur [20].
THEOREM 4.4. Let A be a real symmetric n n matrix with diagonal elements

all

_
a22 _>’" >_ ann

and eigenvalues

Then

(4.33) (all, a22,..., ann) -< (51,52,...,5n).

One proof of Schur’s theorem appearing in Mirsky [16], and attributed there to
Schneider, makes use of the interlacing (1.5) obtained upon writing A in the form
(1.4). (See also Theorem 9.B.1 in Marshall and Olkin [15] or Theorem 4.3.26 in Horn
and Johnson [12].) We next give an analogous "near-majorization" result and proof
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for (nonsymmetric) matrices of the form (3.1) satisfying condition (3.4), by applying
the "near-interlacing" provided by Theorem 3.1. We first introduce some further
terminology and notation.

Given real n-vectors x and y satisfying the orderings (4.31) and (4.32), we say
that x is near-majorized by y (notationally, x y) provided that

xe _< y:,

X2 -]- X3 Y2 + Y3,

X2 + X3 "- -}- Xn Y2 -}- Y3 +’’" + Yn,

X -- X2 -" -" Xn Yl + Y2 +’’" + Yn.

Note that x y implies x >_ Yl.
THEOREM 4.5. Assume that the hypotheses of Theorem 3.1 hold, and consider

the matrix fit given by (3.7).
1. Assume that t >_ #. Then the spectrum of A is real, t >_ /1, and

where v denotes the vector of eigenvalues of fit listed in nonincreasing order.
2. Assume that t <_ #m. Then the spectrum of A is real, t <_ /, and

Proof. We only prove part 1 of the theorem. The proof of part 2 is similar and is
left to the reader.

In view of Theorem 3.1 (part 4(a) and 4(b)), the eigenvalues of A are all real and
the ordered spectrum of A is given by

(4.34)

and we have

(4.35)

This yields the system of inequalities

The result now follows from the fact that

In the following corollary to Theorem 4.5, we obtain a near-majorization result
for matrices of the form (1.6).
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COROLLARY 4.1. Let B, A, #(.), #1 and #k be as in Corollary 3.1, where the
diagonal of B is assumed to have the ordering

(4.36) bll >_ b22 >_’" _> b(n-1)(n-1).

In addition, assume that no eigenvector of B is orthogonal to c.
1. If condition (3.23) holds (that is, t >_ #1), then the spectrum of A is real,

t >_ b11, and

(t, bll, b22,..., b(n-1)(n-1)) - v,

where v is vector of eigenvalues of A listed in nonincreasing order.
2. If condition (3.24) holds (that is, t <_ #k), then the spectrum of A is real,

t <_ b(n-1)(n-1), and

-(b11, b22,..., b(n-1)(n-1), t) - v.

Proof. We will only prove part 1, with the proof of part 2 being left to the reader.
Since condition (3.6) holds, we .have , where and are given by (3.5)

and (3.7), respectively. From the proof of Corollary 3.1, we see that the eigenvalues
of A are all real, and that the entire ordered spectrum of A is given by (4.34) with

n- 1. Upon applying Schur’s majorization theorem to B, we obtain

bll + b22 <_ "1 -t-

bll + b22 +"" + b(n-1)(n-1) <_ /1 nt- ’2 +’" -t-

and making use of (4.35) as in the proof of Theorem 4.5, we have that

1 + < 5a + 5,

The result now follows from the facts that t >_ 1 >_ bll and

trace(A) t + bll -- b22 +"" + b(n-1)(n-1)

Notice that the ordering of the diagonal (4.36) can be assumed to hold without
loss of generality in Corollary 4.1, since it can always be attained via a permutational
similarity.

The following inverse eigenvalue theorem is due to Mirsky [17]; see also Theorem
9.3.B in [151.

THEOREM 4.6. Suppose we are given real numbers 9/1, V2, Vn-1 and 51,52,..., 5n,
which satisfy the interlacing property (1.5); that is
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Then there exists a real symmetric n n matrix of the form

(4.a7) .4= rf t

with D diag(7,-y,..., 7_), sch ht the spectrum of A is {, ,..., }.
We will now show that an analogous inverse eigenvalue theorem holds when the

interlacing (1.g) is replaced by the types of near-interlacing occurring in Theorem
a.1. The proof closely follows Mirsky, but we include it nevertheless for the sake of
completeness. (See also Theorem 7 in [la].)

THEOREM 4.7. Suppose we are given real numbers, 2,..., n-1, 51, 2, n-2,
and 55, 5a, which satisfy

(4.as)
Assume that one of the following three cases holds:

1. 55 >_ 5a >_ /1;
2. /-1 >_ b >_ ;
3. " > > b > > "+ /or some j, 1 > j > n- 2.

Then there exists a real n n matrix of the form

A _t t

such that D diag(’l,’,... ,’-1) and such that the spectrum ofA is {51,... ,5,_1}

Proof. The characteristic equation of A is given by

(4.39) det(AI A) H (A i) A t + 0.

We need to choose r and t so that the numbers 5i, i 1,..., n, are the roots of (4.39),
where with some abuse of notation, we refer to 5b, 5a 5n-, 5n. First suppose that
the 5i are distinct. Let

n n--1

f(A) H(A 5i1, g(A) II (A /i).
i=l i--1

By direct verification, or by Lagrange’s interpolation formula, we have

(4.40) f(A) A- 5i- Ei + (A
i=1 i=1 k=l

Due to the near-interlacing in case 1, that is, when 5b >_ 5a >_ /i (or 5n-i >_ 5n >_ ?i),
we have

n k-1 n-2

f(’k) H (’k 5) H (’k 5) H (/ 51
i--n--1 i--1 i--k

n k-1 n-2

(--1) H I"Yk (’1(-1)k-1 H I"Yk e’l H (9’k ei)
i=n--1 i=1 i=k

n

(-11 H
i--1
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and

n--I

g’(/k) (-1)k-1 H I’Y /il"
i=l

i--k

It follows that

f(/k)
>0, k--i,2,.., n-1.

Similarly, this can be shown to hold in the other two cases as well.
Now choose

f(’k) k 1, 2,..., n

and

Then the eigenvalues of A are the roots of f(.), which are the n values 5i. (A modifi-
cation of the proof yields the case of nondistinct 5i.) [:]

Remark 4.3. In [11], A. Horn proved the following inverse eigenvalue result, which
may be viewed as a converse to Theorem 4.4.

If we are given real numbers

a > a: >... > a

and

such that the majorization (4.33) holds, then there exists an n n real symmetric
matrix A with diagonal elements a11, a22,. ann and with eigenvalues

One proof of Horn’s theorem is due to Mirsky [17], and relies on Theorem 4.6.
(See also Theorem 9.B.2 in [15].) Hence it seems apppropriate to ask whether one
can obtain analogous converses to Theorem 4.5 or Corollary 4.1 by utilizing Theorem
4.7. At the present time, this remains an open problem.

Remark 4.4. In this subsection we have seen that known results for symmet-
ric matrices regarding interlacing and majorization can be extended, under certain
conditions, to "near-symmetric" matrices, i.e., matrices of the form (3.19). This was
possible because these extensions depended more on the realness of the spectrum than
on symmetry per se. Other results in the literature regarding symmetric matrices can
also be extended to the near-symmetric case by employing the present work; e.g.,
results on eigenvalue bounds appearing in Wolkowicz and Styan [25].

Acknowledgment. The authors wish to thank Q. Ye for pointing out reference
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THE GENERALIZED ORDER LINEAR COMPLEMENTARITY
PROBLEM*

M. SEETHARAMA GOWDAt AND ROMAN SZNAJDERt

Abstract. The generalized order linear complementarity problem (in the setting of a finite
dimensional vector lattice) is the problem of finding a solution to the piecewise-linear system

x A (Mix T ql) A (M2x T q2) A... A (Mkx + at:) O,

where Mi’s are linear transformations and qi’s are vectors. This problem is equivalent to the gen-
eralized linear complementarity problem considered by Cottle and Dantzig [J. Combin. Theory, 8
(1970), pp. 79-90.]. Using degree theory, a comprehensive analysis of existence, uniqueness, and
stability aspects of this problem is presented.

Key words, order complementarity problem, piecewise-linear function, block transformations,
type

AMS subject classifications. 90C33, 47Hll, 46A40

1. Introduction. For a given matrix M E Rnn and a vector q E Rn, the
(classical) linear complementarity problem, LCP(M, q), is to find a vector x R
such that

(1) x _> 0, Mx + q >_ 0, and X
T (Mx + q) O.

The importance of this problem is well documented in the literature (see, e.g., [40]
and [5]).

The above formulation of the LCP deals with the nonnegative orthant R and the
usual inner product. A generalization of the above problem, appropriately called the
topological complementarity problem in [2], deals with a Hilbert space and a closed
convex cone. This generalized problem has been well studied in the literature (see,
e.g., [1], [7], [28]).

LCP(M, q) can be formulated equivalently as an equation: find x such that

(2) xA(Mx+q)--O,

where x A (Mx -4- q) (min (xi, (Mx + q)i)). This is an instance of an order com-
plementarity problem (OCP). Since topology plays no role in this formulation, it is
possible to define a generalization of this problem in the setting of a vector lattice. To
define this generalization, consider a vector lattice X; that is, X is an ordered vector
space in which for any two elements x and y, xAy min {x, y} and x/y max {x, y}
are defined [44]. Corresponding to any function f X - X, the OCP(f) is to find a
vector x in X such that

(3) x A f (x) 0.

Interesting results have been obtained in this general setting [1], [2], [181, and [19].
However, it is the mixing of topological and order structures that has yielded more

(and perhaps better) results [7], [39], [46].
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The subject matter of our article is concerned with OCP(f) when f is a min-
imum of a finite number of affine functions. To be specific, let k be any natural
number. Given k linear transformations M1, M2,..., Mk from X into itself and k
vectors ql, q2,..., qk in X, we write,

(4) M=(MI,M2,...,Mk) and q=(ql,q2,...,qk).

Then the generalized order linear complementarity problem GOLCP(M, q) is to find
a vector x in X such that

x A (Mix + q) A (M2x + q2) A,,, A (Mkx + qk) O.

For k 1, this problem was methodically analyzed by Borwein and Dempster [2].
Relying heavily on the order structure, they were able to get many existence results.
They showed by an infinite dimensional example why uniqueness (of solution) for
every solvable q does not assert the solvability of all q’s. We show in this article
that when X is finite dimensional, as in the classical situation, uniqueness for every
solvable q implies the solvability of every q. In fact, as in the classical situation, we
tie this property to certain P-matrices.

Of special importance is when X is the Euclidean space Rn with the usual order-
ing. It is shown in 6 that the above GOLCP is equivalent to the generalized linear
complementarity problem (henceforth called the vertical linear complementarity, prob-
lem (VLCP), as in [5]) considered by Cottle and Dantzig [4], who established basic
existence results via (a modification of) Lemke’s algorithm. The uniqueness aspect for
the VLCP was considered by Szanc [53]. In recent times, a number of articles dealing
with GOLCP (and equivalently, VLCP) have been written [14], [15], [17], [31].

Working still in the Euclidean space R with the usual order, we obtain a general
problem when x appearing at the beginning of the expression (5) is replaced by an
affine function. The resulting piecewise-linear system is an extended GOLCP: find
x E R such that

(6) (Mox + qo) A (Mx + q) A (M2x + q2) A..- A (Mkx + qk) O.

It is clear that if M0 is invertible, then (6) can be formulated as a GOLCP. This system
occurs in certain nonlinear networks [20], [21] and in control theory [50], [51]. Eaves
[10] gives a complementary pivoting algorithm to solve the piecewise-linear system (6),
and Pang [43] studies this system by formulating it as an implicit complementarity
problem. The general problem was also studied by Mangasarian [37], who established
the equivalence of this to a certain linear programming problem. A sufficient condition
for uniqueness in the extended GOLCP was provided by Isac and Goeleven [31]. We
say more about the extended GOLCP in 7.

Our main object in this article is to give a comprehensive analysis of existence,
uniqueness, and stability issues connected with the GOLCP. Traditionally, the exis-
tence results in the LCP theory are derived via the basic theorem of complementarity
[25]. This basic theorem itself is obtained via the theorem of Hartman-Stampacchia
on variational inequalities. It is not clear to the authors whether GOLCP can be for-
mulated as a variational inequality problem. As we see, the degree theory approach
allows us to prove existence results directly and under relaxed assumptions. Degree
theory plays an important role in stability results as well. Some of the results proved
in this paper are new even in the LCP setting.

Here is a brief description of various sections. In 3, we introduce block trans-
formations of various types and prove existence results in a general setting. Section
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4 deals with the corresponding uniqueness results. Section 5 deals with the stability
aspects. In 6, we deal with the usual ordering on Rn and show the equivalence of
the GOLCP with the generalized LCP of Cottle and Dantzig. Furthermore, in vari-
ous subsections of 6, we show how to recover the results of Cottle-Dantzig, Szanc,
Ebiefung-Kostreva, and others. Finally, in 7, we deal with the extended GOLCP
and completely characterize uniqueness in such problems.

2. Preliminaries. Throughout this paper, we assume that X is a finite dimen-
sional vector lattice. This means that there is a closed convex cone K that induces
the order on X: for any two elements x and y, x

_
y if and only if y- x E K and

x /y :- max (x, y} and x A y man (x, y} exist in X. Although X is isomorphic
to Rn with the usual ordering (cf. [44, Prop., p. 9]), to simplify the notation (and
with possible generalizations to infinite dimensional spaces in mind), we work with
X and its ordering. The reader can refer to [44] or [36] for properties of order and
lattice on a vector space. Let Y denote the Cartesian product of k copies of X, that
is, Y 1-[1k X. Because X and Y are finite dimensional, we may suppose that they
have norms defined on them; we denote both norms by the same symbol I1" II. Let
B denote the open unit ball in X. Since x x+ -x- where x+ max (x, 0) and
x- max (-x, 0, we see that X K- K, and so by convex analysis [49], the
interior of K is nonempty. To indicate that an element d of X belongs to the interior
of K, we use the notation d >- 0. (While dealing with the usual ordering, we use the
standard notation d > 0 instead of d - 0. Note, however, that the notation d > 0
in the context of a general vector lattice means that d _> 0 and d 0 [44].) For a
d (dl, d2,..., dk) E Y, we write d 0 when di 0 for all i and write d _> 0 when
di >_ 0 for all i. In what follows, M and q are given by (4). For brevity, we write

x A (Mx + q) x A (Mix + ql) A (M2x + q2) A-" A (Mkx + qk),
x A Mx x A Mix A M2x A... A Mkx and x V Mx := x V Mix k/M2x V... V Mkx.

We use the notation Mx + q _> 0 (>- 0) to mean Mix + qi >_ 0 (respectively, - 0)
for all i 1, 2,..., k. A vector x with x _> 0, Mx + q _> 0 (- 0) is called a feasible
(respectively, strictly feasible) vector for GOLCP(M, q). If there is such a vector, we
say that GOLCP(M, q) is feasible (respectively, strictly feasible). Let

(M)={q’Mx+q:>0forsomex>_0} and E (M) {q SOL (M, q)

where SOL(M, q) denotes the solution set of GOLCP(M, q).
Borrowing the terminology from the LCP theory, we say that these sets are,

respectively (when M is fixed), the set of all "feasible" q’s and "solvable" q’s. Note
that ’(M) is closed, convex, and

int’(M)--{q" Mx+q-0forsomex>_0}.

3. Existence results. As in the LCP theory, our existence results deal with
classes of (block) transformations M. Motivated by the LCP theory, we introduce the
following definition.

DEFINITION 1. We say that M is of
1. type R0 if x A Mx 0 ====v x 0;
2. type G if for some d >- 0, SOL(M, d) {0};
3. type R if it is of type R0 and type G;
4. type E if x >_ 0, xAMx_<0===>x=0;
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5. typeP ifxAMx_O_<x/Mx==x=O;
6. type Q if for every q, GOLCP(M, q) has a solution;
7. type Q0 if ’(M) c_ (M).

Remarks. We use the same symbol to denote the class of M’s of a given type. For
example, type Q denotes the set of all M’s which are of type Q. When X is Rn with the
usual ordering and k 1, the definitions 1, 2, 3, 6, and 7, reduce, respectively, to those
of R0-matrices, G-matrices, R-matrices, Q-matrices, and Q0-matrices [5]; definitions
4 and 5 reduce to those of strictly semimonotone and P-matrices, respectively (see
Theorems 3 and 4 below).

To illustrate the above definitions, we give two examples dealing with R2 and the
usual ordering. More examples are given in 6.

Example 1. Let M (M1, M2) where

1 1 M- 0 1

It is easily verified that M is of type Ro. Note that neither M1 nor M2 is an Ro-matrix.
Example 2. Let M (M1, M2) where

MI= 0 1 M= 1 1

It is easily verified that M is of type E and hence of types R and R0 by Proposition
1 below.

PROPOSITION 1. type P C_ type E C_ type R C_ type R0.
Proof. If x _> 0, then for any vector y, 0 _< x /y. This observation shows that

type P C_ type E. Since x _> 0 and x AMx _< 0 when x A (Mx+ td) 0, t E R+, d - 0,
we have the inclusion type E C_ type R. The last inclusion type R c_ type R0 follows
from the definition. [:]

Corresponding to the problem GOLCP(M, q), we define two functions F(M,Q and

FM by

F(M,q)(X)=xA(Mx+q) and FM(X)=xAMx.

We see that the problem GOLCP(M,q) can be formulated as an equation
F(M,q)(X) 0. It is now possible to study the GOLCP using degree theory. Sup-
pose that M is of type R0 so that the zero vector is the only solution of FM(X) 0.
Let t be any bounded open set in X containing the zero vector. Then the integer
deg(FM, gt, 0) (the degree of FM over relative to zero) is defined [35]. Furthermore,
this is independent of the bounded open set Ft. We call this integer the GOLCP-degree
of M and denote it by GOLCP-deg M.

We remark that in the context of the (classical) LCP, the GOLCP-degree (simply
called the LCP-degree) of an R0-matrix M can also be computed by using the mapping
x -. x+ Mx- [5, Chap. 6], [12].

Before stating our first existence result, we give a necessary and sufficient condi-
tion for boundedness of SOL (M, q) for M1 q. We omit the proof as it is identical to
the one in the classical case. Note that the solution set SOL (M, q) may be empty
for some particular q.

PROPOSITION 2. M i8 of type R0 if and only iffor all q, SOL (M, q) is bounded.
Remark. When M is of type R0, it is easily seen that the solution sets of

GOLCP(M, q) are uniformly bounded as q varies over a bounded set in Y.
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Here is our first existence result.
THEOREM 1. Suppose that M is of type R0 and GOLCP-degree ofM is nonzero.

Then M is of type Q.
Proof. Let q be arbitrary. For any t in the interval [0, 1], consider

F(M,tq) (x) x A (Mx + tq).

In view of the remark above, the set {x F(M,tq)(X) 0 for some t e [0, 1]} is
bounded in X and hence contained in some bounded open set, say, Ft. Note that
F(M,tq) is a homotopy connecting the mappings F(M,q) and FM. Using the homotopy
invariance property of the degree [35, Thm. 2.1.2], we see that deg(F(M,q), ft, 0)
deg(FM, ft, 0) GOLCP-degM. Since this last integer is assumed to be nonzero, by
the well-known property of the degree [35, Thm. 2.1.1], the equation F(M,q)(X) 0
has a solution in f, i.e., GOLCP(M, q) has a solution. Since q is arbitrary, the result
follows. D

Our next result is the GOLCP analog of Karamardian’s result [33] for regu-
lar matrices. Karamardian based his proof on an existence theorem of Hartman-
Stampacchia on variational inequalities, which in turn is based on the Brouwer fixed
point theorem. The proof of our result below is based on degree theory.

THEOREM 2. Suppose that M is of type R. Then its GOLCP-degree is one and
hence it is of type Q. In particular, if M is of type P or of type E, then it is of
type Q.

Proof. For t in the interval [0, 1], consider

F(M,td) (X) X A (Mx + td),

where d is as in the definition of the class type R. As in the proof of the previous
theorem, we have GOLCP-deg M deg(FM, ft, 0) deg(F(M,d), ft, 0), where ft is
any bounded open set containing zero. Since d - 0, we have for all x near zero,
Mx + d - 0 and F(M,d)(X) X. This implies that deg(gM, ft, 0) 1; cf. [35, Thm.
1.1.4]. Now Theorem 1 completes the proof.

4. Uniqueness results. The following theorem characterizes uniqueness in
GOLCPs. Another equivalent characterization using P-matrices is given in 6.

THEOREM 3. The following statements are equivalent:
(a) M is of type P;
(b) for every q, GOLCP(M, q) has at most one solution;
(c) for every q, GOLCP(M, q) has exactly one solution;
Proof. The proof of the equivalence (a) (b) is standard (see, e.g., [2, Whm.

2.14]); for the sake of completeness, we include a proof. Assume (a). If x and y are
two solutions of GOLCP(M, q), then with z x y, we easily verify that

(7) z A Mz <_ 0 <_ z /Mz,

which, in view of (a) gives z 0. Hence, (a) (b). Now suppose that (a) fails to
hold. Let z 0 satisfy (7). Define q by qy (Myz)+ My(z+ (j 1,2,...,k)
and note that qy (Myz)- My(z-) (j 1,2,...,k). Since (7) is equivalent to
z+ A (Mlz)+ A... A (Mkz)+ 0 z- A (Mz)- A... A (Mkz)- 0, we see that
z+ and z- are two (distinct) solutions of GOLCP(M, q) contradicting (b). Hence,
(b) == (a). Clearly, (c) (b) == (a). From the implication (a) == (b) and
Theorem 2, we get (a) (c). This completes the proof, r
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Remarks. As pointed out in the proof, the implication (a) (b) was proved
by Borwein and Dempster. They also give an example to show that in the infinite
dimensional setting, the converse (b) (a) is false.

THEOREM 4. The following statements are equivalent:
(a) M is of type E;
(b) For every q _> 0; the zero vector is the only solution GOLCP(M, q).
Proof. Suppose (a) holds and x is a solution of GOLCP(M, q) where q >_ 0. It

follows that x >_ 0 and x A (Mx) <_ x A (Mx + q) 0. We see that x 0. On the
other hand, suppose (b) holds and let z be a solution of the system z _> 0, z AMz _< 0.
Then z is a solution of GOLCP(M, q) where q is defined by qj (Mjz)+ -(Mjz)
(j 1, 2,..., k). Since q _> 0, we get z 0. [:]

In the classical LCP theory, statement (b) in Theorem 4 describes strictly semi-
monotone matrices (defined by the condition: for all 0 x >_ 0, there is an index
i such that xi(Mx) > 0). Analogous to the classes of semimonotone matrices and
P0-matrices, we introduce two classes of block transformations M. Let I denote the
identity mapping on X and let

M + I := (M + sI, M2 + sI,...,Mk + I).

We say that M is of type E0 (P0) if M + I is of type E (respectively, type P) for
every > 0. It is clear from Theorems 3 and 4 that type P0 c_ type E0. We have the
following theorem.

THEOREM 5. Consider the statements:
(a) M is of type E0;
(b) for every q >- 0, the zero vector is the only solution of GOLCP(M,q).

Then (a)== (b).
Remark. We show in 6.3 that the reverse implication (b) == (a) holds when X

is Rn with the usual ordering. Isomorphism considerations then allow us to get the
reverse implication in the general case as well.

Proof. Suppose q >- 0 and x A (Mx + q) O. Let x (x, x,..., x) and > 0 be
small so that q- Cx >- O. Then x _> 0 and x A (Mx + Cx) _< x A (Mx + q) O, which
implies that x 0 in view of (a).

Remark. The above theorem shows that type E0 C_ type G and therefore
type E0 N type R0 c_ type R.

5. Stability. In the stability aspect of GOLCP, we are interested in the solution
behavior as the data changes. First, we deal with the behavior of the entire solution
set. In the definition below, IIMII refers to the norm of M as a linear operator from
Y into itself; however, we can use any norm.

DEFINITION 2. The problem GOLCP(M, q) is said to be stable if for every > 0
there exists a 5 > 0 such that

SOL (M’, q’)N (SOL(M, q) + B) 0

for all (M’, q’) with IIM’- Mll / IIq’-qll < 5.
The following theorem is the basis of our stability analysis.
THEOREM 6. Suppose that SOL(M, q) is nonempty and bounded. Suppose that

for some open set f containing SOL(M, q), deg(F(M,q), f, 0) is nonzero. Then
GOLCP(M, q) is stable.

Proof. For any given , we consider the open set T SOL(M, q) + CB. With-
out loss of generality, we can assume that T C t. Since there are no solutions of
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IF(M,q) (X) 0 in t \ D, by the excision property of the degree, we have deg (IF(M,q),
T, 0) deg (F(M,q), t, 0) # 0. Now for a suitable 3 > 0, we have

sup ][F(M,q (X) F(M,,q, (X) ( dist (0, F(M,q) (OD))

for all (M’, q’) with IIM’- MII + IIq’-qll < . By the nearness property of the degree
[35, Whm. 2.1.2], deg(F(M,,q,), D, 0) deg(F(M,q), :D, 0) # 0. Hence, the equation
F(M,,q, (X) 0 has a solution in T. The stated conclusion follows.

To illustrate the above theorem as well as for future reference, we formulate a
definition. We say that M is of type D if there is a d such that (a) SOL(M, d) is
nonempty and bounded, and (b) deg(F(M,d), t, 0) 0, where t is some bounded
open set containing SOL(M, d).

Note that these two conditions imply the stability of GOLCP(M, d). In particular,
when M is of type D, the vector d that appears in the definition of D is necessarily
in the interior of $-(M). Now recall that M is of type G if there is a d >- 0 such that
SOL(M, d) {0}. It follows that for such an M, F(M,d)(X) X for all x near the
zero vector. So, deg(F(M,d), f, 0) 1 where t is any bounded open set containing
the zero vector in Rn. This establishes the inclusion type ( c type D.

The theorem given below is new even in the classical LCP theory. For positive
semidefinite matrices, this result was proved in the LCP setting by Robinson [47] via
generalized equations and maximal monotone multifunctions. Using degree theory,
Gowda and Pang presented various generalizations of Robinson’s result for the affine
variational inequality problem [27]. As we see below, the Gowda-Pang analysis goes
through even for GOLCP.

THEOREM 7. Let M be of type P0 and SOL(M, q) be nonempty and bounded.
Then GOLCP(M, q) is stable.

Proof. Let t be a bounded open set in X containing SOL(M, q). Let x* E
SOL(M, q). For any t with 0 <_ t < 1, define (Ms, qt) by

Ms M + tI, q, q- tx*,

where x* :- (x*, x*,... ,x*). Then for t > 0, x* e SOL(Mr, qt) and Ms is of type P.
Therefore, SOL(Ms, qt) {x*} for all t > 0. Clearly, we have a homotopy between
(M,q) and (Ml,ql). Hence, deg(F(M,q),t,0) deg(F(Ml,q,),t, 0). Since M1 is of
type P, it is of type R by Proposition 1. By Theorem 2, its GOLCP-degree is one.
By following the proof of Theorem 1, we see that deg(F(Ml,q), t, 0) 1. Therefore,
deg(F(M,q), t, 0) 0. Now the stability follows from the previous theorem.

We now formulate the definition of stability at a solution point.
DEFINITION 3. Let x* be a solution ofGOLCP(M, q). The problem GOLCP(M, q)

is said to be stable at x* if x* is an isolated solution of GOLCP(M, q) and for every
e > 0 there exists a > 0 such that

SOL (M’, q’)N (x* + eB)

for all (M’, q’) with IIM’ Mll + }lq’ -qll < .
In the case of the classical LCP, the stability at a solution point is fairly well

understood [23]-[26], [29], [30]. Here, we present a result for GOLCP. By modifying
the proofs of Theorems 6 and 7, we are led to the following. We omit the details.

THEOREM 8. Suppose that x* is an isolated solution of GOLCP(M, q). Suppose
that there is a bounded open set t containing only one solution of GOLCP(M, q),
namely, x* and deg(F(M,q), t, 0) is nonzero. Then GOLCP(M, q) is stable at x*.
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THEOREM 9. Let M be of type P0 and let x* be an isolated solution of
GOLCP(M, q). Then GOLCP(M, q) is stable at x*.

An interesting consequence can be obtained from the above theorem. Sup-
pose that M is of type P0 and there are two isolated solutions, say, x* and y*
for GOLCP(M, q). From the above theorem, GOLCP(M, q) is stable at both the
solutions. But if M is perturbed to M, which is of type P, then the problem
GOLCP(M, q) must have solutions near x* as well as y*. This clearly contradicts
the uniqueness property of M. We conclude that for GOLCP(M, q), there can be at
most one isolated solution. This means that when M is of type P0 and q is arbitrary,
SOL(M, q) either is empty, or a singleton set, or an infinite set.

In the LCP setting, Theorem 9 reduces to a result of Gowda [23]. In [26], Gowda
and Pang generalize this LCP result by imposing a condition only on a submatrix
of the given matrix. Such a detailed analysis is certainly possible for GOLCP and is
dealt with elsewhere.

6. Results for Rn with the usual ordering. In this section, we assume that
X is Rn with the usual order. In this setting, we prove existence, uniqueness, and
stability results. We think of vectors in Rn as column vectors. For x E Rn, xi denotes
the ith component. For x, y Rn, the Hadamard product x. y is the vector whose
ith component is xiyi. We recall that the (standard) notation r > 0 means that the
vector r is positive (r >- 0).

6.1. The VLCP. In this subsection, we describe the vertical LCP [5] and show
that it is equivalent to GOLCP.

Consider a rectangular matrix N of order m n with m _> n, and let p be an
m-vector. Suppose that N and p are partitioned in the form

N1 Pl

(8) N-
N2 P2

P

where each Ni Rm xn and pi Rm with ni=l mi m. Then VLCP(N, p) is to
find a vector z Rn such that

mi

(9) z>_0, Nz+p>_0, and ziH (Niz+pi)j=O i=l,2,...,n.
j--1

We show that this problem can be formulated as a GOLCP. Let k max {mi
i 1,...,n). Let N denote the jth row of the matrix Ni. We define matrices
/1,/2,..., Nn each of size k n in the following way. For any i, the jth row of/i
is N if j <_ mi and N (the first row of Ni) if j > mi. Correspondingly, we define
vectors i51,/52,..., 15n each of size k 1. This construction leads to the rectangular
(block) matrix/ and the vector i5. It is clear that VLCP(J,iS) is equivalent to the
VLCP(N,p). Now let Mi be the matrix of size n n whose jth row is the ith row
in the matrix/j. (For example, M1 is formed by considering the first row in each
of the matrices /1,/2,...,/n-) Similarly, let qi be the vector of size 1 n whose
jth component is the ith component in the vector iSj. It is easily verified that the
VLCP(/, 15) is equivalent to GOLCP(M, q).

To see that every GOLCP can be formulated as a VLCP, consider GOLCP(M, q).
Let Ni be the k n-matrix whose jth row is the ith row of the matrix Mj. (For example,
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N1 is formed by considering the first row in each of the matrices M1, M2,..., Mk.)
Correspondingly, we define the k n vector p. This construction leads to the pair
(N, p), and the corresponding VLCP is easily seen to be equivalent to GOLCP(M, q).

6.2. Representative matrices. Let (M, q) be given by (4) where each M is an
n n real matrix and q is an n n vector. We say that the pair (A, a) E Rnn R is
a representative of (M, q) if for each j 1, 2,..., n, the jth row of A is the jth row of
some M and jth.component of. a is the jth component of the corresponding q. In other
words, AJ e {M, M,...,M}, where the superscript refers to the corresponding row
vector, and so on. We say that matrix A is a representative matrix of M and a is a
representative vector of q.

It is immediate that x SOL(M, q) if and only if x is a feasible vector for
GOLCP(M, q) and x e SOL(A, a) for some representative (A, a) of (M, q). We record
this formally in the following proposition.

PROPOSITION 3. It holds that

(10)

where

SOL (M, q) Af (M, q) N (t2 SOL (A, a)),

Af(M,q) {x x >_ 0, Mx +q >_ 0}

and the union is over all representatives (A, a) of (M, q).
Proposition 3 leads to three important observations. First, the set SOL(M, q) is

a union of finite number of polyhedral (convex) sets. Second, K:(M) is closed. (This
follows from the facts that for any given M, the set of all q’s with Af(M, q) is
closed and in the case of classical LCP, for any given matrix A, the set of all a’s with
SOL(A, a) 0 is closed.) Third, the graph of the mapping (I) q -, SOL(M, q) is a
union of finite number of polyhedral sets, i.e., is a polyhedral multifunction [48].
This third observation leads to the following proposition.

PROPOSITION 4. For any given M, consider the mapping (I)(q) := SOL(M, q).
Let be a compact subset of 1-Ik Rn. If (q) is bounded for each q $, then , is
(uniformly) bounded on , i.e., the set UqE O(q) is bounded.

Proof. It follows from Robinson’s locally upper Lipschitzian property of [48]
that the mapping ,I is upper semicontinuous at any q, i.e., given any q and > 0,
there exists a neighborhood V of q such that

for all q/in V where B is the open unit ball in Rn. Since we are assuming that O(q) is
bounded for each q $, a standard argument, involving the compactness and upper
semicontinuity notions, gives the desired result.

We say that M has the T-property if every representative matrix of M is a T-
matrix where T denotes a class of matrices. For example, M has the P-property if
every representative matrix ofM is a P-matrix. (Recall that a square matrix A is a P-
matrix if every principal minor of A is positive; equivalently [5], z, Az <_ 0 z 0.)
The standard classes in the LCP theory are the classes of copositive matrices, R0-
matrices, R-matrices, copositive-plus matrices, El-matrices, and so on. We refer the
reader to [5] for detailed information on these classes.

PROPOSITION 5. IfM has the Ro-property, then it is of type R0.
Proof. Suppose that M has the R0-property and let x be a vector such that

x A Mx 0. Since the ordering is the usual ordering, this leads to xi A (Mx)i A
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(M2x)i-.. A (Mkx)i 0 for each 1, 2,..., n. Corresponding to say i, let l(i) be an
index such that (Ml(i)x)i (Mlx)i A (M2x)i-.. A (Mkx)i. Let A be the representative
matrix of M whose ith row is M Clearly, x A Ax 0. By assumption, A is an

Ro-matrix and so x 0. Thus, 1VI( of type Ro.
Remarks. Example 1 shows that the converse statement in the above proposition

may not hold. There does not seem to be any connection between type R and the R-
property (see example below). However, suppose there is a positive vector e in Rn such
that for every representative matrix n of M and for every t _> 0, SOL(A, te) {0}.
Then it is easily verified that M is of type R. In particular, if M has the Eo-property
and the Ro-property, then it is of type R.

Before moving on to the uniqueness aspect, we present two important examples.
Example 3. Let M (M1, M2) where

M1- 1 1 M2= 1 1
and e=

1

It is easily verified that SOL(M, te) {0}, where t is any nonnegative real number
and e (e, e). (While verifying this, we have used the fact that the matrix

is an R-matrix [5, p. 194].) This means that M is of type R and hence of type Q by
Theorem 2. However, M1 is neither an R0-matrix nor a Q-matrix, i.e., M has neither
the R-property nor the Q-property.

Example 4. Let M (M1, M2) and q (ql, q2), where

M2
1 6

and q22 -1
q

3 3

By employing complementary cones [5], it can be verified that M has the Q-property
but that GOLCP(M, q) has no solution, i.e., M is not of type Q. Note also that M
has the R0-property.

6.3. Uniqueness.
THEOREM 10. M has the P-property if and only if it is of type P.
Proof. Suppose that M is of type P and let A be a representative matrix of M.

To show that A is a P-matrix, we start with a vector x such that xi(Ax)i <_ 0 for all
and show that x 0. If x > 0, then Aix <_ 0 and hence (x A Mx) _< 0 _< (x /Mx).
If x < 0, then Ax >_ 0 and hence (x A Mx) _< 0 _< (x /Mx). Finally, if x 0, then
(x A Mx) _< 0 _< (x /Mx). Therefore, x A Mx _< 0 _< x /Mx. Since M is of type
P, x 0. We have shown that each representative of M is a P-matrix and so M has
the P-property.

To see the converse, assume that M has the P-property. Let x be a vector such
that x A Mx <_ 0 <_ x /Mx. We construct a representative matrix A as follows. For
any index j, let Aj be a vector in the set {M, M,..., M} such that AJx _< 0 if
xj > 0 and AJx _> 0 if x _< 0. Since A is a P-matrix (by assumption) and x. (Ax) <_ O,
we see that x 0. Therefore M is of type P.

Remarks. Combining Theorems 3 and 10 we see that GOLCP(M, q) has a unique
solution for all q if and only if every representative matrix of M is a P-matrix.
This result for VLCPs was proved earlier by Cottle and Dantzig [4], who proved the
existence of solution when M has the P-property, and by Szanc [53], who proved that
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M has the P-property if and only if every VLCP corresponding to M has at most
one solution.

By slightly modifying the proof of the above theorem, we can show that M is
of type E (type E0, type P0) if and only if M has the E-property (respectively,
E0-property, P0-property). We omit the details.

We end this subsection by proving the reverse implication (b) (a) in Theorem
5. Because of the previous remarks, we need to show that if (b) holds, then every
representative matrix of M is an E0-matrix. Without loss of generality, consider the
matrix M1 in M. Let ql > 0 in Rn. If the problem LCP(M, q) has two solutions,
say, x and y, then we can take r > 0 and define qi (-Mix) V (-My)V r for

2, 3,..., k. Clearly, q - 0 and GOLCP(M, q) has two solutions. So, if (b) holds,
then LCP(M1, ql) has a unique solution for all ql > 0, that is, M is an E0-matrix.

6.4. The El-property. Our next two sections deal with existence results not
covered by Theorems 1 and 2. As in the classical LCP, we deal with the classes of
E-matrices (also called L2-matrices) and copositive matrices. Recall that a matrix
A is an El-matrix if for each nonzero solution v E SOL(A, 0), there exist two non-
negative diagonal matrices F and A such that Fv 0 and AT(Fv)+ AAv 0. In
[4], Cottle and Dantzig show via a modification of Lemke’s algorithm that when M
has the copositive-plus property, feasibility of the VLCP implies its solvability. The
extension of this result given below deals with an M that has the E-property. In the
classical setting, results for E-matrices are proved using either the Lemke algorithm
(as in Eaves [10] and [39]) or using the basic theorem of complementarity (as in [25]
and [5]). As we see below, degree theory allows us to deal with the E-property in
a comprehensive way, even allowing a generalization of the classical LCP result of
Mor6 [39].

THEOREM 11. Suppose that M has the E-property and is of type D. Suppose
further that GOLCP(M, q) is strictly feasible. Then SOL(M, q) is nonempty and
bounded.

Proof. We first show that for any p E int ’(M), SOL(M, p) is bounded. Assume
the contrary. By Proposition 3, there exists a representative pair (A, a) of (M, p)
such that Af(M, p) V SOL(A, a) is unbounded. Hence, there exists an x SOL(A, a)
and a direction v 0 such that x + Av SOL(A, a) for all A >_ 0, i.e., (x + Av) A
{A(x + Av) + a} 0 for all A _> 0. It is easily verified that v A Av 0, x Av 0, and
v (Ax + a) 0. Since M has the El-property, A is an E-matrix and so there exists
two nonnegative diagonal matrices A and F such that Fv 0 and AT(Fv)+ AAv O.
It follows from v (Ax + a) 0 that (Fv)T (Ax + a) 0. Since Ms + p - 0 for some
s _> 0, we can write a-r- As with r > 0. We now have

0 -(AAv)Tx + (Fv)Tr + (AAv)T s.

In view of x. Av 0, the first term in the above equality is zero. Since Av and A
are nonnegative, the third term is nonnegative. Since Fv 0 and r > 0, we reach a
contradiction. Hence, SOL(M, p) is bounded.

To show that SOL(M, q) is nonempty, we consider the homotopy defined by
qt := (1 t)d + tq, where d is the vector that corresponds to M in the definition of
D. It is clear that qt int (M) for all t and (by the above argument) SOL(M, qt)
is bounded for each t. By Proposition 4, SOL(M, qt) is uniformly bounded, say, by
an open set f’ that includes the open set gt appearing in the definition of d. By the
homotopy invariance and the excision properties of the degree, deg(F(M,q), fl’, 0)
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deg(F(M,d), Ft, 0) 0. This means that the equation F(M,q)(X 0 has a solution in
gtt, i.e., GOLCP(M, q) has a solution. This completes the proof.

THEOREM 12. Suppose that M has the El-property and is of type D. Then M is

of type Q0, i.e., for all q E (M), SOL(M, q) is nonempty. Moreover, the following
are equivalent for any q:

(a) GOLCP(M, q) is stable;
(b) q e int (M), i.e., GOLCP(M, q) is strictly feasible;
(c) SOL(M, q) is nonempty and bounded.
Proof. It was observed earlier that (M) is closed and K:(M) C_ $’(M). The

previous theorem says that int (M) C_ C(M). Since $-(M) is a closed convex set, it
follows that U(M) -(M). Therefore, M is of type Q0. The implication (a) (b)
follows from the definition of stability. The implication (b) (c) follows from the
previous theorem. Now suppose that SOL(M, q) is nonempty and bounded. Let d be
the vector that appears in the definition of D. Consider the homotopy joining (M, q)
and (M, d) defined by qt :-- (1 t)d + tq. Since q e $-(M), we have qt

for all t [0, 1). SOL(M, qt) is bounded for all t; for t < 1 by the previous theorem
and for t 1 by the assumption. We proceed as in the proof of the previous theorem
to conclude that GOLCP(M, q) is stable. This gives the implication (c)

Remarks. It is clear that in the above theorem, q is in the boundary of $-(M, q)
if and only if SOL(M, q) is unbounded (which is equivalent to saying that there is
solution ray for GOLCP(M, q)).

Note that the conclusions of Theorems 11 and 12 hold if we assume (instead of
the El-property) that for every p int 9r(M), SOL(M, p) is bounded.

When k 1, Theorem 12 covers various known results. For example, when M is
in the class G N El, the implication (c) (a) (which holds since type (] C_ type D)
is a result of Doverspike [8]. For M in the same class, the equivalence (b) (c),
when stated in terms of boundary of (M) and solution rays, reduces to the result
of Eagambaram and Mohan [9]. See [3], [38], and [5] for related results.

Interestingly enough, Theorem 12 covers (when k 1) matrices outside of the
class G. To see this, consider a matrix M for which there is a vector d that is
nondegenerate with respect to M (i.e., x + Mx + d > 0 for all x E SOL(M,d))
and sgn det M 0, where M is the submatrix of M corresponding to the
nonzero indexes of a solution x of LCP(M, d) and the summation is over all solutions
x of LCP(M, d). (This sum is precisely the local degree of M at d [5]. This sum is

nonzero, for example, when LCP(M, d) consists of odd number of solutions.) If M is
also in the class El, then Theorem 12 applies.

6.5. The G#-property. In the classical LCP theory, copositive matrices have
interesting LCP properties. In this subsection, we see how degree theory can be
employed to get a generalization of the celebrated result of Lemke [34].

We say that M has the sharp property if every representative of M has the sharp
property, i.e., for any representative A of M,

(11) xSOL(A,0) (A + AT) x >_ O.

We note that when k 1, this condition is shared by copositive matrices, R0-
matrices, and symmetric matrices (see [5], p. 695). Now consider an M having the
sharp property (11). Let

C (M) := {q" a (SOL(A, 0))* for all representatives (A, a) of (M, q)},
where for any set S in Rn, S* {x" xT8 0 for all s G S} is the dual cone of S.



THE ORDER LINEAR COMPLEMENTARITY PROBLEM 791

We note that C(M) is convex and every d - 0 is in C(M). We claim that for any
q e Ant C(M), SOL(M, q) is bounded. If not, we proceed as in the proof of Theorem
11 to get a representative (A,a) of (M, q), solution x and a direction v such that
(X d- V)T(Ax + )Ax + a) 0 for all _> 0. This leads to xTa d- (A + AT)x O. In
view of the sharp property, xTa <_ O. We reach a contradiction to q E Ant ((M).

THEOREM 13. Let M have the sharp property (11) and suppose that for some
d E Ant C(M) and for some bounded open set 2 containing SOL(M, d), deg(F(i,d),, O) O. Then for all q Ant C(M), GOLCP(M,q) is stable. Moreover, for all
q C(M), GOLCP(M, q) has a solution.

Proof. We fix a q Ant C(M) and consider the homotopy joining (M, d) and
(M,q) defined by qt :-- (1- t)d + tq. Since Ant C(M)is convex, qt Ant C(M)
and SOL(M, qt) is bounded for each t. By Proposition 4, SOL(M, qt) is uniformly
bounded for all t. We proceed as in the second part of the proof of Theorem 11 and get
the stability of GOLCP(M, q). Since/C(M) is closed, the inclusion Ant C(M)
shows that C(M) C_/C(M). The second part of the theorem follows. [:]

By definition, M has the G#-property if it has both the sharp property and the
G-property. The following result is immediate.

COROLLARY 1. Suppose that M has the G#-property. Then for all q Ant C(M),
GOLCP(M, q) is stable. Moreover, for all q E C(M), GOLCP(M, q) has a solution.

Remarks. It is easily seen that M has the (#-property if M has the copositive-
plus property, and so Corollary i is applicable. When k 1, the first part in the above
corollary covers Theorem 7.5.8 and Exercise 7.6.6 in [5]. Furthermore, for k 1, the
second part in the above corollary was proved in [25] using the basic theorem of
complementarity of Eaves. Note that this second part, for copositive matrices, is
precisely the result of Lemke [34]. The above corollary can further be specialized to
copositive plus matrices to obtain well-known results of Mangasarian [38] and Cottle
[3]. We omit the details.

7. The extended GOLCP. In this section, we indicate how to analyze the
extended GOLCP (EGOLCP). Given

(2) B-(B0, B1,B2,...,Bk) and b-(b0, bl,b2,...,bk),

where each By is an n n matrix and by is an n-vector, the EGOLCP(B, b) is to find
x Rn such that

(13) F(B,b) (x) :: (Box + bo) A (Blx + bl) A (B2x 2t- 52)/-.-/ (Bkx + bk) O.

We write FB(X) :----- F(B,o)(X). If FB(X) 0 implies that x 0, then
deg(FB, ft, 0) is defined and is independent of ft, where f is any bounded open set
containing the origin in Rn. We call this number the EGOLCP-degree of B. The result
below is similar to Theorem 1. We omit the proof.

THEOREM 14. Suppose that FB(x) 0 only when x 0, and EGOLCP-degree
of B is nonzero. Then for all b, the EGOLCP(B, b) has a solution.

As in 6.2, we say that an n n matrix B is a representative matrix of B if the
ith row (i 1, 2,..., k) of B comes from the set {B, B,..., B} where, of course,
the superscript refers to the corresponding row. We note immediately that if every
representative matrix of B is nonsingular, then the implication FB(x) 0 == x 0
holds.

The next two results address the question of calculating the EGOLCP-degree
of B.
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THEOREM 15. Suppose that FB(X) 0 only when x 0 and that Bo is non-
singular. Let Mi Bi (Bo)-I for 1,..., k. Then M given by (4) is of type R0
and

EGOLCP-deg B sgn det (B0)GOLCP-deg M.

Proof. The first part of the conclusion follows immediately from the relation
FB(BIx) FM(x). The second part follows from the equality deg(FM,t,0)
sgn det (B0) deg(FB, gt, 0), which is a consequence of the multiplication property of
the degree [35, Thm. 2.3.1].

THEOREM 16. Suppose that FB(x) O~only when x O. Then for all
(/0,/1,... ,/k) su]ficiently close to B with Bo invertible, we have

EGOLCP-deg B sgn det (/0) GOLCP-deg lI,

where lI (2t7/1,21/2,..., llk) and 2I [([o)-1 (i 1, 2,..., k).
Proof. As in the proof of Theorem 6, we can appeal to the nearness property

of the degree and conclude that EGOLCP-deg B =EGOLCP-deg I whenever I is
sufficiently close to B. When B0 is invertible, we can use the previous theorem to get
the desired conclusion.

As an illustration of the above result, we state the following corollary.
COROLLARY 2. Suppose that (i) FB(X) 0 only when x O, and (ii) for some

b* with b 0 and b > 0, i 1,2,...,k, the zero vector is the only solution of
EGOLCP(B, b*). Then for every b, EGOLCP(B, b) has a solution.

Proof. To see this, first observe (by the usual normalization arguments) that the
above two conditions hold if B is perturbed (slightly) to B for which Theorem 16 is
applicable. The resulting M is of type R, and so, by Theorem 2, EGOLCP-deg B is
nonzero. Now applying Theorem 14 we get the desired result.

We now turn to the uniqueness issue. The result below completely characterizes
the uniqueness in EGOLCPs.

THEOREM 17. Let B be given by (12) and when Bo is invertible, let M be given
by (4), where M B(B0)-, i 1, 2,..., k. Then the following conditions are equiv-
alent.

1. For every b, EGOLCP(B, b) has a unique solution.
2. The implication Box ABx A A Bkx

_
0

_
Box /Bx / / Bkx x 0

holds.
3. For every b, EGOLCP(B, b) has at most one solution.
4. Bo is invertible and M has the P-property.
5. All representative matrices ofB have the same (nonzero) determinantal sign.

Proof. 1 2: Similar to the proof of the implication (b) (a) in Theorem 3.
2 == 3: Similar to the proof of the implication (a) == (b) in Theorem 3.
3 4: Suppose that Box O. Define b by bo -Box+ (-- -Box-),

b (-Bx+) / (-Bx-) for 1,2,...,k. Then x+ and x- are solutions of
EGOLCP(B, b). From condition 3, x 0, and hence B0 is invertible. Now for any
q given by (4), u is a solution of GOLCP(M, q) if and only if v Blu is a solution
of EGOLCP(B, b), where b0 0 and bi qi for i 1, 2,..., k. Hence, we see from
Condition 3 that GOLCP(M, q) as at most one solution for every q. The P-property
of M follows from Theorems 3 and 10.

4 == 1: Clearly, x is a solution of EGOLCP(B, b) if and only if y Box + bo is a
solution of GOLCP(M, q), where q is given by (4) with q b- Mbo, i 1, 2,..., k.
Now the desired implication follows from Theorem 3.
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of
4 == 5: It is easily seen that for any n n matrix C, any representative matrix

BC := (BoC, B1C, BkC)

looks like BC where B is a representative matrix of B. Hence, when C is nonsingular,
all representative matrices of BC will have the same nonzero determinantM sign if
and only if all representative matrices of B have the same nonzero determinantal sign.
The equivalence of Conditions 4 and 5 is seen by taking C B-1 and observing that
M has the P-property if and only if all representative matrices of (I, M1, M2,..., Mk
have the same positive determinantal sign.

Remarks. In some practical situations, for example, in nonlinear network theory
[20], it is essential to know when a piecewise-linear function on Rn is a homeomor-
phism. Many researchers, including Kuhn and Lhwen, Rheinboldt and Vandergraft,
Kojima and Saigal, and Schramm, studied this problem (see the recent paper of Ralph
[45] for precise references). We now show that condition 5 in Theorem 17 (which is
typical in the above works) implies that for each b, the piecewise-linear function
F(B,D), given by (13), is a homeomorphism of Rn. This can be seen easily by ob-
serving that the equation F(B,b)(X) y is equivalent to EGOLCP(B, b- y), where
y :--- (y, y,..., y), and by appealing to the Invariance of Domain Theorem.

In some important practical problems involving the EGOLCP, one encounters [50],
[51], [41], via discretization procedures, Z-matrices. (Recall that these are matrices
having nonpositive off-diagonal entries.) The following corollary deals with these
matrices.

COROLLAPY 3. Consider a B given by (12) in which each B is a Z-matrix.
Suppose that one of the following conditions holds.

(a) Each B has positive diagonal and is strictly diagonally dominant.
(b) There exists a positive vector e in Rn such that Be > 0 for all i 0, 1,..., k.

Then for all b, EGOLCP(B, b) has a unique solution.

Proof. Let B be any representative matrix of B. Obviously, B is a Z-matrix.
Moreover, under (a), B will have positive diagonal entries and is strictly diagonally
dominant, and when (b) holds, Be > 0. In either situation, B is a P-matrix [5], and
hence the determinant of B is positive. The equivalence of Conditions 1 and 5 in
Theorem 17 gives the desired result.

Remarks. The conditions (a) and (b) of Corollary 3 were considered, in the con-
text of EGOLCP, by Isac and Goeleven [31] and Goeleven [22], respectively. They
showed that for each b, EGOLCP(B, b) has at most one solution but they did not
prove the existence of solutions.

Concluding remarks. In this paper, we have presented an analysis of existence,
uniqueness, and stability aspects of the GOLCP and its extension, the EGOLCP. This
analysis, which is based on degree theory, is by no means complete. For example, we
have not treated Z-matrices, row (column) sufficient matrices, and their counterparts
in the general theory. Note, however, that there are results for such matrices and
their generalizations [5], [2], [15]. Although our study is rather limited, we believe
that, on the whole, the GOLCP theory is very similar to the classical LCP theory.

Acknowledgment. We thank one of the referees for pointing out an error in
an earlier version of Theorem 15 and for indicating the given simplified proof in the
present version.
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1. Introduction. Mathematical quantities or objects can often be expressed by
more than one representation. The object of interest in this paper is a polyhedral cone
or a "cone which is a polyhedron" [1, p. 55]. A polyhedral cone is a special type of
closed, convex cone and has at least two representations. It can be expressed as the
solution set of a system of homogeneous linear inequalities:

(1) C {x" aix _< 0, i 1,2,..., m}- {x E k. A’x _< 0},

where a is the ith row of A. Note that for any given system of homogeneous linear
inequalities, the matrix A is not unique. Another representation of a polyhedral cone
is the set of all nonnegative linear combinations of a finite set of generating vectors
[1, Thm. of Minkowski]"

C= xEk’x-- Aigi, VAi_>0, i--1,2,...,p
(2) i--1

={x.x-G V,X_>0},

where gi is the ith column of G. The columns of G are a set of generators for C. Note
that we say "a" set of generators rather that "the" set of generators, because a set
of generators is not unique. Also note any set of generators in scale invariant, that
is, if {gl, g2,..., gp} is a set of generators for C and c is any positive scalar, then
{Ogl, og2,..., Ogp} is also.

Polyhedral cones arise in many practical problems, particularly in order-restricted
statistical inference (wherein constraints on a set of parameters are often defined by
polyhedral cones) and in linear programming. In some of these problems, a homoge-
neous system of linear inequalities, as in (1), is specified, but one needs to find a set of
generators, as in (2). In this paper, we discuss a matrix approach for finding a set of
generators for a particular class of polyhedral cones. That is, we provide an answer to

*Received by the editors May 28, 1991; accepted for publication (in revised form) February 3,
1993.
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the question: If a matrix A in (1) is specified, how can we find a matrix G to satisfy
(2)? In fact, the answer to this question also provides the answer to another question:
How can we find the polar (dual) of a polyhedral cone?

2. Motivation and examples. Why is the identification of a set of generators
of a polyhedral cone important? A set of generators is useful for determining order-
preserving functions [2]. In order-restricted statistical inference, a set of generators
can be used to verify one of the conditions that the isotonic regression must satisfy
[3, Example 1.3.2]. An important use of a set of generators is in the creation of con-
trast statistics for hypothesis testing problems involving order restrictions [3, 4.2
and 4.3], [4], and [5]. In minimization and maximization problems, one often needs
to find the closest point in a polyhedral cone to a specified point x E k; this closest
point is called the projection of x onto C. There are many algorithms available for
computing the projection. In [6], an algorithm is presented where C is expressed in
representation (2), and thus one can compute the projection from a set of genera-
tors. For certain polyhedral cones, this algorithm may be more efficient than existing
algorithms because the algorithm converges in finitely many linear steps.

An example of a polyhedral cone using both representations (1) and (2) is provided
by the "simple tree" polyhedral cone [3, Example 1.3.2]. The simple tree polyhedral
cone is the set of all vectors in k satisfying the simple tree partial order, that is,
xl

_
xi, 2, 3,..., k. Expressing the simple tree cone in representation (1), the

matrix A is a k (k-l) matrix with (i, j)th entry: ai 1 if/-- 1, a -1 if/- j+l,
and ay 0 otherwise. The matrix G in representation (2) is a k (k + 1) matrix with
ith column gi: for 1, 2,..., k 1, gi,i+l 1 and giy 0 for j + 1; gk 1 (the
vector of ones), and g+l -g. We see that for any vector x that follows the simple
tree order, x can be written as x GA V’k+l Aigi for some Ai > 0, i 1, 2, k+ 1.A_i=I

In particular, Ai xi- x >_ 0 for i 1, 2,...,k- 1, and if Xl < 0, Ak 0 and

Ak+ --Xl > 0, whereas if x _> 0,/k xl _> 0 and Ak+l 0.
Several examples of polyhedral cones appearing in the literature are the simple

linear order [3, 1.2] and [4], the star-shaped order [3, 5.3], the unimodal (umbrella)
order [a, 5.5], the positive orthant [7, Chap. 14, C], and the positive orthant re-
stricted to the linear subspace where the sum of the components of the vector is zero

[7, Chap. 14, C].
3. Background. The standard reference for polyhedral cones is [1, Chap. 2].

A discussion of polyhedral cones in the context of order-restricted statistical inference
appears in [3, 2.7].

Define a weighted inner product as (x, y)w xIWy, for x, y E k, where W
is a k k positive definite weight matrix. (Note that since W is positive definite,
it must also be symmetric.) In a statistical context, the weight matrix W is often
the variance-covariance matrix, or it may be a diagonal matrix, with diagonal entries
being the sample sizes or reciprocals of the sample sizes. The notation x _< y denotes
component-wise inequality, that is, xi <_ yi, i-- 1, 2,..., k.

The question of interest is: Given a polyhedral cone in its inequality represen-
tation, (1), with a matrix A specified, how can we find a matrix G in (2) so we can
identify a set of generators of the cone? When A is k k and full rank, a set of
generators is given by the columns of -A- [2], but a more general solution does not
exist in the literature. Many of the examples in the literature simply provide a set of
generators and then show that any vector in the polyhedral cone can be written as a
nonnegative linear combination of these generators, but it is not indicated how these
generators are obtained. This process appears to be largely trial and error. We now
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discuss a more systematic way of finding a set of generators for a class of polyhedral
cones.

The key to the relationship between A in (1) and G in (2) is provided by the
polar, or dual, cone. The polar cone of a polyhedral cone C is

(3) CP={yEk’(x, Y}w-<0 VxEC}--{yk-x’Wy_<0 VxC}.

Geometrically, the polar (dual) cone is the Set of all vectors in k that make an obtuse
angle with every vector in C. The polar, CP, is also a polyhedral cone, and CPP
C [1]o

For any C expressed in representation (1), an alternative representation for the
polar is

(4) CP {y k .y W-1A, VA _> 0}

[1, p. 55]. From this representation, it is obvious that the columns of W-1A are a set
of generators for CP.

Since CP is a polyhedral cone, it can be written in an inequality representation,
that is, CP {y k "G’y _< 0}. By (1), (4), and the fact that CPP C, we see
that C {x E k x W-1Got, for all c _> 0}, and a set of generators for C are the
columns of W-IG. To reach our goal of finding a set of generators for C, we express
CP in its inequality representation, (1), where the matrix G defining the inequalities
of CP is somehow related to A, a specified matrix defining the inequalities of C.

To facilitate reaching our goal, let us rewrite C and Cp in a slightly different
form. Note that any polyhedral cone is determined by either linear inequalities, linear
equalities, or both. Separating the inequalities and equalities, an alternative form of
(1) is

(5) C-{xk’A’x_<0 and B’x-0},

whereAiskml andBiskm2.
An alternative form of CP corresponding to (4) is

(6) CP-{yk.y_W-(AA+Br), VA_>0, rm-}.

DEFINITION 3.1. A polyhedral cone in the form of (5) is in full rank form if
rank (A) m and rank (B) m2.

Note that for a polyhedral cone to be in full rank form, the rows of A’(B’) must
be linearly independent and the number of inequality (equality) constraints, m (m2),
must be less than or equal to the dimension of the space, k. Not all polyhedral cones
can be written in full rank form. When trying to express a polyhedral cone in full rank
form, it is often helpful to first eliminate all redundant constraints. Let the columns of
A (B) be expressed as a set of ml (m2) vectors {al,a2,... ,am1} ({bl, b2,..., bm.}).
A vector at is redundant if

{x e Nk’ax _< 0, E {1,2,...,ml) and b}x-0, j (1,2,...,m2}}
{x e Nk "ax_< 0, e {1,2,...,rnl} {/} and b}x- 0, j {1,2,...,m2}}.

A vector bt is redundant by a similar definition. Hence, a constraint (either atx _< 0
or btx 0) is redundant if the vector at (bt) is redundant. An algorithm for removing
redundant constraints is found in [8].
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DEFINITION 3.2. A polyhedral cone in form (5) is in nonredundant form if all
redundant constraints have been removed.

An example of.a polyhedral cone that cannot be written in full rank form is
the simple loop order [3, p. 84] when k 4: C (x E 4 Xl _< x2 _< x4 and
X

__
X3

__
X4}. Then

1 1 0 0

1-1 0 1 0
0 -1 0 1
0 0 -1 -1

which contains no redundant columns. Since rank (A) 3 4 ml, the simple loop
polyhedral cone does not have a full rank form. We discuss the nonfull rank case more
fully in 6.

The set of all polyhedral cones that can be written in full rank form is called the
class of full rank polyhedral cones. The main result in the next section provides a
relationship between C and CP, both in representation (5), for the class of full rank
polyhedral cones that satisfy one additional condition.

4. The main result. In the following, Im is the rn m identity matrix and
0ml m2 is an rnl m2 matrix of zeros. Also recall that W is a positive definite weight
matrix that defines the weighted inner product. The following lemma provides the
existence of a matrix needed in the theorem.

LEMMA 4.1. Let A be a k m matrix, rank (A) m. Then there exists a matrix
GA such that GAA Im

Proof. Note that GA is the solution to ArGA Ira. Its existence can be seen
by considering the m sets of simultaneous equations ArgA ei, where gA is the
ith column of GA and ei is the column vector with ith component one, all other
components zero. Since rank (Ar) rank (A) m, ArgA ei has a solution [9,
Thm. 7.2.4]. Hence, ArG’A Ira has a solution. The solution is unique if and only if
k rank (Ar) rank (A) [9, Cot. Th s, a unique GA exists if and only if A
is a k k full rank matrix, v1

THEOREM 4.2. Let C be a full-rank polyhedral cone in representation (5), with
GA and GB any matrices satisfying GAA Ira and GBB Ira,.. If, in addition,
GAB Ora ra., then

CP {y .k. -GAWy <_ 0 and (I- AGA BGB) Wy 0}.

Furthermore, if GBA Ora2m and ml - m2 k, then CP {y k -GAWy <_
0}.

Proof. We know that GA and GB exist from Lemma 4.1. Recall from (3) and (6)
thatCp={yk’xrWy_<OforallxC}={yk’y-W-i[A B][] for all
A >_ 0, r E m. }. Let C* be as in (7), and we want to show that C* Cp. First, note
if GBA Ora.m, then AGA + BGB is idempotent. Furthermore, if m + m2 k,
then rank (AGA + BGB) k and hence AGA + BGB Ik.

Consider y C*. If ml -{- m2 k and GBA Om2 rai, then for all x C,

x’Wy x (AGA + BGB) Wy xrAGAWy + xrBGBWy <_ 0,

because xrA <_ 0r, GAWy >_ 0, and xrB 0r. If m + m2 k, then y W-(AGA +
BGB)Wy. For all x C, xrWy xIWW-I(AGA + BGB)Wy xrAGAWy +
xrBGBWy <_ O. Hence, y CP, so C* c Cp.
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Consider y E CP. Then y W-1AA + W-IBr for some A _> 0 and r E ]m2.

Now, GAWy GAWW-1AAzt-GAWW-1Br A _> 0 or -GAWy

_
O. If ml /m2

k and GBA Om2xmi, then AGA + BGB Ik, so that (I- AGA BGB)Wy O,
and hence y C*. If ml + m2 # k, then we know that y W-1AA + W-1Br has a
solution, implying Wy AA + Br has a solution. The solution must satisfy

GA] Wy Wy[A B] GB

[9, Thm. 7.2.3]. Therefore, (I- AGA BGB)Wy 0 and y C*, so CP C C*.
Hence, C* CP.

To use the theorem to find a set of generators for C: (i) Solve the system of
equations GAA I, GBB I, and GAB 0. The system of equations may not
have a unique solution. Often, GA (or GB) is of a simple form such as (A’A)-IA
or (WDA)-IA’D, for some k k full rank matrix D. Although GB always exists,
there may not be a matrix GA to satisfy the system of equations defined by GAA I
and GAB 0. (Note that if ml + m2 k, we solve the system GAA I, GAB
0, GBB I, and GBA 0.)

(ii) Define a set of generators by the unduplicated rows of the matrices --GA, I-
AGA BGB, and -(I- AGA BGB).

To see that a set of generators arises from this process, we simply use the form
of CP in (7) to obtain a set of generators for C as the columns of -W-(GAW) and
:tzW-l((I- AGA BGB)W)t. But since W is positive definite and symmetric, a set
of generators is given by the columns of -GA and +(I- AGA BGB) or the rows
of their transposes.

Note that if A 0, then C is a linear subspace. CP is the orthogonal complement
of C, and the rows of (I- BGB) are a set of spanning vectors for C. Since GB
(BB)-1B satisfies the condition of the theorem, a set of spanning vectors is provided
by the rows of (I- B(B’B)-B’).

Also note that if B 0, then C consists entirely of inequality constraints, and
the only condition for C to satisfy is that the inequality constraints are indepen-
dent and the number of inequality constraints (m) is less than the dimension of the
space (k).

Although our aim was to find a set of generators for a polyhedral cone, we see
that Theorem 4.2 also provides the solution to finding the polar (dual) cone. This
situation is of interest in its own right, because an optimization problem involving a
polyhedral cone may be easier to solve in terms of the dual cone [3, 1.7], [10], and
[11]. Examples of this use of Theorem 4.2 are given in the next section.

Theorem 4.2 also provides a vehicle for expressing C in its inequality representa-
tion (1) if a set of generators are known. When a set of generators for C are known,
then we can express CP in its inequality/equality representation (7). Now, just apply
Theorem 4.2, with CP playing the role of C. Since CPP C, the polar of CP in
representation (7) is just C! An example of this procedure is also given in the next
section.

5. Special cases and examples. We now consider special cases in which the
computation of GA and GB is relatively straightforward. In the examples in this
section, unless otherwise specified, k 3 for ease of computation and of presentation,
although all the examples easily extend when k > 3. We also assume that W is an
arbitrary positive definite weight matrix, unless otherwise stated.
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If ml k, B 0, then GA A-1, and the rows of -A-1 are a set of generators
for C. This is the situation discussed in [3].

If ml < k,B 0, then GA (AA)-IA, the Moore-Penrose inverse of A, is a
solution to GAA I. The rows of -(A’A)-IA and +(I- A(A’A)-IA’) are a set of
generators for C. For example, consider the simple tree ordering from the example in

2 when k 3. Then C-- {x E 3 :Xl _< x2 and xl _< x3} and

1 1
1 2 1

and I- AGA 11’.A -1 0 GA 1 --1 2 -0 --1

Since a set of generators is scale invariant, a set of generators for C are gl

[-1,2,-1]’,g2 [-1,-1,2]’,g3 [1, 1, 1]’, and g4 [-1,-1,-1]’. Note that this
set of generators is different than the one in the example in 2. Since x
for all x E C, A1 (x2 -Xl)/3 _> 0,/2 (X3- xl)/3 >_ 0, and if xl
(x2-I-x3-2Xl)/3 >_ 0 and A4 -x >_ 0, whereas ifx _> 0, A3 (Xl -I-x2-t-x3)/3 >_ 0
and A4 0. This illustrates that a set of generators need not be unique. In addition,
Theorem 4.2 provides the polar of C. If W I, CP (y 3 yl

0, y+y2-2y3 >_0, y+y2+y3:0) (y.3"y2_<0, ya_<0, y+y2+y3 =0).
Now, suppose we only know a set of generators of C, (gl,..., g4), as given above. Since
CP (y 3. y2 _< 0, y3 _< 0, y + y2 + y3 0),

[00]1 0
0 1

and B 1. Since ml 2 and m2 1, so that m + m2 3, we solve the system of
equations GAA I, GAB O, GBB I, and GBA 0. The unique solution is

-1 1 0]GA-- 1 0 1

andGB--[1 0 0],soC=CPP-(x.3:-GAx_<O}=(xE3:x_<x2 and
x _< x3}, which is the simple tree cone.

The next two examples illustrate polyhedral cones with both inequality and equal-
ity constraints. First, suppose ml < k and B W1, where again W is an arbitrary
positive definite weight matrix. In this context, B represents a vector of weights, and
we are restricting our original polyhedral cone to a linear subspace where the weighted
sum of the components of the vectors is zero. An example of this situation appears
in [5], where a multiple contrast statistic is defined for the treatments versus control
hypothesis testing situation. In this problem, any contrast vector must satisfy the
simple tree order, and the weighted sum of its components must be zero. If AI 0,
then GA (A’W-1A)-IA’W-1 and GB (l’Wl)-ll’. A set of generators are the
rows of --GA and :t:[I- A(A’W-A)-IA’W-1 WI(I’W1)-ll’].

A second example involves the umbrella order constrained to the "symmetry"
subspace, that is, C {x R3 :Xl <_ x2 <_ x3, and x x3}, as in [12]. If we let

A,:[1 -1 0]0 -1 1

and B’ [-1 0 1], then C is in full rank form, but it contains redundant con-
straints. Furthermore, the system of equations GAA I and GAB 0 does not have
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a solution because the rows of A and B are linearly dependent. Since Xl X3, the
constraint defined by the second row of A is redundant and can be ignored. Letting
A=[1 -1 0],andB=[-1 0 1] then a solution to GAA I, GAB=0, and
GBB=lisGA=[0 -1 0] andGs=[0 0 1]. Then-GA=[0 1 0] and

1 1 1]I- AGA BGB 0 0 0
0 0 0

and a set of generators is gl [0, 1, 0]’,g2 [1, 1, 1]’, and g3 -g2. For any x E
C,x i3=1Aigi, where A1 x2 -Xl _> 0, and if x2 _> 0, then 2 x2 >_ 0 and
,3 X2 Xl

_
0, whereas if x2 < 0, then Xl < 0 so that ,2 0 and ,3 --Xl > 0.

Further, CP (y k --GAy <_ 0 and (I-AGA- BGB)y O) (y 3 y2 <_ 0
and yl + y2 T y3 0}. This example illustrates the importance of eliminating all
redundant constraints from A and B before trying to apply the theorem.

6. Nonfull rank case. The main problem with Theorem 4.2 is its restriction to
full rank cones. Although most practical problems involve full rank cones, situations
may arise when the cone is not full rank, as illustrated by the simple loop order
discussed in 3. The following algorithm, suggested by a referee, can be used to find
a set of generators for a nonfull rank cone.

ALGORITHM 6.1. Assume that C is expressed in representation (1) and that all
constraints are nonredundant. Furthermore, rank (A) > m.

Step 1. Find, if possible, a subspace S c C, where S has codimension r. Let
a P(aIS+/-), 1, 2,..., m, that is, project a onto S+/-, the orthogonal complement
of S.

Step 2. Let Ky be a subset of ,{a, a,..., a} of size r- 1 where j 1, 2,.._,
(r_ml). Find a vector by such that byci O for all ci e Ky and byd 0 for all d e S.
The set

{bib2, b(r_l), -bl, -b2, -b(rT1) }
contains a set of generators for C.

Step 3. For each vector by, j 1, 2,..., (r_ml), compute byai for i 1, 2,..., m.
If bya < 0 for all a Kj, then by is a generator of C. If bja > 0 for all a Kj,
then -by is a generator of C. If byai > 0 for some ai Ky and byai, < 0 for some
ai*, Ky, then by is not a generator of C.

If the constraints of C are written "in order," then one need not search all subsets

For example, consider the simple loop order when k 4. Then al (1 -1
0 0),a2 (1 0 -1 0),a3 (0 1 0 -1), and aa (0 0 1 -1).

4 0), which is generated by (1 1 1 1) andNow S (x a -i=xi
codim (S) 3. Furthermore, S+/- {y E 4 yl + y2 + y3 + ya 0}, so a S+/- and
hence a ai. Rather than consider all subsets of {ai} of size r- 1 2, note that
dim (CP) 3 and the faces of CP are two dimensional, generated by pairs of {a}.
The pairs generating these faces are {a,a2}, {a2, a3}, {a3, a4}, and {a4, a}, so we
only need to consider these four pairs in Step 2 of Algorithm 6.1 rather than all six
pairs. It is easy to see that bl (-1,-1,-1, 3), b2 (-1, 1,-1, 1), b3 (-3, 1, 1, 1),
and b4 (-1,- 1, 1, 1) are a set of generators of the simple loop order.

7. Summary. Theorem 4.2 provides an alternative representation for the polar
(dual) of a polyhedral cone. This representation serves three purposes: (i) finding a set
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of generators for a polyhedral cone, (ii) finding the polar (dual) of a polyhedral cone,
and (iii) expressing a polyhedral cone in its inequality form when a set of generators
is known. To use the theorem, the polyhedral cone must be in full-rank form. As seen
by the "simple loop" example, not all polyhedral cones in applications can be written
in full rank form. In addition, it is important to remove all redundant constraints
before attempting to use this method. The examples in 5 illustrate how Theorem 4.2
can be applied to many polyhedral cones arising in practical situations, particularly
in order-restricted statistical inference.
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A UNIFORM APPROACH FOR THE FAST COMPUTATION OF
MATRIX-TYPE PAD] APPROXIMANTS

BERNHARD BECKERMANNt AND GEORGE LABAHN$

Abstract. Recently, a uniform approach was given by B. Beckermann and G. Labahn [Numer.
Algorithms, 3 (1992), pp. 45-54] for different concepts of matrix-type Pad4 approximants, such as
descriptions of vector and matrix Pad4 approximants along with generalizations of simultaneous and
Hermite Pad approximants. The considerations in this paper are based on this generalized form of
the classical scalar Hermite Pad approximation problem, power Hermite Padd approximation. In
particular, this paper studies the problem of computing these new approximants.

A recurrence relation is presented for the computation of a basis for the corresponding linear
solution space of these approximants. This recurrence also provides bases for particular subprob-
lems. This generalizes previous work by Van Barel and Bultheel and, in a more general form, by
Beckermann. The computation of the bases has complexity O(a2), where a is the order of the de-
sired approximant and requires no conditions on the input data. A second algorithm using the same
recurrence relation along with divide-and-conquer methods is also presented. When the coefficient
field allows for fast polynomial multiplication, this second algorithm computes a basis in the super-
fast complexity O(a log ). In both cases the algorithms are reliable in exact arithmetic. That is,
they never break down, and the complexity depends neither on any normality assumptions nor on
the singular structure of the corresponding solution table. As a further application, these methods
result in fast (and superfast) reliable algorithms for the inversion of striped Hankel, layered Hankel,
and (rectangular) block-Hankel matrices.

Key words, vector Pad6 approximant, Hermite Pad6 approximant, simultaneous Pad6 approx-
imant, matrix Pad6 approximant, Hankel matrices

AMS subject classifications. 65D05, 41A21, CR: G.1.2

1. Introduction. Let F (fl,..., fro)T (with m >_ 2) be an m-tuple of formal
power series with coefficients from a field ]K (typically a subfield of either the real
or complex numbers) and n (nl,...,nm) an m-tuple of integers, n _> -1. A
Hermite Padd approximant for F of type n is a nontrivial tuple P (P1,..., Pm) of
polynomials P over ]K having degrees bounded by the n such that

zN+(1) P(z). F(z) Pi(z)f(z) + + Pm(z)fm(Z) CNZ
N + CN+ +’’’,

with N n +... T nm T rn 1.
The Hermite Padd approximation problem was introduced in 1873 by Hermite

and has been studied widely by several authors (for a bibliography, see, e.g. [2]-[4] or

[25]). Note that when rn- 2, F (f,-1)T, Eq. (1) is the same as

P(z)f(z) P2(z) O (znl+n2+l)
and hence as a special case we have the classical Pad4 approximation problem for a
power series f. Hermite Pad4 approximation also includes other classical approxima-
tion problems such as algebraic approximants (F (1, f, f2,..., f,-l)T) (e.g. [23]
for the special case rn- 2) and G3j approximants (m- 3, F (f’, f, 1)T). We refer
the reader to [1, pp. 32-40] for additional examples. More generally, there is the
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M-Padd approximation problem that requires that P. F vanishes at a given set of
knots z0, zi,..., ZN-i, counting multiplicities ([2]-[4], [20], [21]). The case where all
the zi are equal to 0 is just the Hermite Pad( problem.

Hermite also defined a second type of approximant to a vector of power series,
the so-called simultaneous Padd approximants and used them in his proof of the
transcendence of e. Close connections between these two approximation problems
have been pointed out in [7], [14], [16], [17], [21].

In recent years, several vector and matrix generalizations of these approximation
problems have been given (see 2). The aim of this paper is to study a uniform
approach not only to Hermite Pad( and simultaneous Pad( approximants but also to
their matrix-type generalizations. To this end, we consider the following generalized
scalar Hermite Pad approximation problem [5].

DEFINITION 1.1. Let a >_ 0, s > 0, nl,... ,rim be integers, nl >_ -1 and n-
(hi,..., nm). Then a power Hermite Padd approximant (PHPA) P (PI,..., Pm) of
type (n, a, s) consists of scalar polynomials PI having degrees bounded by the nt with

za+l(2) R(z) P(zS).F(z) Pl(z)fl(z)+ .’+Pm(zS)fm(Z) cz +co+1 +"’,

that is, has order a. The power series R is referred to as the s-residual.
The power s appearing in Definition 1.1 provides a method of converting a vector

problem into a scalar problem (see 2). By defining these approximants in a similar
way to Hermite Pad approximants we can borrow from the (successful) computational
techniques for the Hermite Pad( problem used in [2], [4], [25]. Of course the classical
Hermite Padd approximation problem is included by setting s 1 and a --Ilnll- 1,
where the norm of multiindices n (n,...,nm) e (No t2 {-1})m is defined by
Ilnll := (nl + 1) +... + (urn + 1). Note that, by equating coefficients, (2) results in a
system of homogeneous linear equations. By comparing the number of unknowns to
equations, one can conclude that there exists at least Ilnll- a PHPAs of type (n, a, s)
that are linearly independent over E.

Section 2 gives examples of matrix-type generalizations of existing approximation
problems. These are shown to be special cases of the PHPA problem for various values
of s and a. In 3 we provide a recursive algorithm to efficiently and reliably solve the
PHPA problem in exact arithmetic. Some interesting properties of our algorithm
along with a cost analysis are given in 4. It is shown that the algorithm is at least
as fast or faster than existing methods for special cases. Thus, our results provide
a uniform method of computing matrix-type generalizations of Pad approximation
problems. Section 5 gives an example of the use of this algorithm in the context of
square-matrix Pad approximants. Section 6 considers a modification of our algorithm
that combines divide-and-conquer techniques along with the recurrence relation of 3.
When the field ]K allow fast polynomial multiplication, the resulting new algorithm
solves the PHPA problem with superfast complexity. Finally, the paper closes with a
discussion of a number of research directions that follow from our work.

For purposes of presentation, we adopt the following notations. Let S be a space
with scalars from K, for instance, S ](Pq), the space of p q matrices over E.
’Then S[z] denotes the set of polynomials in z with coefficients from , whereas S[[z]]
represents the set of formal power series in z with coefficients from $. Multiindices
and PHPAs are denoted in boldface letters; they are both (1 m) row vectors. Also,
throughout this paper the parameter s and the multiindex n are fixed. The algorithm
of 3 follows along an m-dimensional "diagonal" path (n(5))z induced by n, which
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is defined as follows:

(a) Z,n-(n,...,n) n()= nl,... ,n withn-max{-I,n+}.

This notion allows us to discuss not only one approximation problem corresponding
to n n(0) but also simultaneously all subproblems associated with n(), < 0 (el.
Table a). Finally, the set of all PHPAs of type (n(), , s) is denoted as g; it is a
finite-dimensional space over N.

Parallel to and independent of [] and our present work, another uniforming
approach was proposed in [26] by Van Barel and Bultheel based on the concept of
vector M-Pad approximation. Their approach does not reduce to a simple scalar
concept as does the notion of our PHPAs. However, their approach does have the
advantage of handling matrix rational interpolation and is seen as complementary to
this paper.

2. Matrix-type Pad approximants as special PHPAs. In this section we
give examples of a number of matrix-type generalizations of classical Pad approxi-
mation problems. Let A be a p x q matrix of power series over N and suppose that
r N and M,N N0.

Ezample 2.1 (Right-hand square and rectangular Matrix-Pad6 forms). ind P
N(Px)[z], Q e N(qx[z], with deg P M, deg Q N, and the columns of Q being
linearly independent over N such that

A(z) Q(z) P(z) zM+N+ R(z),

with R e E(P)[[z]].
Example 2.2 (Left-hand square and rectangular Matrix-Pad forms). Find P

E(q)[z], Q E(zp)[z], with gag P M, deg Q N, and the rows of Q being
linearly independent over E such that

Q(z) d(z) P(z) zM+N+ R(z),

with R e K(x) [[z]].
When p q r 1 this is the classical scalar Pad approximation problem.

When p q r > 1 these are square right-hand or left-hand mgtrix Pad approxi-
mnts [19]. In the rectangular (p q) cse, two natural matrix Pgd approximations
occur when either p r or q r. Both of these rectangular-mtrix types of Pad
forms are used, for example, to compute the inverse of matrices partitioned into a

rectangular-block Hankel structure [18].
We remark that, in the examples where Q(z) is square, it is of special interest to

determine those cases where we can form a Pd fraction P(z).Q(z) -1 or Q(z) -1 .P(z)
as an pproximant to A(z). In both cases we are therefore interested in necessary and
sufficient conditions under which Q(z) is nonsingular.

Motivgted by the well-known connections between left-hand and right-hand
square matrix Pad forms and by inversion formul of block Hgnkel-like matrices,
one of the authors [17] introduced for p, p N and p0,... ,P, 0, p p0 +"" +

A0,..., A, e
Example 2.3 (Matrix Hermite Pad form). Find polynomiMs P0,.-., P e KPXP[z]

withdeg pz-l,0lp, and

Ao(z)Po(z) + + A,(z)P,(z)
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R e KPP[[z]] such that the matrix [Po,..., P] e KP(’+I)P[z] has full rank over K.
Example 2.4 (Matrix simultaneous Pad6 form). Find polynomials Q0,...,Q E

KPP[z] with deg Qt <_ p- pt, 0 <_ 1 <_/, and

Qo(z)Az(z) Qz(z)Ao(z) zp+I Rt(z),

1 p, Rt e EPP[[z]] such that the matrix [Q0,..., Q] e Epz(+l)p[z] has full
rank over E.

Beside the classical scalar simultaneous Pad approximants (p 1, A0(z) 1),
Example 2.4 also includes the simultaneous partial Padd approximation problem where
we have prescribed poles and zeros for the approximants [8]. Following [22], the
question of irreducible Hermite Pad forms is of special interest, i.e., we also require
that [P0(0),..., Pu(0)] e p(w1)p is different from zero (or moreover has full rank
over ). Similarly, in Example 2.4 we are interested in approximants where Q0(0) is
a nonsingular matrix.

We remark that the order conditions in Examples 2.1-2.4 are M1 such that at
least one solution exists for each approximation problem. In addition, the so-called
weak matrix Hermite Padd and weak matrix simultaneous Padd forms are connected
to Examples 2.3 and 2.4 (see [17]). In this case the order conditions are weakened
to Mlow for more linearly independent solutions. Other examples of matrix-type
generalizations of Pad approximants include Hermite Pad [11] and simultaneous
Pad systems [12], [17]. These, however, only exist in certain cases.

Note that the matrix simultaneous Pad form is closely connected to a rectangular
matrix Hermite Pad form if the interpolation conditions are written follows:

ATI (z) -A(z) 0
AT2 (z) 0 0

AT3(z) Q(z) + 0 Q(z) + + 0

A(z) 0 --ATo (z)

.QT (z) zP+I

R (z)
R (z)
R (z)

(z)

All examples given here are special cases of so-called vector Hermite Pad6 ap-
proximants.

Example 2.5 (vector Hermite Pad approximant). Let m, s, - E N0, m, s _>
2, G1,..., Gm Ksl[[z]] and let n be a multiindex. Find linearly independent poly-
nomial tuples (P1,..., Pm), P K[z] with deg Pt _< at, 1 _< _< m such that

+... + R(z),

with R e ]Ksl [[z]].
By setting

(4) for 1 <_ <_ rn: ft(z) --(1, z, z2,... ,zs--1) l(ZS),

we see that computing vector Hermite Pad approximants of type (n, T) and dimension
s is equivalent to the determination of PHPAs of type (n, -s, s), i.e. of the solution set

s. Indeed, the above technique of converting a vector problem to a scalar problem
via the raising of z to the sth power provides the motivation for Definition 1.1.

In Table 1, we list the particular choices of m, n, s, a, F with respect to Examples
2.1, 2.2, and 2.3. Instead of Example 2.4, we consider the special case of scalar
simultaneous Pad approximation.
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TABLE 1
Specification of the PHPA parameters used in (2) for some matrix-type Padd approximation

problems.

Number
Example m s a n, F solutions*

Classical m
Hermite Pad6

2.1 p+q p p(M+N+I)

2.2 p+q q q(M + N + 1)

2.4 with tt + 1 tt tt(p + 1)
p=l, A0 =1

(hi rim), 1
FT(z) (fl (z),..., fm(Z))

(M,.. .,M,N,.. ,N), r

F(z) (1, z,...,z-)
(I,-A(zP))

(M,. ,M,N,. ,N), r

F(z): (_AI(zq)) "(1, z,. ,zq-l T

(po-1,...,po--1,..., p
p- 1,... ,p- 1),

FT(z) (1, z,... ,zp-i)
(Ao(zP),... ,A(zP))

(P-- PO,...,P-- P), 1
(z) <_<_ z- A(z,)
j_ 1 fj+l(z)=zJ-1

* Number of PHPA solutions required to construct the corresponding matrix-type Pad ap-
proximant.

3. Recursive computation of PHPA bases. In this section, we construct
systems of m PHPAs by recurrence on a. This allows us to describe all the PHPAs of
type (n(5), a, s), 5 _< 0, when a fixed s, F, and n are given. Therefore, we not only solve
the Hermite Pad approximation problem of type n or the corresponding matrix-type
Pad approximation problem (see 2) but also all subproblems of type n(5), ti _< 0
(cf. (3)) belonging to a "diagonal path" in the solution table. The recurrence formula
and the resulting algorithm do not require any assumptions on the input data F.
Moreover, the algorithm is fast, i.e. it always has a complexity of (.9([[nll 2) arithmetic
operations, whereas the classical Gaussian algorithm, applied on the corresponding
system of linear equations, has complexity O(llnll 3) because it does not take into
account the special structure of the matrix of coefficients. Finally, our method is
also reliable, which in this context means that it also recognizes insoluble problems
or gives representations if the solution sets of type n(5), ti < 0 are multidimensional
(assuming that exact arithmetic is available). We remark that our algorithm does not
consider the case of floating point arithmetic and hence does not consider the issue of
numerical stability in the presence of roundoff errors.

Several fast algorithms for special cases of PHPAs are well known, but most of
them require a normal or perfect solution table (i.e., PHPAs of different type are

distinct). As far as we know, only the methods proposed in [19] for square matrix
Pad approximation and the Jacobi-Perron continued fraction algorithms of [6] for
simultaneous Pad6 approximation and [2], [4], [11], [12], [25] for scalar Sermite Pad6
approximation are also reliable. All of them still require slight assumptions on the
input data (A(0) regular, F(0) nontrivial); moreover, the algorithms of [11], [12], [9]
might reach a complexity O([[n[[ 3) if none of the subproblems of type n(5), 5 < 0 has
a unique solution.

For the special case s 1 (i.e., scalar Hermite Pad approximation), the recur-
rence formula of our new algorithm is similar to that used in [2], [4], [25]. The fast
Gaussian algorithm [2, 5] is motivated by the close connections to the factorization
of the corresponding matrix of coefficients via the Gaussian algorithm with partial
pivoting; a "special rule" reduces the complexity to (..O([[n[[2). It provides solutions
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to all subproblems on the diagonal path (n(5))6<0. The methods of [2], [4] both are
developed for the more general M-Pad approximation problem (arbitrary interpo-
lation knots); moreover, by the algorithm given in [4] we can compute solutions by
recurrence on "arbitrary paths" or "staircases" (nk) where the multiindex nk+l differs
from nk by increasing one component (also the decreasing of a second component is

allowed). Parallel to [2], [4], Van Barel and Bultheel proposed a fast, reliable method
for computing Hermite Pad approximants on diagonal paths [25]. Their version is
similar to [2] but notationally less complicated. The ideas developed in [26] for a
recursive computation of vector M-Pad approximants have close connections to [4],
[25]. The authors propose three alternative "basic steps" that include considerable
freedom in solving certain subproblems.

There seems to be no connection between the methods described above and the
reliable Jacobi-Perron continued fraction algorithm of [6] for simultaneous Pad6 ap-
proximation. For this approximation problem, using our formalism we obtain a more
compact method with at most the same complexity; in addition, we get more infor-
mation about singular cases.

Before describing bases for PHPA solution sets let us introduce the following
definition.

DEFINITION 3.1 (defect, order). The defect of a P (P1,..., Pm) E Km[z] (with
respect to the fixed multiindex n (n1,..., urn)) is

dct P := min {nl + 1 -degPl},

where the zero polynomial has degree -c. The order of P (with respect to s N and
F) is defined by

ordP :=sup{heN0 P(zS) .F(z)=z.R(z) withRelK[[z]]}.

The definition of the defect is a natural extension of that found in the case of
the M-Pad4 problem (cf. [3], [4]) and its special case of rational interpolation (some
authors use a slightly different definition). The defect is also closely connected to the
r-degree of [25].

Using Definition 3.1, we get an equivalent characterization for PHPA solution
sets:

(5) ForaeN0, 5eZt2{+cx}" /:={PeKm[z]" dctP>-6, ordP>_a}.

Now we are able to describe so-called a-bases of PHPAs.
DEFINITION 3.2 (a-bases). Let a N0. The system P1,..-, P, Km[z] is called

a a-basis if and only if:
(a) P1, ,Pm .a i.e ord P > a.

(b) For each 5 e ZU{+c} and for each Q e . there exists one and only one tuple
ofpolynomials (a,..., am), deg at < dct Pt+5 such that Q al.P +.. "+am’Pm.

Note that, as a consequence of Definition 3.2, a a-basis P,..., Pm must be
linearly independent with respect to polynomial coefficients. Moreover, we have

(6) /:=span{zj.P l_<l_<m, 0_<j<dctPl+},
(7) dim /: max {dct P + 6, 0} +-.. + max {dct P,, + , 0}.

The existence of a-bases for the case s 1 was given in [2]-[4], [25] and for the
case s > 1 in [5]. Before giving an algorithm for their computation, let us state some
simple rules for the defect and order of linear combinations of PHPAs.
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LEMMA 3.3. For P, Q e ]K’[z], c e K \ {0}"

(S)
dct (c.P)=dctP, dct (P+Q)>_min{dctP, dctQ}

(9)
ord(c.P)=ordP, ord(P+Q)_>min {ordP, ordQ},

Proof. The proof is left to the reader.
From the characterization (5), it is clear that c +1 and +1 c . In

addition, if P E \ +1, i.e. ord P a, then from (8), (9) it is easy to see that
for each Q E Z: there exists a c IK such that Q c. P +1. This proves the
statement

(10) +1 C/:, dim + _> dim 1

and already gives an idea about the computation of a-bases by recurrence on the
order as proposed in the procedure FPHPS (fast power Hermite Padd solver) below.
We show in Theorem 3.4 that this method is both correct and produces the desired
a-bases.

FPHPS ALGORITHM
INPUT" rn _> 2, s N,F (f, fm)T, multiindex n- (n, am)
INITIALIZATION: Let for a- 0,1 1,..., m:

dr,0 at, Pt,0 (0,..., 0, 1, 0,..., 0)(/th unit vector)
RECURSIVE STEP: For a 0, 1, 2,

Let forl-l,...,m:ct,-z-.Pt,(z).F(z)lz=0andAo-{1 c,0}
CASE A {}, then for 1,...,m:
P,+ P,, d,+ d,

CASE A {}, then let 7 r A be defined by
d.,-max{dt, 1EA}
and compute for 1,..., m:

A, 7r: Pt ad-1 P, c, p., dl,a+l dl,a
Aa: Pl,a+l Pl,a,dl,a+l dl,a
’: Pr,a+l z" P.,a, dr,a+l d,,a 1

OUTPUT: For a 0, 1, 2,
a-bases P,,..., Pm,a with dct Pt, dt, + 1,1 1,..., m, i.e.
for allh’-{al.P,+...+am.P,, deg cl<_dt,o+5}.
THEOREM 3.4 (Feasibility of method FPHPS). Method FPHPS is well defined

and gives the specified results.
Proof. We show the assertion by induction on a for a fixed
The case a 0 follows immediately from the definition of 0. Hence, suppose

a _> 0 and that the algorithm is correct for a. We show that the algorithm produces
the correct output for a + 1. Note that by assumption ord Pl, _< a, i.e., its s-residual
takes the form

dct (z-P)-dctP-1,

ord (z-P) -ord P + s.

Hence, Cl,a

Pz,(zS) F(z) z. Rt(z) with Rt e K[[z]].

Rt(0) and the recurrence step is well defined. By construction we have

ordPt,+_>a+l and dctPt,+ >_dt,+l+l.
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Moreover, it is easy to see that with Pl,a,..., P,, also Pl,a+l,... ,Pm,a+l are lin-
early independent with respect to polynomial coefficients.

Consider first the case when/2 Z;+1. By assumption, each Q E Z:+1 then
has a representation

Q OZl P l,a +"" / OZm Pm,a, deg

This is already a suitable linear combination of P1,+1,..., P,,+I. To see this, note
that with at 7 0, we get dct Pt, + 5 > 0 and Pt, E/2 -/2+1; hence, ct, 0 and
P/,a+l Pl,a.

The case where/2 7/2+1 is also easy to handle. Let

/26 := {al" P1,o+1 +"" + am" Pm,+l deg at <dct Pt,+l + 5},

so that in view of Lemma 3.3 we have/26 c +1. On the other hand, the dimension
of/26 can be estimated as follows:

dim L5- max {dct P1,+1 + ,0} +..-/ max {dct Pm,+l / ,0},
> max {d1,+1 + 1 + 6,0} +... + max {dm,+l + 1 + 5,0},
> max {dl, + 1 + ,0} +... + max {dm, + 1 + 6,0} 1,
=dim /:-l-dim

where for the last two equalities we have applied (7) and (10). Consequently, /
/2+1, and we have equality in the estimation above. For all A _> 5 we also have
that /27x+1 7 /27x, since by definition 0 7 /2 \/2+1 c /27x \/37x+1- Therefore, the
above equations are also valid if we replace 6 by A > . Choosing A sufficiently
large, we can conclude that dct Pt,o+l dt,+l / 1 for 1,..., m which proves the
theorem.

4. Some properties of the FPHPS algorithm. In this section, we discuss
some properties of the a-bases obtained by the procedure FPHPS. In particular, we
are interested in simple conditions describing whether some PHPAs are irreducible and
whether given PHPAs P1,. P (and its values at zero) are linearly independent with
respect to polynomial coefficients (and constant coefficients, respectively)--questions
that as explained in 2 naturally arise in the context of matrix Pad approximation.
In addition, for multidimensional solution sets, we classify PHPAs having "best"
approximation properties, i.e., maximal order and/or minimal degree. The complexity
of method FPHPS is determined at the end of this section.

Let A and 7r (for a given a) be defined as in the FPHPS algorithm. As
given in all applications of Table 1, in the sequel we only discuss the case s <
m and A0 7 { },...,h-i { }. This is equivalent to the fact that the matrix
(F(0),F’(0),... ,F(-I)(0)) has full rank. In Theorem 4.1, we summarize some facts
about reducible PHPAs. These results are generalizations of ideas appearing in [25].

THEOREM 4.1. (a) For all a >_ s, we have card A _> 1, more precisely_
e_ A c L {_},

(11)
where Lo {1,...,m} \ {ro_, 7r_+l,..., r_l}.

(b) Let g denote the (m- s) dimensional subspace of vectors that are orthogonal
to all F(0),F’(0),... ,F(s-1)(0). Then for a > s

(12) span {Pz,a(0) e n} U and for all C L P,(0)-0.
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Proof. Note that in the FPHPS algorithm we always have ord Pv,,a+l a + 8.

Therefore, e h+s # { } but h+l,..., h+s-1. This proves (a).
The second part of (b) follows directly from the fact that Pl,+l Pl,o for all

L+I t2 L, and Pt,+l(0) 0 for . The first assertion of (b) can be
shown by a simple recurrence argument on a >_ s. Let

U := span {Pt,(0) e L}.

Then U C U since we have ord Pt,o _> s. With Pt,(0),/ E L, also the vectors
Pl,o+l (0), E L L+I, together with P,(0) are linearly independent. From the
recurrence relations we know that P (0) 0 and P +1(0) c. P,(0)
with c 0. Consequently, Pt,+(0), L+, are linearly independent that proves
part (b).

Supposing that the vector F contains only polynomial entries, we expect that
the solution set /: becomes stationary for sufficiently large a. In contrast, due to
Theorem 4.1(a) the a-bases will always change if a is increased. In fact, we observe
that for large a, the nonconstant part of the a-basis described by the sets A consists
only of approximants with defect smaller than - and that, for sufficiently large
for the representation (6) of the solution set : we need at most (m- s) elements of
the a-basis.

Theorem 4.1(b) yields a simple criterion determining whether the solution set
contains an irreducible element. By definition, the components of an element of the
a-basis can only have a common factor that vanishes at zero. Hence, there exists an
element P of/: being irreducible, i.e., P(0) 0, if and only if there is an L
with dt, _> -. Moreover, we immediately get the following corollary.

COROLLARY 4.2. (a) /: contains <_ rn elements P,...,P being linearly
independent over ]g:[z] if and only if there are distinct/1,...,1 {1,...,m} with

(b) /: contains <_ rn- s elements P,... ,P such that PI(0),... ,P(0) are
linearly independent over K if and only if there are distinct /1,...,l L with

(c) In both cases linearly independent approximants from are given by Pj
Pt,,j 1,...,A.

In most applications, the first s components of F take the simple form fj(z)
zj-. Here we consider the first s components p and the last (m- s) components q
of a PHPA P (p, q) separately and ask for approximants P,...,P E : with
ql,...,q (or ql(0),...,q(0)) being linearly independent. Here also the criteria
given in Corollary 4.2.(a) and (b) can be applied as long as we can guarantee there is
no P (p, q) e with p 0 and q 0 (p(0) 0 and q(0) 0, respectively). But
due to the simple form of F it can be easily verified that P (p, q) with q(0) 0
and a _> s also implies that p(0) 0. Similarly, if s. (nj + 5) + j _< a for j 1,..., s

(which for the most interesting PHPA cases of 2 is true) and P (PI,... ,Pm)
(p, 0) /:, then p must also be identical zero since ord P <_ max {s. deg Pj + j- 1"
j-- 1,...,s}.

If the solution set is multidimensional, we are interested in classifying particular
solutions that have certain uniqueness properties. The concept of approximants with
correct degree satisfying "best possible" order conditions is discussed in Corollary 4.3.

COROLLARY 4.3. Let each P K’[z] have finite order and let 5 + rain {n,...,
am} >_ O. Consider the problem of finding "optimal" PHPAs P1,..., P, _< m s
with



A UNIFORM APPROACH TO MATRIX PADI COMPUTATION 813

(i) P1 (0),..., P(0) are linearly independent,
(ii) dct P1 > -5,...,dct P > -5,
(iii) the number (ord P1 +-.- + ord P) is maximal,
(iv) ord P =: a(1) > ord P2 =: a(2) >... > ord P =: a(A)

(it is easy to see that condition (iv) only implies a particular ordering for the PHPAs
determined by (i), (ii), (iii)). A solution for this problem is given by

a(j) := max{a: card {1 e Lo dt,o >_ -} >_ j}

and Pj P(j),(j),j 1,... ,.
Corollary 4.3 is a canonical generalization of the optimal Hermite Pad form of

type n(5) of [22] (s 1). Paszkowski [22] speaks of nonexistent optimal nermite
Pad6 forms if P1 is not unique, i.e., if there is a further (necessarily reducible) PHPA
P0 with dct P0 > - and ord P0 > ord P. For A m- s 1, for example, scalar
simultaneous (partial) Pad6 approximation, our approach is closely connected to a
concept proposed by de Bruin [8] for nonnormal solution tables. Note that although
in view of Corollary 4.2.(b), the numbers a(1),...,a(A) are unique, we might get
several tuples of optimal PHPAs being essentially different. The significance of the
integer a(A) for matrix Pad6 approximation is discussed at the end of 5.

Following Corollary 4.3, we always find irreducible approximants with correct
degree, but the order condition might be weakened. In contrast, Van Barel and
Bultheel [24], [26] look for irreducible approximants with correct order and a type of
minimal degree. More precisely, instead of (ii)-(iv), the conditions

(v) ord P1

_
a,..., ord P >_ a,

(vi) the number (dct P1 +"" + dct P) is maximal
are imposed. As above, this problem will not generally have a unique solution. How-
ever, the method FPHPS also gives a solution for this problem: due to Corollary
4.2(b) we can take those A approximants Pl,,, E L with maximal defect.

The problem of uniqueness for both concepts is illustrated in Example 4.4.
Example 4.4. Let

m 4, s 2,

( z
F(z)- 1, Z,l_z---q +z

n (2, 2, 2, 2), =0,

lO
Tz zl2 (z16)1 + z------ + + (.9

An application of FPHPS gives the values ro, h,..., 71"13 1, 2, 1, 2, 1, 3, 1, 3, 1, 4,
2, 4, 3, 4. In particular, we obtain a a-basis for a 10 (output in matrix form with
the rows Pl,lO, P2,1o, P3,1o, and P4,1o as the basis elements) as

P0(z)

with s-residuals

P0(z2) F(z)

z5 0 0 0
0 z2 1

0 1--z2
2 21-- + Z2 --0 -2z z z

ZTM + 0 (Z26)
Z102 l---z12 Z13 -+-0 (Z16)

ZI0 Z
12

2 2 + zI3 + z14 + 0 (Z
2z11 + z12 + z14 -t- 0 (ZTM)
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The defects for this basis are -2, 1, 1 and 2, respectively. Hence, 0 does not have
dimension 2 (as expected from comparing the number of equations and unknowns)
but 4. For A 1, a particular solution with "minimal degree" (satisfying conditions
(i), (v), and (vi) above) is given by a. P2,10 + b. P3,10 + (cz + d). P4,10 with arbitrary
constants a, b, c, d, lal + Ibl 0. A particular solution with "maximal order" a(1) 12
(satisfying conditions (i), (ii), (iii), and (iv) above) is given by a. P3,12 + b. P4,12
a-(P3,10 P2,10) + b. z. P4,10 with arbitrary constants a, b,a 0 (the solution
proposed in Corollary 4.3 equals P3,12).

Consider now the problem of determining the complexity of the FPHPS algorithm.
For simplicity, we still impose the conditions before Theorem 4.1 (otherwise, the com-
plexity will be still smaller). As seen in 2, in most applications one must determine
a-bases of PHPAs for a Ilnll. To determine the number of arithmetic operations
(AO) required for the computation of a Ilnl[-basis, we essentially only have to take into
account the computation of cl,,...,c,, and of PI,+I,...,Pm,+I,0 _< (7 < Ilnll.
Here the complexity strongly depends on the parameters F and s.

THEOREM 4.5 (Complexity). The FPHPS algorithm for computing PHPAs of
order a O, 1,..., Ilnll has a complexity of at most

(13) 4(m s)-Ilnll 2 + (9 (m2. Ilnll) AO,

roughly half additions and half multiplications plus O(m. Ilnll) divisions. At least for
the case n (n,..., n), we obtain the sharper bound

(14)
8 2(1 ). (2m- card L). Ilnll + (9 (m2- Ilnll) AO,

where L {l fl(z) zJ with a j E N0}.

Proof. Since c c -s and gr,a+l can be easily determined by shifting
some coefficients, for the complexity it remains to consider the computation of at
most cl, and Pt,+l for La+l. In addition, we are not interested in PHPAs with
dct Pt, _< 0, since they do not occur in the solution sets/:, 5 _< 0 (cf. (6)). Therefore,
the degree of the Ath component of Pt, is bounded by n dt,a _< n and we require
for loop number a the number of at most 2"-lL+l E)m=l (n + 1) + O(m2)
2(m- s). Ilnll + O(m2) additions/subtractions and the same number of multiplications
that totally gives a complexity as stated in (13). For the case n- (n,..., n), we can
apply the relation

Ilnll-1 m n-I-1

2- E E (dl,o + 1) >... > Ilnll 2 -2. s. EEj’
a=0 lL,+ /=1 j=0

which by using similar arguments leads to (14).
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TABLE 2
Complexity for solving matrix-type Padd approximation problems.

Example Complexity via (13) Via (14), special case

Classical Hermite Pad 4(m 1). Ilnll -t- O(m Ilnll) for nl nm:
2(m 1). IInll + (.9(m IInll)

4q[p(M -k 1) -b q(N q- 1)] for M N:
+O((p + q)2 (M + N)) q(2q + p)(p + q)(M + 1)

+O((p + q)2 M)
4p[q(U + 1) + p(N + 1)]2 for M N:
+O((p + q)2 (M + N)) p(2p + q)(p + q)(M + 1)

+O((p + q)2 M)
4ttp3 p2 + O(tt2p4 p) for Po P:

2ttp3 p2 + (..9(tt2 p4 p)
4tt2 p2 + O(4 p) for P0 P:

p,+2 p,2 p2 ._ 0(4 p)tt+l

2.1

2.2

2.3

2.4 withp--l, A0----1

It should be mentioned that our algorithm can be implemented very efficiently on
a vector or on a parallel processor (with, e.g., m or I]nll processors). The complexity
of our algorithm for the examples of 2 is given in Table 2, whereas in Table 3 some
solved subproblems and their corresponding PHPA solution space are listed.

5. An example of matrix Pad approximation. In this section, we give
an example of a matrix Padd approximation problem computed using the FPHPS
algorithm. Let

A(z)= [ 1+z2-t-2z4-zht-z6-[-(’’)(z8) z7 + O (z8)
-z5 + O (z8) 1+ z2 + za + z7 + O (z8)

and consider the problem of determining a (2, 3) right-hand matrix Pad form for
A(z). Thus, we are looking for 2 x 2 matrix polynomials P and Q of degree at most
2 and 3, respectively, such that

A(z) Q(z) P(z) z6 R(z)

for some matrix power series R. The suitable choice of the parameters is stated in
Table 1, row 2. Note that, for any PHPA (P1, P2, P3, P4) of type (M, M, N, g), 2(M+
N+ 1), 2), the components P1 and P2 correspond to a column of an (M, N) right-hand
matrix Pad numerator, whereas P3, Pa correspond to a column of the denominator

(cf. Table 3, for left-hand matrix Pad approximation, P1, P2 and P3, Pa correspond
to rows of numerator and denominator, respectively).

Setting s 2, n (2, 2, 3, 3) and

FT(z) [1, z]. [I, -A (z2)]
[1, z,-1 24 2z8 -- 210 -[- z11 212 -[- O (z16)
-z- z5 29- 214 z15-[-( (z16)]

and using the FPHPS algorithm gives a a-basis for a 12 (output in matrix form
with the rows as the basis elements) as

-z- z2 + z3 0 -z- z2 + 2z3 + z4 0
1 + z- z2 Z3 1 -l- z- 2z2 z3 z3

Z2 0 Z2 -{- Z4 0
0 -1 0 -1 -- Z2
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TABLE 3
Some matrix-type Padd subproblems solved by FPHPS and their corresponding PHPA

solution spaces, parameters m, n, s, a, F as in Table 1.

Example Type of subproblem PHPA solution space

Classical Hermite Pad

2.1

2.2

2.3

2.4 withp=l, Ao =1

(hi --j,...,nm- j),j

_
min {hi + 1}

(M- j,N-j),j

_
min {M + 1, N + 1}

(M-j,N-j),j

_
min {M + 1, N + 1}

(P0 j,...,Pu J),J - min {pl}

(P0 j,..., Pt J), J - min {pt }

--3
a--2 .j.s/_y contains

rows of (pT, QT)
a-2.J.Scontains
rows of (P, Q)
/:a_J’mcontains

rows of (P0, P)
iaJ

--J

The defects for this basis are 0, 0, 0, and 2, respectively. Therefore, a basis for the
solution space/:02, as a finite-dimensional space over ]K, is given by (a + b. z). P4,12
(a + b-z). [0,-1, 0,-1 + z2], with a and b being arbitrary constants. Translating
the solution space basis into matrix form implies that the columns of P and Q are
generated by

and [ 0 ](a + bz) -l + z2

respectively. This gives a right matrix Pad6 form of type (2, 3) for A(z) as

-z -1 -- z2 -z - z3

In this case, such a matrix Pad6 form is unique up to multiplication on the right by
a nonsingular 2 2 matrix. In particular, note that it is not possible to construct a

right matrix Pad( fraction of type (2, 3) in this instance.
The left matrix Pad forms of type (2, 3) for A(z) can also be computed by the

FPHPS procedure. Setting s 2, n (2, 2, 3, 3) and

I z]=F(z)= [-A(z2) 1" [1
1

-1-z4-2zsWz1+(9(z12)
--Z-- Z5 Z9 -- Z10 -- O (Z12)

and computing the a-basis for a 12 gives

-1 + Z2 1 -1 + 2z2 1- Z2

0 z4 0 za

-z -1 -z+z3 -l+z2

0 -z 0 -z + z3

In this case the defects are 1,-1, 1, and 1, respectively, so the solution space /2 is
of the form a. Pl,12 + b. P3,12 T c. P4,12 with a, b, and c arbitrary constants. Again
translating the basis information to matrix form implies that the rows of P and Q
are generated by

a. [-1+ z2, 1] + b. I-z,-1] + c. [0,-z]
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and

a. [-1-{-2z2,1-z2] -{-b. [--ZWZ3,-l+z2] +C" [0,--ZWZ3],
respectively. Unlike the previous example, there is not one Pad6 form that is unique
up to left multiplication by a nonsingular matrix of scalars. One possibility for a left
matrix Pad( form in this case is

P(z)= -l+z2 1 -l+2z2 1-z2

Note that the denominator has a nonzero determinant, indeed that Q(0) is nonsin-
gular. Therefore, unlike the case for approximants on the right, one can always form
the rational expression Q(z) -1. P(z).

Using the FPHPS algorithm in the above example also determines, at no added
cost, the a-basis for a__2 and/:s_ 1. Hence, the right matrix Pad( forms of type (0, 1)

P(z)- 0 1 Q(z)-- 0 1

and (1, 2)

P(z) 0 -1 Q(z) 0 -l + z2

(determined uniquely up to matrix multiplication on the right in both cases) are
byproducts of the previous computation. In addition, one can continue the computa-
tion to determine the matrix Pad( form of type (3, 4) since the a-basis for/:2 can
be used to determine the a-basis for L:6. In the case of the right matrix Pad form
of type (3, 4) this gives (again unique up to matrix multiplication on the right)

0P(z) -z2
1 + z/5 + ll/hz2 + 4/5z3]

1/5- 2/5z + z3 J

0Q(z) -z + za
1 + z/5 + 6/5z2 + 3/5z3 16/5z4 ]
-1/5- 2/5z + 1/5z2 + 7/5z3 J

an example where the denominator matrix polynomial Q is nonsingular but has a
singular leading term Q(0).

Our example shows that, in general, the matrix Pad6 approximation problem
does not have a unique rational solution as in the scalar case. Moreover, there are
three distinct and possible forms of a denominator matrix polynomial Q. First, the
case occurs when Q(z) is singular for all z and hence no matrix rational form exists;
this type of degeneracy is not found in the scalar case. Second, it is possible that
Q(0) is nonsingular (cf. Corollary 4.2(a) and (b) and the following remarks). Here
we can form P(z). Q(z) -1 and its matrix power series agrees with A(z) to the full
order condition. Finally, if Q(z) is nonsingular for some z, but Q(0) is singular, we can
cancel P and Q by a common matrix polynomial factor on the right. Here, similarly to
the degenerate case found in scalar Pad approximation, the resulting matrix rational
form P(z). Q(z) -1 does not agree anymore with A(z) to the full order condition.
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Note that the concept as proposed in Corollary 4.3 (2 2s m) always leads
to a matrix ead-like form with correct degree and maximal order [a(s)/s] (perhaps
less than (M + N + 1) as required for matrix Pad approximants) where by forming
the rational function P(z). Q(z) -1 we do not obtain an additional order deflation. In
fact one can show that t-here is no other rational function of the form P(z). Q(z) -1
satisfying the degree constraints and having an order greater than [a(s)/s].

6. A superfast PHPA solver. In 4 we have shown that the FPHPS algorithm
computes a a-basis with quadratic complexity. This is better than using methods such
as Gaussian elimination and is optimal in special cases for arbitrary fields ]K. However,
when the field ]K allows for fast polynomial multiplication via the use of the FFT (cf.
[15]), then there are faster methods in special cases. For example, when s 1 and
m 2 (i.e., the case of Pad( approximation) the algorithms of Brent, Gustavson,
and Yun [9] and Cabay and Choi [10] compute these approximants with the superfast
complexity O(a log2 a). Similarly, a recent algorithm of Cabay and Labahn [12] also
solves the Hermite Pad and simultaneous Pad( problems with superfast complexity.
In this section we describe a second algorithm that takes advantage of fast polynomial
multiplication when solving the PHPA problem. The new algorithm has the advantage
of always being superfast--the algorithm of [12] sometimes slows down to quadratic
or even cubic complexity (if most of the subproblems of type n(5), 5 < 0 do not have
a unique solution), although in practical problems this is rare.

The FPHPS algorithm of 3 provides a a-basis P1,..., Pm with respect to given
F, n, and a (and a fixed parameter s). For convenience, we arrange the Pl
(Pl,1,..., P,m) in a matrix

A--1,...,mP- (Pt,Jt=i m

Then with d := (dl,..., dm), dt := dct P 1, we can symbolize the procedure as
follows

(P, d) +- FPHPS (V, a, n).

Note that, in general, the choice of a and therefore the output of FPHPS is not
unique, but uniqueness could be easily obtained, for instance, by the additional re-
striction that must be as small as possible.

The basic step of a divide-and-conquer version is described in Theorem 6.1.
THEOREM 6.1. Let p, a be integers with 0 <_ p <_ a. Suppose that we have iterated

p <_ a times the recursive step of FPHPS

(p(1), d(1)) +_ FPHPS (F, p, n),

and then continue iterating

(P(a), d(a)) +- FPHPS (F, a, n).

Suppose further that we restart the procedure with new initializations

(P(2), d(2))+-FPHPS (F(1), a p, d(l)) where F(1)(z)’-z-P.P(1)(zS).F(z),

where we always use the above uniqueness condition for the values . Then

p(3) p(2) p(1) and d(3) d(2).
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Proof. We show Theorem 6.1 by induction on (a- p). Extending our notation
slightly, set

Note that Theorem 6.1 is trivially true for a p 0. Assume now that the result is
true for a- p _> 0. Then

(15) p(3) p(2_), p() and d(a) d(_).
Consequently, the corresponding s-residuals

R(a3)(z) z-a. P(a3)(zS) F(z) and R(2_)p(z) z-a+p. P(a2)_p(zs) F(1)(z)
are equal. Hence, in both cases we must take the same value 7 and the assertion (15)
with a replaced by (a + 1) follows.

The basic step of a divide-and-conquer version (15) yields the superfast power Her-
mite Padd solver (SPHPS), a reliable algorithm for computing a a-basis of
PHPAs with complexity O(a. log2 a). The reason for the improvement in complexity
results from the use of fast Fourier transform (FFT) techniques for fast polynomial
multiplication. Such techniques consist of converting to a new coordinate representa-
tion via polynomial evaluation at roots of unity, computing the arithmetic operations
in these new coordinates and transfering the results back to the original computation
domain via polynomial interpolation. For purposes of efficiency we describe our su-
perfast algorithm in both coordinate representations. Hence, we require some FFT
details needed for our implementation. Additional details of the FFT procedure can
be found in many texts (el. [15]).

Let w be the principal ath root of unity (e.g., if K is the complex numbers, then
w := cos (2v/)+i. sin (2r/)) and let

(J)j--0 2--1 - DFT2 (p(z))

denote the evaluation of j p(w), j 0,..., 2a- 1. Then for the classical discrete
FFT algorithm, we split p into its even and odd part p(z) pe(z2) + z. po(Z2) and
use the fact that for j 0,..., a- 1 we have

j !e) +w. !o) and + !) w-!o)

where (J))j=o -1 - DFT(p(z)) and ())j=0 -1 - DFT(po(Z)). The "in-
verse" polynomial interpolation computation of

p(z) -- IDFT (()j:0
i.e. of the uniquely defined polynomial p of degree less than a with p(w), j
O,...,a- 1, is done by

--1 --1

(Z) :--- E Jzn--J’ (j)j--0 --1 DFT.(ih(z)), then p(z) 1. EJzj"
j=0 j=0
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Polynomials are multiplied componentwise in the new coordinates, that is, if

(1) -- DFT (Pl (z)),
j--0,...,--I

(2)) -- DFT (p2 (z)), and
j=0 ,-1

P(3)(Z) --IOFTg ((1) "2))j-0,...,t-I
and if c denotes the leading coecient of pl(z), p2(z), then

p(3) (z) p()(z), p(2)(z) rood

0 if deg (p(1) p(2)) < g,
+

-c. +c if deg )-a.
For a a power of two, the complexity of converting to the new coordinate represen-
tation and back again (via either DFT or IDFT) is at most . log a +
multiplications and a- log a + O() additions (the logarithm taken with respect to
the basis 2). Therefore, the polynomial multiplication is of complexity O(a. log

In the SPHPS algorithm, we use the notations et is the/th unit vector, I the unit
-1matrix of size (m x m), and {]=0 cJzJ} :: j=0 cJ zj denotes a truncated power

series.

SPHPS ALGORITHM (F, a, g, n)
INPUT: if, a 6 N0, with a a 2a for a k 6 N0,
n (nl,..., nm), vector of integers,
F (f,..., fro)T vector of truncated power series,

i.e., of polynomials of degree less than a,
Let G 6 EmXs[z] be defined by F(z) G(z) (1, z,... ,zs-i)T

OUTPUT: P, (, and d where:
d (d,..., din), vector of integers,
P (Pt,)x= consisting of rows/:1, .,m
P (Pt,, Pt,m) with dct Pt dt + 1,
deg Pt,t a and for # ’deg Pt, < ,
for all 6 6 Z" {alP1 +"" + aP-deg at d + 6}

(- ((j)/=0 2-1, each (j an m by m matrix,
((/)=0 u_ DFT(P(z))

THE RECURSION
CASE (a- 0 and a _> 1) or (a- a- 1 and fl(O) fm(O)- 0)"
RETURN (P, , d) (I, (I,..., I), n)

2

CASE a t 1, f.(0) 0 and for all with nl > n fl(0) 0:

--fl(O)/fr(O)

1 -f_(O)/f(O)
Z

-fr+l(O)/f=(O)

-f,(O)/f,(O)

1
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RETURN (P,,d) (P, (P(1), P(-1)), n er)
CASE a

_
1 and > 1: (Divide-and-conquer step)

Compute basis to order
g +--- t/2, min{a,g}; F(1)(z)--- {F(z)}
(P(1),(1),d(1)) -- SPHPS (F(1),,,n)

Compute basis to order
(rS)j=0,...,_l -- DFT(G(z))
G(2)(z) -- IDFT.((1)"

F(2)(z) -- {z-. G(2)(zS) (1, z,... ,zS-1)T)-
(P(), (), d(u)) -- SPHPS (F(u),

Combine both parts:

)
__

J2). 1) for j= O, 1,..., a-1

P(3)(z) -- IDFT((2())j=0
If deg Pt(, deg P() , then P()(z) -- p(3)(z)- 1 + z

(c(3))=0,1,. -- DFT(P(a)(w2 z))’2j+1 ..,-
RETURN (P, , d) (p(3), (3), d(2))
Consider now the problem of determining the complexity of the SPHPS algorithm.

For simplicity, we still impose the conditions before Theorem 4.1 (otherwise, the
complexity will be still smaller). As in 2, in most applications one must determine
a-bases of PHPAs for a .

THEOREM 6.2 (Complexity). The SPHPS algorithm for computing PHPAs of
order a has a complexity of at most

(16)
3-. (rn + s).m.a, log2 a + O (a. log a) AO,

roughly half multiplications as additions.

Proof. Let a(n) and M(n) denote the number of additions/subtractions and
multiplications/divisions required for the SPHPS algorithm with parameter , respec-
tively. We easily obtain A(1) < 1 and M(1) _< rn- 1. Moreover, in the last case
we call the subroutines DFT or IDFT at most 2(m + s)m times; hence,

(I)a(;) < 2. (I)A(g/2) qt_ 2" (m + 8).m.t. log t + O()

and

(I)M() _< 2. OM(t/2) t_ (m zt- 8).re.tc,. log n + O(n).

This gives the complexity result, v1

We remark that, as was the case with method FPHPS, the complexity will be
even less for some special cases. For example, for simultaneous Pad approximation,
this number will be smaller if one carefully checks whether some entries of the matrix
( always equal zero or 1.

7. Conclusions. In this paper we have studied the concept of a power Hermite
Pad approximant. These approximants are shown to generalize a number of Pad6
approximation problems, including, for example, the classical Hermite Pad and si-
multaneous Pad approximation problems as well as matrix-type generalizations of
common Pad approximation problems. A fast (and also a superfast), reliable al-
gorithm to compute these approximants is given. In this way our work provides a
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uniform method of both describing and computing a wide variety of Pad6 and matrix-
Pad6 approximation problems. As an immediate application, our work results in new
and faster algorithms for a number of problems that rely on matrix-type Pad6 compu-
tation. For example, our algorithms, used in conjunction with the results of [17], gives
faster algorithms for the inversion of striped or layered block Hankel (or Toeplitz) ma-

trices. Similarly, the same algorithms combined with the results of [18] give similar
improvements for the inversion of rectangular-block Hankel (or Toeplitz) matrices.

There are a number of directions for new research in this area. Our algorithm
follows an m-dimensionM "diagonal" path. In special cases, however, fast, reliable
algorithms are given (cf. [4]) that can succeed on arbitrary staircase paths in m-
dimensional space. The methods of [4] could also be extended to compute the more

general PHPAs on arbitrary staircase paths, leading to a method with smaller com-

plexity (cf. [26]).
Our algorithm does not consider the problem of stability when the computations

are to be done with floating point numbers. Recently, Cabay and Meleshko [13]
presented a (weakly) stable algorithm for the case s 1 and rn 2. We conjecture
that such an algorithm is also possible for the PHPA problem with arbitrary s and m,
though not necessarily using the same approach as used in this paper. Our algorithm
assumes exact arithmetic and has been implemented in the Maple computer algebra
system. However, it does not consider the problem of exponential growth of the
coefficients resulting in our computations. It would be interesting to extend our
algorithm to this case. This would be done by restricting K to be an integral domain
rather than a field and perhaps using fraction-free methods similar to those used for
solving polynomial greatest common divisor (gad) problems (cf. [15]).

Finally, the concept of a PHPA is a scalar generalization of a Hermite Pad6
approximant used to solve matrix-like Pad6 approximation problems. For example,
as shown in [5] this concept also allows for a description of the structures in a singular
PHPA solution table by adapting the scalar techniques of [3]. For matrix-like rational
interpolation problems (with arbitrary knots), a common framework is given by the
vector M-Pad6 approximation as a canonical extension of Example 2.5 (see [26]). In
contrast, we are interested in a scalar generalization of the M-Pad6 approximant that
can be used for simple, fast, and efficient algorithms and that, following [3], [5], might
also be helpful for obtaining results about the structure of the singular matrix rational
interpolation table.

REFERENCES

[1] G. A. BAKER AND P. R. GRAVES-MORRIS, Padd Approximants, Part II, Addison-Wesley, Read-
ing, MA, 1981.

[2] B. BECKERMANN, Zur Interpolation mit polynomialen Linearkombinationen beliebiger Funktio-

hen, Ph.D. thesis, Dept. of Mathematics, University of Hannover, Germany, 1990.

[3] , The structure of the singular solution table of the M-Padd approximation problem, J.
Comput. Appl. Math., 32 (1990), pp. 3--15.

[4] , A reliable method for computing M-Padd approximants on arbitrary staircases, J. Com-
put. Appl. Math., 40 (1992), pp. 19-42.

[5] B. BECKERMANN AND G. LABAHN, A uniform approach for Hermite Padd and simultaneous
Padd approximants and their matrix generalizations, Numerical Algorithms, 3 (1992), pp.
45-54.

[6] M. G. DE BRUIN, The interruption phenomenon for generalized continued fractions, Bull. Aus-
tral. Math. Soc., 19 (1978), pp. 245-272.



A UNIFORM APPROACH TO MATRIX PADI COMPUTATION 823

[7] M. G. DE BRUIN, Some aspects of simultaneous rational approximation, in Numerical Analysis
and Mathematical Modelling, Banach center publications, Vol 24, PWN-Polish Scientific
Publishers, Warsaw, 1990, pp. 51-84.

[8] M. a. DE BRUIN, Simultaneous partial Padd approximants, J. Comput. Appl. Math., 21 (1988),
pp. 343-355.

[9] R. BRENT, F. a. GUSTAVSON, AND D. Y. Y. YUN, Fast solution of Toeplitz systems of equations
and computation of Padd approximants, J. Algorithms,.1 (1980), pp. 259-295.

[10] S. CABAY AND D. K. CUOI, Algebraic computations of scaled Padd fractions, SIAM J. Comput.,
15 (1986), pp. 243-270.

[11] S. CABAY, G. LABAHN, AND B. BECKERMANN, On the theory and computation of non-perfect
Padd-Hermite approximants, J. Comput. Appl. Math., 39 (1992), pp. 295-313.

[12] S. CABAY AND G. LABAHN, A superfast algorithm for multidimensional Padd systems, Numer-
ical Algorithms, 2 (1992), pp. 201-224.

[13] S. CABAY AND R. MELESHKO, A weakly stable algorithm for the Padd approximants and the
inversion of Hankel matrices, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 735-765.

[14] J. COATES, On the algebraic approximation offunctions, Indag. Math., 28 (1966), pp. 421-461.

[15] S. O. GEDDES, S. R. CZAPOR, AND a. LABAHN, Algorithms for Computer Algebra, Kluwer,
Boston, MA, 1992.

[16] H. JAGER, A multidimensional generalization of the Padd table, Indag. Math., 26 (1964), pp.
193-249.

[17] G. LABAHN, Inversion components of block Hankel-like matrices, Linear Algebra Appl., 177
(1992), pp. 7-48.

[18] , Inversion Algorithms for Rectangular-block Hankel Matrices, Research report CS-90-52,
University of Waterloo, 1990.

[19] G. LABAHN AND S. CABAY, Matrix Padd fractions and their computation, SIAM J. Comput.,
18 (1989), pp. 639-657.

[20] W. LOBBE, ber ein allgemeines Interpolationsproblem--Lineare Identitiiten zwischen benach-
batten LSsungssystemen, Ph.D. thesis, University of Hannover, Germany 1983.

[21] K. MAHLER, Perfect systems, Compos. Math., 19 (1968), pp. 95-166.
[22] S. PASZKOWSKI, Hermite Padd approximation: Basic notions and theorems, J. Comput. Appl.

Math., 32 (1990), pp. 229-236.
[23] R. E. SHAFER, On quadratic approximation, SIAM J. Numer. Anal., 11 (1974), pp. 447-460.

[24] M. VAN BAREL AND A. BULTHEEL, A new approach to the rational interpolation problem, J.
Comput. Appl. Math., 32 (1990), pp. 281-289.

[25] , The computation of nonperfect Padd-Hermite approximants, Numerical Algorithms, 1

(1991), pp. 285-304.
[26] , A general module theoretic framework for vector M-Padd and matrix rational interpo-

lation, Numerical Algorithms, 3 (1992), pp. 451-462.



SIAM J. MATRIX ANAL. APPL.
Vol. 15, No. 3, pp. 824-844, July 1994

(1994 Society for Industrial and Applied Mathematics
OO8

A BLOCK-PARALLEL NEWTON METHOD VIA OVERLAPPING
EPSILON DECOMPOSITIONS *

h. I. ZE(EVI( AND D. D. ILJAK$

Abstract. The purpose of this paper is to present a block-parallel Newton method for solving
large nonlinear systems. A graph-theoretic decomposition algorithm is first used to partition the
Jacobian into weakly coupled, possibly overlapping blocks. It is then shown that it suffices to invert

only the diagonal blocks to carry out the Newton iterates. A rigorous justification of this practice
is provided by using a convergence result of Kantorovich in the expanded space of the iterates,
where overlapping blocks appear as disjoint. The individual blocks, or a group of blocks, can be
inverted by a dedicated processor, making the new block-diagonal Newton method ideally suited for
parallel processing. Applications to the power flow problem are presented and parallelization issues
are discussed.

Key words, nonlinear equations, block-iterative solutions, weak coupling, overlapping decom-
positions, bigraphs, power systems, load-flow problem

AMS subject classification. 65

1. Introduction. Due to steadily increasing demands for speedups and reliabil-
ity in solving large systems of nonlinear equations, there has been a concerted effort
to develop new methods for parallel computation via multiprocessor architectures. A
common obstacle in this context has been excessive requirements for communication
between the processors that can slow down the convergence of the solution process, if
not destroy it altogether. For this reason, a good deal of research has been devoted to
formulations of effective partitioning algorithms for mapping of large problems onto
multiprocessor architectures, which result in minimal communication requirements [8].

The objective of this paper is to propose a block-parallel Newton method for
solving large systems of nonlinear equations. The principal part of the method is the
partitioning algorithm based on overlapping epsilon decompositions [21] with which
we decompose the corresponding Jacobian matrix into weakly coupled diagonal blocks.
By assigning a block per processor and ignoring the coupling between the blocks, we
can significantly reduce the communication between the processors during the solu-
tion process. Most importantly, we extend the results of Kantorovich [12] to rigorously
establish the convergence of the corresponding block-Newton iterates containing over-
lapping blocks.

The proposed block-parallel method is ideally suited for solving the load-flow
problem in electric power systems, e.g., [25]. A whole range of epsilon decompositions
is available that allows for tradeoffs in balancing the size of the blocks and the strength
of coupling. This translates into a desired balance between the load across proces-
sors and the amount of communication between processors. Furthermore, the graph-
theoretic algorithm underlying the decompositions is linear in complexity, thus making
the proposed solution procedure more attractive with increasing size of the system.
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Finally, since epsilon decompositions are inherently nested, there is a real potential
in building hierarchical multiprocessor-multirate schemes with rate and granularity at
each level being determined by the level of coupling between the corresponding parts
of the system.

2. Epsilon decomposition. Our objective is to compute a solution x* of the
system

(2.1) S f (x) 0

using the simplified Newton method

(2.2) Af Xk+l Xk A (x0) -1 f (xk), k 0, 1,2,...,

where A(xo) f’(xo) is the Jacobian of nonlinear mapping f: gt c Rn Rn, which
is computed at initial point x0. A nonstandard feature of our solution procedure is
a partitioning of Jacobian A(xo) into weakly coupled blocks, so that the inversion
A(xo)-1 can be reduced to an inversion of the diagonal blocks of A(xo). A justifica-
tion of the block-diagonal inversion in the context of Newton’s iterative process Af
is provided in the next section. Our immediate interest, however, is to illustrate the
decomposition solution procedure by a simple example.

Example (2.3). Let us consider a system

S fl (X) eXlex2/5 COS
X3

1.85 0,

(x) =_ cos 5 2.9=0,

1
f3 (x) ex-/2 cos ]- (x3 + 1) 4.3 0,

with the Jacobian computed as

A(x)

X3 1 X3 1 /5 X3
-exle-/5 cos sin --cos

5 5 5 5
elex2

1 Xl Xl/3 /3 lx2eX:/3 cos5X2ex3 sin - ea cos - 5 3

1 1 1 /2 1
0 -ex./2 COS (X3 -- 1) --e- sin - (x3 + 1)

Choosing initial approximation x0 (0.1, 3, 0)T, we get

2.014 0.403 0 ](2.6) A (x0) -0.333 0.999 0.999
0 2.23 -0.045

To decompose this matrix into weakly coupled blocks, we denote by all nonzero
elements of the matrix with absolute value less than or equal to 0.05 and by all
other nonzero elements. Then, a symbolic representation of A A(xo) is

(2.7) A= e * *
0 *
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Since there is a column of stars in A, no permutation of rows and columns can produce
an epsilon decomposition of A; that is, a decomposition such that all off-diagonal
blocks of A consist of epsilon elements only. However, matrix A has an overlapping
decomposition [21]. By expanding the underlying space R3 using the transformation
matrices,

(.8) V 0 0 1 1)= 0 1 0
0 1 0 0 0 1
0 0 1 0 1 0

we get the expanded Jacobian

(2.9)

which is defined by

(2.10) VA- AV.

Matrix/ now has an epsilon decomposition indicated by dashed lines in (2.9).
We can take advantage of the weak coupling in (2.9) and consider Newton iterates

(2.11) Jf :k+l k -l](:k) k 0, 1,2,...

in the expanded space R4 to solve the system of equations

(2.12)

f (2) __-- e:}l ei./5 COS 1.85 0,
1

f2 (2) ex/2 cos ]- (3 + 1) 4.3 0,

]3 (:) 4e5:3/3 COS
Xl

5 :.9 o,
1]4 () ,/: cos ( + ) 4. o

with initial approximation 0 x0 (0.1, 3, 0, 3)T. A description of the method
used to construct such an expanded function f is presented in 4.

The matrix (20) is Jacobian ]’(20) of mapping ](), which is defined by
](x) Vf(x). The significance of expansion is that Jacobian has a weak coupling
structure indicated in (2.9), which provides an epsilon decomposition

(2.13) -D + C,

where
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(2.14)

2.014 0.403

0 2.23

0.999 0.999

-0.045 2.23

-0.66 O

0 0

A crucial step in the solution process is to take advantage of the weak coupling
term s-c and replace .-1 in Newton iterates (2.11) by )1 computed as

0.4965

(2.15) A

-0.091

0.4485
+

0.981

10.0198

-0.4395

0.4395

which amounts to inverting only the diagonal 2 2 blocks of ft.. This fact allows for the
construction of parallel schemes that can provide significant computational speedups
in large systems.

After several iterations, the block-diagonal Newton iterates

(2.16) JfD 2k+1 2k ](2k), k 0, 1, 2,...

produce a solution of

(2.17) 2* (0.029859, 2.926705, -0.027351, 2.926705)T

A straightforward elimination of the repeated components in 2" using transformation

(2.18)

provides the solution

(2.19) x* (0.029859, 2.926705, -0.027351)T

pf the original system S.
Remark (2.20). Although in Example (2.3) the overlapping epsilon decomposi-

tion was necessary, most of the time a disjoint decomposition would suffice [20], [23].
Disjoint decompositions result in less computation and they are easier to obtain. As
in Example (2.3), however, a disjoint decomposition may not exist for a given epsilon
and more general overlapping decompositions are required.
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3. The main result. We now provide a justification of the procedure proposed
in Example (2.3). The full generality of our development is based on a result of
Kantorovich, which was established for a weak perturbation of the Jacobian matrix.
What makes our result interesting is that it concerns weak perturbations of a block-
diagonal Jacobian and that the blocks are overlapping. The latter feature requires use
of the inclusion principle [23] in the context of Newton iterates, as well as an extension
of Kantorovich’s result to the expansion-contraction process involving the underlying
space of the iterates.

We consider the system of nonlinear equations

(3.1) S f (x) 0,

where f" t c Rn -+ Rn is a twice differentiable mapping on a domain Ft, and x0 is
an initial approximation of the solution x* of S. Our crucial assumption is that there
exist two fi n matrices V and V with full column rank and >_ n, such that Jacobian
A fP(x0), satisfying the condition

(3.2) VA AV

has an epsilon decomposition in the expanded space,

(3.3) A AD + Ac,

where > 0 is a sufficiently small number, and AD is a block-diagonal matrix

D diag {, 2,... ,-N}
with invertible blocks.

The expanded matrix (20) is the Jacobian ]’(0) of the mapping ]"
Ra defined by

(3.5) Yf (x) ] (rx) Vx E an

How epsilon decompositions (3.3) of are generated from a matrix A by choosing
different values for and how each decomposition produces (automatically) the ex-
panded mapping ](2) is explained in the next section. Here we want to establish
rigorously that when we use linear transformation

(3.6) 2- x,
which is obtained as a by-product of epsilon decomposition, and get the expanded
system

(3.7) $ ] 0,

we can then solve instead of S, as illustrated by Exanple (2.3) in 2.
We start by applying the inclusion principle to iterative processes Af and jf of

(2.2) and (2.11), which are discrete dynamic systems that generate sequences x(k; xo)
and 2(k; 0) starting at x0 and 0 Vxo.
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DEFINITION (3.8). An iterative process Jf is said to include process .hf if there
exists an n matrix (i with >_ n and full column rank, such that

(3.9) 2 (]g; rX0) ?X (]g; X0) VX0 E an

The reason for this definition is obvious: if sequence &(k;20) converges to a
solution 2" of S, then the corresponding solution x* of S can be extracted from 2" by
using matrix . We recall [23] that when jf includes Af, we say that Jf is an expansion
of Af, or that flf is a contraction of jf.

To provide conditions for inclusion (3=9), we prove the following.
LEMMA (3.10). Let us assume that Af is obtained by expanding A(x_o) at a fixed

_x0, and that (3.2) and (3.5) hold. Then, jf includes Af.
Proof. Let x0 be an arbitrary initial approximation for Af and consider Af with

20 Vxo. We note that (3.2) implies

(3.11) I-1V- iA-1

and the proof follows by induction. Denoting x(k) x(k; xo) and 2(k) 2(k; x0),
and assuming &(k) Yx(k), we conclude, using (3.5) and (3.11), that

(3.12)

2 (k + 1) 2 (k) -1] [2
X (k) fiI-iVf Ix (k)],

{x (k) A-f Ix (k)]},
x(k+l) Vk>0.

Remark (3.13). It is interesting to note that inclusion (3.9) holds for all x0 and
20 x0, even though Jacobian A(x) if(x) is computed at a fixed _xo x0, as
long as (_x0) is used in jf. This is clear from (3.12). We should note, however, that
even though inclusion (3.9) holds for all x0 E Rn, process Jf, and thus Af, may not
converge.

To establish convergence of JfD, when we use fiD instead of , we first define a
region

(3.14) o={2R’ 112-2o11_<p}

for some p > 0. Here, and throughout the paper, we use l norm I[xl[
maxieN {[xil} in Rn, and the corresponding operator norm L(Rn),IIA]I
maxieN {E= laiJl}, where N {1,2,... ,n}. We state our main result.

THEOREM (3.15). Let us assume that mapping f(x) and its expansion (5c) satisfy
(3.2) through (3.5) and that the following bounds hold:

(3.18) II
for some positive numbers (,/{7, /, and for all 2 0. Furthermore, we assume that

(3.19) / < 1,
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a/ 1
(3.20)

(1- )2
< ,

(3.21)

where

1 v/1 25 a 1 + v/1 25
(3.22) p ,

5 1-eft’

Then,
(i) The system 8 of (3.7) has a solution * E Ft0, and block-diagonal iterative

process JD converges to this solution.
(ii) Solution 2" is unique in 0.
(iii) Iterative process Alp converges to * as

5 (1 fl)2 [1 (1 fl)v/1 25] k+l

(iv) Define a manifold

(3.24) //: {: E R - rX, X Rn}.
Then, * //, and the system S has a unique solution x* in the region

ao {x e IIx- x011 <_ p},

which is related to 2" by

(3.26) lYx* *.

The proof of Theorem (3.15) is provided in the Appendix.

4. The algorithm. Efficiency of the proposed block-diagonal Newton scheme
hinges on our ability to systematically generate overlapping decompositions of the
Jacobian matrix A(xo) and produce the transformation matrices V and V. With these
matrices at hand, we can proceed to construct the function () and use it to solve
the expanded Newton iterates AfD of (2.16). Since our main task is to describe the
construction of (2), the epsilon decomposition Mgorit~hm will be outlined only to the
extent needed for understanding the construction of f(2). A detailed presentation of
the algorithm is provided in [21].

Given an n n matrix A (aij) and a number > 0, we say that A has an

epsilon decomposition if there exist n ( _> n) permutation matrices V and
having full rank, such that

(4.1)

where

(4.2) VA- AV
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and AD is a nonsingular block diagonal matrix,

In the case of singular blocks, another decomposition with a different should be
attempted. When t > n and N > 1, (4.1) represents an overlapping decomposition
of A.

To generate an overlapping decomposition of a nonsingular matrix A, we associate

with A a bigraph B(X,J;; $) such that IXI IJ;I n and (xj, yi) E if and only
if aij 0, i, j, 1, 2,..., n. We assume that bigraph B has a perfect matching M*,
which is consistent with generic nonsingularity of A. This is equivalent to assuming
that A can be permuted into a matrix with nonzero diagonal elements, e.g., [21].

For example, with a matrix

(R) O](4.4) A- g (R)

0 (R) e

which is that of (2.7) in Example (2.3), we associate bigraph B of Fig. l(a). A perfect
matching, which is denoted by (R) in A, is shown in Fig. l(a) by heavy lines. By
removing the edges of B that correspond to epsilon elements of A, we get subgraph
Be (A’, J;;) shown in Fig. l(b). It is Be that we decompose into two overlapping
components. Before doing that, however, we note that Be has retained the perfect
matching of B. If this were not true, the decomposition algorithm would terminate
prematurely. In this case a should be decreased to 1 < a and the algorithm restarted
with a new Bel which has more edges than Be. The algorithm recursively determines
(component by component) a perfect matching of a given bigraph and, thus, the
generic rank of the corresponding matrix. This is performed simultaneously with the
partitioning of bigraph Be into overlapping components.

The basic idea of the algorithm is to rearrange and often split vertices of Be to
obtain a new bigraph t (,J);) consisting of several (disjoint) components.
These components define the blocks Ai of the diagonal matrix AD in (4.3). By re-

connecting the epsi_lon edges of the original bigraph B, we subsequently obtain an

expanded bigraph B that identifies the matrix A of (4.1) having the desired epsilon
decomposition [21]. We provide the code in C for a simplified algorithm of the ep-
sAlon decomposition, which is sufficient for our objective in this paper. A new ver-

sion of the complete algorithm is in a refinement stage and will appear elsewhere.

ALGORITHM (4.5).
main( )

{
int tstl, tst2;
initialization( );

/* Set column node X E ’ as the current column xc */
A: horiz_edges( );

/* Link x with its matching. This matching becomes the current row y 3; */
other_edges( );
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Xl Y

x2 Y2

x3 Y3

(a)

B:: xl Yl

x2 Y2

x3 Y3

(b)

FIG. 1. System bigraphs.

/* Link yc with all columns other than xc that have an element > in row y. Add any
such vertices of A’ to the current component if they are not there already */

tstl next_x( );
/* Check if there are some unexamined x-vertices in the current component. If yes, set

next one as Xc */
if (tst1)

/* There exist unexamined x-vertices in current component */
goto A;

else{
/* All z-vertices in curren component have been examined */

tst2 end_of_block( );
/* Check if there are any unused x-vertices left */

if(tst2) {
/* Unused x-vertices exist */

new_block ( );
/* Initiate new block and set next unused x-vertex as Xc */

goto A;

else
/* All z-vertices have been usedthe graph is complete */

final( );

This algorithm produces an expansion B of the original bigraph B, which defines
the expanded matrix , as well as the transformation matrices V and relating to
the original matrix A. Once the matrices V and V are identified, the corresponding
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X21 y31

2 2
X2 Y3

FIG. 2. Expanded bigraph.

function ]() defined as

(4.6) ]! (gXo) , ](gX) Yf (x) x E an

is obtained by a straightforward bookkeeping procedure. The procedure is best de-
scribed by reconsidering Example (2.3).

We start with the expanded bigraph Be in Fig. 2, which was obtained from Be

of Fig. l(b) by using Algorithm (4.5). In le, x and y represent the rth appearance
of the vertices xj and yj. This notation will help us track the vertex ordering in te

in forming V and V.
The ordering of y-vertices in Be uniquely determines the matrix V together with

a correspondence relating the components fi Rn --* R of f(x) with the components
]i" Ra R of the expanded function ]() as follows:

1 2 3

y] l 0 0 ff,

’oo V=
0 1Y2

y 0 0

The arrows indicate the defining implications and the dhed line indicates the
two components induced by the ozerlapping decomposition.

The ordering of x-vertices in Be uniquely determines matrix V as well as the cor-
respondence between the original n variables xi and the fi variables 2i of the expansion:

1 2 3

xl 1 0 0 Xl2,

x 0 x3 23,
x 1 x 24-

It should be pointed out that, in general, any original variable zi can have multiple
representations i in N. In (4.8), only exhibits this property with r 1, 2.

Based on the established correspondences, each component () is now con-
strutted by identiing function f fi and then by replacing each variable k, k
1, 2,..., n, in f(Zl,..., k,..., x) bone of its representations in the expanded space.
We note that once the components fi of f are identified with the kth block of V
in (4.7), the variables i sociated with the same kth block of , as in (4.8), are
the endogenous (subsystem) variables. They will replace their original variables in all
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components ]i comprising the kth block. On the other hand, an original variable,
which is represented only by exogenous (interconnection) variables to the kth block,
can be replaced by any one of its representations. Referring to (4.7) and (4.8), we
have

Block 1:

(4.9)

Xl "-+ 1 endogenous,
x2 -- 2 endogenous,
x3 --+ 3 exogenous,

1 ()- fl (,2, 3),
12 (5:) f3 (1, 2, 3).

Block 2"

(4.10)

Xl -- 1 exogenous,
x2 --+ 2a endogenous,
x3 --+ :3 endogenous,
f3 () f2 (:1, :4, 3),
f4 (:) f3 (:1, 4,:3)

It is obvious that functions (4.9) and (4.10) are those of (2.12).
5. Power systems: the load-flow problem. To determine the static oper-

ating condition of an electric power transmission system, commonly known as the
load-flow problem [24], [25], one must solve a large system of nonlinear algebraic
equations

(5.1) f(x;P,Q) =0.

Typically, there are several thousand equations that need to be solved for a variety of
input vectors P and Q. Since it is crucial to obtain solutions as efficiently as possible,
preferably on-line, parallel computations via multiprocessor architectures have become
a central research topic.

Since the initial studies of parallel solutions to load-flow problems [9], it has been
recognized that the key step in mapping a problem on a multiprocessor system is an
efficient partitioning algorithm. Schemes for partitioning power systems have been
based on a wide variety of principles, such as sparsity [7]; coherency [16], [19]; diakop-
tics [10], [13]; decoupling and time scales [17], [3], [15]; and overlapping subsystems
[22], [11], [26], [2]. Recent studies [4], [6], [1] have indicated that the most efficient
parallel configurations are those that happen to group the tightly coupled variables
together. These are precisely the configurations that the overlapping epsilon decom-
position [21] is designed to produce. Most importantly, the epsilon decomposition
algorithm is linear in complexity; it is binary, recursive and exhaustive, and does not
rely on heuristic or intuitive reasoning. That epsilon partitions are conducive to con-
vergence of the corresponding Newton’s iterates is confirmed by (3.19), (3.20), and
(3.23) of our main result, Theorem (3.15), where the effect of g is apparent.

An n-bus electric power system consists of n nodes, each representing either a
generator or a load. If any two nodes and k are connected by a line, the corresponding
complex line admittance is denoted as

(5.2) Y/k Gik + jBik.
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In addition, with each node we associate its self-admittance

(5.3) Yii Gii + jBii,

where

The load-flow problem now amounts to computing the complex voltage E VieJO
for all nodes, given the injected powers

[5.5) S P + jQ.

Since all quantities are complex, an n-bus power system generally results in a 2n 2n
system of nonlinear equations

fi(xl,x2,...,xn;Pi, Qi)---0, i-- 1,2,...,n,

where

-(F.,, Eq,)v,

and

Fp ’ VE [Ok cos (Oi ek) + [k sin (0 ek)] Vk,
k

FQ, ( E [(k sin (0 Ot) --/k COS (0 Ok)] Vk,
k

The overbar denotes scaling by Bii.
At some nodes, the voltage magnitude may be regulated at a preassigned value

V/R, and only Pi is known. Such nodes are referred to as PV nodes. The nodes at
which both Pi and Qi are available are termed PQ nodes. With this distinction, we
reformulate (5.7) as

(Fp,FQ)T e PQ,(5.9) f Fp, E PV.

To solve (5.6) by the Newton method, we assume the initial approximation x0 to be

1, iEPQ,(5.10) Oi --0, Vi Vin PV,

which is known as "fiat voltage start." In practice, this approximation is usually
improved by one or two iterations on a linearization of (5.6).

To apply overlapping epsilon decompositions to the load-flow problem, we should
first note that the Jacobian computed at x0 involves both Gik and Bik. However, since
in power systems typically/ik >> (ik, it suffices to perform an epsilon decomposition
on the n n matrix/ (/ik), which automatically induces the corresponding de-
composition of the 2n 2n Jacobian. This reduces the dimension of the decomposition
problem a priori by a factor of two.
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-1 .158 .169 .172 0 0 0 0 0 0 0 0 O:

.487 -I .517 0 0 0 0 0 0 0 0 0 0

134 .132 *I .563 0 .125 0 .147 0 0 0 0 0

149 0 .618 -1 .114 0 0 0 0 0 0 0 0

0 0 0 .229 --1 0 0 0 0 .236 .183 .352 0

0 0 .245 0 0 -1 .290 .465 0 0 0 0 0

0 0 0 0 0 -I 0 0 0 0 0 0

0 0 .074 0 0 .3"/4 0 -1 .427 0 0 0 .125

0 0 0 0 0 0 0 .702 -1 .298 0 0 0

0 0 0 0 .482 0 0 0 .518 -I 0 0 0

0 0 0 0 .:585 0 0 0 0 0 -1 .415 0

0 0 0 0 .5"/2 0 0 0 0 0 .211 -I .217

0 0 0 0 0 0 0 .567 0 0 0 .433

FIG. 3. B matrix.

517 .487 .0 O-

132 -1 .563 .134

.618 -1 .149

158 .169 .172 -1

0 -1

.245 .290 -! .465

0 .074 .374 -1 .427

.?02 -1

0 0 0 0 0 -1 .518 0 .482

.298 -1 .?02

.074 .374 0 .427 -1

.229 .236 -1

0 0 0

0

.229 0 .236

0

.211

.229 0 .236 .183 .352

.074 .374

.298 .0 0

FIG. 4. Expanded matrix [.

.125 .047 0 0 0

0 0 .114

0 0

0

0

.125 0

298 0 0 0

-1 .415 .585

211 -1 .572

183 .352 -1

0 0

0 .125 0

183 .352 0

0 0

.217

-1 .433 .567

217 -1 .572

-1

.125 -1 .427

.702 -L

As an illustration of the proposed solution procedure, we consider the IEEE 14-
bus system [25] with matrix B shown in Fig. 3. This matrix has a variety of epsilon
decompositions, one of which is presented in Fig. 4 for e 0.4. The expanded and
original solutions 2" and x* that are obtained by the block-diagonal Newton method,
are shown in Tables 1 and 2, respectively.

For a complete assessment of the proposed Newton method, we also discuss a

number of parallelization issues that came up during experimentation with the IEEE
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118-bus system using the Intel iPSC/860 parallel processing system. We begin by
recalling that, in general, execution of the original Newton method for an n n
system requires inversion of the Jacobian that amounts to solving an n n system
of linear equations in each iteration. Although typical power systems do not require
many iterations, for large n the computational effort may still be prohibitively large.

Consider now a partition of the Jacobian into N diagonal blocks of dimension ni
with nm maxi n. In a parallelization based on inverting only the diagonal blocks, the
execution would effectively be reduced to solving an nm nm system in each iteration.
Nevertheless, this advantage in itself is not enough because the number of iterations I
is seen to vary significantly with different choices of partitions and termination criteria;
for some choices the iterations may not converge at all. To resolve this problem, we
first point out that given N processors, only balanced partitions (i.e., those satisfying
nm n/N) should be considered for parallel implementation. This is due to the fact
that such partitions provide adequate load balancing and at the same time require
minimal execution time Ti per iteration. Our experiments have confirmed that with
a fixed number of processors, time Ti is indeed approximately equal for a variety
of balanced partitions. Consequently, in the class of such partitions I becomes the
dominant measure for the efficiency of the iterative algorithm.

In view of the above discussion, given N processors and a preassigned termina-
tion criterion, optimal parallelization of the solution process amounts to choosing a
balanced partition that provides the minimal I. Expectedly, experimental studies have
indicated that the partition resulting in the optimal I is indeed an epsilon decompo-
sition. To demonstrate this optimality, in Table 3 we present a comparison of three
different partitionings that map the ll8-bus system onto eight processors, with a mis-
match at 0.001 per unit as the termination criterion in all cases. Partitions denoted
Heuristicl and Heuristic2 represent two common ways of partitioning power systems
based on the geography and node numbering of the network, respectively. The choice
of is induced by the preassigned number of processors and I0 represents the number
of iterations corresponding to the epsilon decomposition.

It should be pointed out that the block-parallel algorithm normally requires more
iterations than the original Newton method. However, by virtue of the reduction
of dimensionality, the parallel algorithm based on epsilon decompositions can result
in significant computational savings. Our experiments on the IEEE l l8-bus system
confirmed our expectations even for this relatively small system, in which a parallel
solution was seen to be up to 40% faster than when using a single processor. This
is explicitly demonstrated in Table 4, where we present a comparison of computation
times needed for solving the load flow equations for the IEEE l l8-bus system with
one, two, four, and eight processors. An improved initial approximation and the usual
termination criterion (0.001 p.u. mismatch) were used.

In computations with a single processor, the standard modified Newton method
of (2.2) was used and a suboptimal ordering scheme for minimizing fill in was applied
in the LU factorization of the complete (unpartitioned) Jacobian. The same ordering
scheme was also utilized for factorizing the individual blocks in parallel computations.
When interpreting the results of Table 4 it is also important to note that such an

ordering algorithm shows full efficiency only when the blocks are sufficiently large, so
an upper limit should be imposed on the number of processors to be used on a given
system. In particular, results presented in Table 4 indicate that the ll8-bus system is
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not sufficiently large to be efficiently mapped onto more than four processors (although
results using eight processors are still better than those using a single processor).

6. Conclusions. We have shown how overlapping epsilon decompositions can
help in solving large systems of nonlinear algebraic equations on parallel computers.
By partitioning the Jacobian into overlapping weakly coupled blocks, we can take
advantage of the special structural features of the system and invert only diagonal
blocks of the Jacobian in a Newton interative scheme. Each block can be assigned to a
dedicated processor to speed up the solution process without excessive communication
among individual processors.

TABLE 1

Expanded solution

0 V

&0 -.218859 .915801
&l -.167806 .931219
2 -.141123 .947302
3 -.077127 1.000000
4 -.239707 .887231
5 -.239707 .887231
6 -.280452 .866018
7 -.286466 .859102
8 -.280058 .865181
9 -.286498 .859108
10 -.280424 .866051
1 -.266840 .879896
12 -.288677 .861690
&13 -.290361 .855968
&a -.266894 .879882
&15 -.310500 .838280
&16 -.290323 .855961
&7 -.266849 .879887
&18 -.280425 .866053
&19 -.286447 .859127

TABLE 2

Original solution x*.

V

-.077127 1.0
-.218859
-.167806
-.141123
-.266861
-.239707
-.239707
-.280434
-.286470
-.280058
-.288677
-.290342
-.310500

.915801

.931219

.947302

.879888

.887231

.887231

.866041

.859112

.865181

.861690

.855965

.838280
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The proposed method has been applied to the load-flow problem of an ll8-bus
power system. A pleasing fact in this context is the ability of the method to exploit
sparsity of the system, thus allowing a whole host of powerful sparse techniques to be
developed in the new framework. Other applications are considered in transient sta-
bility analysis of power systems [4], VLSI circuit simulations along the lines suggested
in [21], as well as parallel computations in control system design [5], [20], [23].

Appendix.

Proof of Theorem (3.15). Parts (i)-(iii) follow from various results of Kantorovich
[12], and will be established with a minimum of derivation. Define a mapping 0 C
R R as

(A.1) (:) : z51] ()

and a scalar function

(A.2)
1

(t) + +

(i) First, from (3.16), we conclude that

(A.3)  oll (0).

Second, we set A& & &0 and assume IIAIi _< t, t e [0, p]. Then,

(A.4)

TABLE 3

Decompositions vs iterations.

Decomposition method Block size I/Io

Epsilon ( 0.4)
Heuristicl
Heuristic2

17, 17, 17, 16, 16, 13, 12, 9 1
15, 15, 15, 15, 15, 14, 14, 14 1.45
15, 15, 15, 15, 15, 14, 14, 14 2.26

TABLE 4

Computation time.

Number of Number of Computation Communication Total execution

processors iterations time (s) time(s) time (s)

Single processor
2
4
8

2 0.103 0 0.103
10 0.062 0.001 0.063
19 0.053 0.008 0.061
39 0.072 0.013 0.085
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From (3.17) and (3.18), we can provide a bound

(A.5)

fo n I1- 011 _< t, t e [0, ].
Now, let us introduce a modification (t) o(t) t of (t),

(A.6)
1

(t)=’t2-(1-e)t+a,

which has the zeros t p and fi defined in (3.22). Since (t) is a nondecreasing
function on [0, p], we can show that the sequence

(A.7) tk+l (tk), k 0,1,2,...,

for to 0, converges to t.
Next, by using inequalities (A.4) and (A.5), we can prove by induction on k that

(A.8)

for all k >_ 0, and that 2k E 0. Finally, from convergence of (A.7), compactness of
t0, continuity of (2), and inequality (A.8), it follows that, in fact, the sequence {2k }
converges to 2" E 0, which is a stationary solution of the iterative process Afn, that
is, 2" (2").

(ii) To establish uniqueness of 2" in Ft0, we rely on the properties of function (t).
We consider a sequence

(A.9) Tk+l o (Tk) k O, 1, 2,

for 70 p, and show that the sequence {Tk} converges to some T* It, p]. From
condition (3.21) of the theorem, we have t < p < , and o(p) _< p. Continuity of qo(t)
implies -* qo(-*), and because > p, t is the only solution of (A.9) in It, p].

Now, to show uniqueness of 2*, we take an arbitrary initial element 0 ft0 of
the sequence

(A.10) k+l g (k), k 0, 1, 2,...,

and prove, similarly as in (i) above, that

(A.11) I1? 211 -< Tk tk, k 1, 2,...,

and k t0. Finally, since limk- -k _t, from (A.11) it follows that limk- )k
lim--.oo 2k 2* 120.

(iii) To estimate the convergence rate, we note that from part (i) of the proof, we
have

(A.12) I1* 11 -< _t- t
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for all k _> 0. Furthermore,

(A.13) t_- tk (fl (_t) 99 (tk-1) 99’ (t’)(_t- tk-1),

where t’ E [tk-l,t]. Since ’(t’) "yt’ + 6/3

_
")’t + e/ 1 (1 e)x/’l 25, we have

(A.15) t--tk_ [1-- (1-- 6/3) X/’1 25] (t--ta_l).

Proceeding recursively, we obtain

(A.16) t- ta _< [1 -(1 e/)v/1 25]
a
(t- to),

where to 0, and the estimate (3.23) follows.
(iv) We first establish that conditions (3.16) through (3.22) also guarantee that

the Newton iterative process

(A.17) Jf 2k+ 2k --] (:k), :0 x0

converges to 2*. Let us define operator U as

(A.18) U (12) -1 (I -1

By (3.17) and (3.19) it follows that U exists and

1
(A. 19) IIUll < 1-e"

Definition (A. 18) now implies

(A.20) U251 2-1,

and, consequently, by (3.16) and (3.18) we get

(A.21)

(A.22)

for all & E Ft0.
We now define operator

(A.23)
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and auxiliary function

t2
(A.24) (91 (t)

1 /" 2 1 /"

It should be pointed out that the modification /)1 (t) (ill (t) --t, that is,

/ t2 c
(A.25) (t)

1 e/ 2
t + 1 e

has the same roots t_ p and fi defined in (3.22). Furthermore,

(A.26)

and

(A.27) II II
<

1 s--- t i (t)

for all 112- oll _< t, t e [0, p]._ Proceeding as in part (i), we readily conclude that Af
converges to the same 2" as AfD.

Since (3.2) and (3.5) hold by assumption from Lemma (3.10), it follows that Jf
is an expansion of fir. Consequently, since 20 Vxo,

(A.28) 2k xk E h:/, k 0, 1, 2,

Furthermore, it is easily established that manifold// is closed, implying 2" x*
for some x* Rn. It now only remains to show that x* is the unique solution of
S in 0.

From (3.1), it follows that

(A.29) 0:

Since V and are permutation matrices of full rank, we have

(A.30) f (x*) 0

and, in addition,

(A.31)

since 2" o. Consequently, x* Fro, where Fro is defined in (3.25).
Assume now that there exists some y* Fro, y* x*, which is another solution

of S. Then,

(A.32)



BLOCK-PARALLEL NEWTON METHOD 843

is a solution of . Furthermore, since y* E 0,

(A.33)

and, therefore, * E 0. From the fact that has full rank, it follows that y* x*
implies * *. This contradicts the uniqueness of * in t0. [:]

Acknowledgments. The authors are grateful to M. Amano, Hitachi Research
Laboratory, Ibaraki-ken, Japan, for his useful comments on the paper and experi-
mental results obtained by applying the epsilon decompositions to parallelization of
load-flow equations.
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FACTORIZATION OF MATRIX POLYNOMIALS
WITH SYMMETRIES *

A. C. M. RANf AND L. RODMAN$

Abstract. An n x n matrix polynomial L(A) (with real or complex coefficients) is called self-
adjoint if L(A) (L())* and symmetric if L(A) (L(=k)))T. Factorizations of selfadjoint and
symmetric matrix polynomials of the form L(A)- (M())*DM()) or L(A)- (M(:I=)))TDM()) are
studied, where D is a constant matrix and M(A) is a matrix polynomial. In particular, the minimal
possible size of D is described in terms of the elementary divisors of L(A) and (sometimes) signature
of the Hermitian values of L(A).

Key words, matrix polynomials, symmetries, factorization

AMS subject classifications. 15A22, 15A54, 15A23

1. Introduction. Let L()) -=0 MAy be a matrix polynomial, where Aj(j
0,..., l) are complex n n matrices and is a complex parameter. The polynomial
L(A) is called selfadjoint if L(A) (L(A))* for all e C.

Factorizations of the form

(1.1) L (): (M ())* DM (),

where D D* is a constant matrix (not necessarily of the same size as L(A)) and
M(A) is a matrix polynomial, have been studied in the literature under various ad-
ditional hypotheses (see [Ja], [Co], [GLR1], [GLR2]). The study of factorizations
(1.1) is motivated by several applied problems, such as filtering [AM, Chap. 9]. Fac-
torizations of a matrix polynomial L(A) having other types of symmetries, such as

L() (i(-))T or i() (/()))T, have been studied in the literature as well (see,
e.g., [Lyul], [Lyu2]). For such polynomials, it is natural to seek factorizations of type

(1.2) L () (M (A))T DM (),

where D DT is a constant matrix (not necessarily of the same size as L(A)), M(A)
is a matrix polynomial, and 1 or -1, as appropriate.

In this paper we identify the minimal possible size of the matrix D in factor-
izations of types (1.1) and (1.2), where L(A) has the appropriate symmetry. The
cases when L(A) has complex coefficients or real coefficients are studied (if L(A) is
assumed to be real, then in (1.1) and (1.2) i(A) and D are assumed to be real as

well). Our result concerning the factorization (1.1) is a generalization of the main
result of [GLR2], where only the case of constant signature was considered under the
additional hypothesis that det L(A) 0.
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In 2, we also present general factorization results in an abstract framework for
matrix polynomials over a field having suitable symmetries. These results, although
independently interesting, play an auxiliary role in this paper, serving as essential
ingredients in the proofs of the main results given in 3-6.

The following notation is used throughout the paper. R() denotes the real
(complex) field, and Ik is the k k unit matrix. AT (respectively, A*) stands for
the transpose (respectively, conjugate transpose) of a matrix A, and (AT) -1 (re-
spectively, (A*)-) is abbreviated as A-T (respectively, A-*). A block diagonal ma-
trix with blocks Z1,..., Z, on the main diagonal will be denoted Z1 @-.. (R) Zm or
diag (Z,..., Zm). For a Hermitian n n matrix X, let +(X) (respectively, _(X),
or 0(X)) be the number of positive (respectively, negative, or zero) eigenvalues of X
counted with multiplicities. Thus,

(x) + ._ (x) + (x)

Given a matrix polynomial L() over C, its general rank r(L) is defined by

r (L) max {rank L (A0) }.
AoC

This coincides (when F C) with the notion of general rank introduced and used in 2
for a matrix polynomial over a field F. The points A0 E C for which rank L(A0) r(L)
are called regular points of L(A); all other points 0 E C are called singular points of
L(A). Clearly, the set of singular points is finite (or possibly empty). An n n matrix
polynomial L(A) is called regular if r(L) n, or, equivalently, if det L(A) 0.

2. Symmetric matrix polynomials over a general field. Let F be a (com-
mutative) field, and let F[A] be the ring of polynomials over F in one variable .
Matrices L(A) with entries in F[] are called matrix polynomials (over F). It is well
known (see, e.g., [M]) that every m n matrix polynomial L(A) admits a representation
(called the Smith form)

L (A) E (A) diag (dl (A),d2 (A),...,dr (A),0,...,0) F (A),

where E(A) and F(A) are matrix polynomials with sizes m m and n n, respectively,
and having constant nonzero determinants, and dl(A),..., dr(A) are monic scalar poly-
nomials (over F) such that di(A) divides di+l(A) (i-- 1,... ,r- 1). The polynomials
di(A) are called invariant polynomials of L(A); these polynomials, as well as their
number r, are uniquely determined by L(A) r r is the maximal size of a square
submatrix in L(A) with determinant not identically zero and, for i 1,... ,r the
product d (A)-.-di(A) is the greatest common divisor of the determinants of all
submatrices in L(A).

The number r coincides with the general rank of L(A).
In this section we study factorizations of symmetric matrix polynomials using the

Smith form as our main tool.
From now on we assume that the characteristic of F is different from two. For

a given automorphism a of F such that a2 identity, and for fixed e +/-1 consider
the following transformation: for a(A) aim e F[A], let
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For an m x n matrix polynomial

X () [xij (/)]m,ni=l,j=l over F, define X, (A) [ij (A)]n’mi-- 1,j--1

where &ij(A) [xji(A)],. We have
(i) [X(A)Y(A)]. Y(A).X(A).,
(ii) [X(A)]** X(A),
(iii) [x(A)X(A)+y(A)Y(A)], x,X, +y,Y, for scalar polynomials x(A) and y(A).
(iv) If det X(A) _= const. 0, then [X,(A)] -1 ([X(A)]-),.
These rules are used often in the sequel.
An m n matrix polynomial L(A) is called generally invertible if all its invariant

polynomials are constant one. The terminology is justified by the fact that L(A)
is generally invertible if and only if L(A) has a generalized inverse, i.e., a matrix
polynomial N(A) such that N(A)L(A)N(A) N(A) and L(A)N(A)L(A) L(A) (this
fact is easily proved using the Smith form). A matrix polynomial L(A) is called
right (respectively, left) invertible if there exists a matrix polynomial N(A) such that
L(A)N(A) I (respectively, N(A)L(A) I).

We now state one of the main factorization results of this section.
THEOREM 2.1. Let L(A) be an n x n generally invertible matrix polynomial such

that

(2.3) L (A) L, (A),

and let r be the general rank of L(A). Then L(A) can be factorized in the form

(2.4) L () M, () DM (),

where M(A) is an r n right invertible matrix polynomial and D is an r x r constant
matrix such that D D,.

Conversely, if (2.4) holds for an r x n right invertible matrix polynomial M(A)
and a constant matrix D D,, then L(A) satisfies (2.3), is generally invertible, and
has general rank r.

Proof. The converse statement is easy. Indeed, if

M(A)-E(A)[I O IF(A)

is the Smith form for M(A), then

I ]/, () D/ () [I 0] P ()L(A) -/, () 0

=/*() [/*0() 0i] [ DO 00] [/0()
So by uniqueness of the Smith form, L(A) is generally invertible and has general rank
r. The verification of (2.3) is trivial.

We now prove the direct statement.
Observe that the proof is easily reduced to the case when r n, i.e., det L(A)

const. # 0. Indeed, let L(A) E(A)D(A)F(A) be the Smith form of L(A), and let
L(A) (F,(A))-IL(A)F(A)-. Clearly, L(A) is a matrix polynomial (A) L,(A),
and because of the equality L(A) (F,(A))-IE(A)D(A) the last n- r rows and
columns of ,(A) are zeros. Obviously, it suffices to prove the direct statement for the
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r x r matrix polynomial N(A) formed by the first r rows and columns of L(A). As
det N(A) const. 0, the required reduction is accomplished.

We assume from now on that det L(A) const. 0. In this case the direct state-
ment follows from Theorem 3 in [Lyul] (see also [Lyu2]). We outline an alternative
procedure developed in [Co]. As in [Co] or [GLR2] (4), we prove that there exists an
n x n matrix polynomial X(A) with det X(A) const. 0 such that for the matrix
polynomial

A (A) X. () L () X () [aj ()],j=l
either Ctll 0 or A(A) is diagonally dominant (i.e., for j 1,..., n, the degree of
cUj(A is bigger than the degrees of all nonzero entries in the jth row and the jth
column in A(A)). Because of this fact, without loss of generality we can assume that
either L(A) is diagonally dominant or the (1, 1) entry in L(A) is identically zero. If
L(A) is diagonally dominant, then it must be constant, and we are done. So let

a A1 c C1

where A1 A1. and C1 CI* are (n- 1) x (n- 1) matrix polynomials. Now put

y= (1-c.Alc), x=-Alc-ay, and Y=
c I

A calculation shows that

0 I -c I I,

and so det Y 1. Another straightforward calculation shows that

[1 0]Y.LY 0 Lo

where L0(A) is an (n- 1) x (n- 1) matrix polynomial. Thus, we have reduced the
size of L by one and can complete the proof by induction on n.

As the proof of Theorem 2.1 shows, the constant matrix D can be taken to be
diagonal.

If L(A) is not generally invertible, then easy examples show that the representation
(2.4) (with D having the size equal to the general rank of L(A)) is not always possible,
even if we omit the requirement that M(A) is right invertible. We can, however,
obtain a factorization result for not generally invertible L(A) if we allow D to be
a polynomial (with special properties). To state and prove this result we need the
concept of elementary divisors. Let L(A) be an rn x n matrix polynomial with invariant
polynomials dl (A),..., dr(A), where ds(A), ds+l (A),..., dr(A) are non.constant (if L(A)
is generally invertible, then we say that L(A) has no elementary divisors). Factor

(2.5) di () (fil ())o (fi2 ())o... (fiki ())aii i 8, 8 - 1,..., r

where fil(A),..., fi,ki() are irreducible and pairwise relatively prime nonconstant
monic scalar polynomials (over F). The collection of factors (fij(A))’J(j 1,...,
ki; s, s + 1,..., r), where each factor is repeated as many times as it occurs in
(2.5), is called the elementary divisors of L(A), and the positive integer ay is called the
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order of the elementary divisor (fij(A))aJ. Because of the divisibility relations among
invariant polynomials, the collection of elementary divisors of L(A) determines the
invariant polynomials uniquely, and therefore is invariant under the transformations
L(A)--+ E(A)L(A)F(A), where

det E () const. 0, det F (A) const. 0.

THEOREM 2.2. Let L(A) be an n x n matrix polynomial such that

L (A) L. (A),

and let r be the general rank of L(A). Furthermore, let {fl(A)’,..., fq(A)q} be the
collection of elementary divisors of L(A). Then L(A) admits a factorization

L (A) M. () D (A) M (),

where M(A) is an r x n matrix polynomial and D(A) D. () is an r x r matrix

polynomial. Moreover, the collection of elementary divisors of D(A) is {fj(A): j E
J}, where the subset J of {1, 2,..., q} consists precisely of those indices j for which
fj degree yj fj. and ( is odd.

Recall that +1 is taken from (2.2).
Proof. As in the proof of Theorem 2.1, we can assume that r n. Let

L(A) E(A)DI(A)F(A) be the Smith form L(A), where the invariant polynomials
d(A),... ,d(A) are on the main diagonal of DI(A). Because L L., and by the
uniqueness of invariant polynomials, we have in fact di. edegree ddi (i 1,..., r).
The factor sdegree di appears because di is monic (this is part of the definition of in-
variant polynomials) while the leading coefficient of di. is sdegree di. In the sequel it

is convenient to denote f+ degree f f, for a scalar polynomial f. Thus, di+ di.
Observe that f+ is monic if f is monic and that (ff2)+ f+f2+ for all pairs of
polynomials f, f2.

Replacing L by FJ1LF-1, we can further assume without loss of generality that
the ith column of L is divisible by d(A) (i 1,..., n). By symmetry, the ith row
of L is divisible by d.(A). Let the nonconstant invariant polynomials of L(A) be
d(A),..., d(A) and factor them as in (2.5). Then

j=l j=l

(i s,s + 1,...,r),

and by the uniqueness of the decomposition (2.5), we see that the set {fil,..., fik,}
must consist of selfsymmetric polynomials (fj fj+) and/or of pairs of mutu-
ally symmetric polynomials fijl fi.+; in this case necessarily aijl aij2- Say,
fil,..., fi,p are selfsymmetric and

fi,p,+l (fi,p,+2)+ fi,p,+2q,--1

here pi + 2qi ki. Let i0 be the smallest index such that Cioj > 1 for some j E

{1,... ,pi}; say, Ciol > 1 (if no such i0 exists, we put

qi

j---1

(i s,s + 1,...,r).
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Define

i s,s + 1,...,i0 1,

i0, i0 + 1,... ,r,

where we assume that the elementary divisors are numbered so that fil fiol for
i0 + 1,..., r. To make the subsequent formulas more uniform, we define also

hi 1 for 1,...,s- 1. The divisibility relations among the di’s imply that
whenever filjl fi2j2, where il < i2, then ciljl _< ai2j. It follows that hi divides

hi+l (i 1,..., r 1).
The formulas (2.5) lead to the factorization

(2.6) di hi.gihi (i 1,..., r)

where gi 1 for i 1,...,s- 1;

Pi

gi- + H (fi)"’J for i-- s,..., io 1,
j=l

Pi

gi -t-fie’J-2 H (fiY)"’ for i= io, i0 + 1,..., r,
j=2

(the sign + or in gi is chosen so that gi is monic).
i= 1,...,r- 1.

In view of (2.6) we now have a factorization

Clearly, gi divides gi+l for

L(A) =diag (1,...,1, hs.(A),...,hr.(A))L(A) diag (1,...,1, hs(A),...,hr(A))

for some matrix polynomial t L.. Denote by dl ()),..., (/) the invariant poly-
nomials of (). Equality (2.7), together with the Binet-Cauchy formula for deter-
minants of submatrices in the product of several matrices implies the following. The
determinant of every j j submatrix in L(A) is a linear combination (with poly-
nomial coefficients) of determinants of j j submatrices in L() when the deter-
minants are multiplied by JI1i=1 (hi* (A)hi(A)). It follows that dl(A)---dy(A) divides

I]i=l (hi* (A)hi(A)) for j 1,..., r. The equality (2.6) now shows that
gl(/k)...gj(A) divides dl(A)...dj(A). On the other hand, for the (i,j)th entries 15i of
L and pij of L, respectively, we obtain

ij hlpijh hlpijdlhj*gj,

and since (assuming _< j) both pijd and hlhj, are polynomials, ij is divisible
by gy. Also,/Sii is divisible by gi (because gi divides gy if _< j). By the symmetry
of L, we see that /5i is divisible by gmax(i,j). Therefore, the determinant of every
j x j submatrix of L is divisible by gl’"gj. Consequently, 1"-" j divides gl’"gj.

Comparing this result with the previously obtained opposite divisibility relation, we
conclude that gl,..., gr are the invariant polynomials of L.
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We repeat the procedure given above with L replaced by ],, and so on, until (after
a finite number of steps) we obtain a matrix polynomial D(A) with the properties
required in Theorem 2.2.

3. Factorization of selfadjoint matrix polynomials on the real axis. In
this section we consider matrix polynomials L(A) over C with the following property:

L e c.

Such polynomials are called selfadjoint.
THEOREM 3.1. Let L()) be a selfadjoint n x n matrix polynomial.

admits a factorization
Then L(A)

(3.1) L (A) (M ())* DM (A),

where D is an m m constant Hermitian matrix and M an m n matrix polynomial,
if and only if

(3.2) m _> m0,

where

(3.3) rno max +(L (A))+ max _(L (A)).

Moreover, in all factorizations (3.1) having the minimal size mo mo of D, the matrix
D is uniquely determined up to congruence: D has max +(L(A)) positive eigenvalues
and max ,_(L(A)) negative eigenvalues (multiplicities counted).

We can say more about the spectral properties of the factor M(A) in (3.1). A set
A of nonreal numbers is called a c-set (with respect to a selfadjoint matrix polynomial
L(A)) if A is a maximal (by inclusion) set of nonreal singular points of L(A) with the
property that 0 E A A0 A. (The case when a c-set is empty is not excluded.)
The concept of c-set was introduced and used in [GLR1] and [GLR3]. It turns out
that, given L(A) as in Theorem 3.1, and given a c-set A, there exists a factorization
(3.1), where D is m0 m0 and where the set of nonreal singular points of M(A)
coincides with A. This statement follows as a by-product of the proof of Theorem 3.1.

Theorem 3.1 admits an alternative formulation. An n n matrix polynomial
M(A) will be called elementary if r(M) 1 and M(A) is positive semidefinite for
all real . It is not difficult to see (this fact is actually a particular case of Theorem
3.1) that M(A) is elementary if and only if M() is of the form M() x()(x())*,
where x(A) 0 is an n 1 column polynomial. One can consider elementary matrix
polynomials as building blocks for selfadjoint matrix polynomials in the same spirit
in which the constant rank-1 positive semidefinite matrices are building blocks for
constant Hermitian matrices.

THEOREM 3.2. Any selfadjoint n n matrix polynomial L()) admits a represen-
tation

m

(3.4) L (A) EjMj (A),
j=l

where j +1 and Mj(A) are elementary matrix polynomials. The number m of
terms in (3.4) is greater than or equal to mo, where mo is given by (3.3); if m m0,
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then exactly max +(L(/k)) of the cj’s are equal to +1 and exactly max _(L(/k)) of
the ’s are equal to -1.

To obtain Theorem 3.2 from Theorem 3.1, assume (without loss of generality) that
D in (3.1) is a diagonal matrix with +l’s on the main diagonal. Then let Mj())
(xy())*xy(A), where xy (/k) is the jth row of M(A), to produce the formula (3.4).

COROLLARY 3.3. Any selfadjoint n n matrix polynomial admits a factorization
(3.1), or a representation (3.4), where rn <_ 2n.

There are selfadjoint matrix polynomials, for example, L(A) hi, for which there
do not exist representations (3.1) or (3.4) with m < 2n.

The rest of this section is devoted to the proof of Theorem 3.1.
We start with the easy direction. Let a factorization (3.1) be given, and let A0

be a real point for which

+(L (0)) max +(L ()).

As L(A0) Y*DY, where Y M(A0), the Hermitian matrix D must have at least
-+(L(A0)) positive eigenvalues. Analogously, D must have at least _(L(A1)) negative
eigenvalues, where A1 E I is chosen so that

_(L (/1)) max _(L (A)).

We obtain therefore the inequality (3.2). It is also clear that in any factorization (3.1),
where D is m0 m0, the Hermitian matrix D is unique up to congruence.

It remains to show that a given selfadjoint matrix polynomial L(A) admits a

factorization (3.1) with m0 m0 the size of D. This is the difficult part and we

need some preliminaries. Note that L(A) is selfadjoint if and only if L L,, where
the transformation a a, is defined as in 2, with F C, a(x) 2 (x C), and

1. Nevertheless, here the general results of 2 are not used because the preliminary
results we need (such as Proposition 3.4 below) are already available in the literature.
It should be noted, however, that the result of Theorem 2.2 plays an essential role in
the proof of Proposition 3.4.

First observe that there exists an n n matrix polynomial N(A) with constant
nonzero determinant such that

0 0

where L0(A) is a selfadjoint k k matrix polynomial, k r(L). For example, see
Theorem 32.4 in [M], where (3.5) is proved for symmetric matrices over principal
ideal rings with (N(A))* replaced by N(A)T; the same proof works to produce (3.5).
Also, (3.5) can be obtained without difficulties from the Smith form of L(A) (see 2).
Because of (3.5) we can (and do) assume from the very beginning, that the general
rank of L is equal to n, i.e., det L(A). 0.

Our next observation is that the result of Theorem 3.1 is known in the case where
L() has constant signature, i.e., +(L()), and therefore also _(L()) and 0(L()),
is constant for all real regular points .

PROPOSITION 3.4 ([GLR2]). Let L()) be a selfadjoint n n matrix polynomial
such that

max +(L ()) + max ._(L (A)) n
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(necessarily det L(A) 0). Then L(A) admits a factorization (3.1) in which D is n n.
We now prove the following lemma.
LEMMA 3.5. Let L(A) be a selfadjoint n n matrix polynomial with det L(A) 0,

and let mo >_ n be defined by (2.3). Then there exists an mo mo selfadjoint matrix
polynomial L()) such that

(/k)- [L()0 0],
and such that

(3.6) max v+(.,(,k))+ max r,_ (/.,(,k)) too,

or, equivalently, is regular and has constant signature.
Proof. By Rellich’s theorem [R] (see also [GLR3]) the eigenvalues #1(),..., #n (A)

of L(A) for real can be enumerated so that #1(),..., #n(A) are real analytic func-
tions of the real variable . Clearly, 0 E ll is a singular point of L(A) if and only if
0 is a zero of at least one of the analytic functions 1(),..., #n(,’). Let 0 E 1 be
a singular point of L(A), and let

Ft (Ao) {1 < j < nl#y (A0) 0}.

For every j t(A0), let mj be the multiplicity of A0 as a zero of #y(A), and let Cj be
the sign of the nonzero real number [ttm) (A)]I=),o. (We suppress the dependence of
my and Cy on Ao in the notation.) Define the integer q(Ao) by

q (Ao) {number of indices j e t (A0) such that my is odd and y 1}
{number of indices j e t (Ao) such that my is odd and Cy -1}.

From the definition of q(Ao) it is clear that

(3.7) v+(L (o + )) v+(L (o )) q (o)

for all sufficiently small > 0. It is easy to see that

(3.8) m0 := max v+(L ()) + max v_(L(X)) n + maxlv+(L (1)) v+(L (2))1,
XEII XEli

where the maximum is taken over all regular real points 1 and ,2. Also, it follows
from (3.7) that

(3.9) maxlr’+(L (,k))- v+(L(2))l max
A<X2 E q(Xo)

where the summation in the right-hand side of (3.9) is over all singular points o of
L(X) in the interval < o < 2.

Denote the right-hand side of (3.9) by p. We now construct p scalar real polyno-
mials rl(X),..., rp(A) with the following properties:

Property 1. all zeros of rj()) (j 1,..., p) are real and simple and belong to the
set S of real singular points 0 of L(A) for which q(X0) 0;

Property 2. for every e S exactly Iq(X0)l polynomials among rl(A),..., rp(A)
have 0 as their zeros, and for each ry () such that ry (o) 0 we have q(A0)r (0) < 0.
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The definition of p ensures that such polynomials rl (,), rp ()) can indeed be con-
structed. Let

i (A) diag (L (A), rl (A),..., rp (A)).

By Property 1, and in view of (3.8) and (3.9), it is easy to see that the number of
positive eigenvalues of (A) is constant for every real A that is a regular point for
L(A). The assertion in (3.6) therefore follows. 1

Now we can easily finish the proof of Theorem 3.1. Indeed, given a selfadjoint
matrix polynomial L() with det i() 0, construct () as in Lemma 3.5 and apply
Proposition 3.4 to (A)"

(A) (N ())* DN (A),

where D is a constant m0 m0 Hermitian matrix. Then (3.1) holds for M(A) formed
by first n columns of N(A).

4. Factorization of real symmetric matrix polynomials. Let L(A)
-tj=0 AJAj be a real symmetric matrix polynomial, i.e., Aj (j 0,..., l) are real
symmetric n n matrices. For such polynomials L(A) we consider factorizations

(4.1) L (A) (M (A))T DM (A),

where D is a constant real symmetric m m matrix and M(A) is a matrix polynomial
with real coefficients.

It is convenient to state the next theorem in terms of elementary divisors (see 2
for definitions of the concepts related to elementary divisors).

THEOREM 4.1. Let L() be a real symmetric n n matrix polynomial and assume
that the elementary divisors of L(A) that are powers of irreducible quadratic polynomi-
als (over R) all have even orders. Then L(A) admits a factorization (4.1) if and only if
m >_ too, where mo is defined by (3.3). Moreover, in factorization (4.1) with the mini-
mal possible size of D, the matrix D is uniquely determined up to congruence and has
exactly maxheR +(L(A)) positive eigenvalues and exactly maxheR _(L(A)) negative
eigenvalues, multiplicities counted. Alternatively, L(A) admits a representation

m

(4.2) L
j=l

where Mj(A) are real elementary matrices and ej +1, if and only if m >_ too. In
case m m0, the number of +l’s (respectively,-l’s) among the el,...,m is exactly

In particular, Theorem 4.1 applies if all singular points of L(A) are real.

Proof. The only if part (easy direction) is proved as in the proof of Theorem
3.1. Also, we can easily reduce the proof to the case in which det L(A) 0. Using
Theorem 2.2 (with F R,a identity, e 1), we can further assume that all
elementary divisors of L(A) are first degree polynomials (necessarily with real roots).
From now on the proof proceeds in the same way as that of Theorem 3.1. The role of
Proposition 3.4 is played by Proposition 4.2 below. [:l

PROPOSITION 4.2. Let L(A) be a real symmetric n n matrix polynomial, all of
whose elementary divisors are first degree polynomials. Assume further that

max +(L (A)) + max _(L (A)) n.
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Then L(A) admits a factorization (4.1) in which D is n n.
Proposition 4.2 can be proved by repeating the arguments leading to the proof of

Theorem 1 in [GLR2]. We omit the details.
If the hypothesis on the orders of elementary divisors of L(A) is omitted in The-

orem 4.1, easy scalar examples (for example, L(A) 2 _}_ 1) show that the result of
Theorem 4.1 is not generally valid. Scalar examples show also that, in this case, the
matrices D of minimal size in factorizations (4.1) are not necessarily congruent to each
other:

A2+I-[A 1] 0 1 1 [1/2 (A2 +2)’A2] O 1/2A2

We have, however, an upper bound on the minimal size of D.
THEOREM 4.3. Let L(A) be a real symmetric n n matrix polynomial, and let mo

be defined by (3.3). Then for every m _> 2 min (mo, n) L(A) admits a factorization
(4.1).

Proof. Assume first that rno _< n. By Theorem 3.1, we have

(4.3) L (A) (M ())* DM (),

where D is an m0 m0 constant Hermitian matrix (which can be chosen to be
real without loss of generality), and M(A) is a complex matrix polynomial. Write
M(A) M1 (A)+iM2(A), where MI(A) and M2(A) are real matrix polynomials. Then,
separating the real part in (4.3), we obtain

L (/k) [M1 (/k)T M2 (,k)T [D0 D M2(A)

which is the desired factorization (with m 2m0).
If m0 > n, use the simple identity:

0 L(/k)-I

5. Factorization of symmetric real polynomials on the imaginary axis.
In this section we consider the case of n n matrix polynomials L(A) such that
L(A) (L(-,k))T and L(A) is real for real A. Note that such a polynomial is selfadjoint
on the imaginary axis, i.e., L(A) (L(/k))* for A eiR. An immediate consequence of
Theorem 3.1 (applied to L(iA)) is that such a matrix polynomial admits a factorization

(5.1) L (/k) (M (_A))T DM ()

for a complex m m Hermitian matrix D and a complex m n matrix polynomial
M() if and only if

m >_ max +(L (A))+ max _(L (A)).
)Ei AEi

We show in this section that D and M(/k) can be taken to be real. Note that there
is a contrast here with the situation of 4, where an analogous factorization of a real
symmetric matrix polynomial having real factors is not always possible.
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First we deal with the case in which L() is regular and has constant signature
(on the imaginary axis), after which the general case is reduced to the case of constant
signature.

In view of Theorem 2.2 (with F R,a identity, -1), we can restrict
our attention to matrix polynomials having only elementary divisors of the form A or
,2 _[_ where A0 is real and nonzero. Next, we deal with the case in which L is regular
and has constant signature.

THEOREM 5.1. Suppose that L(A) is a real regular n n matrix polynomial satis-
fying L() L(-/)T and having constant signature on the imaginary axis: +(L())
is constant for all regular points iR. Then L admits a factorization

L (l) (M (_/))T DM (A),

where M is an n x n matrix polynomial with real coefficients and D is an n n constant
real matrix.

Proof. Again by Theorem 2.2 we may assume that L(I) has only pure imaginary
eigenvalues and all elementary divisors are linear (in the sense of C). First we deal
with the case in which A2 + A, A0 6 IR \ {0} is an elementary divisor of L(X). Using
the Smith form of L(A), write

L(A)= E(A) diag ((A2 + Ao2)pl (A),..., (A2 + A)pq(A),pq+l ()),...,Pn (/)) F (/)

where pj (A) (j 1,..., n) are real monic scalar polynomials and E(A), F(A) are real
n n matrix polynomials with det E(A) _-- const. 0, det F(A) const. 0. Then
we have for

L() := F (--))-TL ()) F (/)-1
(5.2) ](A) (,2 _]_ /)/21 (,) 222 (,)

where/1 is a q q matrix polynomial. Moreover, 11(-[-i)0) must be invertible, as
otherwise det L(A) and hence also det L(/k) would be divisible by (2 -t- A)q+i. Note:
If L has constant signature, so has , which means (i/k) for IR is a Hermitian
matrix having constant signature for all real except for a finite number of points.
Using Rellich’s theorem [R], we can write

], (iA) (U ())* diag (#1 (/),-.., #n ()) V (,), e ],

where U(A) is unitary-valued and analytic and #j(A) is analytic and real. The func-
tions #j(A) have only simple zeros as ], has only linear elementary divisors (over C).
Without loss of generality we may assume that #l(A0) #q(AO) O. By Lemma

’(A0) (j 1 ,q)6 in [GLR2] we see that q is even, and exactly half of the numbers #j
are positive; the other half are negative. Let uy be the jth column of (U(A0))*. Then
one calculates

(L’ (iAo) uy, ui) (D’ ()o) ej,

where D(A) diag (#i(/k),...,#n(/k)). Note that ui,...,uq span ker L(i)o). On
ker L(iAo), the quadratic form given by -/(i)o) has, therefore, q/2 positive squares
and q/2 negative squares. Now by (5.2) ker L(i.ko) is span {ei,...,eq}, and for
x, y ker L(i)o), we have

d
(L (iA) x Y)J=o -2)0(11 (i)0) X,

dA
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Therefore we conclude that there is an invertible matrix V such that

1 01 1 01 1 01
where the block [ _1] is repeated q/2 times. Moreover, a simple argument shows that
V can be taken to have a real determinant.

Now we state and prove a lemma, after which we return to the proof of Theorem
151

LEMMA 5.2. Let W be a complex invertible n x n matrix with real determinant,
and let Ao be a nonzero real number. Then there exists a real n n matrix polynomial
M(A) with constant determinant such that M(iAo) W.

Proof. We can decompose W as a product of elementary matrices:

W W1 W. W,

where each Wj is either triangular with ones on the diagonal and exactly one nonzero
off-diagonal entry, or Wj is a diagonal invertible matrix Multiplying each diagonal Wj
by a suitable complex number o/j so that det (ajW) is real, we can assume without
loss ofgenerality that det Wj is real (j 1,..., k); here we use the hypothesis that
det W is real. Furthermore, by writing

diag (1, cy26-11, 2cj-11, 1,..., 1). diag (1, 1,..., Pn, Cjn)

(here Pin e C- {0}), we can assume that every diagonal matrix Wj in (5.4) has real
nonzero determinant and at most two diagonal entries different from one (located in
adjacent positions). Clearly, it suffices to construct a polynomial M(A) as required
such that M(iAo) W (for a fixed j). If Wy is triangular, let

A 11
(Wj + IZVj)+ .-(Wj ITVj).M (A)

20 i

If Wy diag (1,..., 1, dl, d2, 1,..., 1) with d, d2 real, then the constant M(A) Wy
will do. Finally, if Wy diag (1,..., 1, dl,d2, 1,..., 1) with dd2 E R, but dl R,
then put

(5.5) M(A)-diag 1,...,1, A2
p

1,...,1

Here

P()) dlR -/ldlI, r- -did2 ( -[-()odlRd])2)
-2

q ()) P (,)--1 [r)4 + 2r2 +r + did2],
where d (respectively, d) stands for the real (respectively, imaginary) part of dl.
The 2 x 2 block

[ p(A)
2 + q ()

is in the same position in M(X) as
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is in Wj. It is easy to verify that q()t) is a real polynomial, M(A) (defined
by (5.5)) is a real matrix polynomial with constant nonzero determinant, and
M(i)to) Wj. [

Now let us return to the proof of Theorem 5.1. Let V be as in (5.3), and choose
M()t), a real q q polynomial with constant nonzero determinant such that Mli)to
V. This is possible by Lemma 5.2 (recall det V is real). Now we may replace L()t) by

0 I 0 I

Because M has constant nonzero determinant, ], is a matrix polynomial, and we may
write

(/) [()t2 _[_ )t)Bll ()t) ()t2 _[_ )t)B12
[ (/2 _[_ /)g21 ()t) A22 ()t) ]

where

Now put

B11(iA0)= diag (1,-1,...,1,-1).

K ()t) )to )t
("" (

)to )t
( In-q,

where the leading block is repeated q/2 times.
We shall show that N()t) K(-A)-TL()t)K(A)-1 is a matrix polynomial. Note

that N(A) may have a pole only at iAo, and it suces to show it has no pole at
either one of these points. Moreover, any pole of N(A) must appear in its leading q x q
block. This leading q x q block equals

(2 +) -1 ([-- --0 0 ])--N0

as an easy computation shows. Now at io, we have

1 01 ]- [0 0]00
o -io -o io

Recalling that
1 01 1 01

we see that N(A) is a matrix polynomial. Taking determinants we see that N(A) has
no eigenvalue at +i)to. Applying the same argument at each nonzero, singular point
of L(A), we reduce the proof of Theorem 15.1 to the case in which zero is the only
possible singular point of L()t). However, for that case a similar argument shows that
L()t) admits a representation L()t) (K(-A))TN(A)K(A) with K()t) a real matrix
polynomial and N(A) a real matrix polynomial without singular points (cf. the proof
of Proposition 3.4 given in [GLR2]).

We have finally reduced to the case where L has no singular points. In this case
the result follows from Theorem 2.1.

Next we state the main result of this section.
THEOREM 5.3. Let L()t) (L(-A))T be an n n matrix polynomial with real

coefficients. Then there is a real m rn matrix D DT and an m n matrix
polynomial M()t) with real coefficients such that

(5.6) L () (M (_)t))T D M ()
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if and only if

m > mo max +(L (A)) + max _(L (A)).
ER AEi

Moreover, when m m0, the matrix D is unique up to congruence by a real orthogonal
matrix.

Analogous to the situation in Theorem 3.1, the matrix polynomial M(A) in The-
orem 5.3 can be chosen with additional spectral properties. Given a polynomial L(A)
as in Theorem 5.3, a set A of numbers with nonzero real parts is called a d-set (with
respect to L(A)) if A is a maximal set of singular points of L(A) with nonzero real parts
having the property that E A == E A,- A. (A d-set may be empty.) It turns
out that under the hypotheses of Theorem 5.3, for every given d-set A, there exists a
factorization (5.6) where D DT is m0 x m0 and where the set of nonreal singular
points of M(A) coincides with A. This follows as a by-product of the proof of Theorem
5.3 (including Theorem 5.1 and Theorem 2.2 with F- R, a- identity,- -1).

Proof. The uniqueness of D is verified as in the proof of Theorem 3.1. The fact
that m > m0 is necessary for the existence of real D DT and M() such that (5.6)
is satisfied is seen as in the proof of Theorem 3.1. It remains to prove sufficiency. We
may reduce to the regular case again as in 3. In case L(A) has constant signature we
are finished, using Theorem 5.1. In case L(A) does not have constant signature on the
imaginary axis, it is shown that there exists a real m0 x m0 matrix polynomial ()
such that L(A)- L(-A)T and

],(A)= [L(A) 0]0 *

while is regular and has constant signature on the imaginary axis. Indeed, as L(iA)
is selfadjoint for real A, we can write (using Rellich’s theorem [R]; also [GLR3])

L (iA) (U ())* diag (tl (/),..., tn (.)) U (/),

where #j(A) is analytic and real valued and U(A) is analytic and unitary. Since

L(iA) L(-iA), A e R, the matrices L(iA) and L(-iA) have the same eigenvalues,
and therefore for every point A0 G R there is a permutation a on {1,..., n} such that

#i (-A) #(i)(A)(i 1,..., n)

in a neighborhood of Ao.
Let Ao 1 be such that +iAo are singular points of L(A). Define Ft(Ao) and

q(Ao) as in the proof of Lemma 3.5. It follows from (5.8) that q(A0) -q(-A0); in
particular, q(0) 0 (if Ao 0 is a singular point of L(A)). Furthermore (analogous to
(3.8) and (3.9))

mo= max u+(L (iA))+ max u_(L (iA))
A>O A>O

n + max I,+(L (iA1)) -+(L (iA2))I

and

max[t%(L (iA1))- +(L(iA2))[- max E q(Ao)
A<Ao<A2
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where the summation is over all A0 E (,)il,A2) such that iAo is a singular point of
L. (Here the real numbers A1 and A2 are such that iA1 and iA2 are regular points of
L.) Denote the number (5.9) by p, as in the proof of Lemma 3.5. Now construct p
polynomials r(A),..., rp(A) with real coefficients having the following properties:

(i) ry() ry(-A) is real for E R;
(ii) all zeros of ry are pure imaginary, nonzero numbers and belong to the set S

of pure imaginary singular points A0 of L for which q(A0) 0;
(iii) for every A0 S exactly Iq(0)l polynomials among rl,..., rp have A0 as a

zero and for each ry having A0 as a zero we have

q (Ao) :--- ry (iA)

(Note that because of (i) and q(-A0) -q(Ao), condition (iii) is satisfied at -A0 if it
is satisfied at A0.) Put

L (A) L (A) @ diag (rl (,),..., rp

Then L(A) is regular and has constant signature on the imaginary axis, as desired.
Thus, by Theorem 5.1, L(A) admits a factorization

L (A) (N (-A))T D N (A)

with D an m0 m0 real matrix and N() an m0 n real matrix polynomial. Taking
for M(A) the matrix polynomial formed by the first n columns of N now finishes the
proof. V1

Analogous to Theorem 3.2, the result of Theorem 5.3 can be put in terms of
additive representations of L(A) via elementary matrix polynomials. Here, a real
n n matrix polynomial M(A) will be called elementary if r(M) 1 and M(A) is
positive semidefinite Hermitian for all A iR.

THEOREM 5.4. Let L(A) be as in Theorem 5.3. Then L(A) admits a representation

q

(5.10) L (A) ZjMy (A),
j--1

where y +1 and My(A) are elementary matrix polynomials, if and only if q >_ m0,
where mo is defined by (5.7). Moreover, when q m0, exactly maxoeiR u+(L(A0)) of
the j’s in (5.10) are equal to +1, and exactly maxeit u_(L(A)) of them are equal to
--1.

We omit the easy derivation of Theorem 5.4 from Theorem 5.3.

6. Factorization of complex symmetric polynomials. In this section we
consider n n matrix polynomials L(A) with complex coefficients having the symmetry

(6.1) L (A) (L (A))T,

where =[=1 is fixed, and their factorizations of the form

(6.2) L (A) (M (A))T DM (A),
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where M(A) is an rn x n matrix polynomial (over C), and D is a constant complex
symmetric matrix. Observe that every m x rn complex symmetric matrix D can be
factored as D VTV for some complex matrix V (see, e.g., Corollary 4.4.6 in [HJ]).
Therefore, we may assume that D I in (6.2).

Here (in contrast with 3-5) signatures of Hermitian matrices do not play a role.
We start with the case where e -1.
THEOREM 6.1. Let L(A) be an n n matrix polynomial satisfying (6.1), where
-1. Then the minimal size rn for which L() admits a factorization

(6.3) L(A)--(M(-A))TM(A)
with an ra n matrix polynomial M(A) is equal to the general rank r of L(A).

Proof. We use the same ideas as in the proofs of results in the previous sections.
Therefore, the proof of Theorem 6.1 is presented with less detail.

Clearly, a factorization (6.3) is impossible if m < r. Therefore we have to prove
only that such a factorization exists for m r. We can (and do) assume that n r,
i.e., det n() 0.

Apply Theorem 2.2 with F C, a identity, -1. Since the only irreducible
monic complex polynomial f satisfying f degree f f, is f(/) /, by Theorem
2.2 we can assume (replacing i(A) by D(A)) that the elementary divisors of L(A)
are A, ,..., (k times). Here k is necessarily even. Indeed, the property L(A)
(L(-A))T ensures that det L(A) (const.)Ak is an even function.

If k 0, i.e., det L(A) const. 0, an application of Theorem 2.1 gives the
desired result. Suppose therefore that k > 0. Using the Smith form of L(A), write

[/Ik O IF(A),L(A) E(A) 0 In-a

where E(A) and F(A) are n n matrix polynomials with constant nonzero determi-
nants. Replacing L(A) by (F(-A))-TL()F(A) -1, we can assume that the first k
columns (and, by symmetry, also the first k rows) of L() are divisible by A. Thus

[ AL2 (A) ]ALl (A))TL (A) -A (L2 (-A) L3 (A)

where the matrix polynomials LI, L2, and L3 are k k, k (n- k), and (n- k)
(n- k), respectively. Moreover, -LI(-A) (ix(A))T and L3(-A) (L3(A))T. We
claim that.L1(0) is invertible. Indeed, if L1 (0) were not invertible, then

[ LI(A) L2 (A) ]det
-A(L2(-A))T L3(A)

would be divisible by A, and consequently

[ LI(A) L2 (A) ]detL(A)=Aadet -A(L2(-A))T L3

would be divisible by Ak+, which is an impossibility. Now LI(0) is skew-symmetric
and therefore admits a factorization

LI(O)=QT([ 01 10]@...@[ 0 1
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for some invertible matrix Q. Let

0 In-]
(the summand [-oh o] is repeated k/2 times). Then

L (A)= (M1 (--A))T J (A)M1 (A)

for some matrix polynomial t(A) such that t(-A) (/.(A))T and det (A) _= coast. #
0. The only thing not immediate here is the claim that L(A) is indeed a polynomial.
But the only point in C where ].(A) could have a pole is Ao 0. We have

o]

Clearly, AZ(A) is analytic at A0 0, and the coefficient of A-t in the Laurent series
of Z(A) in a neighborhood of A0 0 is

1 0 1 0 O) Q-T

.([%1 001@...(R)[%1 00](R)0)
0 1 0 1 00] (R)0=0.

To finish the proof, apply Theorem 2.1 to Z(/k). F!
Finally, we consider matrix polynomials L(A) having the symmetry (6.1) with

--1.
THEOREM 6.2. Let L(/k) L(/)T be an n n matrix polynomial over C, and let

r be the general rank of L(A). If the product of the invariant polynomials of L(A) is a
square of a complex polynomial, then L()) admits a factorization

(6.5) L (A) (M (A))T M (A)

for some m n matrix polynomial M(A) if and only if m >_ r. If the product of
invariant polynomials of L(A) is not a square of any complex polynomial, then
admits a factorization (6.5) if and only if m >_ r + 1.

Proof. Again, we omit many details here. We assume that r n. If L(A) admits
factorization (6.5) with M(A) n n, then det L(A) (det M(/k))2, and so the product
of invariant polynomials of L(A) must be a square as well. This implies the only if
part.

To prove the if part, first observe that it suffices to consider only the case in which
det L(A) is the square of a polynomial (if it is not, replace L(A) by [L(o) o wheref()
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f(/k) is a scalar polynomial chosen so that f(A) det L(/k) is a square). By Theorem
2.2 we may assume that all elementary divisors of L(/k) are first-degree polynomials.
Since det L(/k) is a square, the number k k(a) of elementary divisors/k-a,...,/k-a
of L(/k) (where a E C is fixed) is even. As in the proof of Theorem 6.1, we can further
assume that

[ (/k-a)L1 (/k))T (/k-a)L2 (/k) lL (/k) (/k a)(L2 (/k) L3 (/k)
for some matrix polynomials Ll(/k) L1 (/k)T, L2 (/k), and L3 (/k) L3 (/k)T of sizes
k k, k (n- k), and (n- k) (n- k), respectively. Moreover, L1 (a) is invertible
and symmetric, and therefore

LI (a) QT I [01 1
1 0] (R)’"(R)[ 01 01) Q

for some invertible matrix Q (the direct summand [0 ] is repeated here k/2 times).
As in the proof of Theorem 6.1, we verify that

L (/k) (M (/k a))T [, () M (/k a),

where Ml(/k) is defined by (6.4), and ,(/k) is a matrix polynomial such that ,(/k)
(,(/k))T and /,_(/k) has no elementary divisors of the form /k- a. Apply the above
procedure to L(/k) in place of L(/k), using elementary divisors /k- b,...,/k- b of
L(/k) for some b E C, and so on, until a matrix polynomial Ll(/k) (Ll(/k))T with
det L (/k) const. 0 is obtained. Now apply Theorem 2.1 to get the desired
factorization of L (/k). [-]

Theorems 6.1 and 6.2 can be recast in terms of elementary matrices (analogous
to Theorem 3.2). An n n matrix polynomial M(/k) (over C) is called e-elementary if

M (x x

for some 1 n row polynomial x(/k) - 0 (here e 4-1 is fixed).
THEOREM 6.3. Let L(/k) be an n n matrix polynomial satisfying (6.1), and let

r be the general rank of L(/k). Then L(/k) can be written as a sum of r e-elementary
matrix polynomials, unless e 1 and the product of the elementary divisors of
is not a square of polynomial. In this latter case, L(/k) can be written as a sum of
r + 1 l-elementary matrix polynomials, and it cannot be represented as a sum of any
r l-elementary matrix polynomials.

Acknowledgment. The problem of finding the minimal possible size of D in
factorization (1.1) for complex selfadjoint matrix polynomials has been posed by Pro-
fessor I. Gohberg.
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DECOMPOSABILITY AND QUOTIENT SUBSPACES
FOR THE PENCIL sL- M*

V. L. SYRMOS AND F. L. LEWIS’:

Abstract. This paper introduces the notion of decomposability of the domain and the codomain
relative to the generalized nonsquare matrix pencil H(s) sL- M. Its importance is justified
rigorously and it is demonstrated that a special case of these new results is the familiar notion
of decomposability for the pencil sI- M. This definition is motivated by the concepts of strict

equivalence andquotient subspaces. By decomposing both the domain and the codomain of L and
M the close relation between decomposability and the Kronecker invariants of the pencil sL- M is

shown. Finally, an application of the notion of decomposabilty in controls design is presented.

Key words, matrix pencil theory, decomposability, generalized Sylvester equations
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1. Introduction. The notion of decomposability of the domain, which actually
is precisely the same as the codomain, for the map sI- M was presented in [6],
[19] from two different perspectives. In [6] it was presented in the spirit of revealing
how the finite elementary divisors of the pencil sI- M are related to the concept
of decomposability. On the other hand, in [19] the main motive was to show how
this property can be exploited to develop some geometric controls design techniques.
Although the motives were different the goal was the same, that is, to exhibit the
significance of decomposability to the matrix pencil theory as well as to control theory.

In this paper we present the notion of decomposabilty of both the domain and
the codornain of the map sL- M. The introduced geometric theory extends the
concept of decomposability to the general nonsquare pencil sL- M. Moreover, it
finds applications to the Kronecker structure of the map sL-M and to control system
theory.

Motivated by the work in [6], [19] for decomposability and the matrix pencil
theory [1], [6], [7], [17], in this paper we introduce the notion of decomposability
of the domain and the codomain of the map H(s) sL- M, where sL- M is
generally nonsquare. The first major difference between the traditional case where
II(s) sI- M and the proposed one is that the domain and the codomain are not
the same. As a result, the notion of similarity (e.g., T(sI- M)T-1) is replaced by the
notion of strict equivalence (e.g., U(sL- M)V). Our first result exhibits the direct
relationship between the concepts of strict equivalence and quotient subspaces.

The definition of decomposability for (sL- M) requires a nontraditional decom-
position of both the domain and the codomain. This leads us to the key theorem
of the paper, which presents necessary and sufficient conditions for decomposabilty.
Moreover, further elaboration of these conditions results in two generalized Sylvester
equations. It has been recently shown in the literature that the generalized Sylvester
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equations proposed in this paper can be solved in a computationally stable manner
using generalized Schur methods with condition estimators [8]. Throughout our ex-
ploration we show that the results of [6], [19] may be recovered as a special case of our
results. Finally, we present a relation of decomposabilty to the Kronecker structure
of the pencil sL- M.

The above remarks demonstrate the significance of decomposability for the pencil
sL- M, but they do not exhibit its application to control theory. In order to show
how the proposed notion of decomposability can find applications to control theory
we will refer to the importance of singular systems, which have attracted the interest
of researchers in control theory [3], [15]. Singular systems involve the study of the
generalized pencil sL- M. Therefore, the decomposability condition is a useful tool
in design for singular systems. Specifically, in [12] a sufficient condition is presented
for the solution of the problem of proportional feedback, which under thorough con-
sideration is seen to be a sufficient condition of decomposability. Moreover, as in the
state-variable case, for the output-regulation problem decomposability was of primary
importance [19]; it is also expected that decomposability will be of great importance
for the same problem in singular systems.

Finally, in order to further demonstrate the usefulness of decomposability of gen-
eralized pencils, we refer to the fact that state-variable systems can always be trans-
formed to an equivalent nonsquare system [7], which is easier to study. In order to
show the importance of decomposability in control applications, in 4 we explore the
closed-loop eigenstructure problem with state feedback in a computationally stable
fashion, under the setting of nonsquare descriptions. In addition, in the proposed
technique we show how the reduced-order nonsquare system implies more computa-
tionally stable algorithms. Consequently, classical design problems that have already
been solved can be reconsidered under the notion of nonsquare systems. In that case
the decomposability condition will certainly find applications that will exploit its most
general form.

2. The notion of decomposability for the pencil sL- M. Consider the
pencil

(2.1) H(s) [sL- M],

where sL- M E RZn[s] is generally nonsquare and not necessarily of full rank. We
shall represent the domain Rn of (sL- M) by X and its codomain z by Z. If the
pencil (2.1) is square and

(2.2) A(s) det(sL- M) 0 for some s,

then it will be called regular. In any other case it will be called singular. If (sL- M)
is regular, those isolated values of s where (2.2) fails to hold will be said to comprise
the spectrum of (sL- M), denoted a(L, M). The usual spectrum of (sI- M) will be
denoted a(M). Note that a(L, M) may contain finite and infinite values of s.

Define two pencils sL-M and s-/lI of dimension n to be strictly equivalent
[6], [17], [18] when there exist nonsingular constant matrices U and V of orders and
n respectively such that

(2.3) U(sL- M)V st- ..
If S C A’, x E A’ define the equivalence class {y A’ x y ,} and the

quotient space 2(/S as the set of all 2. Then the canonical projection P A’ --, X/S
is defined by Px . We may also write 2 as x + S. See [19].
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In the next result, we are motivated by the fact that the equivalence of matrix
pencils is defined in terms of two constant nonsingular maps, one acting on the domain
and one acting on the codomain. This is in contrast to the case of a single matrix
operator, where similarity is defined in terms of the same matrix in both the domain
and the codomain (e.g., T(sI- M)T-1).

The result is that for sL- M the domain A’ and the codomain Z must be con-
sidered as separate spaces. The definition of strict equivalence motivates the next
lemma, which is key for the theory presented in this paper. As will be shown,
this lemma relates the algebraic condition for equivalence of pencils (P[sL- M]Q
[s- 21/]) to the geometric approach.

LEMMA 2.1. Let $ C A’ and 7 C Z, such that LS + MS C T where L M"
A’ -- Z and sL-M E n[s] is not necessarily regular. Let P and Q be the canonical
projections P" X -- X/S and Q" Z -- Z/. Then there exist unique maps L and
M such that

(2.4) LP QL,
(2.5) MP QM.

That is, the following diagram commutes

L, M

x/s

where R and S are the insertion maps of T in A’ and 8 in Z respectively.
Proof. Let T be any complement of S in A’ so that A’ T @ 8. Choose {ti}i=l

to be a basis for T. Then, if -i Pti a basis for X/S is {i}i=l, where T dim T.
Define L and M by

(2.6) Lti QLt,
(2.7) Mti QMti.

To show that L is well defined, suppose 21, 22 E A’/8 with 21 22. Then
21 xl +,5’ and 22 x2 +
Thus QL(xl x2) QL$ c QT 0. Therefore QLxl QLx2.

Now letx A’/Sandx=t+switht E T, s $. ThenQLx= QL(t+s).
But QLS QT= 0, thereforeby (2.16) QLx= QLt- = Lg(t+s),which
verifies (2.6). Similarly we can prove that M is well defined. Compare this proof with
that in [13].

At this point we introduce some notation that we will use later. The induced
maps will be denoted as L1 L" ’/8 -- Z/ and M1 M" ,/8 /. We
will denote as L2
dimA’/8 n-a s, dimT p, and dimZ/7 1-p r. In a suitable basis
representation for 8 and 7, the matrices L and M can be written
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Note that in the case where the matrices L and M are square and L I then
Lemma 2.1 boils down to the well-known theory in [19].

DEFINITION 2.2. Let $ C 2(, T C Z and LS + MS C . If there exists a
subspace 2Z such that LT + MT C 2, 2( $ @ T, and Z T (9 )2, then S, T
decompose ,, Z relative to L, M.

Definition 2.2 means that there are coordinate system transformations such that
La and/Via are zero. It is rather interesting to see how this definition is expressed in
some special cases. Assume that S is an (L, M)-invariant subspace, that is, LS C MS.
Then the decomposability condition takes the following form. Let LS C MS C 7; if
there exist subspaces 7" and 12 such that LT C MT C 2, A’ $ (9 T, and Z 7 (9

then S, 7 decompose A’, Z relative to L, M.
Assuming in addition that the pencil is regular and L I gives the same results

as those in [19]. Indeed, for the case where L I, the condition LS + MS C
in Definition 2.2 becomes S + MS C T. This last relation implies S C T. As a
result there exists a subspace S1 such that 7 S (9 S1. Similarly, there exists a
subspace T1 such that V T (9 T. By adding these two equations and taking into
consideration the fact that in this case the domain is the same as the codomain, that
is, A’ T(92 S (9 T, it follows that $ 7 and T 2. Finally under this argument
the conditions L8+MS C 7 and LT+MT C 2 boil down to the conditions MS c
and MT C T, so the definition of decomposability coincides with that presented in

We now close this small digression of special cases and return to our general
discussion. The definition of decomposability simply states that selecting T, 2 as the
complements for $, 7, we have that L VlLI7- and M VlMl:r. It is natural
now to draw connections between Lemma 2.1 and Definition 2.2 relative to the pencil
sL- M. These connections are presented through the proof of the next theorem
along with an algebraicinterpretation of the decomposability property presented in
Definition 2.2.

THEOREM 2.3. Consider 8 C X, Tg C Z, and L$ + MS C T. Let S S --+

and R T Z be the insertion maps of S in " and ofT in Z respectively. Then
T decompose X, Z relative to L, M if and only if there exist maps S+ X -- , and
R+ Z -+ such that

(2.9) R+R Ip,

(2.11) R+L L2S+,
(2.12) R+M M2S+,

where I and Ip are the identity maps on q and 7 respectively.
Proof. If (2.9)-(2.12) hold, set T KerS+ and ? KerR+. Then if x E A" and

zEZ

(2.13) x SS+x + (I SS+)x,
(2.14) z RR+z + (Ip RR+)z.

Since S+(I- SS+)x 0 and R+(I- RR+)z 0, we have that x e $ + T, so that
X S + T and z T + 12, so that Z 7 + 2. Also x $ gl T and z 7 gl V imply
that x Ss and z Rr, say, and S+x 0 and R+z 0. Thus 0 S+Ss s and



DECOMPOSABILITY AND QUOTIENT SUBSPACES 869

0 R+Rr r, therefore x 0 and z O. Hence N T 0 and :R N P O. Finally
S+x 0 and R+z 0 implies that

(2.15) L2S+x R+Lx,
(2.16) M2S+x R+Mx.

Hence LT + MT c and 7Z @ Z.
Conversely if LS + MS C T, LT + MT C V with $ @ T X and T V Z,

let S+ and R+ be the natural projections S+ S @ 7" ,5 and R+ 7Z @ )2 9Z and
using Lemma 2.1 the proof follows.

Equations (2.9)-(2.12) can take a simpler and more useful form. We will show
how (2.9)-(2.12) can be represented by two equivalent equations. Let " S X’ and
2 @ 7Z Z be arbitrary complements of S and 7, respectively. In a compatible basis
L, M, S, and 9Z have the following matrix representation:

Then

(0) (0)n=ip, S=i.

(2.17) R+ -JR2 Ip],
(2.18) S+ [$2 I]

for arbitrary R2, $2. Then using this in (2.9)-(2.12) yields

L2$2 -/{2L1 L3,

’/2S2 R2M1 I3.

Equations (2.19) and (2.20) will be called the generalized Sylvester equations. Thus
to check whether S and 7 decompose X’ and Z relative to L and M, it is enough to
verify that these two equations have a solution $2, R2. It has been recently shown in
the literature that the solution of these two generalized bilateral Sylvester equations
can be achieved in a computationally stable manner by utilizing the generalized Schur
methods with condition estimators [8].

For purposes of comparison it is interesting to see how (2.9)-(2.12) and (2.19)-
(2.20) are transformed in the special case. where the pencil sL- M is regular and
L I. Notice that in this case the domain and the codomain are precisely the same.
Consequently in this case R S and R+ S+. By observing now (2.9)-(2.10), we
see that the first two equations merge to one equation, while the third states a trivial
equality. Specifically these four equations under the above concepts can take the form

(2.21) S+S I,
(2.22) R+M M2S+,

which are precisely the equations presented in [19] for the notion of decomposabil-
ity. Finally, we end this digression by considering how the two generalized Sylvester
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equations transformed in this special case. It is clear that (2.19) is a trivial equality
(0 0), while (2.20) takes the well-known form

(2.23) -h’I2S2 S2M1 Ma

which constitutes the decomposability criterion for the pencil sI- M [19].
3. Relation of decomposability to Kronecker invariants. The next step

in our exploration of decomposability for the pencil sL-M is to reveal the important
role that the Kronecker invariants of this pencil play in the concept of decomposability.
Specifically, we desire to find a condition that guarantees decomposabilty, as presented
in Definition 2.2, in terms of the Kronecker invariants [6], [7], [17] of the pencil sL- M.
The next proposition reveals this condition.

THEOREM 3.1. S and T decompose X and Z relative to L and M if and only
if the Kronecker invariants of the pencil sL1 M1 together with those of the pencil
sL2 M2 (see (2.8)), give all the gronecker invariants of the pencil sL- M.

Proof. Assume that $ and 7 decompose A’ and Z relative to L and M, then
(2.9)-(2.12) hold true. Let P and Q be the canonical projections P" A’ --, A’/S and
Q" Z --, Z/Tg. Select P [P1 0], Q [Q1 0], S+ [$2 I], R+ JR2 Ip],
S [0 I]T, and R [0 Ip] T. As a result the matrices

(3.1) ( P

are full rank. Now by using Lemma 2.1 and (2.11) and (2.12), the following equations
hold true

Q(sL- M) (sL M1)P,
R+(sL- M) (sL2 M2)S+.

Then by combining (3.2) and (3.3) in one equation, we get

(3.4) S+ sL- M
0 sL. M.

where (QT R+T)T and (pT s+T)T are full rank matrices of dimensions x and
n x n, respectively. Hence (3.4) can be written in the form

(3.5) /5(sL_ M)Q (sL1 0 sL2 M2

But we know that strictly equivalence property preserves the Kronecker structure
of the pencil [6], [7], [17]. Hence the Kronecker invariants of the pencil sL M,
together with those of the pencil sL2 M2, give all the Kronecker invariants of the
pencil sL- M.

Conversely, if the pencils sL1- M and sL2- M2 contain all the Kronecker
invariants of the pencil sL- M, then there exist/5 and ( such that (3.5) holds true.
To see this, follow the procedure of elimination proposed in [17]. Then partition Q and
/5 as in (3.4). Hence (3.2) and (3.3) hold true, and consequently from (3.3), (2.11) and
(2.12) follow immediately. Moreover since R+ and S+ are full row rank there exist
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R and S such that (2.9) and (2.10) hold true. As a result, there exist and that
decompose A’ and Z relative to L and M.

If the pencil sL-M is regular, that is, (2.2) holds true, then a sufficient condition
for the decomposability is that the spectra of the pencils sL1 MI and 8L2 M2 are
disjoint. This is a fairly good assumption in practice and has been used for the solution
of generalized Lyapunov equations in the pole-placement problem using proportional
feedback in singular systems [12].

This sufficient condition can also be used for the characterization of a semiregular
system in the sense of [5]. In particular, by solving the proposed generalized equations
under the assumption of disjoint spectra, we compute in a computationally stable
fashion a partition as defined in [5, Lemma 4.1]. Moreover, the solvability of these
two equations is a sufficient criterion for semiregular systems. Therefore, under these
considerations, decomposabilty may find an application to the disturbance decoupling
problem in singular systems from the computational point of view.

In the case where the pencil is regular and L I, Theorem 3.1 reduces to the
following corollary.

COROLLARY 3.2. $ decomposes A’ relative to M if and only if the finite ele-
mentary divisors of the pencil sI- M together with those of the pencil sI- I2, give
all the finite elementary divisors of the pencil sI- M.

Moreover, a sufficient condition for decomposability in this case is that the spectra
ofM and M2 are disjoint, that is, a(M)C3a(M2) 0. These results, not surprisingly,
are the same as those presented in [19].

It is worthwhile pointing out some remarks as far as the partition of the spectrum
is concerned, for both the cases of pencils of the form sI- M and regular pencils of
the form sL M. In the case of the pencil sI- M the partition of the spectrum
implies a decomposition of the matrix M defined as in (2.8) (note that L I). This
decomposition does not imply that we can decompose the domain according to the
matrices M and M2. However, if we can define row and column operations Q on

M1 and M2 such that MQ- (/2 I3, that is, we can eliminate J[3, then the
partition of the spectrum implies the decomposition of the domain [19]. Similarly, in
the case of a regular pencil sL- M, the partition of the spectrum does not imply the
decomposition of the domain and the codomain through L, L2, M1 and Jr2. However,
if there exist row operations (codomain) and column operations (domain) such that
(2.19) and (2.20) hold, then the partition of the spectrum implies the decomposition
of the domain and the codomain.

An application of Theorem 3.1 to the Kronecker decomposition of the pencil
sL- M is presented next. The Kronecker decomposition of the pencil sL- M, as it
is known [6], [7], [17], imposes a decomposition of the domain. Specifically, let
Sa and 8 be the subspaces of the row minimal indices (rmi), the column minimal
indices (cmi), the finite elementary divisors (fed), and the infinite elementary divisors
(ied), respectively, of the pencil sL- M [7]. Then this implies a decomposition of the
domain as

(3.6) S S S S S.

The next result shows that a similar decomposition is imposed on the codomain.
The properties and relationships between these subspaces and their corresponding
Kronecker invariants are extensively discussed in [14].

THEOREM 3.3. Consider

(3.7) nr L$ + MSr,



872 V. L. SYRMOS AND F. L. LEWIS

(3.8) nc LSc + MSc,
(3.9) n LS, + MS,
(3.10) n LS + MS,

where Tr, Tc, Ta and TiM will be called the rmi, cmi, fed, and ied subspaces of the
codomain. Then

Proof. We know [7] that the Kronecker decomposition of the pencil sL- M im-
poses a decomposition on the domain. Consider now P and Q such that P(sL-M)Q is
in its Zronecker canonical form. Then Q can be partitioned as Q Qrl Qcl QI Q]
where the columns of Qr, Qc, Q, Q span , So, 8, respectively. Then we
have

P[(sL- M)Q[(sL- M)Qc](sL- M)QI(sL- M)Q,].

Note that (3.12) using (3.7)-(3.10) can be written as [PTCIPIPTCIPT]. Keeping
in mind the Kronecker canonical form and that P is a full rank matrix, (3.11) follows
immediately.

The following corollary is an application of Theorem 3.1 and reveals how closely
related the Kronecker form of the pencil sL M and the concept of decomposabilty
relative to the maps L and M are. The proof of this corollary is based on a process
of sequential decomposition of the generalized pencil sL- M. This corollary is not
presented for computational purposes, but for revealing the relation between the Kro-
necker invariants and decomposability conditions. Efficient computation techniques
for finding the Kronecker invariants have been proposed in [17], [9].

COROLLARY 3.4. Consider the decomposition of the domain defined in (3.6) and
the decomposition of the codomain as defined in (3.11). Then there exist matrices P
and Q that can be constructed using (2.9)-(2.12) such that the pencil P(sL- M)Q is
in its Kronecker canonical form.

Remark. The geometric interpretation of this corollary is shown in Fig. 3.1.

X/Yo Xc 0

FIG. 3.1

Proof. The proof of this corollary is constructive and based on Theorem 3.1.
Define

(3.13) Pc: X A’ X/Sc, Qc z - zc z/nc,

(3.14) P: A’
(3.15) P:
(3.16) S:
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(3.17)
(3.18) Soo "Soo
(3.19) Sr S X, S X ,
(.0) R .n z, R$. Z he,
(.)
(.) R
(3.e3) R
Define also dimS a where E {c, r, a, cx}. Similarly define dimT pC where

{c,r,a, cx}. Having defined these maps and using Theorem 2.3, the following
equations hold true. (Variables above and beside matrices denote dimensions.)

(3.24)

n

Pc Rc 0 sLc- Mc Sc+ ac

(3.25)

qc Pc

() s_ (- 0 )()

(3.26)

qc* Pc,

poo Roo 0 sLoo Moo S+oo aoo

qr Pr
(3.27) pr R+

By combining (3.24)-(3.27) into one equation we get

o o o o
o o
0 0 0 Ip 0 0

sL M 0

(sL- M) 0 sL M
0 0
0 0

o)()o o o n

o o I0 0
sLc*- Mc* 0

0 sLc

i oll(  )o o o o o o P.
0 0 Ia 0 0 I 0 S+a 0 Pc

o o o o o o . s$

Hence there exist matrices P and Q that can be constructed using (2.7)-(2.9) such
that the pencil P(sL- M)Q is in its Kronecker canonical form. That is

sL M 0 0 0

P(sL- M)Q 0 sL M 0 0
0 0 sLa Ma 0
0 0 0 sL M
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which concludes the proof. [:1

4. An application of decomposability to controls design. Consider the
linear time-invariant system described by

(4.1) Ax + Bu,

where x E ’, u bl, A nn, B nm. We assume that B has full column rank
rn < n, and denote by N and B+ a left annihilator and a left inverse of B, respectively
(i.e., NB 0, B+B Ira).

Consider the system

(4.2a) N2 NAx,
(4.2b) u B+(2 Ax).

Systems (4.1) and (4.2) are related in the following sense. For given u(t), a solution
x(t) of (4.1) is also a solution of (4.2a). For a given x(t) satisfying (4.2a), there exists
a control u(t) such that x(t) is also a solution of (4.1), namely, the control given by
(4.2b).

Since (4.2a) is not affected by any feedback of the form u Kx, it is termed
the feedback-flee representation of the state-variable system (4.1). A subspace ]2 is an
(A, B)-invariant [19] subspace if

(4.3) A) C + ImB,

or equivalently if there exists a map K A" b/such that

(4.4) (A +

We let K:(Y) denote the set of all K satisfying (4.4). Selecting V as a basis for ), (4.3)
can be written as

(4.5) AV VF- BG

for some F and G. Equation (4.5) is a Sylvester equation. Equivalently, (4.5) can be
written as

(A + BK)V VF

for some K where KV G
The controllability pencil of (4.1) is defined as

(4.6) C(s) [sI- A B].

Similarly the controllability pencil of the nonsquare system (4.2) is defined as

(4.7) F(s) [sN- NA].

It has been traditional to use C(s) for pole-placement feedback design. Our
contention, on the other hand, is that the pole placement problem is more conveniently
solved using F(s), which is a nonsquare pencil of lower order than (sI- A).

The structure and the properties of these two pencils have been extensively stud-
ied in [7]. The aim of this section is to find computationally stable methods that
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relate these two pencils, and then use the reduced-order pencil for the closed-loop
eigenstructure assignment problem. Therefore we seek a pair (N, B+) such that (4.7)
follows from (4.6) by only performing row and column eliminations.

Performing the algorithm proposed in [17], [18], which is based on orthogonal
transformations, the controllability pencil (4.6) can be written as

(4.8) [sI- UTAU

r$ rc m

UTB] rf (sIf-_Af 0 0 )rc -A sic-At Bc
where the pencil sir Af contains all the uncontrollable modes of (4.1), while the
pencil [sic Ac B] is full row rank for every s. Moreover, Ay may be taken in lower
Schur form and Ac, Bc have the following form

tl t2 t3 tk m

All A12 0 0 0
A22 A22 A23 0 0

(4.9) Ac ".. ".. Bc
Ak-l, Ak_,_ A_, 0
Akl Ak,_I A t B,

That is, Ac is in lower block Hessenberg form, where the blocks Aj,j+ j E { 1, 2,..., k-
1} have full row rank tj. Moreover Bm has full row rank tk, but from our assumption
that B is of full column rank (t m) it follows that B, is a square nonsingular
matrix of dimensions m x m. The pencil in (4.9), where AI is in lower Schur form and
Ac in lower block Hessenberg form, will be referred as the Schur-Hessenberg form of
the system.

Now choose (N, B+) as follows

(4.10) (N)B+

rj t tk m

r Ij 0 0 0
t 0 It1 0 0

tk 0 0 Itk_ 0
m 0 0 0 Bj

Then premultiplication of (4.8) by (4.10) yields

n

(4.11) n- m ( sN- NA
m sB+ B+A

where sN- NA has the following form

m

(4.12)
rf tl t2 t3

sIf Af 0 0 0
sI All -A12 0

-A22 si22 A22 -A23
-A3 ".

-A_I,

tk
0
0
0

-A_,
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and sB+ B+A has the form

(4.13) (-BjlAko -BjIAkl --BjIAk,k- --BJ(sIkk Akk)

with Ako defined by partitioning ft. in (4.8) as

It is now important to note that we can obtain from the controllability pencil
(4.8) the controllability pencil for the nonsquare system by simply eliminating the last
rn rows and m columns of the pencil in (4.11).

Another important remark is that the specific selection of the pair (N, B+)
does not destroy the structure of the identity matrix, the Schur form of Af, or the
Hessenberg form of the matrix Ac in the original controllability pencil (4.8). This
property, as we shall show, is very important for the computational aspects of the
problem.

Let us denote the pencil (4.12) by

(4.14) sN- NA ( sIf A s-O
where [h 0k], (It is the identity matrix of dimensions and n-m- r2, 0m
is the zero matrix with dimensions x m (tk m)) and A2, as can be seen from (4.11)
and (4.12), is obtained from dc by eliminating its rn last rows. It is known [7], [19]
that the pencil sI AI in (4.12) contains the finite elementary divisors of the pencil
sN- NA. Moreover, the pencil s[- A2 contains all the column minimal indices of
the pencil sN- NA. The next corollary now follows readily from Theorem 3.1 and
the above discussion.

COROLLARY 4.1. The generalized Sylvester equations (2.19) and (2.20) always
have a solution for the pencil as decomposed in (4.12), (4.14). That is, for sL-M
sIf AI, sL2 M2 sI- A2, and sL3 M3 -A3.

Next, we exploit the special form of these two generalized Sylvester equations
in order to formulate a computationally stable algorithm that calculates a solution
(X $2, Y R2) for the decomposition in (4.14) that utilizes the special form of
the matrices L and M.

Notice that for the pencil given in (4.14) L1 I,, L3 0, and L2 [. As a

result (2.19) becomes

(4.15) Y IX.

Similarly, by setting M AI, L3 -A3, and L2 A2, (2.20) takes the form

A2X YAI -A3.

We can partition the matrix X (according to [) as follows:

rf

(4.17) X= ( Xl Im X2 l+m=rc.



DECOMPOSABILITY AND QUOTIENT SUBSPACES 877

Then (4.15) yields that Y X1. Also notice that (4.15) is satisfied for arbitrary X2.
Substituting (4.15) into (4.16) we get

(4.18) HX- iXS C,

where H A2, S Af, C -A3, and X
stable algorithm for solving (4.18) is presented in [15].

If the proportional feedback

A computationally

(4.19) u Kx

is applied to (2.1), the resulting closed-loop system is

(4.20) ic (A + BK)x.

Define the set of uncontrollable (i.e., fixed) modes of (4.1) as

(4.21a) af(A) { E a(A) rank(C(a)) < n}

and the set of the controllable modes of (4.1)

(4.21b) at(A) {a e a(A) rank(C(a)) n},

where a(A) denotes the spectrum of the matrix A.
The next result [15] shows the most that may be achieved using proportional

feedback in terms of pole assignment. It is our main result of this section and the
proof provides a computationally stable design technique for computing the feedback
gain K that assigns the desired closed-loop on ]2, and relies on the Schur-Hessenberg
form of the pencil [sI- A B]. It uses the reduced-order nonsquare pencil (4.7), the
concept of decomposabilty, and the algorithm proposed in [15].

THEOREM 4.2. Given a desired closed-loop structure, select a self-conjugate set
E of n dim desired poles of (4.1) such that

(4.22) ai(A) C E.

Then there exists a feedback (4.19) that assigns E as the closed-loop spectrum of (4.20)
on an (A, B)-invariant subspace .

Proof. Restricting (4.11) to n and proposing a lower triangular form as the basis
for 2 and a diagonal form for F, (4.5) becomes

(4.23) (A] 0 0
A3 A2) ( VI 0 0

o

(4.24) [GI Gc] -Bj{(Ako Ak...Akk)V- (Oko Ok...Ikk)VF}.

Notice that in the proposed basis representation the state feedback is

[Kf K] [GI Gc]V-.
We now consider the three component equations of (4.23), solving them one at a

time.
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Uncontrollable modes: Consider the diagonal term

(4.25) AyVy VyFy.

We select FI as a matrix such that a(Fi) a(Ai). Using (4.18), where i Its and
C 0, we compute VI. Note that AI is in its Schur form, a fact that further simplifies
the solution of (4.18).

(b) Coupling equation: Now, consider the off-diagonal portion of (4.23),

(4.26) A2V3 V3F] -A3Vy.

Using (4.25), (4.26) can be written as

(4.27) A2X IXAy -A3,

where X g3v71. But (4.27) is exactly the same as (4.18), which, due to the
decomposability property has always a solution, that can be easily computed.

(c) Controllable modes: The third portion of (4.23) is

(4.28) A2V ]VF.

We select Fc in a lower Schur form such that a(Fc) E- ay(A). The selection Fc
is based on the fact that no further transformations will be necessary for the solution
of (4.28). That is, we use (4.18), where C 0, H A2, and S Fc, to compute the
solution of (4.28).

(d) Driving equation: We call (4.24) the driving equation since it is the one that
incorporates the influence of the input u(t) in the pole-placement problem. Equation
(4.24) can be written as

(4.29)
[Ky K] [Gy G]V-x -Bj{(Ao Ak ...Akk)- (Oko Ot ...Ik)VFV-X}.

The proposed technique not only computes the feedback gain for the controllable
part of the system (2.1) but also for the uncontrollable one. That is, we extend the
feedback to the uncontrollable subspace, showing that the uncontrollable eigenvectors
can be selected within limits. This is in contrast with Tsui [16] and Datta [4] where
complete controllability is imposed on the system. In addition to that we do not
require that the desired closed-loop spectrum and the uncontrollable modes must be
disjoint as in [19]. The presented technique is exploiting the ideas presented in [10].
There a similar methodology is used. Specifically, the rows of B are compressed and
then robust solutions are derived for (4.5). This is achieved by using the extra freedom
that the input matrix B provides for assigning the closed-loop right eigenvectors.

Remarks. Several remarks must be made about the above algorithm [15].
(a) The proposed design technique is based on the reduced-order nonsquare pencil

(4.7).
(b) The algorithm is based on unitary transformations that guarantee the com-

putational stability of the technique.
(c) If the spectrum assignability objectives change there is no need to carry out the

computations for the uncontrollable part of the sytem. This fact is due to the notion
of decomposability. As a result, a considerable amount of computation is avoided.
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(d) The design generalized Sylvester equations can be solved easily in a compu-
tationally effecient manner due to the specific choice of the pair (N, B+) and the
idea of decomposability. Thus, once the controllability pencil has been brought to its
Schur-Hessenberg form, the solution of the Sylvester equation can be easily achieved.

(e) The feedback-gain matrix is extended also to the uncontrollable subspace of
the system.

(f) The solution V is implicitly dependent on B through N. However, the feedback
gain matrix K is explicitly dependent on B.

For more details on the computational aspects of the proposed application and
numerical examples see [15]. This application of decomposabilty for the closed-loop
eigenstructure problem can be easily extended to the case of singular systems.

5. Conclusion. In this paper we presented the connection between strict equiv-
alence of two pencils and the concept of quotient subspaces. This connection led us
to the definition of decomposability for nonsquare pencils of the form sL- M. We
proposed a set of necessary and sufficient conditions for the decomposability property.
Furthermore, we showed that these algebraic conditions are equivalent to two coupled
generalized Sylvester equations.

Throughout the paper we showed how the well-known notions for decomposability
for the pencil sI- M can be recovered as a special case of our general approach. We
related the concept of decomposability to the Kronecker structure of the pencil sL
M. We drew connections between the Kronecker invariants and the decomposability
property.

Finally we presented an application of the notion of decomposability to the control
systems theory. In particular, we showed the advantages that provides for the closed-
loop eigenstructure problem with state-feedback, by utilizing nonsquare pencils of
reduced order.
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Abstract. Recent work has shown that the algebraic question of determining the eigenvalues,
or singular values, of a matrix can be answered by solving certain continuous-time gradient flows on
matrix manifolds. To obtain computational methods based on this theory, it is reasonable to develop
algorithms that iteratively approximate the continuous-time flows. In this paper the authors propose
two algorithms, based on a double Lie-bracket equation recently studied by Brockett, that appear
to be suitable for implementation in parallel processing environments. The algorithms presented
achieve, respectively, the eigenvalue decomposition of a symmetric matrix and the singular value
decomposition of an arbitrary matrix. The algorithms have the same equilibria as the continuous-
time flows on which they are based and inherit the exponential convergence of the continuous-time
solutions.

Key words, eigenvalue decomposition, singular value decomposition, numerical gradient algo-
rithm
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1. Introduction. A traditional algebraic approach to determining the eigen-
value and eigenvector structure of an arbitrary matrix is the QR-algorithm. In the
early 1980s it was observed that the QR-algorithm is closely related to a continuous-
time differential equation that has become known through study of the Toda lattice.
Symes [13] and Deift, Nanda, and Tomei [6] showed that for tridiagonal real sym-
metric matrices, the QR-algorithm is a discrete-time sampling of the solution to a
continuous-time differential equation. This result was generalised to full complex ma-
trices by Chu [3], and Watkins and Elsner [14] provided further insight in the late
1980s.

Brockett [2] studied dynamic matrix flows generated by the double Lie-bracket
equation

/:/: [H, [H, NIl, H(0) Ho

for constant symmetric matrices N and H0, and where we use the Lie-bracket notation

IX, Y] XY- YX. We call this differential equation the double-bracket equation,
and we call solutions of this equation double-bracket flows. Similar matrix differential
equations in the area of Physics were known and studied prior to the references given
above. An example, is the Landau-Lifschitz-Gilbert equation of micromagnetics

dt
"7 x x x

1+c
]12= 1,

as a -, c and 7/a k, a constant. In this equation r, E ]13 and the cross-
product is equivalent to a Lie-bracket operation. The relevance of such equations
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to traditional linear algebra problems, however, has only recently been studied and
discretisations of such flows have not been investigated.

The double-bracket equation is not known to be a continuous-time version of any
previously existing linear algebra algorithm; however, it exhibits exponential conver-
gence to an equilibrium point on the manifold of self-equivalent symmetric matrices
[2], [5], [9]. Brockett [2] was able to show that this flow could be used to diagonalise
real symmetric matrices, and thus, to find their eigenvalues, sort lists, and even to
solve linear programming problems. Part of the flexibility and theoretical appeal of
the double-bracket equation follows from its dependence on the arbitrary matrix pa-
rameter N, which can be varied to control the transient behaviour of the differential
equation.

In independent work by Driessel [7], Chu and Driessel [5], Smith [12] and nelmke
and Moore [8], a similar gradient flow approach is developed for the task of comput-
ing the singular values of a general nonsymmetric, nonsquare matrix. The differential
equation obtained in these approaches is almost identical to the double-bracket equa-
tion. In [8], it is shown that these flows can also be derived as special cases of the
double-bracket equation for a nonsymmetric matrix, suitably augmented to be sym-
metric.

With the theoretical aspects of these differential equations becoming known, and
with applications in the area of balanced realizations [10], [11] along with the more
traditional matrix eigenvalue problems, there remains the question of efficiently com-
puting their solutions. No explicit solutions to the differential equations have been
obtained and a direct numerical estimate of their integral solutions seems unlikely to
be an efficient computational algorithm. Iterative algorithms that approximate the
continuous-time flows, however, seem more likely to yield useful numerical methods.
Furthermore, discretisations of such isospectral matrix flows are of general theoretical
interest in the field of numerical linear algebra. For example, the algorithms proposed
in this paper involve adjustable parameters, such as step-size selection schemes and
a matrix parameter N, which are not present in traditional algorithms such as the
QR-algorithm or the Jacobi method.

In this paper, we propose a new algorithm termed the Lie-bracket algorithm, for
computing the eigenvalues of an arbitrary symmetric matrix

Hk+l e--ak[Hk’g]Hkeak[Hk’Nl.

For suitably small ak, termed time-steps, the algorithm is an approximation of the
solution to the continuous time double-bracket equation. Thus, the algorithm rep-
resents an approach to developing new recursive algorithms based on approximating
suitable continuous-time flows. We show that for suitable choices of time-steps, the
Lie-bracket algorithm inherits the same equilibria as the double-bracket flow. Further-
more, exponential convergence of the algorithm is shown. This paper presents only
theoretical results on the Lie-bracket algorithm and does not attempt to compare its
performance to that of existing methods for calculating the eigenvalues of a matrix.

Continuous-time gradient flows that compute the singular values of arbitrary
nonsymmetric matrices, such as those covered in [5], [8], [9], [12], have a similar
form to the double-bracket equation on which the Lie-bracket algorithm was based.
We use this similarity to generate a new scheme for computing the singular values
of a general matrix termed the singular value algorithm. The natural equivalence
between the Lie-bracket algorithm and the singular value algorithm is demonstrated
and exponential convergence results follow almost directly.
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Associated with the main algorithms presented for the computation of the eigen-
values or singular values of matrices are algorithms that compute the full eigenspace
decompositions of given matrices. These algorithms are closely related to the Lie-
bracket algorithm and also display exponential convergence.

The paper is divided into eight sections including the Introduction and an Ap-
pendix. In 2 of this paper, we consider the Lie-bracket algorithm and prove a propo-
sition that ensures the algorithm converges to a fixed point. Section 3 deals with
choosing step-size selection schemes and proposes two valid deterministic functions
for defining the time-steps. Considering the particular step-size selection schemes
presented in 3 we return to the question of stability in 4 and show that the Lie-
bracket algorithm has a unique exponentially attractive fixed point, though several of
the technical proofs are deferred to the Appendix. This completes the discussion for
the symmetric case and 5 considers the nonsymmetric case and the singular value
decomposition. Section 6 presents associated algorithms that compute the eigenspace
decompositions of given initial conditions. A number of computational issues are
briefly mentioned in 7, while 8 provides a conclusion.

2. The Lie-bracket algorithm. In this section, we begin by introducing the
least squares potential that underpins the recent gradient flow results and then we
describe the double Lie-bracket equation first derived by Brockett [2]. The Lie-bracket
recursion is introduced and conditions are given that guarantee convergence of the
algorithm.

Let N and H be real symmetric matrices and consider the potential function

(1)
g,(H) := [[H- NIl 2

119112 + ]]u]l 2 2tr(NH),

where the norm used is the Frobenius norm ]]X]I 2 := tr(XTX) E xi, with xij the
elements of X. Note that (H) measures the least squares difference between the
elements of H and the elements of N. Let M(Ho) be the set of orthogonally similar
matrices, generated by some symmetric initial condition Ho H nn. Then

(2) M(0) {UHoU]U e O()},

where O(n) denotes the group of all n z n real orthogonal matrices. It is shown
in [9, p. 48] that M(Ho) is smooth compact Riemannian manifold with explicit
forms given for its tangent spce and Riemannian metric. Furthermore, in [1], [5] the
gradient of (H), with the respect to the normal Riemannian metric on M(Ho) [9,
p. 50], is shown to be V(H) -[H, [H,N]]. Consider the gradient flow given by
the solution of

(a)
[H, [H,N]], w th H(0)= H0,

which we call the double-bracket flow [2], [5]. Thus, the double-bracket flow is a
gradient flow that acts to decrease or minimise the least squares potential on the
manifold M(Ho). Note that from (1), this is equivalent to increasing or maximising
tr(NH). We refer to the matrix H0 as the initial condition and the matrix N as the

tawet matrix.
The Lie-bracket algorithm proposed in this paper is

(4) Hk+l e-a[’NlHkea[H’N]
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for arbitrary symmetric n x n matrices H0 and N and some suitably small scalars
ck termed time-steps. To motivate the Lie-bracket algorithm, consider the curve
Hk+l(t) e--t[Hk’N]Hket[Ht’N]. Thus, Ha+l(0) Hk and Hk+l Hk+l(OZk), the
(k + 1)th iteration of (4). Observe that

_d (e_t[Hk,N Haet[H g]) [Ha [Hk, NIldt t=o

and thus, e-t[H’g]Hket[H’N] is a first approximation of the double-bracket flow at
Ha E M(Ho). It follows that for small ca, the solution to (3) evaluated at time t aa
with H(0) Ha is approximately Ha+I Hk+(Ck).

It is easily seen from above that stationary points of (3) are fixed points of (4).
In general, (4) may have more fixed points than just the stationary points of (3),
however, Proposition 2.1 shows that this is not the case for a suitable choice of time-
step ca. We use the term equilibrium point to mean a fixed point of the algorithm
that is also a stationary point of (3).

To implement (4) it is necessary to specify the time-steps ca. We do this by
considering functions oN M(H0) --, I+ and setting ca := Og(Hk). We refer to the
function aN as the step-size selection scheme. We require that the step-size selection
scheme satisfies the following condition.

CONDITION 2.1. Let Cg M(Ho) --* I+ be a step-size selection scheme for the
Lie-bracket algorithm on M(Ho). Then OZg i8 well defined and continuous on all of
M(Ho), except possibly those points H M(Ho) where HN NH. Furthermore,
there exist real numbers B, "7 > O, such that B > CN(H) > "7 for all H M(Ho)
where ON i8 well defined.

Remark 2.1. We find that the variable step-size selection scheme proposed in this
paper, which provides the best simulation results, is discontinuous at .all the points
H e M(H0), such that [H,N] 0.

Remark 2.2. Note that the definition of a step-size selection scheme depends
implicitly on the matrix parameter N. Indeed, OZN can be thought of as a function in
two matrix variables N and H.

CONDITION 2.2. Let N be a diagonal n n matrix with distinct diagonal entries

#1 > P2 > #n.
Remark 2.3. This condition on N, along with Condition 2.1 on the step-size

selection scheme, is chosen to ensure that the Lie-bracket algorithm converges to a

diagonal matrix from which the eigenvalues of H0 can be directly determined.
Let A > A2 > > Ar be the eigenvalues of H0 with associated algebraic

multiplicities n,..., n satisfying -:ir= ni n. Note that as H0 is symmetric, the
eigenvalues of H0 are all real. Thus, the diagonalisation of H0 is

a := ...
0

where In is the n ni identity matrix. For generic initial conditions and a target
matrix N that satisfies Condition 2.2, the continuous-time equation (3) converges
exponentially fast to A [2], [9]. Thus, the eigenvalues of H0 are the diagonal entries
of the limiting value of the infinite time solution to (3). The Lie-bracket algorithm
behaves similarly to (3) for small ca and, given a suitable step-size selection scheme,
should converge to the same equilibrium as the continuous-time equation.
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PROPOSITION 2.1. Let Ho and N be n n real symmetric matrices where N
satisfies Condition 2.2. Let (H) be given by (1) and let aN M(Ho) -- + be a step-
size selection scheme that satisfies Condition 2.1. For Hk E M(Ho), let ak CN(Hk)
and define

(6) / 2(Hk,ak) := (Hk+l) O(Hk),

where Hk+I is given by (4). Suppose

(7) A (Ha, ak) < 0 when [Hk, N] = O.

Then (a) The iterative equation (4) defines an isospectral (eigenvalue preserving) re-
cursion on the manifold M(Ho).

(b) The fixed points of (4) are characterised by matrices g M(Ho) satisfying

(8) [H, N] 0.

(c) Every solution H, for k 1,2,..., of (4), converges as k -- , to some

H e M(Ho) where [H, N] 0.
Proof. To prove part (a), note that the Lie-bracket [H,N]T -[H,N] is skew-

symmetric. As the exponential of a skew-symmetric matrix is orthogonal, (4) is an
orthogonal conjugation of Hk and hence is isospectral.

For part (b) note that if [Hk, N]-- 0, then by direct substitution into (4) we see

Hk+l Hk and thus, Hk+l Hk for :> 1, and Hk is a fixed point of (4). Conversely
if [Hk, g] = 0, then from (7), /k2(Hk, ak) = O, and thus Hk+ Hk. By inspection,
points satisfying (8) are stationary points of (3), and indeed are known to be the only
stationary points of (3) [9, pg. 50]. Thus, the fixed points of (4) are equilibrium
points in the sense that they are all stationary points of (3). To prove part (c) we
need the following lemma.

LEMMA 2.2. Let N satisfy Condition 2.2 and ON satisfy Condition 2.1 such
that the Lie-bracket algorithm satisfies (7). The Lie-bracket algorithm (4) has exactly
n!/YIi(ni! distinct equilibrium points in M(Ho). These equilibrium points are
characterised by the matrices TAr, where 7 is an n n permutation matrix, a

rearrangement of the rows of the identity matrix, and A is given by (5).
Proof. Note that part (b) of Proposition 2.1 characterises equilibrium points of

(4) as H e M(Ho) such that [H,N] 0. Evaluating this condition componentwise
for H {hij } gives

m) 0,

and hence by Condition 2.2, hij 0 for = j. Using the fact that (4) is isospectral, it
follows that equilibrium points are diagonM matrices that have the same eigenvalues
as H0. Such matrices are distinct and can be written in the form 71"TA71" for r an n n
permutation matrix. A simple counting argument yields the number of matrices that
satisfy this condition to be n!/l-Ir= (n!). D

Consider for a fixed initial condition H0, the sequence Hk generated by the Lie-
bracket algorithm. Observe that condition (7) implies that (Hk) is strictly monotonic
.decreasing for all k where [Hk, N] = O. Also, since is a continuous function on the
compact set M(H0), then is bounded from below and (Hk) will converge to some
nonnegative value . As (Hk) -- c then/(Hk, k) -- O.

For an arbitrary positive number e, define the open set D C M(H0), consisting
of all points of M(Ho), within an e neighbourhood of some equilibrium point of (4).
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The set M(H0) D is a closed, compact subset of M(H0) on which the matrix
function H -+ [H, N] does not vanish. As a consequence, the difference function (6)
is continuous and strictly negative on M(Ho) D, and thus can be over bounded
by some strictly negative number 51 < 0. Moreover, as/kb(Hk, ok) -+ 0, then there
exists a K K(51) such that for all k > K then 0 >_ /k(Hk,k) > 51. This ensures
that Hk E D for all k > K. In other words, Hk is converging to some subset of
possible equilibrium points.

Imposing the upper bound B on the step-size selection scheme aN, Condition
2.2, it follows that Og(Hk)[Hk,N] --+ 0 as k -+ c. Thus, eaN(Hk)[Hk’N] -"+ I, the
identity matrix, and hence, e--ag(Hk)[Hk’g]Hkeag(Hk)[Hk’N] --+ Hk aS k -+

consequence IIHk+l- Hkll --+ 0 for k --+ and this combined with the distinct nature
of the fixed points, Lemma 2.2, and the partial convergence already shown, completes
the proof.

Remark 2.4. In Condition 2.2 it was required that N have distinct diagonal
entries. If this condition is not satisfied, the equilibrium condition [H, N] 0 may
no longer force H to be diagonal, and thus, though the algorithm will converge, it is

unlikely to converge to a diagonal matrix.

3. Step-size selection. The Lie-bracket algorithm (4) requires a suitable step-
size selection scheme before it can be implemented. To generate such a scheme, we
use the potential (1) as a measure of the convergence of (4) at each iteration. Thus,
we aim to choose each time-step to maximise the absolute change in potential
of (6), such that/ < 0. Optimal time-steps can be determined at each step of the
iteration by completing a line search to maximise the absolute change in potential as
the time-step is increased. Such an approach, however, involves high computational
overheads and we aim rather to obtain a step-size selection scheme in the form of a
scalar equation depending on known values.

Using the Taylor expansion, we express
linear term plus
mathematically simple function/k2v(Hk, ), which is an upper bound to
for all -. Then, choosing a suitable time-step ak based on minimising ACu, we
guarantee that the actual change in potential, /k(H,) <_ /kCv(Hk, ok) < 0,
satisfies (7). Due to the simple nature of the function ACu, there is an explicit form
for the time-step ak depending only on Hk and N. We begin by deriving an expression
for the error term.

LEMMA 3.1. For the kth step of the recursion (4) the change in potential
A2(Hk, T) of (6), for a time-step T is

(9) Ag2(Hk, r) -2II[H, N]II e

with

(10) T2(r) jl

2T2tr(NT2(T))

(1 s)Hk+l (s-)ds,

where H’k’+l (T) is the second derivative of Hk+l (T) with respect to T.

Proof. Let Hk+l (T) be the (k + 1)th recursive estimate for an arbitrary time-step
T. Thus Hk+ (T) e-’[Hk’N]Hke[Hk’N] It is easy to verify that the first and second
time derivatives of Hk+l are exactly

H+ (T) [H+I (T), [Hk, Nil,

H’+I (T) [[Hk+l (’), [Hk, Nil, [Hk, Nil.
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Applying Taylor’s theorem, then

jod r2 " (sT)dsHk+I(T) Hk+l(0) + 7-THk+I(O) -t- (1 s)Hk+
(11)

Hk + ’[Hk, [Hk,N]] + -272(-).

Consider the change in the potential (H) between the points Hk and

(12)

(Hk, T) (Hk+I (T))
-2tr(N(Hk+(T)- Hk))
-2tr(N([Hk, [H, NIl +
-2711[H, N]II 2 2T2tr(N2(T)).

Note that for - 0, then A(Hk, 0) 0 and also that

d
A(Hk T)

dT T---0
-211[Hk,N]II 2

Thus, for sufficiently small T the error term -2tr(NT2(T)) becomes negligible and
/k(Hk, -) is strictly negative. Let Oop > 0 be the first time for which

T---Cop

then A(Hk, O/opt) < /)(Hk, T) < 0 for all strictly positive T < Oopt. It is not
possible, however, to estimate O/op directly from (12) due to the transcendental nature
of the error term 72(-). By considering two separate estimates of the error term, we
obtain two step-size selection schemes O/k _< O/opt. The first and constant step-size
selection scheme follows from a loose bound of the error, whereas the second variable
step-size selection scheme follows from a more sophisticated argument and results in
faster convergence of (4).

LEMMA 3.2 (Constant step-size selection scheme). The constant time-step

1
(13) O/v 411H011. ilgl

satisfies Condition 2.1. Furthermore, the Lie-bracket algorithm, equipped with the
step-size selection scheme O/, satisfies (7).

Proof. Recall that for the Frobenius norm ]tr(XY)I _< IIXII. IIYII. Then

/k(Hk, T)

_
-2II[H, N][I 2 -t- 2T21tr(NT2(T))I

<_ -2TI][H, N]]I e / 2ellN]l"
-’,II[H, N]tl + 2",IiNll

(14)
1(1 s)ll[[H+(s), [Hk, N]], [Hk, N]]llds

< -II[H, ]11 + 4:llNII IIH011" II[H, ]11:
=: Av(H, ).

Thus ACu(Hk, 7) is an upper bound for A(Hk, -) and has the property that for
sufficiently small -, it is strictly negative; see Fig. 1. Due to the quadratic form of
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(H,a)

FIG. 1. The upper bound on A(Hk, () viz /kCu(Hk, a).

ACu(Hk, T) in T, it is immediately clear that a av(Hk 1/(41IHoIIIINll) of (13)
is the minimum of (14).

A direct norm bound of the integral error term is not likely to be a tight estimate
of the error and the function ACu is a fairly crude bound for A. The following
more sophisticated estimate results in a step-size selection scheme that causes the
Lie-bracket algorithm to converge an order of magnitude faster.

LEMMA 3.3 (An improved bound for A(Hk, T)). Note the difference function
/k(Hk, -) can be over bounded by

(5)

Proof. Consider the Taylor series expansion of the matrix exponential

l 3eA=I+A+ A2+A +....

It is easily verified that

(16)

1I[A [A,B]]+ [A,[A [A,B]]]+...eABe-A B + [A,B] + .
ladB"

=0

Here adB adA (ad71B), adAB B, where adA" nn inn is the linear
map X - AX- XA. Substituting -T[H,N] and Hk for A and B in (16) and
comparing with (11), gives

2 1 JT2n2(-)
"=

.ad--[Hk’g] (Hk)"

Considering Itr(NT2(T))I and using the readily established identity tr(NadJ_AB)
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tr( (adJAN)B) gives

IT2tr(NT2(T))I 1

tr (ad[Hk,N](N)Hk)
j’--2

j=2

Thus combining this with the first line of (14) gives (15). [:]

The variable step-size selection scheme is derived from this estimate of the error
term in the same manner the constant step-size selection scheme was derived in Lemma
3.2.

LEMMA 3.4 (Variable step-size selection scheme). The step-size selection scheme
M(Ho) --,

1 ( II[H,N]II 2 )(17) av(H 211[H,N]II
log

iiHoll II[N,[H,N]]II +
1

where all norms are Frobenius norms, satisfies Condition 2.1. Furthermore, the Lie-
bracket algorithm, equipped with the step-size selection scheme a’N, satisfies (7).

Proof. We first show that av satisfies the requirements of Condition 2.1. As the
Frobenius norm is a continuous function, then av is well defined and continuous at all
points H E M(Ho) such that [H, N] # 0. Note that when [H, N] 0, then av is not
well defined. To show that there exists a positive constant 7, such that av(H > 7,
consider the following lower bound,

1 ( II[Hk, N]ll
211[Hk, N]ll 2ll - oi[ IIN[]

(18) <_
2[l[Hk, g][

log 21[[Hol[] I[I[H,N]II +1

1 ( ll[Hk,N][] 2 )< log
2][[Hk, N]ll II[H011 ii:-;:N]]][ + 1

which is just av. Using L’HSpital’s rule it can be seen that the limit of av at an
equilibrium point, H M(Ho) such that [H,N] 0, is 1/(411H011. IINII). Including
these points in the definition of a, gives that av is a continuous, strictly positive,
well-defined function for all H M(Ho). Thus, as M(Ho) is compact, there exists a
real number 7 > 0 such that

>a.L, > >0
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on M(Ho) {H I[H, N] 0}.
To show that there exists a real number B > 0, such that av(H < B, H E

M(H0), set [H,N] X {xij}. For N given by Condition 2.2, then II[N,X]I]-
-i=j(#i #j)2xj, where xi 0 as [g, N] is skew-symmetric. Observe that

2Ei--j Xij

<_ ma.x(# #j)-2 =: b

for all choices of X -XT. It follows that

av(H 2I]X[---log [iHo]l II[N,X]I + 1

b< =:B
211Moll

since log(x + 1) <_ x for x > O.
Finally, for a matrix Hk M(Ho), [Hk, N] (: O, the time-step a(Hk) a > 0

minimises (15), and from Lemma 3.3 it follows that 0 > /k5(H,T >_ A(Hk, T).
Thus, the Lie-bracket algorithm, equipped with the step-size selection scheme
satisfies (7) and the proof is complete.

4. Stability analysis. In this section we study the stability of equilibria of the
Lie-bracket algorithm (4). It is shown that for generic initial conditions and any
step-size selection scheme that satisfies Condition 2.1 and (7), the solution Hk of
the Lie-bracket algorithm converges to the unique equilibrium point A given by (5).
Furthermore, we derive local exponential bounds on the rate of convergence. To
improve the readability of the paper the proofs of a number of the more technical
results have been deferred to an appendix. We begin by showing that A is the unique
locally asyrnptotically stable equilibrium point of (4).

LEMMA 4.1. Let N satisfy Condition (2.2) and aN be some selection scheme that

satisfies Condition 2.1 and (7). The Lie-bracket algorithm (4) has a unique locally
asymptotically stable equilibrium point A given by (5). All other equilibrium points of
(4) are unstable.

Proof. It is known that A is the unique local and global minimum of the potential
function p on M(Ho) [9]. By assumptions on N and aN, (H) is monotonically
decreasing. Thus the domain of attraction of A contains an open neighbourhood of
A, and hence, A is a locally asymptotically stable equilibrium point of (4).

All other equilibrium points H are either saddle points or maxima of [9].
Thus for any neighbourhood D of some equilibrium point Hoo : A, there exists
some H0 D such that (H0) < (H). It follows that the solution to the Lie-
bracket algorithm, with initial condition H0, will not converge to H and thus H is
unstable.

Lemma 4.1 is sufficient to conclude that for generic initial conditions the Lie-
bracket algorithm will converge to the unique matrix A. It is difficult to characterise
the set of initial conditions for which the algorithm converges to some unstable equi-
librium point H : A. For the continuous-time double-bracket flow, however, it is
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known that the unstable basins of attraction of such points are of zero measure in
M(Ho) [9].

LEMMA 4.2. Let N satisfy Condition 2.2. Let d E I+ be a constant such that
0 < d < 1/211H011211NII2 and consider the constant step-size selection scheme, cdN
M(Ho)-- +,

adN(H) d.

The Lie-bracket algorithm (4) equipped with the step-size selection scheme has a
unique locally exponentially asymptotically stable equilibrium point A given by (5).

Proof. Since adN is a constant function, the time-step c CN(Hk) d is
constant. Thus, the map

Hk H e-d[Hk,N] Hked[Hk,N]

is a differentiable map on all M(H0), and we may consider the linearisation of this map
at the equilibrium point A given by (5). The linearisation of this recursion expressed
in terms of k ThM(Ho) (the tangent space of the equilibrium point A) is

(9) ’k--i ’’k d[(..kN N..k)A A(SkN NSa)].

Thus for the elements of-Ek, we have

(20) (ij)a+l [1 d(Ai Aj)(#i #j)](iy)k for i,j 1,...,n.

The tangent space TAM(Ho) at A consists of those matrices [A, ] where
Skew(n), the class of skew-symmetric matrices [9, p. 53]. Thus, the matrices .. are
parameterised by their components j, where < j, and/k = Aj. This is a linearly
independent parameterisation of TAM(Ho) and the eigenvalues of the linearisation
(19) can be read directly from (20) as 1 -d(A(i)- A(j))(#- pj), for < j and
Ai = Ay. Since A _> Aj when > j, then if d < 1/211HolI21]NII2 it follows that

i1- d(A- )j)(#- #j)l < 1

for all < j with Ai - Ay. Classical stability theory gives that A is a locally exponen-
tially asymptotically stable equilibrium point of the recursion (4) with an exponential
rate of convergence of max<,= {d()i )(#i #)}. []

Remark 4.1. As IINII211H0112 < 21INIIIIH01], the constant step-size selection
scheme av is an example of such a selection scheme where c 1/(411H011.

Remark 4.2. Let (N M(H0) -- I+ be a step-size selection scheme that satisfies
Condition 2.1 and (7) and is also continuous on all M(Ho). Let h be the locally
asymptotically stable equilibrium point given by (5). Set a aN(A) and observe
that the linearisation of the Lie-bracket algorithm will be of the form (19) with d
replaced by a. Recall that the av scheme defined in (18) is continuous with limit

av(H 1/(411H011. IINII). Thus, A is an exponentially asymptotically stable
equilibrium point for the Lie-bracket recursion equipped with the step-size selection
scheme

To show that the Lie-bracket algorithm is exponentially stable at A for the
step-size selection scheme is technically difficult due to the discontinuous nature of
at equilibrium points. The proof of the following proposition is given in the Appendix.

PROPOSITION 4.3. Let N satisfy assumption (2.2) and a*N be the step-size selec-
tion scheme given by Lemma 3.4. The iterative algorithm (4), has a unique exponen-
tially attractive equilibrium point A given by (5).
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FzG. 2. A plot of the diagonal elements hii of each iteration Hk of the Lie-bracket algorithm
run on a 7 7 initial condition Ho with eigenvalues (1,..., 7). The target matrix N was chosen to
be diag(1,..., 7).
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10 20 30 40 50 60 70 80

Ie,rafion$

FIG. 3. The potential (Hk) --IlHk Nil2 for the Lie-bracket recursion.

To give an indication of the behaviour of the Lie-bracket algorithm, two plots
of a simulation have been included as Figs. 2 and 3. The simulation was run on a
random 7 7 symmetric initial value matrix with eigenvalues 1,..., 7. The target
matrix N is chosen as diag(1,..., 7) and as a consequence the minimum potential is

0. Figure 2 is a plot of the diagonal entries of the recursive estimate Hk. The
off-diagonal entries converge to zero as the diagonal entries converge to the eigenvalues
of Hk. Figure 3 is a plot of the potential IHk NIl 2 verses the iteration k. This
plot clearly shows the monotonic decreasing nature of the potential at each step of
the algorithm.

We summarise the results of 2-4 in Theorem 4.4.
THEOREM 4.4. Let Ho H be a real symmetric n n matrix with eigenvalues

1

_ _
n. Let N E nn satisfy Condition 2.2 and let aN be either the con-

stant step-size selection (13) or the variable step-size selection (17). The Lie-bracket
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recursion

Hk+l e-ak[Hk’N] Hkeak[H’N]

with initial condition Ho, has the following properties:
(i) The recursion is isospectral.
(ii) If Hk is a solution of the Lie-bracket algorithm, then 2(Hk) IIHk NIl 2

is strictly monotonically decreasing for every k E N, where [H, N] O.
(iii) Fixed points of the recursive equation are characterised by matrices H

M(Ho) such that

[H, N] O.

(iv) Fixed points of the recursion are exactly the stationary points of the double-
bracket equation. These points are termed equilibrium points.

(v) Let Hk, k 1,2,..., be a solution to the Lie-bracket algorithm, then Hk
converges to a matrix Ho M(Ho), [Ho, N] O, an equilibrium point of the recur-
sion.

(vi) All equilibrium points of the Lie-bracket algorithm are strictly unstable except
A diag(A1,..., An), which is locally exponentially asymptotically stable.

5. Singular value computations. In this section we consider discretisations
of continuous-time flows to compute the singular values of an arbitrary matrix.

A singular value decomposition of a matrix H0 I"n, rn >_ n is a matrix
decomposition

(21) Ho vTEu,

where V e O(m), U e O(n) and

(ee)

aiIn 0

0 arln
O(m--n)xn

Here al > a2 > > fir >_ 0 are the distinct singular values of H0 occurring with
multiplicities n1,.. ,nr, such that r=1 ni n. By convention the singular values
of a matrix are chosen to be nonnegative. It should be noted that although such a
decomposition always exists and E is unique, there is no unique choice of orthogonal
matrices V and U. The approach we take is to define an algorithm that converges
to E and thus computes the singular values of H0 without directly generating the
orthogonal decomposition.

Let S(Ho) be the set of all orthogonally equivalent matrices to H0,

(23) S(Ho) { VTHoU e V e O(m), u O(n)).

It is shown in [9, p. 89] that S(Ho) is a smooth compact Riemannian manifold with
explicit forms given for its tangent space and Riemannian metric. Following [4], [5],
[8], [9], and [12] we consider the task of calculating the singular values of a matrix H0
by minimising the least squares cost function " S(Ho) -- If(+, (U) IIH- NIl 2.
It is shown in [8] and [9] that achieves a unique local and global minimum at the
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point E e S(Ho). Moreover, in [8], [9], and [12] the explicit form for the gradient
is calculated. The gradient flow is

(24)
/:/= -7p(H)

=H{H,N}-{HT, NT}H,

with H(0) H0 the initial condition. Here we have used a generalisation of the
Lie-bracket {X, Y} "= xTy yTx -{X, y}T.

To accomplish the task of computing the singular values of a matrix we require
N to satisfy the following.

CONDITION 5.1. Let N be an m n matrix

0 tt,,

O(m--n)xn

where #1 > #2 > > #,, > 0 are strictly positive, distinct real numbers.
For generic initial conditions and a target matrix N that satisfies Condition 5.1,

it is known that (24) converges exponentially fast to E e S(Ho) [8], [12]. A recursive
version of this flow follows from an analogous argument to that used in the derivation
of the Lie-bracket algorithm. For H0,and N constant m n matrices, the singular
value algorithm proposed is

(25) Hk+l e--ak{H[’NT}Hkeak{Hk’N}.
The singular value algorithm and the Lie-bracket algorithm are closely linked as

is shown in the following lemma.
LEMMA 5.1. Let Ho, N be m n matrices. For any H E ]mn define a map

H H ](m+n) (re+n) where

(26) H HT Onn

For any sequence of real numbers ck, k 1,..., oe the iterations

(27) Hk+ e-k {H[’NT} Hke{H’N}

with initial condition Ho and

(28) 2k+l e-ak[H’N]keak[H’N]

with initial condition Ho are equivalent.
Proof. Consider the iterative solution to (28) and evaluate the multiplication in

the block form of (26). This gives two equivalent iterative solutions, one the transpose
of the other, both of which are equivalent to the iterative solution to (27),

Remark 5.1. Note that H0 and N are symmetric (m + n) (m + n) matrices and
that, as a result, the iteration (28) is just the Lie-bracket algorithm.

Remark 5.2. The equivalence given by Lemma 5.1 is complete in every way. In
particular, Ha is an equilibrium point of (27) if and only if Ha is an equilibrium
point of (28). Similarly, Hk Ha if and only if Hk Hoo as k -
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This leads us directly to consider step-size selection schemes for the singular value
algorithm induced by selection schemes that we have already considered for the Lie-
bracket algorithm. Indeed if a M(Ho) --) I+ is a step-size selection scheme for (4)
on M(Ho), and Ha E S(H0), then we can define a time-step (a for the singular value
algorithm by

(29)

Thus, if (28) equipped with a step-size selection scheme a satisfies Condition 2.1
and (7), then from Lemma 5.1, (27) will satisfy similar conditions. For simplicity,
we deal only with the step-size selection schemes induced by the constant step-size
selection (13) and the variable step-size selection (17). Thus we may state the main
convergence theorem for the singular value algorithm.

THEOREM 5.2. Let Ho,..N be rn n matrices where rn >_ n and N satisfies
Condition 5.1. Let a M(Ho) + be either the constant step-size selection (13),
or the variable step-size selection (17). The singular value algorithm

Hk+l e--ak{H[’NT}Hkeak{Hk’N}

with initial condition Ho, has the following properties:
(i) The singular value algorithm is a self-equivalent (singular value preserving)

recursion on the manifold S(Ho).
(ii) If Ha is a solution of the singular value algorithm, then (Ha) IIHa

NIl 2 is strictly monotonically decreasing for every k N, where {Ha, N} : 0 and
{H[,NT}

(iii) Fixed points of the recursive equation are characterised by matrices H
S(Ho) such that

(30) {Ha, N}=0 and {H[, NT} O.

Fixed points of the recursion are exactly the stationary points of the singular value
gradient flow (24) and are termed equilibrium points.

(iv) Let Ha, k 1, 2,..., be a solution to the singular value algorithm, then Ha
converges to a matrix Ha S(Ho), an equilibrium point of the recursion.

(v) All equilibrium points of the Lie-bracket algorithm are strictly unstable except
E given by (22), which is locally exponentially asymptotically stable.

Proof. To prove part (i), note that the generalised Lie-bracket {X, Y} -{X, y}T
is skew-symmetric and thus (25) is an orthogonal conjugation and preserves the singu-
lar values of Ha. Also note that the potential (Ha) 1/2(a). Moreover, Lemma 5.1

shows that the sequence Ha is a solution to the Lie-bracket algorithm and thus from
1(a) must be monotonically decreasing for all k N such thatProposition 2.1,

[a, ] : 0, which is equivalent to (30). This proves part (ii) and part (iii) follows by
noting that if {Hr, NT} 0 and {Ha, N} 0, then Ha+t Ha for 1, 2,..., and
Ha is a fixed point of (25). Moreover, since (Ha) is strictly monotonic decreasing for
all {Ha,N} : 0 and {H[,NT} : 0, then these points can be the only fixed points.
It is known that these are the only stationary points of (24) [8], [9], [12].

To prove (iv), we need the following characterisation of equilibria of the singular
value algorithm.
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LEMMA 5.3. Let N satisfy Condition 5.1 and a be either the constant step-size
selection (13) or the variable step-size selection (17). The singular value algorithm
(25) equipped with time-steps ak a(Hk) has exactly 2’n!/1-Ii=l(ni!) distinct equi-
librium points in S(Ho). Furthermore, these equilibrium points are characterised by
the matrices

O(m--n)n O(m--n)(m--n)

where r is an n n permutation matrix and S diag(+l,..., 1) a sign matrix.

Proof. Equilibrium points of (25) are characterised by the two conditions (30).
For H (hij), {H,N} 0 is equivalent to

#jhyi-#hy=0 fori=l,...,n, j=l,...,n.

Similarly, the condition {HT, NT} 0 is equivalent to

#jhij-#hj=O fori=l,...,n, j=l,...,n,

hj#j=0 fori=n+l,...,m, j=l,...,n.

By manipulating the relationships, and using the distinct, positive nature of the
it is easily shown that hij 0 for i - j. Using the fact that (25) is self equivalent,
the only possible matrices of this form that have the same singular values as H0 are
characterised as above. A simple counting argument shows that the number of distinct
equilibrium points is 2nn!/1-Iri=l(ti!).

The proof of Theorem 5.2 part (iv) is now directly analogous to the proof of Propo-
sition 2.1 part (c). It remains only to prove Theorem 5.2 part (v), which involves the
stability analysis of the equilibrium points characterised by (30). It is not possible to
directly apply the results obtained in 4 to the Lie-bracket recursion Hk, since the N
does not satisfy Condition 2.2. However, for the constant step-size selection scheme
induced by (13), and using analogous arguments to those used in Lemmas 4.1 and
4.2, it follows that E is the unique locally exponentially attractive equilibrium point
of the singular value algorithm. Thus, for the constant step-size selection scheme, E is
the u.nique exponentially attractive equilibrium point of the Lie-bracket algorithm on
M(Ho), and now the argument from Proposition 4.3 applies directly and E is expo-
nentially attractive for the variable step-size selection scheme (17). This completes the
proof. [:]

Remark 5.3. Theorem 5.2 holds true for any time-steps ak a(Hk) induced
by a step-size selection scheme, a, that satisfies Condition 2.1, such that Theorem
4.4 holds.

Remark 5.4. It is possible that for nongeneric initial conditions, the singular value
algorithm may converge to a diagonal matrix with the singular values ordered in
different manner to . However, all simulations run have converged exponentially fast
to the unique matrix , and thus it is likely that the attractive basins of the unstable
equilibrium points have zero measure. Note that for the continuous-time flows, it is
known that the attractive basins of the unstable equilibrium points have zero measure
in S(Ho) [9].

6. Associated orthogonal algorithms. In the previous sections we have pro-
posed the Lie-bracket and the singular value algorithms that calculate the eigenvalues
and singular values, respectively, of given initial conditions. Associated with these re-
cursions are orthogonM recursions that compute the eigenvectors or singular vectors
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of given initial conditions and provide a full spectral decomposition. To simplify the
subsequent analysis we impose a genericity condition on the initial condition H0.

CONDITION 6.1. If Ho HTo E nn is a real symmetric matrix then assume
that Ho has distinct eigenvalues 1 > > An. If Ho ]mxn, where m >_ n, then
assume that Ho has distinct singular values a > > fin > O.

For a sequence of positive real numbers ak for k 1, 2,... the associated orthog-
onal Lie-bracket algorithm is

(31) U+ Ukea[UTHU’N], Uo O(n),

where Ho HI n is symmetric. For an arbitrary initial condition Ho m
the associated orthogonal singular value al’gorithm is

(32)
Vk+ Vkeak{U[H[yk’NT}, Vo e O(m)

Uk+l Ukeak{VTHUa’N}, Uo O(rt).

Note that in each case the exponents of the exponential terms are skew-symmetric
and thus the recursions will remain orthogonal.

Let Ho H[ nn and consider the map g O(n) M(Ho), U H UTHoU,
which is a smooth surjection. If Ua is a solution to (31) it follows that

g(Uk+l) e--ck[g(Uk)’Nlg(Vk)eak[g(Ut)’N],

which generates the Lie-bracket algorithm (4). Thus, g maps the associated orthogo-
nal Lie-bracket algorithm with initial condition U0 to the Lie-bracket algorithm with
initial condition UoTHoUo on M(UoTHoUo) M(Ho).

Remark 6.1. Consider the potential function O(n) --. +, (U) IIUTHoU
NIl 2 on the set of orthogonal n n matrices. Using the standard induced Riemannian
metric from nn on O(n), the associated orthogonal gradient ]tow is [2], [3], [5], [9]

-v(u) u[uvHoU, N].

THEOREM 6.1. Let Ho HTo be a real symmetric n n matrix that satisfies
Condition 6.1. Let N I n satisfy Condition 2.2, and let CN be either the constant
step-size selection (13) or the variable step-size selection (17). The recursion

Uk+ Vkeat[U[HU’N] Uo e

referred to as the associated orthogonM Lie-bracket algorithm has the following prop-
erties:

(i) A solution Uk, k 1,2,..., to the associated orthogonal Lie-bracket algo-
rithm remains orthogonal.

(ii) Let (U) --IIUTHoU NIl2 be a map from O(n) to the set of nonnegative
reals +. Let Uk, k 1, 2,..., be a solution to the associated orthogonal Lie-bracket
algorithm. Then (Uk) is strictly monotonically decreasing for every k N where
[U[HoUa, N] # O.

(iii) Fixed points of the algorithm are characterised by matrices U O(n) such
that

[UTHOU, N] O.

There are exactly 2nn! distinct fixed points.
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(iv) Let Uk, k 1, 2,..., be a solution to the associated orthogonal Lie-bracket
algorithm, then Uk converges to an orthogonal matrix U, a fixed point of the algo-
rithm.

(v) All fixed points of the associated orthogonal Lie-bracket algorithm are strictly
unstable except those 2n points U, E O(n) such that

UT, HoU, A,

where A diag(A1,..., An). Such points U, are locally exponentially asymptotically
stable and Ho U,AU,T is an eigenspace decomposition of Ho.

Proof. Part (i) follows directly from the orthogonal nature of eak[u[HUk’N].
Note that in part (ii) the definition of can be expressed in terms of the map g(U)
UTHoU from O(n) to M(Ho) and the Lie-bracket potential (H) IIH- NIl 2 of
(1), i.e.,

)).

Observe that g(Uo) UoTHoUo and thus g(Uk) is the solution of the Lie-bracket
algorithm with initial condition UoTHoUo. As the step-size selection scheme ON is
either (13) or (17), then g(Uk) satisfies (7). This ensures that part (ii) holds.

If Uk is a fixed point of the associated orthogonal Lie-bracket algorithm with initial
condition U[HoUo, then g(Uk) is a fixed point of the Lie-bracket algorithm. Thus,
from Proposition 2.1, [g(Uk) N] T JUt: HoUr, N] 0[Uk HoUk, N] O. 5Joreover, if T

for some given k E N, then by inspection Uk+ Uk for 1, 2,..., and U is a fixed
point of the associated orthogonal Lie-bracket algorithm. From Lemma 2.2 it follows
that if U is a fixed point of the algorithm then UTHoU rrTArr for some permutation
matrix r. By inspection any orthogonal matrix W SUreT, where S is a sign matrix
S diag(+/-l,..., +l), is also a fixed point of the recursion, and indeed, any two fixed
points are related in this manner. A simple counting argument shows that there are
exactly 2n! distinct matrices of this form.

To prove (iv), note that since g(Uk) is a solution to the Lie-bracket algorithm, it

converges to a limit point Hoo e M(H0), [Hoo, N] 0 (Proposition 2.1). Thus Uk
must converge to the preimage set of Hoo via the map g. Condition 6.1 ensures that
a set generated by the preimage of Hc is a finite distinct set, any two elements U
and U of which are related by U US, S diag(+l,..., +1). Convergence

Tto a particular element of this preimage follows since oek[U HoUk, N] -- 0 as in
Proposition 2.1.

To prove part (v), observe that the dimension of O(n) is the same as the dimen-
sion of M(Ho) due to genericity Condition 6.1. Thus g is locally a diffeomorphism
on O(n) that forms an exact equivalence between the Lie-bracket algorithm and the
associated orthogonal Lie-bracket algorithm. Restricting g to a local region, the sta-
bility structure of equilibria are preserved under the map g-. Thus, all fixed points
of the associated orthogonal Lie-bracket algorithm are locally unstable except those
that map via g to the unique locally asymptotically stable equilibrium of the Lie-
bracket recursion. Observe that due to the monotonicity of (Uk) a locally unstable
equilibrium is also globally unstable.

THEOREM 6.2. Let Ho Imn where m >_ n satisfies Condition 6.1. Let
N Imn satisfy Condition 5.1. Let the time-step ck be given by

ak a(H),



NUMERICAL GRADIENT ALGORITHMS 899

where a is either the constant step-size selection (13) or the variable step-size selec-

tion scheme (17), on M(Ho). The recursion

T T NTVe{v Ho v,y+
Vk+ gke{VHU’N},

yo e

U0 O(n),

referred to as the associated orthogonal singular value algorithm, has the following
properties:

(i) Let (Vk, Uk) be a solution to the associated orthogonal singular value algo-
rithm, then both Vk and Uk remain orthogonal.

(ii) Let (V, U) IIVTHoU- Nil 2 be a map from O(m) O(n) to the set of
nonnegative reals I+, then (Vk, Uk) is strictly monotonically decreasing for every
k e N where {V[HoUk,N} 0 and {U[HVk, NT} = O. Moreover, fixed points of
the algorithm are characterised by matrix pairs (V, U) e O(m) O(n) such that

{VTHoU, N} O and {UTHTo V NT} O.

(iii) Let (Vk, Uk), k 1, 2,..., be a solution to the associated orthogonal singular
value algorithm, then (Vk, Uk) converges to a pair of orthogonal matrices (Y, Uo),
a fixed point of the algorithm.

(iv) All fixed points of the associated orthogonal singular value algorithm are
strictly unstable except those points (V,, U,) O(m) O(n) such that

 YHoU,
where E diag(a,... ,an) ]mn. Each such point (V,, U,) is locally exponentially
asymptotically stable and Ho v,TEu, is a singular value decomposition of Ho.

Proof. The proof of this theorem is analogous to the proof of Theorem 6.1.

7. Computational considerations. There are several issues involved in the
implementation of the Lie-bracket algorithm as a numerical tool that have not been
dealt with in the body of this paper. Design and implementation of efficient code
has not been considered and would depend heavily on the nature of the hardware on
which such a recursion would be run. As each iteration requires the calculation of
a time-step, an exponential and a k / 1 estimate, it is likely that it would be best
to consider applications in parallel processing environments. Certainly in a standard
computational environment the exponential calculation would limit the possible areas
of useful application of the algorithms proposed.

It is also possible to consider approximations of the Lie-bracket algorithm that
have good computational properties. For example, consider a (1,1) Pad approxima-
tion to the matrix exponential

eak [Hk,N] ,, 21 + ak [Hk, N]
2I a[Hk, g]

Such an approach has the advantage that, as [Hk, N] is skew-symmetric, the Pad
approximation will be orthogonal and will preserve the isospectral nature of the Lie-
bracket algorithm. Similarly, an (n, n) Pad approximation of the exponential for
any n will also be orthogonM. There are difficulties involved in obtaining direct
step-size selection schemes based on the Pad approximate Lie-bracket algorithms.
To guarantee that the potential is monotonic decreasing for such schemes, direct
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estimates of time-step must be chosen prohibitively small. A good heuristic choice
of a step-size selection scheme, however, can be made based on the selection schemes
given in this paper and simulations indicate that such an approach is viable.

Another approach is to take just the linear term from the Taylor expansion of

Hk+I Hk + Ck [Hk, [Hk, NIl,

as an algorithm on Inn. An algorithm such as this is similar in form to approx-
imating the curves generated by the Lie-bracket algorithm by straight lines. The
approximation will not retain the isospectral nature of the Lie-bracket recursion; how-
ever, it is computationally cheap. Furthermore, when the curvature of the manifold
M(Ho) is small, then it can be imagined that the linear algorithm would be a good
approximation to the Lie-bracket algorithm.

8. Conclusion. In this paper we have proposed two algorithms which, along
with their associated orthogonal algorithms, calculate respectively, the eigenvalue de-
composition of a symmetric matrix and the singular value decomposition of a general
matrix. Moreover, we have presented two suitable step-size selection schemes which
ensure that, for generic initial conditions, the algorithms proposed will converge ex-
ponentially fast to an asymptotically attractive fixed point.

In future work we hope to improve the theoretical understanding of the step-size
selection schemes necessary for the Lie-bracket algorithm as well as to investigate a
number of related applications of the double-bracket flow and its discretisation.

9. Appendix. The following discussion is a proof of Proposition 4.3.
Proof. By Lemma 4.1, A is the unique locally asymptotically stable equilibrium

point and it remains to show that A is exponentially attractive. Note that direct
linearisation techniques do not apply as the recursion will not necessarily be differ-
entiable at the equilibrium A. To proceed we set c 1/(411H011. IINII), the constant
time-step, and show that the Lie-bracket algorithm converges faster using the variable
step-size selection scheme than it does with the constant time-step c. The proof is
divided into a number of lemmas.

LEMMA 9.1. Let 0 < /3 < min(1, c), where c 1/(411H011. IlYll). Then there
exists a real number 51 such that for Hk e M(Ho) and II[H, NIl < 51, then

(33) 0 >/k(Hk,/3) >_ --3/3[l[Hk N][[ 2.

Proof. Consider the error term T2tr(NT2(-)) defined in Lemma 3.1 and recall
the estimation argument for Lemma 3.3. Employing a similar argument for T /3
gives

< ]lH0]l. I{NI[ (2I[[Hk’N]]I 1 2/3[[[Hk,
\ /

Thus, combining this with (9) it follows that

(34)
/k(Hk, ) >_ -2/311[H, N]ll 2 21321tr(Nn2(3))]

>_ --21311[Hk, N]II 2 211H011"
(e2o[I[H’N]II 1 2[3l[[Hk

It is well known that

2(ey-l-y)y2 fory--,0+,
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where "" indicates that two functions are asymptotically equal. This is equivalent to
saying that for any e > 0, there exists 5(e) > 0, such that for all y, where 5(e) > y > 0,
then 1-e < 2(e-l-y)/y2 < l+e. Thus, choosing e 1/4, it follows that for
5(1/4) > y > 0 then 2(ey- l-y) < 2y2. Recall that we are restricting < 1,
and thus, there exists some real number 51 > 0 such that if I[Hk, NIl < 51, then
2ll[Hk, N][ < 5(1/4), and hence 2(e2l’[Hk,Nl’’ 1- 2ll[Hk, N]ll) < 4211[Hk,N][I2.
Substituting this into (34) gives

(35) A(H,) _> -2Dll[Hk, N]II 2 4D21IHoll. IINI]. II[Hk, NIII e.
By additionally requiring that < c 1/(4[IHo]l. IIN]I) the lemma is proved. [:]

LEMMA 9.2. Let a*N be the step-size selection scheme given by Lemma 3.4, and
let E I+, such that C*N(Hk > / > 0 for all [Hk,N] = O. Define := min{-, c}
and choose + such that

0 < < min 1, c, (- 21IHol IINIIWe)

Then there exists a real number52 > 0 such that for any Hk e M(Ho) with
5

(36)

Proof. Recall that a was chosen as the first critical point of the function
/kpz(Hk,T). Thus /k(H,T) is monotonic decreasing on the interval (0, a).
The lower bound < , for a, must be less than a, and thus A(Hk,) >
A(Hk,). Substituting into the definition ofA gives

A5(Hk,) --2ll[Hk N]II 2

+ []H0l] (I]I[N, [Hk, Nllll (e2ll[H,N]ll_ 1 2l[[gk NIII)
-2ll[H, gill

+

As shown in Lemma 9.1, there exists 52 > 0, such that for any H M(Ho), where
]][Hk, Y]]] < 52, then 2 (e2II[H,y]lI 1 2zll[H,Y]II) < 472II[gk, N]ll 2. Using this
with the above inequality gives

a 5(H ,  ll[H , Y]ll (elIHoll. Ilgll 

Note that since < c, then the right-hand side of the last inequality is strictly
negative. Now as

2

then --3ZII[gk, Y]II 2 > 21[Hk, N]II 2 (21IH0l. ]INI]2 ) and the result follows.
The proof of Proposition 4.3 now follows by choosing

(aT) min c,
(W- 2l]Holl.



902 J.B. MOORE, R. E. MAHONEY, AND U. HELMKE

where min(, c). Thus, from Lemmas 9.1 and 9.2, choose 51 and 52 such that the
results hold and set 5 min {51,52}. Hence, combining the inequalities (33) and
(36) gives

(38)

for all Hk e M(Ho) with ]l[Hk, N]l] < 5.
Let D5 be some open set around A such that I][Hk, N]]] < 5. Note that 3 <_ c,

and thus from Lemma 4.2 the Lie-bracket algorithm equipped with aN as a
step-size selection scheme is exponentially stable. Finally, note that within Dh, and
due to (38), (Hk+l(a)) will always decrease faster than b(Hk+l(/3)), regardless of
Hk. Since A is exponentially attractive for the Lie-bracket algorithm equipped with
the selection scheme aN, it follows that A must also be exponentially attractive for
the same recursion equipped with the selection scheme a.
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A NOTE ON EXTREME CORRELATION MATRICES*

CHI-KWONG LI AND BIT-SHUN TAMS

Abstract. An n n complex Hermitian or real symmetric matrix is a correlation matrix if it
is positive semidefinite and all its diagonal entries equal one. The collection of all n n correlation
matrices forms a compact convex set. The extreme points of this convex set are called extreme
correlation matrices. In this note, elementary techniques are used to obtain a characterization of
extreme correlation matrices and a canonical form for correlation matrices. Using these results,
the authors deduce most of the existing results on this topic, simplify a construction of extreme
correlation matrices proposed by Grone, Pierce, and Watkins, and derive an efficient algorithm for
checking extreme correlation matrices.

Key words, correlation matrix, extreme point, perturbation, rank, linear span
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Let A/[ T/n or Sn, the real linear space of all n n Hermitian matrices and the
real linear space of all n n symmetric matrices, respectively. A positive semidefinite
matrix A (aij) E A/[ with all ann 1 is called a correlation matrix. The
term correlation matrix comes from statistics, where the entries of a real correlation
matrix occur as correlations between pairs of random variables. It is easy to see that
the collection of n n correlation matrices forms a compact convex set, and we are
interested in its extreme points. Recall that an element x in a convex set S is an
extreme point if x y + (1 t)z for y, z E S and 0 < t < 1 implies y z x, that
is, if x can be a convex combination of points of S in only trivial ways.

We shall call an extreme point of the set of correlation matrices an extreme
correlation matrix. This concept has been studied in [1], [4], and [2]. In those papers,
different approaches were used to determine all possible ranks of extreme correlation
matrices, to construct extreme correlation matrices of different ranks, and to give
simple characterizations of extreme correlation matrices in low dimensional cases. In
this note, we use an elementary approach to prove several results on the subject. Using
our results, one can deduce easily all of the main results in the three papers mentioned
above. Moreover, we simplify a construction of extreme correlation matrices proposed
in [2], derive an efficient algorithm for checking extreme correlation matrices, and
compare our condition with the one given in [4]. A question posed in [2] is also
discussed.

In the following we shall concentrate mainly on the Hermitian case, the slightly
more difficult case. For the real case, we also give some results that have no analogs
in the Hermitian case.

1. Basic results. Given an n n correlation matrix A, a nonzero Hermitian
matrix B is said to be a perturbation of A if A + tB are correlation matrices for some

*Received by the editors March 22, 1992; accepted for publication (in revised form) November
20, 1992.

Department of Mathematics, The College of William and Mary, Williamsburg, Virginia 23187

(ckl+/-@cs.m.edu). The work of this author was supported in part by National Science Foundation

grant DMS 91-00344.
:Department of Mathematics, Tamkang University, Tamsui, Taiwan 25137, Republic of China

(bsm0:t(C)tuntkul0.bitnet). The work of this author was supported by the National Science Council
of the Republic of China.

903



904 C.-K. LI AND B.-S. TAM

(and hence for all sufficiently small) t > 0. Clearly, A is not extreme if and only if A
has a perturbation. In fact, if A (A1 /A2)/2 for two distinct correlation matrices A1
and A2, then B :- (A- A2)/2 is such that A4-B are correlation matrices. We give a
characterization of perturbations of a given correlation matrix and a characterization
of extreme correlation matrices in the following theorem.

THEOREM 1. Let A E ’n be an n n correlation matrix of rank r. Suppose that
A XQX*, where X nr and Q Tlr. Then

(a) B 7-in is a perturbation of A if and only if all diagonal entries of B equal
zero and B XRX* for some nonzero R Tlr, and

(b) A is extreme if and only if

span(xjx 1

where xj is the j th column of X*.
Proof. With the notation of the theorem, one sees easily that rankX r and Q

is positive definite.
(a) Let B be a matrix with all diagonal entries equal to zero and of the form

XRX* for some nonzero R 7-/r. Since X is a matrix of full column rank, we have
rankXRX* rankR > 0. Thus B is nonzero. Since Q is positive definite, Q 4- R is
positive semidefinite for all sufficiently small t > 0. It follows that B is a perturbation
of A. Conversely, suppose B is a perturbation of A. Evidently, all diagonal entries
of B equal zero. Append to X an n (n- r) matrix Y such that the n n matrix
V (X[Y) is nonsingular. Clearly A can be expressed as V(Q On-r)V*. Write B
as VCV*, where C E T/n. Partition C in the same way as Q @ On-r. Since B is a
perturbation of A, (Q O,-r) 4- tC is positive semidefinite for some t > 0. It follows
that except for its (1, 1) block, which we denote by R, the blocks of C are all zero.
Hence B is of the form XRX*, with 0

(b) Since A is not extreme if and only if it has a perturbation, by part (a) one
sees that A is extreme if and only if for any R ?-/r, R 0 whenever all diagonal
entries of XRX* equal zero. In terms of the usual inner product on 7-/r defined
by (X, Y/ tr(XY), we can reformulate the last condition as" R 0 whenever
(R, xjx} 0 for all j, 1 <_ j _< n; or equivalently, span{xjx 1 _< j <_ n} lr.
Thus our result follows. [:]

Notice that for a given rank r positive semidefinite matrix A, there are two
standard ways to decompose it as XQX*. One way is to take Q to be a diagonal
matrix whose diagonal entries are all the nonzero eigenvalues of A and form the matrix
X whose columns are the corresponding eigenvectors. Another way is to find X such
that A XX*, i.e., to take Q It. In both cases, there are standard algorithms and
computer programs to do the decomposition.

From Theorem 1 and its real analog, one easily deduces the following result proved
in [1] (for the Hermitian case) and [2] (for the real case).

COROLLARY 2. If A is an n x n extreme Hermitian (respectively, real symmetric)
correlation matrix of rank r, then r2 <_ n (respectively, r(r + 1) _< 2n).

In [4] and [2] it is shown that if r satisfies the inequality in the corollary, then
there exists a rank r extreme correlation matrix. One can verify the constructions of
extreme correlation matrices in those papers using our Theorem 1. We shall suggest
a construction after proving Theorem 3. To state the result, we need the following
definition and notation. A matrix is a (real) generalized permutation matrix if it is a

unitary (respectively, real orthogonal) matrix with exactly one nonzero entry in each
row and each column. Denote by Jr,s the r s matrix all of whose entries equal 1.
For simplicity we use Jr to represent Jr,r.
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THEOREM 3. Let A E ’n. Then A is a correlation matrix if and only if there
exists a generalized permutation matrix P such that PAP* (Bst), app block matrix
with Bt btJk(),k(t), (k(1)+...+k(p) n), where (bt) e 7-tp is a correlation matrix
all of whose off-diagonal entries have moduli less than one. Furthermore, we have

(a) rankA rank (bst);
(b) A is extreme if and only if (bst) is extreme.

Proof. To prove the "only if" part, express A in the form XX*, where X Cnr
and r rank A. Denote the jth column of X* by xj. Since each diagonal entry of A
is equal to 1, each xj is a vector of unit length. Now permute the rows of X and then
multiply each row with a suitable scalar of absolute value one so that rows of X that
differ by unit multiples are grouped together and become equal. The resulting effect
on X is equivalent to applying a generalized permutation similarity to A. Since the
inner product between any two linearly independent unit vectors always has modulus
less than one, A is transformed to the required form. That (bst) is a correlation matrix
follows from the observation that it is a principal submatrix of A of the required form.

To prove the "If" part, suppose A (Bst) as described in the theorem. It is clear
that A 7-/n and its main diagonal entries are all equal to one. Note that we can
write Jk(s),k(t) aS k(s) where j denotes the j x 1 vector of all l’s. If xj (k(j)

k(t),
for j 1,..., p, then by direct calculations, the value of the quadratic form of A at
x with x* (x,... ,x,) is equal to the value of the quadratic form of (bst) 7-p at

(ek(1)Xl,.. k(p)Xp) and so is nonnegative.

It is not difficult to show that rank A rank (bst). That A is extreme if and only
if (bst) is extreme follows readily from Theorem 1. [:]

Notice that the real analog of Theorem 3 also holds. To obtain the statement
and the proof for the real case, one only needs to replace T/n by Sn, generalized
permutation matrices by real generalized permutation matrices, complex scalars by
real scalars, etc.

Notice that the matrix (Bst) in Theorem 3 is a block Kronecker product of the
matrices (bt) and (Jk(),k(t)). We refer the readers to [3] and its references for the
definition and properties of this product.

2. A construction and an algorithm. There are at least two ways that The-
orem 3 can help to study extreme correlation matrices. First, it helps to reduce the
dimension of a problem under consideration. Second, if one can find an n n rank r
extreme correlation matrix, then one can use Theorem 3 to construct an rn rn rank
r extreme correlation matrices for any rn _> n. We illustrate the latter idea by de-
scribing a construction of extreme correlation matrices. (Note that this construction
is a modification of the one given in [2].)

2.1. Construction of extreme correlation matrices. By the preceding dis-
cussion, for a given r it suffices to construct an n n rank r extreme correlation matrix
for n r2 in the Hermitian case, and for n r(r + 1)/2 in the real case. Then one
can get an rn rn rank r extreme correlation matrix for any m >_ n. We shall again
use ej to denote the jth column of It.

For the Hermitian case, assume n r2. Set A XX* with X E Cn such that
the first r columns of X* form I, the next r(r- 1)/2 columns consist of vectors of the
form (es + et)/x/ with 1 _< s < t _< r, and the rest of the r(r- 1)/2 columns consist of
vectors of the form (e + iet)/v/-. Using Theorem 1, one verifies readily that A
is an extreme correlation matrix.

For the real case, assume n r(r + 1)/2. Let .2. t where ) is obtained
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from X constructed in the Hermitian case by deleting the last r(r- 1)/2 rows. Again
by Theorem 1, one can show easily that . E Sn is an extreme correlation matrix.

2.2. An algorithm for checking extreme correlation matrices. By Theo-
rems 1, 3 (and its proof), and Corollary 2, one derives readily the following algorithm
to determine whether a given Hermitian correlation matrix is extreme. A similar
algorithm also holds for the real case.

Step 1. Express A as XX*, where X (nr, r-- rankA.
Step 2. Form a matrix Y from the distinct (up to unit multiples) rows of X. Say

y (pr. (Then YY* is equal to the matrix (bst) as given in Theorem 3.)
Step 3. Determine rank Y. If rank Y r satisfies r2 > p, then A is not extreme.

Otherwise, proceed to Step 4.
Step 4. Determine the dimension of span{yjy 1 _< j _< p}, where yj is the jth

column of Y*. It is r2 if and only if A is extreme.

An efficient way to perform Step 4 is to construct a p r2 matrix F as follows. For
each j between 1 and p, the first r entries of the yAh row of F are
arranged in the natural order, and its remaining r2 -r entries Yjkjl,jkYjl, 1
k < <_ r (indexed by ordered pairs (k, 1), and with conjugate entries adjacent) are
arranged in the usual lexicographic order. Then rank F dim span{yjy 1 <_ j

_
p}.

Explanation. Consider the following real subspace of

W={(tl,...,tr2)t’tj e lR, j= l,...,r;

tr+2m-1 -r+2m, m 1,..., (r2 r)/2}.
and

Note that the real span of the row vectors of F is included in W, and is isomorphic
with the subspace of T/r spanned by {yjy 1 <_ j <_ p}. But any set of vectors
in W that is linearly independent over IR is also linearly independent over , so
rank F dim span{yjy 1 _< j _< p}.

Notice that the equivalent condition in [4] for an extreme correlation matrix can
also be deduced readily as follows. Denote by f the jth row of F. Note that the
vectors f,..., fp all lie in the (real) hyperplane {f (f,..., f2)t e W" -’i=1 fJ
1 } of W (since the row vectors of Y are of unit length, as YY* is a correlation matrix).
But this hyperplane does not contain the zero vector, so we have

dim span{fj 1 _< j _< p} 1 + dim span{fj fp" 1 <_ j <_ p- 1 }
1 + dim span{fj fj+ 1 <_ j <_ p 1 }.

Denote by DA the (p- 1) r2 matrix whose jth row is (fj fj+l) t. Then A is extreme
if and only if r2 dimspan{fj 1 <_ j <_ p}(= rank F) if and only if rank DA r2 1,
which is the condition given in [4]. (In [4] the matrix DA is obtained from the matrix
X instead of from Y. But this does not affect our argument.)

3. Further results. We first consider two results that are valid only for the real
case.

COROLLARY 4. Let A $, be a rank two correlation matrix. Suppose P is a real
generalized permutation matrix such that PAP is equal to (Bst), a p p block matrix
that satisfies the conditions as given in Theorem 3. Then A is eztreme if and only if
p>_3.

Proof. "Only if" part. Since rank A rank(bst), p cannot be 1. If p 2, then
(bst) is not extreme since it is nonsingular, and hence A is also not extreme according
to Theorem 3.
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"If" part. Suppose that A is not extreme. Since rank A 2, each (relative)
boundary point of the face (of the set of n n correlation matrices) generated by A
is a matrix of rank one. So there exist two rank one correlation matrices A1, A2 such
that A AA1 + (1 A)A2 for some A with 0 < A < 1. By applying a generalized
permutation similarity to A, we may assume that A1 J,, and

gk --Jk,n-k )A2 gk,n-k Jn-k

for some k between 1 and n- 1. But then we have

where a + (-1)(1- A) is of absolute value less than one. So in this case,
p=2. []

COROLLARY 5. A 3 3 real symmetric correlation matrix of rank two is extreme
if and only if its off-diagonal entries all have absolute values less than one.

Two remarks are in order. First, by Corollaries 4 and 5, one sees that a rank two
correlation matrix A E Sn is extreme if and only if A has a principal submatrix that
is an extreme 3 3 correlation matrix.

Second, the "if" parts of Corollaries 4 and 5 are both invalid in the Hermitian
case. Indeed, for any n >_ 2, if we take An to be the matrix (Jn + uu*)/2, where u
(1,#,..., #n-1)t, # a primitive nth root of unity, then A, is a nonextreme Hermitian
correlation matrix of rank two, all of whose off-diagonal entries have moduli less than
one.

By Theorem 1, we have the following observation for rank two correlation matrices
in

OBSERVATION. Suppose A XQX* 7-ln with X (2 and Q Tl2 is a rank
two correlation matrix. Let S be a 2 2 nonsingular submatrix of X*. Then A is
extreme if and only if there are two column vectors u (Ul, u2) and v (Vl, v2) of
the matrix S-1X*, such that lu2 and 1v2 are complex numbers that are not nonzero
real multiples of each other.

In the lemma in [2], it was shown that an equivalent condition for a real symmetric
correlation matrix to be extreme is that its nullspace is maximal among the nullspaces
of all correlation matrices. (The corresponding result for the Hermitian case also
holds.) Clearly another equivalent condition is that the range space of the matrix
is minimal among the range spaces of all correlation matrices. In [2] the authors
also posed the question of determining the structure of the nullspace of a correlation
matrix. Below we give an answer to the dual question of characterizing the linear
subspaces of ’ (also ]Rn) that can be the range space of a correlation matrix.

THEOREM 6. A subspace of (n (or IRn) is the range space of a correlation matrix

if and only if it has a basis (or a spanning set) {v,..., v} such that ’j= vj o vj

(1,..., 1) ]Rn, where-2 denotes the complex conjugate of the vector x, and x o y
denotes the Schur (Hadamard/entrywise) product of x and y.

Proof. Suppose W is the range space of the correlation matrix A. Let A XX*
with X ,,r, where r rankA. Then the columns of X form a basis for W that
satisfies the required properties.

Conversely, if W is a subspace that has a spanning set as described in the theorem,
then A XX*, where the columns of X E Cn are the vectors from the spanning
set, is the required correlation matrix. [:l
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COROLLARY 7. A subspace of (n (or ]Rn) i8 the nullspace of a correlation matrix

if and only if its orthogonal complement has a spanning set satisfying the condition in
Theorem 6.

Note added in proof. After the paper had been accepted for publication, the
authors found that a slight modification of the proof of Theorem 1 yields the following
result that covers [1, Thm. 3].

THEOREM 8. Under the hypotheses and notation of Theorem 1, the face of the
convex set of n n correlation matrices generated by A is of dimension

r2 dim span {xyx 1

_
j

_
n}.

Proof. It is clear that the dimension of the face generated by A is equal to the
dimension of the space generated by the perturbations of A. According to Theorem
l(a) (or its proof), a nonzero matrix is a perturbation of A if and only if it is of the
form XRX*, where X is n r and R is r r lying in the orthogonal complement of
span{xjx 1 _< j _< n}. Since X has full column rank, the mapping R - XRX* is a
linear isomorphism.

Acknowledgment. The authors wish to thank Dr. H.J. Woerdeman for drawing
their attention to this subject. Thanks are also due to Dr. R. Horn and the referees
for their helpful comments that improved our exposition.
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ON PRECONDITIONING FOR FINITE ELEMENT EQUATIONS ON
IRREGULAR GRIDS*

ALISON RAMAGEt AND ANDREW J. WATHEN

Abstract. Preconditioning methods are widely used in conjunction with the conjugate gradient
method for solving large sparse symmetric linear systems arising from the discretisation of selfadjoint
linear elliptic partial differential equations. Many different preconditioners have been proposed, and
they are generally analysed and compared using model problems: simple discretisations of Lapla-
cian operators on regular computational grids, generally in two space dimensions. For such model
problems there are highly competitive multigrid methods, and it is principally for geometrically
irregular (nonmodel) problems that the applicability and economy of preconditioned conjugate gra-
dient methods are most useful. This is particularly true for problems on irregular unstructured
three-dimensional grids.

This paper is concerned with the comparison of preconditioners for finite element discretisations of
three-dimensional selfadjoint elliptic problems on irregular and unstructured computational grids. It
is argued that simple preconditioners, which are inferior for regular grid problems in two dimensions,
are competitive for irregular grid problems in three dimensions.

Key words, finite elements, irregular grids, preconditioned conjugate gradients

AMS subject classifications. 65N30, 65F10, 65N50

1. Introduction. When faced with choosing a method for solving a partial dif-
ferential equation on an irregular domain, one possibility is certainly the finite ele-
ment method. This is a well established and widely used technique that has many
attractive approximation properties, e.g., [20]. As with other numerical methods for
solving partial differential equations, using the finite element method involves some
form of discretisation of the problem domain. A basic decision must therefore be
made: Should this be done in a regular or irregular way? It is true that problems
on oddly shaped domains can be tackled by using very fast methods on regular finite
element grids that are highly refined near irregular features or perhaps on a series of
superimposed regular grids. Nevertheless, practical problems may well be best mod-
elled using unstructured grids: for example, if irregular geometries are fitted exactly
they are often easier to deal with in terms of grid visualisation. Furthermore, an
irregular discretisation will frequently have the practical advantage of covering the
whole domain in a smaller number of elements than will a regular grid. In the light of
such observations, here we consider the topic of solving finite element equations with
particular reference to unstructured grids.

Applying the Galerkin finite element method to a second order selfadjoint elliptic
partial differential equation gives rise to a linear system

(1.1) Ax b,

where the real coefficient matrix A is symmetric, positive definite, and, in most prac-
tical applications, large and sparse. As the direct solution of such a system can be
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prohibitively expensive, one popular approach is to use the iterative preconditioned
conjugate gradient (PCG) method (see, e.g., Concus, Golub, and O’Leary [5]).

The construction of appropriate preconditioners for use with this method is a pop-
ular topic of current research and a wide range of preconditioners have been developed
that work very efficiently on regular grids, particularly in two dimensions (see, e.g., [3],
[8]). However, the effect on the performance of a preconditioner of using an irregular
finite element grid is one research area that is often neglected. In the literature, the
most common comparison of the performance of various preconditioners is on regular
grid problems in two dimensions, but results in such cases do not always translate to
irregular geometries (or three dimensions). Developing rigorous theory for irregular
problems has proved to be much more difficult than for analogous regular grids and,
as a result, many aspects of working with irregular finite element geometries are less
understood.

In this paper we adopt an algebraic representation of the finite element process
that has been used previously by the second author to derive various properties of
finite element matrices [25], [26]. Its general nature means that it can be particularly
helpful in the analysis of irregular grid problems. We begin by extending the work of
the second author to find easily computed eigenvalue bounds for a class of finite ele-
ment matrices on irregular grids. In addition, we obtain (weak) bounds on the interior
eigenvalues of a general finite element matrix. These can be useful for predicting the
rate of convergence of the PCG method (see, e.g., [18], [22]). In 3 we discuss asymp-
totic estimates for the work involved in implementing some preconditioning methods.
This introduces different considerations when choosing a preconditioner for problems
on three-dimensional irregular grids. Section 4 contains a result concerning the effect
of a certain class of element-based preconditioners on the matrix condition number,
which is again relevant to the rate of PCG convergence. Finally, we present a numer-
ical comparison of three PCG methods on some highly irregular three-dimensional
finite element grids.

2. Eigenvalue bounds. To analyse irregular grids we introduce an algebraic
representation of finite element matrices. Suppose that the finite element grid contains
elements e 1,..., E with Ve local unknowns on each element, giving a total of N
global unknowns. The Galerkin finite element coefficient matrix A can be written as

(2.1) A=LT[Ae]L,

where [Ae] represents an [E.Ve x E.Ve] block diagonal matrix whose [Vex Ve] diagonal
blocks are the element-calculated coefficient matrices. L is an [E.Ve x N] Boolean con-
nectivity matrix that contains all the necessary information about the grid structure
[26]. This notation applies to any grid regardless of irregularity and type of element
used, as all connectivity information is stored in the Boolean matrix L.

The rate of convergence of the PCG method depends on the eigenvalue distribu-
tion of the preconditioned coefficient matrix (see, e.g., [9], [18], [22]), and the standard
estimate for the number of iterations required to achieve a certain level of convergence
is usually given in terms of the matrix condition number. For a symmetric positive
definite matrix, this is the ratio of its largest eigenvalue to smallest eigenvalue. A
useful result of Wathen [25], then, is that if {Be} is any set of [Ve x Ve] symmetric
positive definite matrices and a preconditioner B is formed from

(2.2) B LT[Be]L,
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then the eigenvalues of the global matrix B-1A must satisfy

(2.3) min Amin(B-lAe) _< A(B-1A) _< max Amax(B-lAe),

where min and Area are the extreme eigenvalues of the preconditioned element matrix
B[1Ae.

The bounds given by (2.3) apply to any grid regardless of irregularity. The assem-
bly notation (2.1) has been used by the second author to give eigenvalue bounds for
diagonal scaling of mass and stiffness matrices using various elements on regular grids
in two and three dimensions [24], [25]. Here we extend this analysis to irregular grids
using the example of a two-dimensional grid of linear triangles with preconditioner
B diagA. By examining the diagonally scaled element matrices and applying (2.3),
we can obtain global eigenvalue bounds for both the finite element mass and stiffness
matrices.

For an arbitrary triangle of area Se with angles 0 and opposite sides of length s
(i 1, 2 or 3), respectively, the element mass matrix is

(2.4) Me=- 1 2 1
1 1 2

(see, e.g., [3, p. 259]). When diagonal scaling is applied, the eigenvalues of DjIMc
(where De diagMe) are 1/2, 1/2, and 2, which means that the eigenvalues of the
diagonally scaled global mass matrix all lie in the interval [1/2, 2].

The element stiffness matrix is

1 [ cot 02 + cot 03 cot 93 cot 02 1
Ke [ cot 03 cot 01 + cot 03 cot 01

cot 02 cot 01 cot 91 -[- cot 02

(see, e.g., [3, p. 415]). The eigenvalues of Dj1Ke (where De diagKe) can be found
algebraically to be

(2.6) 3 1 St sin 20i 1/2
+ 9-8 2 +sin20

8

(see the Appendix). The minimum eigenvalue (and hence the lower bound in (2.3))
will always be zero because the element stiffness matrix is singular. For an upper
bound, the maximum value of (2.6) occurs on the triangle in the grid that contains the
largest angle. This means that for any finite element grid, a global upper eigenvalue
bound can be found from (2.3) by identifying the triangle that contains the largest
angle and finding the appropriate element matrix eigenvalues. In the regular grid case
this is trivial as all elements (and hence all element matrices) are the same. It is not
clear how easy it would be to identify such an element on a very large irregular grid.
Note that the minimum value of the maximum eigenvalue in (2.6) occurs when the
grid is "most regular"; that is, when all triangles are equilateral (the eigenvalues will
be 0, , and -). This result reflects the intuitive view that it is desirable to distort
the elements of any grid as little as possible, which is the philosophy behind Delaunay
triangularisation (see, e.g., [13]). It is also compatible with the angle condition for
triangles given by Strang and Fix [20, p. 106] to guarantee the uniform finite element
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approximation of derivatives. Because of the general nature of (2.3), analogous results
could be derived for many other element types.

In addition to this estimate of the extreme eigenvalues, we can obtain bounds on
the interior eigeavalues of a general finite element matrix using the above notation
with the Catchy Interlace Theorem (see, e.g., [17]). We recall that we have chosen
the element matrices Bc to be symmetric and positive definite for e 1,..., E. Since
the [E.Vc N] matrix L is always of full rank, we can extend L to be an [E.V E.V]
nonsingular matrix [LIJ with LT[B]J 0. Thus we can define

AT A2 jL

where A1 LT[A]J and A2 jT[Ac]J and

0 B2 jk

where B2 JT[Be]J is symmetric and positive definite.
Now,

(2.9) (- #) is singular v [LIj]T([A]- #[B])[LIJ is singular,

which implies that the eigenvalues of/-1 are precisely the eigenvalues of the element
preconditioned matrices Bj1A,e 1,...,E. That is, the eigenvalues #1 _< <_
PE.V say, of B-1A are all obtainable from simple calculations on the elements. Al-
though the number of elements may be large, each calculation will involve finding the
eigenvalues of a V Vc matrix where, in practice, Vc is usually small. Thus the com-
putational complexity of such an operation would be linear in the number of elements.
Furthermore, such independent calculations are obviously suited to parallel compu-
tation. On a regular grid, all element matrices will be identical so the calculation of
the #e in this case would be trivial. Now

(2.10) -1/2./-1/2 [ B-/2AB-1/2

B/2ATI B-1/2
B-1/2A1B1/2 ] N,
BI/2A2B1/2 E.Vc N,

and hence the Catchy Interlace Theorem [17] can be directly applied to give

(2.11) #i -- Ai <-- iTE.V-N
for i 1,... ,N, where 1 <_ <_ N are the eigenvalues of B-1A.

The eigenvalue bounds (2.11) are usually weak since N is often significantly less
than E.Ve. Nevertheless, the result has some useful and obvious applications. For
example, on an irregular grid with a small number, p say, of "bad" (highly distorted)
elements that give rise to p relatively small eigenvalues #i << #p+l for i 1,...,p,
(2.11) implies that there are at most p relatively small eigenvalues of the precondi-
tioned global matrix B-1A.

3. Asymptotic work estimates. As stated above, many preconditioners that
are used with the PCG method have attractive theoretical convergence estimates for
two-dimensional second order elliptic problems [11], [27]. However, extension of these
and other methods to three dimensions can involve difficulties with regard to practical
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implementation, although theoretical convergence estimates may still be good. On
irregular grids in particular, the data structures used by these methods can become
increasingly complicated. This and other such considerations when solving very large
problems on irregular grids raise an important question: How much work is it practical
to do before the gain of accelerated conjugate gradient convergence is outweighed by
the amount of work involved in constructing the preconditioner itself?

Consider a second order partial differential equation in three dimensions. By
solving such a problem on a regular grid with n nodes in each coordinate direction
a distance h apart, giving N n3 unknowns in total, it is possible to calculate an
asymptotic order estimate for the amount of work involved in implementing a certain
preconditioner as N cx (or equivalently as h - 0). We note that the condition
number of the finite element stiffness matrix with appropriate boundary conditions
is O(h-2) O(N2/3) in three dimensions [20]. Given that there are O(N) floating
point operations (flops) per PCG iteration and assuming that the total number of
iterations required is proportional to the square root of the condition number of the
preconditioned matrix [3], using PCG with diagonal scaling (which does not alter the
asymptotic order of the condition number) has asymptotic complexity O(N4/). Sim-
ilarly, any preconditioner that reduces the asymptotic order of the condition number
to O(h-1) will have complexity 0(N7/6). For a large problem with, for example,
N 106 unknowns, N4/3 10N7/6. That is, the more complex preconditioner is
even at first glance only ten times better than diagonal scaling. In addition, the
constants that are hidden in the order notation in these work estimates can have a
significant influence. Thus the effect on these constants of aspects of implementation
and architecture, work per iteration, and internal eigenvalue distribution is consider-
ably more pronounced for large three-dimensional problems than for those in lower
dimensions.

In practice it is often hard to quantify how difficult it is to implement a partic-
ular preconditioner. As stated above, diagonal scaling does not alter the asymptotic
order of the condition number. Its benefits lie in the fact that for any particular
case it will reduce the condition number by a constant factor [7]. One example of
a method that reduces the asymptotic order of the finite element matrix condition
number to O(h-) is the popular modified incomplete Cholesky conjugate gradient
(MICCG(0)) method of Gustafsson [11]. However, a major drawback of using such a
preconditioning for three-dimensional irregular problems is that often the coefficient
matrix is not an M-matrix and so existence and stability of the factorisation is not
guaranteed [15]. Other sparse factorisation methods such as the Dupont, Kendall,
and Rachford (DKR) method [6], the strongly implicit procedure (SIP) [19] and the
consistent sparse factorization (CSF) method [4] cannot be used in three dimensions.
Many of the attractive vector and parallel capabilities of polynomial preconditioners
[1] are lost when using irregular grids. Hierarchical preconditioning gives an asymp-
totic condition number of O(lnN)2 for triangular elements in two dimensions [27]
and Ong obtains the analogous but less attractive result of O(NlnN) using tetra-
hedral elements in three dimensions [16]. She does, however, go on to observe that
using such preconditioners in three dimensions is impractical on irregular grids. These
observations reinforce the point that standard comparisons of preconditioners that in-
volve only condition number estimates are not always appropriate for large irregular
three-dimensional problems.

4. Element-based preconditioners. One common feature of many precondi-
tioners is that they take little or no account of the very specific structure of finite
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element matrices. It is natural in a finite element context to look for some sort of
preconditoning that can be applied to each individual element. The simplest method
that can be considered in this way is diagonal scaling, that is, set

(4.1) B LT[diagAe]L diagA

(see [26]). Using this preconditioning leaves the asymptotic matrix condition number
as O(h-2), but has the advantage that it will reduce the condition number by a
constant factor and is extremely simple to implement. We now show that it is one
of a large class of element-based preconditioners that does not affect the asymptotic
order of the condition number.

Suppose we have a preconditioner B of the form (2.2), where all of the eigenvalues
of each element matrix Be are of the same order as the discretisation parameter h
tends to zero; that is,

(4.2) clhp <_ )min(Be) C2hp and c3hp <_ )max(Be)

_
c4hp,

where p E . Throughout the following ci,i 1,2,... represents nonzero positive
constants. Result (2.3) can be used to deduce an inequality analogous to (4.2) for the
global case, that is,

(4.3) Ch.hp <_ ,(B) <_ c6 hp.

The quantity of interest from our point of view is (B-1A). Because B-1A is sym-
metric with respect to the A-inner product, the ratio ,kmax(B-1A)/,min(B-iA) gives
the A-condition number rather than the usual (I-) condition number [2]. To bound
the/-condition number we use the general definition

(4.4) t(B-IA) =ll B-A IIII A-B
to give

(4.5) (B-A) <11B-1 IIII A Illl A- IIII B II--- n(A)(B).
From (4.3), (B) must be independent of h so

(4.6) n(B-A)

Furthermore,

xTx XTAx
(4.7) ,max(-lA) max

x=O xTBx xTx

and so

(4.8)
T

,max(B-A) > VmaxVmax &max(A) Ql,max(A),T BVmaxVmax

where Vnax is the eigenvector corresponding to Amx(A). Similarly,

(4.9) /min(B-1A)<_
T

VminVmin min(A) Q2)min(A)TVminBVmin
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where Vmin is the eigenvector corresponding to ,min(A). For any natural matrix norm,

(4.10) [A(M) [<-II M

where M is an arbitrary square matrix (e.g., [23, p. 101) so, from (4.8),

(4.11) Ql,max(n) -<11B-1A I1"
Now, from (4.9),

(4.12) )min(g-ln)

_
l2min(A),

so

1
(4.13) ,)’max’A-ln’ _< Q2min(A).

Using result (4.10) and inverting both sides gives

1
(4.14) A-1B I1>-

,A
’A’’

hence

(4.15) II/3-1AII B-1A II[I A-1B Q2.Xmin(A)"

Finally, from (4.11),

(4.16) B-1A I111 A-1B I1>
Q1Amax(A)
Q2Amin(A)

Again using assumption (4.2) (and the corresponding global result (4.3)) the quotients
Q1 and Q2 involving B in (4.8) and (4.9) are of the same order as h 0 and so

(4.17) (B-1A) > csn(A).

Inequalities (4.6) and (4.17) give rise to the result that if the element matrices Be
satisfy (4.2), then

(4.18) (B-1A) c9(A).

Thus the order of the condition number of the coefficient matrix can never be improved
by applying any element-based preconditioner of this form. Note that result (4.18)
applies to diagonal scaling and is consistent with what we have already observed,
namely, that in such a case the asymptotic order of the condition number of the
global finite element stiffness matrix is unchanged by preconditioning.

It is appropriate to mention here the element-by-element (EBE) method of Hughes,
Levit, and Winget [12]. Although this method does not fit exactly into the above cat-
egory, analysis of the condition number indicates that EBE preconditioning is also
’spectrally equivalent to diagonal scaling [14], [26] and so will not affect the asymp-
totic condition number estimate. Numerical experiments in the above papers show
that in practice the constants in the estimates are significantly better for EBE pre-
conditioning than those for diagonal scaling on regular grids. The performance of the
two methods on some irregular grids is compared in 5.
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TABLE 1
ARDENT TITAN CPU times: Problem 1.

125

lO0O

3375

8000

DSCG
ELCG
SFCG
DSCG
ELCG
SFCG
DSCG
ELCG
SFCG
DSCG
ELCG
SFCG

DSCG
8000 ELCG

SFCG

V=OFF
k Setup
81
38 0.26
51 O.O7
87
38 0.21
59 4.92
337
134 0.68
221 58.93
379
147 1.73
234 343.43

Solve
1.39
1.10
0.21
’21.49’
14.93
3.40

324.07’
188.40
51.11
885.25’
500.46
137.96

Random initial
373 873:33
150 1.72 510.11
239 344.87 141.8

V-ON
Setup Solve

0.58
0.01 0.98
0.08 0.21

5.75
0.14 10.52
5.18 2.68

83.40
0.54 129.43
60.80 42.05

230.07
.l.32 343.15
351.28 115.69
guess

227.93
1.30 351.55

352.36 118.44

5. Numerical experiments. In the past it has been common practice to use
test problems on regular finite element grids as a yardstick for comparing the per-
formance of various preconditioners [1], [10], [16]. However, as stated above, the
performance of some preconditioning methods can deteriorate rapidly when the grids
are distorted, and so this approach may not always give a fair comparison. Here we
compare methods using two types of unstructured grid: the set of grids in Problem 1
have been randomly constructed to be extremely irregular, while the grid in Problem
2 was constructed to model a particular irregular physical geometry in a practical
situation.

Problem 1. We look for a solution to Laplace’s equation as the steady state of the
related parabolic partial differential equation

Ou V2u= 0 in
Ot

u
0 on 5Ft

On

for domain t with boundary rift and unit normal n. Using the Galerkin finite element
method with fully implicit backward difference timestepping leads to a matrix system

+ K u+ -’-U
where M and K are the finite element mass and stiffness matrices and un and Un+l
are vectors of the solution values at timesteps n and n + 1, respectively. This system
has a symmetric positive definite coefficient matrix and was solved using the PCG
method with various preconditioners, terminating in each case when the Euclidean
norm of the residual vector, rn b- Aun, was less than 10-4. All calculations
were done in double precision FORTRAN on an ARDENT TITAN machine with unit
roundoff of 10-15.

The results in Table 1 come from irregular three-dimensional grids of linear tetra-
hedra (with four unknowns per element). The coordinates of the global unknowns
were generated using a random number generator (with appropriate scaling) and the
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TABLE 2
Irregular grid specifications: Problem 1.

Grid
N 125
E 671
NZ 1775

NZmi 7
NZ;x 4
Pmin 5

Grid 2 Grid 3
1000 3375
6354 22181
i5820 54655
6 7
33 37
5 8

Pmax 42 56 57
Xmin 35.224 64.69 3.378
Xmax 66.377 71.379 ’66.527
Ymin 18.791 63.285 0.835’
Ymax 66.513 7’1.380 6’6.’527
Zmin 24.992 64.384 0.271
Zmax 66.444 71.’378 6.528

Grid 4
8000
52992’
130172

204
4
388

"3.302
83.472
.905
66.528
10.901
66528

convex hull of these points was then tetrahedralised using a FORTRAN grid genera-
tion code [21]. Some specifications of these grids are given in Table 2, including the
maximum and minimum number of elements round each node (P) and the maximum
and minimum number of nonzeros in any one row of the assembled matrix (NZ). The
extreme values of the x, y, and z coordinates are also listed. The fact that some
nodes in the grid are surrounded by a very large number of elements suggests that
the angles in these elements will be extremely small, indicating that the tetrahedra
are badly distorted. Tetrahedral elements are in reality not particularly practicM,
especially from the point of view of element-based preconditioners, as the number of
elements is much larger than the number of unknowns. They are used here because
it is relatively easy to generate very irregular grids with such elements.

We compare the performance of three preconditioning methods:
DSCG, diagonal scaling;
ELCG, element-by-element preconditioning [12];
SFCG, sparse factorisation based on MICCG(0) [11] but taking the absolute

value of the pivot at each stage to ensure stability (as the coefficient matrix is not an
M-matrix).
All CPU times quoted are for the iterative solver only and do not include matrix setup
times. Results are given for each program in scalar (V OFF) and vector (V ON) mode.
As the time scales involved in this type of problem can be large, it was appropriate to
use timesteps of variable length in the matrix system (5.2). This, however, introduced
an unfair imbalance as the sparse factorisation had to be recalculated at every time-
step. To remove this bias, a large timestep was chosen (St 105) so that the steady
state in the runs of Table 1 was achieved in one time step. The setup times (in CPU
seconds) do not refer to the time taken to construct the finite element equations; this
has been omitted in all cases. Instead they give an indication of the amount of work
that must be done once (or once per timestep for a variable St) before the actual
iterative solution can proceed. The setup steps involved for each method are:

DSCG, setup time negligible;
ELCG, crout factorisation of element matrices;
SFCG, sparse factorisation of assembled coefficient matrix.

The solve times are the number of CPU seconds taken for the k iterations required
to achieve convergence.

For the first four cases shown, the initial condition chosen was u0 0 (x+y+ z),
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TABLE 3
ARDENT TITAN CPU times: Problem 2.

9422 ELCG 102 4.89 523.97 3.59
1768.42SFCG 15 17370 2337 20.76

where x, y, and z are the coordinates of the node points. To see if this choice of a
"smooth" starting vector affected the speed of convergence, the experiments were
repeated on the largest grid with a random initial vector. However, the choice of
starting vector did not seem to have a significant effect on the overall results.

The results of these numerical experiments give a rough idea of the comparative
performance of the three methods. The idea of these tests was to use each method
in a straightforward way. In particular, the factorisation time for SFCG may well
be improved by using a more sophisticated implementation. It is still, however, true
that the overall solution time for SFCG will be dominated by the factorisation step
itself. This re-emphasises the point that for large and very irregular three-dimensional
problems, implementation plays a very important role.

An equivalent set to the results in Table 1 from a series of regular grid problems
would show obvious relationships between the iteration counts and total number of
unknowns N (usually expressed in terms of the discretisation parameter h). Such
specific conclusions cannot be drawn in the irregular case. Nevertheless, some im-
portant observations can be made. In terms of iteration counts, ELCG is the most
efficient. This supports the remarks of 4 concerning the relative performance of the
EBE method and diagonal scaling, namely, that although the h-dependence in the
asymptotic estimates of their convergence rates is the same, that of the latter will
contain a smaller constant [26]. Notice, however, the effect of vectorisation, which
gives a dramatic improvement in the performance of DSCG. This means that despite
taking more iterations, it is faster than ELCG in its vectorised form. In fact, for the
largest of these particular problems, it is vectorised diagonal scaling which is the best
technique to use in terms of total CPU time.

Problem 2. We look for a solution to Poisson’s equation

V2U--- 1 in
(.)

u 0 on 6gt

for domain f with boundary 5t. Using the Galerkin finite element method leads to a

system with a symmetric positive definite coefficient matrix. This was solved using the
PCG method with various preconditioners, this time terminating in each case when
the Euclidean norm of the residual vector, rn b- AUn, was less than 10-6. All
calculations were again done in double precision FORTRAN on an ARDENT TITAN
machine.

The results in Table 3 come from the irregular three-dimensional grid of serendip-
ity bricks (with twenty unknowns per element) shown in Fig. 1. This grid was gen-
erated for a commercial simulation by the British company Nuclear Electric plc and
some of its specifications are given in Table 4.

We compare the performance of the same three preconditioning methods described
above, again quoting CPU times for the iterative solver only. The initial condition
chosen was u0 0.
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TABLE 4
Irregular grid specifications: Problem 2.

N
E
NZ

JZmin
NZmax
Pmin
Pmax

9422
2868

459516
16
119
3
12

FIG. 1.

The major difference between these results and those from Problem 1 seems to
be a deterioration in the performance of ELCG. The reason for this may be related to
the fact that the grid contains elements of extreme aspect ratios: the relation between
element aspect ratio and the EBE method was studied in [14]. For DSCG and SFCG,
however, the same behaviour pattern is seen; that is, although SFCG performs well,
the time taken to perform the actual factorisation is prohibitive. Vectorisation, while
improving the performance of DSCG, does not have the same marked effect as in
Problem 1. This is due to a difference in implementation. In this problem, the value
of u is fixed at certain nodes by boundary conditions. This means that the number
of unknowns in the matrix system is slightly less than the total number of nodes on
the original grid, and so not all the elements have the same number of unknowns. As
a result, a different storage strategy has been used for the coefficient matrix which
makes some parts of the code less vectorisable.

The above experiments show that it is difficult to make generalisations when
lealing with large irregular grids. In practice, the final choice of solution technique
in any particular case will depend both on the type of problem to be solved and the
hardware to be used in the solution process. It is however important to appreciate that
using very large irregular three-dimensional grids may involve a different philosophical
approach.
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Appendix A. The finite element stiffness matrix of any linear triangle can be
expressed entirely in terms of the coordinates of the three node points. To find the
eigenvalues for an arbitrary linear triangle, it is sufficient to consider a triangle that
has been translated to fix one node at the origin and rotated to fix one side along the
y-axis, i.e., a triangle with coordinates (xl,yl),(O, y2),(O, 0).

In this case the stiffness matrix is

-b c b- c(A.1) K- 4S b- b-c a-2b+c

where Se is the element area, a y, b yly2, and c x2 + y2. The eigenvalues of
DjIKe (where De is the diagonal of Ke) can be found algebraically and the results
can be simplified by expressing a, b, and c in terms of the angles 0i with opposite
sides of length si (i 1, 2, or 3). This gives precisely the eigenvalues in (2.6), namely,

(A.2) a 1 S sin 20i 1/:2
+ 9-8 2 +sin20i

8

It is clear that the maximum and minimum values of (A.2) both occur at the
minimum value of

(A.3) S sin 20
2 + sin20i"

8

As S, 1/2sjsksinOi (where # j # k), using the cosine rule

1 2(A.4) sjsk cos0i (s92. + s si)

reduces (A.3) to

r|sinOi|
2

2 2(A.5) (, + + 4).
L si

Note that (from the sine rule) this is independent of the index.
By expressing the area S in terms of the semiperimeter -(si + sj + sk), we can

substitute for sin 0 in (A.5) to give

1 (+ +
(A.) ( + + )( + ,)( + )(, + ) o

oj k

As this formula is symmetric, we arbitrarily choose sk to be the longest side and write

(A.7) si A, sy
8k 8k

SO (A.6) becomes

1
(A.S) ( +, + 1)(, + 1 )( + 1 ,)( + ,- 1) ( + " + )

A22
From the obvious inequalities

(A.9) A+I, +IA,
it is clear that (A.8) will hve a minimum of zero precisely when one of these holds
as an equality; that is, when the triangle involved is a straight line. Thus (A.3) will
tend to a minimum as the angle tends towards .
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THE REVERSE BORDERING METHOD*

C. BREZINSKIi, M. MORANDI CECCHIt, AND M. REDIVO-ZAGLIA

Abstract. The bordering method allows recursive computation of the solution of a system of
linear equations by adding one new row and one new column at each step of the procedure. When
some of the intermediate systems are nearly singular, it is possible, by the block bordering method,
to add several new rows and columns simultaneously. However, in that case, the solutions of some
of the intermediate systems are not computed. The reverse bordering method allows computation
of the solutions of these systems afterwards. Such a procedure has many applications in numerical
analysis, that include orthogonal polynomials, Pad6 approximation, and the progressive forms of
extrapolation processes.
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1. Introduction. The bordering method is a recursive method for computing
the solution of a system of linear equations. It consists, at each step, of adding one
new row and one new column to the previous matrix and using the previous solution
to compute the new one. This method can only be used if some quantity is differ-
ent from zero at each step. If, at some steps, this quantity is zero (or nearly zero),
then it is possible to add several new rows and columns to the matrix simultaneously.
However, if this situation occurs, the solutions of the intermediate systems that have
been skipped are not computed. This is a drawback of the method since, in some
applications, the solutions of all the intermediate systems must be known (if non-

singular). In this paper we propose the reverse bordering method for avoiding this
case. The procedure is, after jumping over the near-singular intermediate systems and
computing the solution of the first nonnear-singular system, to go back by decreasing
the dimension of the matrix (that is, by deleting the last row and the last column)
and using the solution of the previous larger system for computing the solutions of
the smaller systems that have been skipped. Such a procedure has applications in the
recursive computation of orthogonal polynomials, in Pad approximation, and in the
implementation of the progressive forms of extrapolation algorithms.

2. Bordering method. When we must solve a system of linear equations that
is obtained by adding one new equation and one new unknown to a given system
or, in other words, when the matrix of the system has been bordered by a new row
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THE REVERSE BORDERING METHOD 923

and a new column, the bordering method can be used to save computational time.
This method is well known in numerical analysis and permits us to solve a system
recursively by using the solution of the previous system (see, Faddeeva [7]). Let us
first explain this method.

Let Ak be a regular square matrix of dimension k and dk a vector of dimension
k. Let zk be the solution of the system

Akzk dk.

Now let uk be a column vector of dimension k, Vk a row vector of dimension k,
and ak a scalar. We consider the bordered matrix Ak+l of dimension k + 1 given by

Ak uk )Ak+l
vk ak

We have

-1 I A-lwAlukvkAl/k --Aluk/k )Ak+ --vkA- /t 1/k

with a a vaA-u.
Let fk be a scalar and Zk+l be the solution of the bordered system

Ak+lZk+l dk+l fk
Then we have

fk VkZk lUk
1 ).

This formula gives the solution of the bordered system in terms of the solution of
the previous system.

To avoid computation and storage of A-1, we can set qk -A-luk and compute
it recursively by the same bordering method. In such a way, we obtain the following
variant of the bordering method that needs the storage of Ak instead of that of A-1

for the original procedure.
Let q(k) be the solution of the system

Aq(k) --u(),

where u(i) is the vector formed by the first components of Uk. Thus u u and

q) q for M1 i. A is the matrix of dimension formed by the first rows and
columns of Ak.

We have, since A is a number,

q(k1)
(1)

k 0 a + vq) 1 1,...,k- 1,
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where uk,i+l is the (i + 1)th component of uk.
Then

(k) _A-iq qk

thus allowing us to use the previous formula for computing Zk+ without knowledge
of A-; [3] and [4] contain the subroutine BORDER performing this variant of the
bordering method.

3. Block bordering method. The bordering method can be applied only if

k : 0 for all k. When this is not the case, we can use a block bordering procedure
(see Brezinski, Redivo-Zaglia, and Sadok [5]).

We now assume the following dimensions for the matrices involved in the process

Ak nk nk,

Uk rtk Pk,

Vk Pk nk,

ak Pk Pk

and finally

Ak+l nk+l nk+l

with nk+l --nk nu Pk.
We set

k ak Vk A- uk

and we have

A- ( A- -t--I- uk lvkAvkA- -A-luk/-lk )Z[i

fk is now a vector with Pk components and we obtain

Zk+l ( ;k ) -t- ( -A-l’ttk )Ik 1 (fk VkZk)

where Ik is the identity matrix of dimension Pk.
The subroutine BLBORD given in [4] performs this block bordering method.
Remark. We note that the subroutine BLBORD only works if all 1, which can

always be made true. It is also possible to add the instruction A(1,1)=I.0D0/A(1,1)
after the instruction Z(1)=D(1)/A(1,1).

Again it is possible to avoid computation and storage of A-1 by setting qk

-A-uk (whose dimension is nk pk) and computing it recursively by the bordering
method in the following way.

Let u(ki) be the ni x pk matrix formed by the first ni rows of uk for <_ k, ni <_ nk.

We have ui)
ui. Let q(ki) be the ni x pk matrix satisfying 2tiqkA(i) _u() for i _< k.

We have q}i) qi.

We set

q(kl) _A-I uk(1)



THE REVERSE BORDERING METHOD 925

and then we have

with i ai + vq) and uk,+l the matrix formed by the rows n + 1,..., ni + p of
tk

Instead of using the block bordering method when k is zero for some k, it is
possible to use a pivoting strategy. If, for some k, /k 0, then the last row of the
matrix can be interchanged with the next one and so on until some/k # 0 has been
obtained. Such a procedure is not adapted when the solutions of the intermediate
systems must be computed. It can be used if only the last solution is needed and if
the solutions of the intermediate systems are not required.

Obviously, the block bordering method can also be used even if the matrix/k is
nonsingular and thus, at each step, an arbitrary number of new rows and columns can
be added. In particular, when some of the intermediate systems are almost singular,
such a strategy allows us to jump over them and thus improve the numerical stability
and precision of the solutions of the subsequent systems. However, in such a case the
solutions of the systems that have been skipped have not been computed. The reverse
bordering method that we now present allows us to come back afterwards to these
systems by deleting rows and columns one by one and obtain their solutions from the
solution of the larger system.

4. Reverse bordering method. Let us now look at the possibility of finding
-1A- from Ak+l.

-1 of dimension under the formWe write the inverse matrix At+l nk+l

nk Pk

Ak+ Vk ak ,’

The matrix Ak+- will also be partitioned by blocks with the same corresponding
dimensions. Thus Ak will be the square matrix of dimension nk nk+ --Pk obtained
by suppressing the last p rows and columns of Ak+l.

From the block bordering method we know that

Because

--1ak k

then

Uk ak Uk

and thus
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Thus using this in the expression of A gives us

/--1(1) A- Ak uk ak Vk
This formula, which corresponds to the Schur complement, was already given by
Duncan in 1944 [6]. The following relations also hold.

det A-1 det Ak+l/det a,
det Ak+l det Ak det k.

Moreover, from the Sherman-Morrison formula (see [8] for review), we have

A’k (Ak Uk a- Vk)-
A (A ua-1 v)- t--1 I--1 1--1 I--1Ak + Ak uk k vk Ak

with

This is another proof of (1).
From these formulm, we obtain

( ,-1 ,)-1At A’-l + u a- vk A uk a vk

(Ak--uak lvk)-A’k A- + u’k a’k Vk

Now we want to compute the solution zk of the previous system

Akzk dk

starting from the solution zk+ of the bordered system

Ak+ Zk+ dk+ fk p

As previously stated

Zk+ ( Ztk ) ( Zok ) _. ( --Al?-tk "ck Ik / - (fk VZk

a
Thus

ck a’kft akvkzk,

that is,

I-- I--1
at lck fk VkZk or vkzt f a c

and

zk zk + uk f vkZk) Zk + Uk a- Ck.
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Finally, it holds that

But

Thus

and we have

/--1
Zk zk uk ak ck.

Another way of finding zk is as follows. From (1), we have

/-1A-ldk Adk uk ak v dk.

a fk vd + af )"

Ad zk ukf and vkdt c akfk

5. Variants and particular cases. Instead of bordering the matrix Ak as we

did, we can also add the new rows and columns on the top and on the left according
to the scheme

ak vk )A+I u A
Thus the inverse matrix becomes

A+ _A_u/_[1 - vkA- )A- + A- uk- vkA-
The solution z+ of the bordered system

Ak+lZk+ dk+l dk

can be computed by

Zk+ Z _A-Iu Zk (f

Similarly for the reverse bordering method, starting from

Pk nk

Ak+I- u A nk

we have

A--A-uka va.
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The solution zk of the system

Akzk dk

can be obtained from the solution zk+l of the bordered system

We set

and we have

vAk+ zk+l d+l d n

()’kCk Pk
Zk+ t

Z n

Zk Ztk Uk ak Ck.

Thus the block bordering method and the reverse bordering method can be ap-
plied in the following two cases.

Case 1.

Vk ak
Zk+l fk

Case 2.

(o 1 )uk A Zk+ d
There are also two other possibilities of bordering that could be investigated.
Case 3.

ak Vk
Z+t fk

This case can be treated the same as Case 2 because we can put the last pa rows
of the matrix and the right-hand side on the top and all the formulm for the methods
are the same.

Case 4.

(vklak)
This case can be treated the same as Case 1 for the reason explained in Case 3.
Two particular cases can be interesting since they have many applications.
Let us first consider the case where Ak is a Hankel matrix; that is, when its

elements aij are such that aij ci+j where the ci are given complex numbers. In this
case, the reverse bordering method must be applied in its normal formulation because
the structure of the inverse matrix does not permit any simplification.

Let us now consider the case of Toeplitz matrices. Let Ak (aij) be the Her-
mitian positive definite Toeplitz matrix, built from a sequence of complex numbers
co, c,c2, Thus we have aij "-Ci-j (for i,j 0,...,nt 1), cz T-l, and

Ak T()
nk

CO C1 C2 Cnk
(21 (20 (21 Cnk--2

Cnk --1 Cnk --2 Cnk --3 CO
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In this case, Ak+l can be obtained from Ak by bordering either at the bottom and on
the right or at the top and on the left. In both cases, due to the particular structure

--Tof the matrix, we have vk uk
Thus we can choose between two bordered matrices of dimension nk+l nk Pk

Ak uk ak wkAk+ --T or Ak+uk ak wk Ak

Obviously the two possibilities are not equivalent and the systems to be solved
are different. However, in both cases, the bordering method can be applied after the
simplification due to the special structure of the matrices.

If we consider the reverse unit matrix J (i.e., the unit matrix with its columns in
the reverse order) of order nk and the reverse unit matrix Jt of order Pk, we have

wk JkJ.

6. Numerical examples. When solving a system of linear equations by the
bordering method some intermediate systems can be nearly singular. In that case, the
block bordering method described in [5] allows us to jump over these near-singularities
and the numerical stability of the process is thus improved.

Before giving a numerical example, let us discuss our strategy for deciding when
and how far to jump. This strategy is based on the relation

det Ak+l det Ak det k.

Assuming that A-1 has already been obtained, we first add one new row and one new
column to the matrix Aa; that is, we use the formulm of 2 (or, equivalently, those of

3 with Pk 1). If

for some given e > 0, we will add one more new row and one more new column to A
and use the formulm of 3 with pk 2. If

det1 -< e

we again add one new row and one new column to Ak and repeat the process until,
after having added Pk new rows and columns, we obtain a matrix k such that

det kl > .
-1Then Ak+ and zk+ can be computed by the formulm of 3. Let us also mention

that the determinant of k is computed as the product of the pivots in a Gaussian
elimination process. Such a strategy avoids the inversion of nearly singular matrices

k, thus improving the numerical stability of the bordering method as shown by the
following examples.

We first consider the system

1 1 1 1 -1 0 -1 1
1 1 2 0 1 1 -1 2
1 1 -1 0 2 -2 0 3

-1 1 2 0 -1 1 2 4
0 0 0 0 1 1 2 5
0 0 0 0 1 1 1 6
0 0 0 0 -1 0 2 7

-2
13
-2
22
25
18
9
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TABLE
Solutions with the bordering method (r/-- 10-14).

1 --0.2000(1)
2-0.0(x6) 0.0()
3--0.1001(16) 0.1001(16)
4 -0.4500(1) 0.7500(1)
5 --0.2950(2) --0.9297(1)
6 -0.7006(15) -0.1171(16)
7 0.9222 0.1859(1)

o.5ooo()
o.4992(1) -O.lOO1(2)
o.1333(2) o.4833(2)
0.9348(15) 0.1635(16)
0.3006(1) 0.3570(1)

0.500()
0.7006(15) -0.7006(15)
0.5078(1) 0.5922(1) 0.7000(1)

TABLE 2
Solutions with the block bordering method (r/= 10-14,-- 10-14).

1 --0.2000(1)
2
3
4--0.4500(1) 0.7500(1)
5 -0.2950(2) -0.9167(1)
6
7 0.1000(1) 0.2000(1)

0.5000( -0.1000(2)
0.1333(2) 0.4833(2) 0.2500(2)

0.3000(1) 0.4000(1) 0.5000(1) 0.6000(1) 0.7000(1)

In this system, the subsystems of dimensions 2, 3, and 6 are singular. Thus we
add a perturbation to all and a55. So that the solution of the system remains the
same, we also add r/to the first component of the right-hand side and 5r/to its fifth
component.

Using the bordering and the block bordering methods for solving this system, we
obtain the results in Tables 1 and 2 (e denotes the threshold under which the block
bordering method jumps and the numbers in parentheses denote the powers of 10).

However, in some applications, it is necessary to compute the solutions of all the
intermediate systems. For example, this is the case in the computation of orthogonal
polynomials [9], the Pad approximation, and the implementation of the progressive
forms of extrapolation processes where the first step consists of the computation of
the first descending diagonal of the triangular array [4]. In such cases, the block
bordering method allows us to jump over the near-singular systems and then the
reverse bordering method allows us to compute afterwards their solution with an
improved numerical stability.

Let us first discuss the strategy used in the reverse bordering method. We assume
--1that A-1 and Ak+ are known and we want to compute the solutions of the inter-

mediate systems of dimensions nk+l 1,..., nk / 1, which were skipped in the block
bordering method when climbing to higher dimensions. We begin by deleting the last

-1 that is, we use the formulm of 4 with p 1 androw and the last column of Ak+l,
n nk+l 1. For that, we must compute a-. If a is nearly singular, we delete

--1the last two rows and the last two columns of Ak+l; that is, we use the formulm of

4 with p 2 and n ne+ 2 and so on until a nonnearly singular matrix aa
has been obtained. The near singularity of a is tested by computing its determinant
(again by Gaussian elimination) and checking to see if Idet al _< e’ or not. However,
if, in this test, we take e >_ (where e is the threshold used in the block bordering
method) then a jump will occur from n+l to ne and the intermediate systems that
were not solved when climbing to higher dimensions will again be skipped. Thus we
must choose e < e.
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TABLE 3
Solutions with the block bordering method and the reverse bordering method (? 10-14,

10-14, 10-20).

-o.ooo()
--0.1501(16) 0.1501(16)
--0.1001(16) 0.1001(16)
-oAoo() o.oo(1)
--0.2950(2) --0.9167(1)
-0.7006(15) -0.1168(16)
o.ooo() o.ooo()

o.5ooo()
o.5ooo(1) -O.lOOO(2)
o.1333(2) o.4833(2)
0.9341(15) 0.1635(16)
0.3000(i) 0.4000(1)

0.2500(2)
0.7006(15) -0.7006(15)
0.5000(1) 0.6000(1) o.7ooo()

Let us now return to our previous example Table 3 shows this improvement (e
is the threshold for jumping in the reverse bordering method).

Let us now give an example with the e-algorithm. This algorithm is an extrapo-
lation process whose theory can be found in [4]. It can be interpreted as solving the
system

aoSo + alS1 +’" + akSk 1
a0S1 W alS2 + -t- akSk+l 1

aoSk - alSk+l -[-’" - akS2k 1

and then computing [1]
k

e) 1/E a.
i--0

Let us apply the e-algorithm to the partial sums of the series expansion of

1 + blx +... + bm-lXm-1 -F Xm
f(x)

1 / x"
Thanks to the theory of the e-algorithm and its connection with Pad approxi-

mants (see the next section), we should have

2m-- f(x).

With r/= 0.25, rn- 10, x 2, and b -i.r/, we have f(x) 2.998536585365854.
We set e 10-6 and e 10-30 for the block bordering and reverse bordering methods

and we obtain the following results for (0) R means that the corresponding value’2k
was obtained by the reverse bordering method.

k
0

2
3
4
5
6
7
8
9
10

Bordering method Block and reverse

1.000000000000000
0.833333333333333
1.500000000000007
1.500000000000006
1.500000000000004
1.500000000000004
1.500000000000006
1.500000000000007
1.057370161706715
5.442384375014805
2.965829933964836

1.000000000000000
0.833333333333333
1.500000000000007
1.500000000000007
1.499999999999987
1.499999999999984
1.500000000000006
1.500000000000006
1.061205132114060
5.530461077969034
2.998536585365856
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Thus, only two exact digits are obtained for ) with the bordering method and
fifteen exact digits with the block bordering and reverse bordering methods.

Let us now take 0.1, m 10, x 1, bi q/i, and 10-3.
We have f(x) 1.141448412698413 and we obtain

k Bordering method
0 1:000000000000000

1
2
3
4
5
6
7
8
9
10

1.200000000000000
1.299999999999898
1.366666666630687
1.416666663166007
1.416669182535733
1.370133070676631
1.363779438853716
1.299241827763746
1.221626694740750
1.141448412733146

Block and reverse
1.000000000000000
1.200000000000000
1.299999999999898
1.366666666630683
1.416666665980086
1.416669185348150
1.370133070822927
1.363779438821982
1.299241827748625
1.221626694709201
1.141448412698013

Again the precision has been improved by the reverse bordering method.
In both examples, the subsystems of dimensions 3, 4, 5, and 6 were nearly singular

and their solutions were obtained by the reverse bordering method from the solution
of the system of dimension 7.

7. Application to Pad6 approximants. An important application of the bor-
dering and the reverse bordering methods is the recursive computation of Pad6 ap-
proximants. We now recall the necessary definitions (see [2]).

A Pad6 approximant is a rational function whose series expansion in ascending
powers of the variable agrees with a given power series f up to the term whose
degree is the sum of the degrees of its numerator and its denominator. Such a Pad6
approximant is denoted by /q]f(x), where p is the degree of the numerator and q
the degree of the denominator. By definition we have

[p/qlf(x) f(x) O(xP-bq+l).

Let us define the linear functional c on the vector space of polynomials by

c(xi) =c fori=0,1,

We consider the polynomial Pk of degree k belonging to the family of orthogonal
polynomials with respect to c; that is,

such that

Pk(x) bo + bx +... + bxk

k

o
j=0

for 0, 1,...,k- 1.

One of the bi’s is arbitrary and we choose the normalization b0 1.
The coefficients bl,..., bk are obtained as the solution of a linear system

cl c2 ck b co
C2 C3 Ck+ b2 Cl

ek k+1 2k-1 bk Ok-1
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If we denote by Ak the Hankel matrix of the preceding system, by dk its right-
hand side, and by zk (bl,..., bk)w its solution, we can solve this system by the
block bordering and the reverse bordering methods.

We consider the formal power series

f(x) co + c x + c x +...

and the polynomial Pk(x) given by

k(X) Xk Pk (x-l) bk - bk-1 X r -- bl xk-1 -- xk.

From the connections between Pad approximants and orthogonal polynomials, we
know that Pk(x) is the denominator of the Pad6 approximant [k- 1/k]f (x). If we
want to have the normalization bk 1 one can simply consider the polynomial

g (x) b-lk(X).
Thus the block bordering and the reverse bordering methods allow us to compute

recursively the coefficients of the denominators of the Pad approximants [0/1], [1/2],
[2/3],

To control the accuracy and numerical stability of the reverse bordering method,
we take f as the power series expansion of a rational function with numerator of degree
k- 1 and denominator of degree k. In that case, the Pad approximant [k- 1/k]f
must be identical to f. We set

f(x)
1 + clx + Oz2x2 -- - OZk-1xk-1

1 + 0X CO -- C X -" C2x2 --Giving some values to the ai’s and to the /i’s, we compute the ci’s so that
[k- 1/k]1, f; that is, in order to have

b0 xk1+ 0xk 1 + -Tk
where b0 1, b is the coefficient of xk in the orthogonal polynomial Pk, and all the
b,i 1,... ,k- 1 are zero. The c’s depend on a parameter r and we give to it
different values.

We set as the threshold under which the block bordering method jumps, and
as the threshold under which the reverse bordering method jumps.

In the following examples, we give the residual rk IAk Zk- dkl, where z is
the vector of the coefficients b,i 1,... ,k of the polynomial Pk (the numbers in
parenthesis denote again the powers of 10). The coefficients of the polynomial P,
which is the denominator of [k- 1/k]- f, are also given.

7.1. Example 1. We consider the function

f(x)
1 + rx + rx2

1 + rx + rx2 + x3 + rx4 + rx5 + x6 +...
1 x3

We should have [2/3]i f, that is, P 1 x3.
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.(-5)

.11(-15) .46(-16)

.0 .21(-16) .50(-11)

v/-- 10-5

Bordering method Block and reverse

no jump e-- 10-4,e 10-10

P 1_.28.10-16x .49.10-11x2 x3 P 1 +.25.10-21x .23.10-2:2 x

r] I0-10
Bordering method Block and reverse

no jump ---- 10-9, 10-15k

2 .0 .83(-17)
.0 .(-1) .0

P -.25.10-16x- x3

.0

.0

P 1 + .61.10-26x- x3

7.2. Example 2. We consider the function

f(x)
1 + fix + 2fix2 -9 3]x3

1 X4
1 + fiX + 2fix2 -9 3fix3 -9 x4 -9 T]x

5 -9 2]x6 -9 3]x7 -9"

We should have [3/4]f f, that is, in particular, P 1- x4.
The system to be solved is

? 2 3
2] 3] 1
3] 1
1 r]

1 bl 1
r] 52 r]

2r] b3 2r]
3r] b4 3

r= 10-4

Bordering method
no jump

.0

.2(-s) .s(-)

.0 .66(-15) .47(--11)

.44(-15) .55(-15) .25(-12) .61(-12)

P 1 + .75.10-15x- .24.10-12x2- .61.10-12x3- x4

7= 10-4

Block and reverse

k e 10-4, s 10-10

.0

2 .22(-15) .51(-15) R
3 .0 .23(-15) .76(-16)
4 .11(-15) .20(-15) .53(-15) .61(-12)

P 1- .74.10-16x- .34.10-15x2 -.61.10-12x3 --x4
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10-4
Block and reverse

k --- 1.1.10-4 ’ 10-l

.67(-15) R
2 .20(-12) .17(-12)
3 .11(-15) .23(-15) .52(-15)
4 .11(-15) .12(-15) .92(-16) .61(-12)

P 1 + .6.10-17x q-.91.10-16x2 .61 10-12x3 x4

v/ 10-4

Block and" reverse

k -- 10-3 ’ i0-10

2 .67(-15) .24(-15) R
3 .11(-15) .23(-15) .76(-16) R
4 .0 .0 .0 .0

P + .94.10-21x .11.10-19x2- .24.10-19x3- x4

r/-- 10- lO

Bordering method

no jump

.0

.11(-15) .26(-15)

.0 .45(-15)

.22(-15) .83(-16)
.35(-5)
.36(-6) .36(-16)

P 1 + .19.10-15x- .36. lO--6X2- X4

r/ 10-10

Block and reverse

10-9, ’ 10-15
.0 R
.0 .37(-15) R
.0 .83(-17) .41(-15) R
.o .o .o .e(-e)

P 1- .37.10-26x- .93-10-26x2- .51.10-25x3- x4

7 10-15
Bordering method

no jump

.0

.0 .16(-15)

.44(-15) .12(-14)

.22(-15) .11(-14)
.96(-2)
.96(-2) .96(-17)

P2 1 + .1 10-14x .96.10-2x2 x4
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k

.89(-15)
2 .(-a) .av(-)
3 .22(-15) .33(-15)
4 .0 .20(--30)

v] 10-15

Block and reverse

10--14, P 10-20

P -.16.10-3x + .71.10-31x2 x4

7.3. Example 3. We consider the function

1 + x + r/x2 + 2r/x3 + 3fix4f(x)
1 x5

l+x+r]x2+2fIx3+3fIx4+x5+x6+fIx7+2fIx8+3r]x9+.

We should have [4/51f f, that is, P 1 x5.

r/= 10-5

Bordering method

k no jump

.0

2 .0 .0

3 .22(--15) .0 .29(-15)
4 .22(-15) .22(-15) .51(-15)
5 .22(-15) .22(-15) .47(-15)

.62(-11)

.84(-11) .11(-15)

P* 1 -.41.10-11x + .41.10-11x2 -J-.41.10-11x3 -.41.10-11x4 x55

r/= 10-5

Block and reverse

k s 10-4, P 10-10

1 .0

.0 .0

.11(-15) .0 .16(-15)

.0 .0 .46(-16)

.22(-15) .0 .61(-16)
.73(-16)
.26(-15) .30(-15)

P,* 15.10-16x -t-.76.10-16x2 + 18.10-15x3 n 12.10-15x4 x5

r] 10-15

Bordering method

k no jump

.0

.0 .0

.0 .22(--15)

.22(-15) .11(-15)

.22(-15) .11(-15)

.11(--15)

.11(--15)

.(-7) .59(--15)

P 1 -1-.6.10-1x- .6.10-1x2- .6.10-1x3 + .6.10-1x4- 1.06x5
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? 10-15

Block and reverse

k e 10-14 ’ 10-2o

1 .0
2 .0 .22(--15)
3 .ii(--15) .22(--15) .Ii(--15)
4 .0 .11(--15) .33(--15)
5 .0 .0 .(-)

.33(--15)

.44(--15) .22(-15)

P 1 + .11.10-15x- .22.10-15x2- .22.10-15x3- x5

8. Conclusions. In Gaussian elimination, pivotal strategies are often necessary
to ensure a better numerical stability. In particular, they avoid division by numbers
close to zero (which are possibly due to cancellation errors in the previous steps),
thus preventing possible catastrophic errors. The block bordering method provides a
similar strategy in a different context for the same drawback. However, with such a
strategy, the solutions of the intermediate systems that were skipped when climbing
to higher and higher dimensions are not computed. It was the purpose of this paper
to propose an algorithm (the reverse bordering method) for obtaining these solutions.
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SOME SPECTRAL PROPERTIES OF HERMITIAN TOEPLITZ
MATRICES*

WILLIAM F. TRENCH?

Abstract. Necessary conditions are given for the Hermitian Toeplitz matrix Tn (tr-)n’to have a repeated eigenvalue A with multiplicity m > 1 and for an eigenpolynomial of Tn as-
sociated with A to have a given number of zeros off the unit circle Izl 1. It is assumed that

tr -4 f(O)e-it dO (0

_
r

_
n 1), where f is real-valued and in L(-;r, ;r). The conditions

are given in terms of the number of changes in sign of f(O) A.

Key words. Toeplitz, Hermitian, eigenvalue, eigenvector, eigenpolynomial

AMS subject classifications. 15A18, 15A42

1. Introduction. We consider the Hermitian Toeplitz matrix

where

)nTn tr-s ,s=l,

f(O)e-’ dO, r 0, 1,..., n 1,(1) t -- .
and f is real-valued and Lebesgue integrable on (-, ) and not constant on a set of
measure 2r.

Let 1 <_ 2 <_ _< An be the eigenvalues of Tn, with associated orthonormal
eigenvectors xl,x2,... ,xn. Our first main result (Theorem 2.1) presents a necessary
condition on f for /k to have multiplicity m > 1. To describe our second main
result we first recall some well-known properties of eigenvectors of Hermitian Toeplitz
matrices. If J is the n n matrix with ones on the secondary diagonal and zeros
elsewhere, then JTnJ n. This implies that a vector x is a r-eigenvector of Tn if
and only if J is. It follows that if has multiplicity one then

(2) Jhr x,
where is a complex constant with modulus one. A stronger result holds if Tn is real
and symmetric: Cantoni and Butler [1] have shown that in this case (even if Tn has
repeated eigenvalues) Rn has an orthonormal basis consisting of [n/2 eigenvectors
of Tn for which (2)holds with 1 and [n/2J for which (2) holds with =-1.

The polynomial

(3) X(z) [1, z,..., zn-1]Xr

is said to be an eigenpolynomial of Tn associated with . The location of the zeros of
the eigenpolynomials of Hermitian Toeplitz matrices is of interest in signal processing
applications [2]-[5], [7]. If xr satisfies (2) then

Xr(z) zn--lXr(1/);
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hence, zeros of X(z) that are not on the unit circle must occur in pairs and 1/.
Gueguen proved the following theorem in [5]. (See also [2] and [4].)
THEOREM 1.1. Let be an eigenvalue ofTn, but not ofTn-1. Then its associated

eigenpolynomial X(z) has at least In- 2r + 11 zeros on the unit circle Izl 1.
Delsarte, Genin, and Kamp proved the following theorem in [3]. (See also [4].)
THEOREM 1.2. Suppose that the eigenvalue of Tn has multiplicity rn and

let s be the largest integer < n such that/kr is not an eigenvalue of Ts. Then any
eigenpolynomial X(z) of Tn corresponding to has at least In- rn 2r + 21 and at
most rn + s- 1 zeros on the unit circle Iz 1.

Our second main result (Theorem 3.1) gives a necessary condition on f for an
eigenpolynomial of Tn satisfying (2) to have a given number of zeros that are not on
the unit circle.

2. A necessary condition for repeated eigenvalues.. Let c and # be the
essential upper and lower bounds of f; that is, a is the largest number and /3 the
smallest such that _< f(O) <_ almost everywhere on (-zr, r). It is known [6, p. 65]
that all the eigenvalues of T are in (a, ). A proof of this is included naturally in the
proof of the following theorem.

THEOrtE 2.1. If ) is an eigenvalue of Tn with multiplicity m, then
must change sign at least 2m- 1 times in (-r, r).

Proof. Associate with each vector v [Vl, v2,..., vn] in Cn the polynomial

If u and v are in C then

zn--1]V
n

E VjZ
j-1

j=l

1;(4) (u, v) U(z)V(z) dO,

where z ei whenever z appears in an integral. Moreover, (1) implies that

(5) (Tnu, v) - f(O)U(z)V(z) dO.

Now let ,1 < ,2 < < /n be the eigenvalues of Tn, with corresponding or-

thonormal eigenvectors xl, x2,..., xn, and let

Xi(z)-- [1 z, zn-llxi,

be the corresponding eigenpolynomiMs. From (4),

l<i<n,

and from (5),

(7)
2r

f(0)X(z)Xj(z) dO 5, 1 <_ i,j <_ n.

The last two equations with j show that the eigenvMues of T are in (a,/3).
Therefore, f(0) A must change sign at some point in (-r, zr). This completes the
proof if m 1.

1
dO 1 < i,j < n
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Now suppose that m > 1 and f(O) )r changes sign only at the points 01 < 02 <
< Ok in (--rr, r), where k < 2m- 2. We will show that this assumption leads to a

contradiction.
Define

(8)
1

g(O) (f(0) ,k,)

For reference below note that if k 2p then the function

g(O) .= sin
2

does not change sign in (-Tr, r). This remains true if k 2p- 1, if we define 02p 7r.

Now suppose that ,r has multiplicity m; that is,

(10) ,r ,r/l r+ra--1.

From (6), (7), and (10),

// g(O)Xi(z)Xj(z) dO 0 (r<_i<r+m-1, l <_j <n).

Therefore

g(O) ctXr+t(z) Xj(z) dO O,
r \ =0

l<j<n,

if co,..., Cra--1 are constants. This implies that

(11) g(O) ctXr+t(z) Q(z) dO 0
r \ =0

if Q is any polynomial of degree _< n- 1, since any such polynomial can be written
as a linear combination of X1 (z),..., Xn(Z). In particular, choose co,..., Cm-l--not
all zero--so that

m-1

o,
=0

l<j<_p

(this is possible, since p < m), and let

z eiO
\ --o j=l

Substituting this into (11) yields

g(O)
m-1

g=0

P -_ e--iOp+jII e-iO
dO O,
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or, equivalently,

(12)
P

II (z 0,
r j=l

where

-r_l ciXr+(z)
pI-Ij=l (Z eiO

If z ei then

(z_eiOJ)(_e-iOp+)=4ei(O-Op+)/2sin(O-OJ)sin(O-Op+j)2 2

hence, (12) implies that

gl(O) sin
2r j=l

which is impossible because of (8) and our observation that the function in (9) is sign
constant on (-r, r).

Theorem 2.1 immediately implies the following theorems. Theorem 2.4 was proved
in [8].

THEOREM 2.2. If f is monotonic on (--Tr, rr) or there is a number
such that f is monotonic on (-Tr, ) and (, r), then all eigenvalues of Tn have mul-
tiplicity one.

THEOREM 2.3. Suppose that f(-O) f(O), so that T is a real symmetric
Toeplitz matrix. If ikr is an eigenvalue of Tn with multiplicity m, then f(O)- ;k must
change sign at least m times in (0, r)

THEOREM 2.4. Suppose that f(-O)= f(O) and f is monotonic on (0, Tr). Then
all the eigenvalues of Tn have multiplicity one.

3. Location of the zeros of eigenpolynomials. The following theorem is the
main result of this section.

THEOREM 3.1. Suppose that the eigenvalue ;k has an associated eigenvector
such that J-2r x, where is a constant, and the eigenpolynomial X(z) defined in

(3) has 2m zeros (m >_ 1) that are not on the unit circle. Then f(0)- must change
sign at least 2m + 1 times in (-7r,

Proof. The proof is by contradiction. Suppose f(O)- ,kr changes sign only at
the points 0 < < Ok in (--Tr, Tr), where 1 _< k_<_ 2m. Then, as in the proof of
Theorem 2.1, the function (9) does not change sign in (-r, r). (Again, k 2p if k is
even, and we define 02p r if k 2p- 1.) From among the 2m zeros of Xr(z) not
on the unit circle choose 2p distinct zeros ,..., Cp, 1/(,..., 1/p., and define g as in

(8).
From (6)and (7),

O)Xr(z)Xs(z) dO 0 (1 < s _< n),



942 WILLIAM F. TRENCH

which implies that

(3) g(O)Xr(z)Q(z) dO 0

if Q is any polynomial of degree _< n- 1.
Now define

q(z) (z o)( -o/_ z)
(- )(- z)

l<_j<_p,

and let

Q(z) X(z) (z) ,(z).

Then (13) implies that

(4) g(O)lXr(z)[2--(z) qp(Z) dO O.

However, if z eit then

2 )sin(0 2

This and (14) imply that

(5) f ,g()]x"(z)[
[

__=P (o o )I-[sin dO=O,
I’Ij--1 }1 -yeiO 2r j=l

which is impossible, since the function (9) is sign constant in (-, ). fi
Theorem 3.1 immediately implies the following theorem.
THEOREM 3.2. If f satisfies the hypotheses of either Theorem 2.2 or Theorem 2.4,

then all zeros of the eigenpolynomials of Tn are on the unit circle Izl 1.
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THEORY OF DECOMPOSITION AND BULGE-CHASING
ALGORITHMS FOR THE GENERALIZED EI(ENVALUE PROBLEM*

DAVID WATKINS AND LUDWIG ELSNER:

Abstract. A generic GZ algorithm for the generalized eigenvalue problem Ax ABx is pre-
sented. This is actually a large class of algorithms that includes multiple-step QZ and LZ algorithms,
as well as QZ-LZ hybrids, as special cases. First the convergence properties of the GZ algorithm are
discussed, then a study of implementations is undertaken. The notion of an elimination rule is intro-
duced as a device for studying the QZ, LZ and other algorithms simultaneously. To each elimination
rule there corresponds an explicit GZ algorithm. Through a careful study of the steps involved in
executing the explicit algorithm, it is discovered how to implement the algorithm implicitly by bulge
chasing. The approach taken here was introduced by Miminis and Paige in the context of the QR
algorithm for the ordinary eigenvalue problem. It is more involved than the standard approach, but
it yields a much clearer picture of the relationship between the implicit and explicit versions of the
algorithm. Furthermore, it is more general than the standard approach, as it does not require the
use of a theorem of "Implicit-Q" type. Finally a generalization of the implicit GZ algorithm, the
generic bulge-chasing algorithm, is introduced. It is proved that the generic bulge-chasing algorithm
implicitly performs iterations of the generic GZ algorithm. Thus the convergence theorems that are
proved for the generic GZ algorithm hold for the generic bulge-chasing algorithm as well.

Key words, generalized eigenvalue problem, QZ algorithm, GZ algorithm, chasing the bulge

AMS subject classifications. 65F15, 15A18

1. Introduction. The standard algorithm for finding the eigenvalues of a dense,
indefinite, matrix pencil A- AB with B nonsingular is the QZ algorithm of Moler
and Stewart [11]. Related methods are the LZ algorithm of Kaufman [8] and the
combination-shift QZ algorithm of Ward [14]. In this paper we introduce and study
a generic GZ algorithm, which is actually a large class of algorithms that contains
these.and many other algorithms as special cases. For example, QZ-LZ hybrids are
also included. Our coverage is not restricted to single- or double-step algorithms; we
allow multiple steps of arbitrary multiplicity.

The QZ algorithm is an extension of the QR algorithm, which is one of the most
widely used algorithms for the standard eigenvalue problem. The QR algorithm has
both explicit and implicit versions. The explicit version is useful for introducing the
algorithm and discussing theoretical aspects such as convergence theory, but it is
usually the implicit version that is actually implemented. The standard approach to
the QZ algorithm, as presented in contemporary textbooks [6], [12], mentions only
an implicit version, which is interpreted as a way of applying the QR algorithm to
the matrix AB-1 without actually forming AB- or even B-. Earlier approaches
[11], [8] started from an explicit version and derived the implicit version therefrom.
In every instance the focus was on the matrix AB-. Our approach also starts with
an explicit version, but our explicit QZ algorithm differs from earlier formulations in
that it effectively applies the QR algorithm to both AB- and B-1A. The advantage
of this approach is that it reveals symmetries in the algorithm that are obscured by
the usual approaches. In particular, it puts the "Q" and "Z" transformations on an

Received by the editors December 16, 1991; accepted for publication (in revised form) February
12, 1993.
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equal footing. Of course our discussion is couched in more general terms. We consider
a generic GZ algorithm that amounts to the generic GR algorithm [17] applied to the
matrices p(AB-1) and p(B-IA) simultaneously, where p is a polynomial whose degree
is the multiplicity of the step. Our generic GZ algorithm is quite similar to the FGZ
algorithm of [16].

The explicit algorithm is not a practical algorithm, because it would be too costly
to implement and quite likely unstable as well. However, it is a useful vehicle for both
the study of convergence and the introduction of implicit versions of the algorithm. We
introduce the generic GZ algorithm in 2. In 3 we study the convergence properties
of the algorithm and in 4 we consider questions of implementation. Sections 3 and 4
can be read independently of one another.

The convergence theorem that we prove in 3 is a generalization of a theorem
on the convergence of the GR algorithm that we proved in [17]. The theorem says
roughly that if the eigenvalues can be separated, and the shifts converge, and the
condition numbers of the accumulated transforming matrices remain bounded, then
the algorithm converges. We also introduce the generalized Rayleigh quotient shift
strategy and discuss its asymptotic convergence properties without proof. Usually
the convergence rate is quadratic.

In 4 we consider how to implement the GZ algorithm. Our approach is inspired
by h/Iiminis and Paige [10]. They showed that by taking a detailed look at how one
would carry out an iteration of the QR algorithm in its explicit form, one can discover
how it can be done implicitly. As Miminis and Paige pointed out, this approach is
more involved than the usual approach, which invokes the Implicit-Q Theorem [6, p.
367], but it gives a much clearer picture of the relationship between the explicit and
implicit versions of the algorithm. Miminis and Paige also stated that their approach
is quite general. Our vehicle for introducing the desired generality is the idea of an
elimination rule, which allows us to discuss the QZ, LZ, and all related algorithms
simultaneously. Each elimination rule gives rise to a specific implementation of the GZ
algorithm. Following Miminis and Paige, we take a close look at the steps involved in
implementing the GZ algorithm explicitly. By studying the form of the intermediate
matrices so produced, we discover how the algorithm can be implemented implicitly,
that is, without forming or operating on the matrices p(AB-) or p(B-A).

Once we have derived the implicit GZ algorithm, we introduce a generalization
called the generic bulge-chasing algorithm and prove that each iteration of the generic
bulge-chasing algorithm amounts to an iteration of the generic GZ algorithm. The
purpose of making this last generalization is to allow additional flexibility in imple-
menting the algorithm. This flexibility can be exploited to build more efficient and
stable algorithms. In particular it allows the introduction of variants that do not
break down when B happens to be singular. (For the originators of the QZ and
LZ algorithms this was an important point.) When it comes to implementing the
algorithm in practice, these are the variants that should be used.

In [18] we introduced a generic bulge-chasing algorithm for the standard eigen-
value problem. Our aim there was to lay common foundations for implicit versions
of GR algorithms of all types (e.g., QR, LR with or without pivoting, SR, hybrids,
etc.). To achieve the desired level of generality, we devised an approach that, like the
Miminis-Paige approach, avoids using a theorem of the Implicit-Q type. However,
unlike Miminis and Paige, we did not establish a close correspondence between the
operations in the implicit and explicit versions of the algorithms. The results of this
paper generalize those of [18].
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lem
2. The generic GZ algorithm. We consider the generalized eigenvalue prob-

(A- ,XB)x O,

where A and B are square matrices whose entries are complex numbers. Recall that
the pencil A- ,kB is said to be singular if its determinant is zero for all , and regular
otherwise. We focus here on the regular case. If the given pencil is singular (or not
known a priori to be regular), the staircase algorithm of Van Dooren [13] can be used
to remove the singular part. (See also Demmel and KgstrSm [3], [4].) This algorithm
also removes the infinite eigenvalue and its associated structure (which may be present
if B is singular) and the zero eigenvalue and its associated structure (which may be
present if A is singular). What is left is a regular pencil for which both A and B are
nonsingular. We assume throughout (with few exceptions, when we explicitly state
otherwise) that our pencil has a nonsingular B; we do not need to assume that A is
nonsingular.

Recall that the pencils A- ,B and - ,/) are said to be strictly equivalent if
there exist nonsingular matrices G and Z such that

fI G-1AZ and / G-1BZ.

Strictly equivalent pencils have the same eigenvalues, and the eigenvectors are related
in a simple way through the transforming matrices G and Z. The generic GZ algo-
rithm generates a sequence of strictly equivalent pencils (Ai ABi) that converges (we
hope) to upper triangular or block triangular form, thus exposing the eigenvalues of
the pencil. The eigenvectors can be found by a back-substitution process that utilizes
the final upper-triangular matrices and the accumulated transforming matrices.

We assume that before we start our iterations of the GZ algorithm, we transform
the pencil to some initial form

Ao G1AZo, Bo G BZo

For example, it is possible to make A0 upper Hessenberg and B0 upper triangular, as
described in [6] and elsewhere. Later on we assume that A0 and B0 have this form,
but for now we allow them to have any form; for example, we could take Go Z0 I.

The ith iteration of the GZ algorithm transforms Ai-1 Bi- to Ai ,,Bi
by transformations obtained from GR decompositions. By a GR decomposition of a

square matrix M, we mean any decomposition

M =GR

in which G is nonsingular and R is upper triangular. Every matrix has many dif-
ferent GR decompositions. To obtain Ai and Bi we first take GR decompositions of
pi(Ai- -11Bi_l) and pi(B[-_11Ai_l), where Pi is a polynomial. Thus we find nonsingular
Gi and Zi and upper triangular Ri and Si such that

pi(Ai_lB_l) G,R, and pi(B[_lAi_l) ZiSi.

However, if A is known to be nonsingular, one has the possibility of reversing the roles of A and
B and considering the pencil B ttA, where tt 1/,k. If neither A nor B is known to be nonsingular,
a prudent course of action is to run the staircase algorithm to determine the fine structure of the
pencil.
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We then let

Ai G-IAi_IZ and B G-1B_Z.

In the special case Bi-1 I, Zi Gi, i Ri, this algorithm reduces to the
generic GR algorithm for the standard eigenvalue problem.

The GZ algorithm is really a large class of algorithms. Specific instances are
obtained by specifying the exact form of each GR decomposition and how the pi are
to be chosen. For example, variants of the QZ and LZ algorithms are obtained by
specifying that each decomposition be a QR or LR decomposition, respectively. The
p are chosen so that their roots, which we call the shifts for the ith iteration, are
estimates of eigenvalues. The degree of p is called the multiplicity of the iteration.

We will see that it is possible to carry out the GZ iterations implicitly without
even calculating matrices of the form AB- or B-1A, much less p(AB-) or p(B-A).
Were this not the case, there would be no point in discussing these algorithms at all.
First we look at convergence.

3. Convergence of GZ algorithms. An easy computation shows that

AiB-1 ;l(ni_lB-_11)i"

Since G was obtained from the decomposition p (Ai_l B-_I) GR, we see that the
transformation A_IB-_ll -- AB-1 is an iteration of the GR algorithm [17]. At the
same time we have

where

p(B1Ai_) Zi Si,

so the transformation B-_llA_ B-IA is also a GR iteration. It follows from
the theorems in [17] that both of the sequences (AiB-I) and (B-lni) converge to
(block) upper triangular form, provided that the condition numbers of the accumu-
lated transforming matrices ( Gl... G and 2i Z1.-. Z remain bounded and
the shifts converge, as - oo. Preferably the shifts should converge to eigenvalues of
the pencil, in which case the convergence of (AB-) and (B- A) is superlinear.

We would like to be able to say something about the convergence of the sequences
(Ai) and (B) separately, since these are the matrices with which we actually work.
To do this we recall some nomenclature. Let Td and r be subspaces of Cn of equal
dimension. The pair (Td, Tr) is called a deflating pair for the regular pencil A- AB
if and only if

ATd C_ "Tr and B’Yd C_ Tr.

The subscripts d and r are mnemonics for domain and range, respectively. Since we
are assuming that B is nonsingular, the condition BTd C_ Tr implies BTd Tr.
Clearly (Td, Tr) is a deflating pair for A- AB if and only if Td is invariant under
B-1A, Fr is invariant under AB-1, and BTd Tr. The following lemma generalizes
Lemma 6.1 of [17]. Here d($,7") denotes the usual distance (or gap) between two
subspaces and 2(G) denotes the condition number of G with respect to the spectral
norm.
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LEMMA 3.1. Let A, B e (nxn and let (f’d, /’r) be a deflating pair of k-dimensional
subspaces for the pencil A- AB. Let Z, G E (nxn be nonsingular matrices, and let Sd
and Sr be the spaces spanned by the first k columns of Z and G, respectively. (Think
of Sd and Sr as.approximations to /’d and Tr, respectively.) Let C denote either A
or B, and let G-1CZ. Consider the partition

where 11 (k k. Then

112 <_ /a2(G)a2(Z)[d(Sd, Td) + d($, Tr)].

Proof. Let Z PU, G QR be the QR decompositions of Z and G, respec-
tively. Thus P and Q are unitary, and U and R are upper triangular. Partition these
decompositions as

0 U

where Z1 and P1 are n k, and similarly for the decomposition G QR. Since
G-1CZ R-1Q*CPU, we have (21 R2QCPIUI, from which

Since R2 112 <- II R-1 112 G- 112, Nil 112 uii2 zii2, and II c 112 -<
a 11211 d 11211 z-1112, we see that

(1) II d21112 (a)(z)II OcP 112
Ildl12 IICII2

Since Z1 PIU11 and l OlRll, we have Sd "](Zl) rP(P1) and S
7(G1)+/- 7(Q)+/- 7(Q2). Therefore, by Lemma 4.1 of [17], there exist T1 qjnxk
and T2 e (IJ ’xn-k with orthonormal columns, such that Td 7(T1), T 7(T2),

II P TI 112 v"d(,Sd, Td)
and

II Q2 T2112 - x/d(Sr, Tr).

We use here the fact that d(Sr, Tr)= d(S, T). Now

IIQCP 112 II (Q2 T2)*CP1 ll + lIrC(Pl r)112 + IITCT 112.
Since 7(T1) "i’d, CTd C_ T,., and 7(T2)= T, the product T:CTI is zero. Thus

II OcP 112 Q2 T211211 c 11211P 112 + T211211 c 11211 pl T 112
_< x/ c [12 [d($d, Td) + d($,., Tr).]

Combining this inequality with (1), we obtain the desired result.
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Define the cumulative transforming matrices by

G... G, / R... R,

Then
^--1

C G Co2,

where C can stand for either A or B. In the following theorem we prove the conver-
gence of the GZ algorithm by applying Lemma 3.1 with the roles of C, G, Z, and
played by Co, (i, Zi, and Ci, respectively. The symbol (el,..., ek) denotes the space
spanned by the vectors el,..., ek.

THEOREM 3.2. Let Ao, Bo E (r,nn with Bo nonsingular, and let p be a polynomial
of degree < n. Let 1,..., n denote the eigenvalues of the pencil Ao ABo, ordered
so that P()) > P()t2)l >--’’" >-- P()kn)l" Suppose k is a positive integer less than n
such that Ip(k)l > Ip()k+) I, and let p IP(k+l) I/IP()k) I" Let (Pi) be a sequence
of polynomials of degree < n such that limi--.oo pi p and P.i(ikj) 0 for j 1,..., k
and all i. Let (Td, Tr) and (Nd,/r) be the deflating subspaces of Ao- )Bo associated
with )ti,...,,k and Ak+,...,.n, respectively. Suppose (el,..., ea} FI b/d {0} and
(e,..., ek)Ab/r {0}. Let (Ai- ABi) be the sequence of iterates of the GZ algorithm
using the given (pi), starting from Ao ABo. If there is a constant k such that the
cumulative transforming matrices and 2 all satisfy a2(i) < k and a2(2i) < k,
then (Ai ABi) tends to block triangular form in the following sense. Let Ci denote
either Ai or Bi, and partition Ci as

(-)x
such that

Then for every satisfying p < < 1 there exists a constant

(2) C(2 112 < M[ for all i.
IIC112

Remark 1. If A0 is upper Hessenberg with no zeros on the subdiagonal and
B0 is upper triangular, then the subspace conditions (e,...,ek) A b/d {0} and
(e,..., ekl A b/r {0} are satisfied for all k, as is explained in [17] for the stan-
dard eigenvalue problem. The reasoning is no different for the generalized eigenvalue
problem.

Remark 2. The conditions pi()j) y 0 for j 1,..., k may occasionally be vio-
lated, but this is not undesirable. If Pi(j) O, then p(AB) is singular. Theo-
rem 4.3 shows that in this ce the eigenvalue Ay can be deflated from the problem
after the ith iteration.

Remark 3. The conclusion of the theorem implies that the eigenvalues of (i)

AB and (i)-AB converge to A1, Ak and Ak+i, An respectively, as can22
be shown by standard techniques.

Remark 4. If p h Ak+l,..., = among its roots, then p 0, so (2) holds for all
> 0. Thus the convergence is superlinear.
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Remark 5. The hypotheses of the theorem usually hold for many values of k
simultaneously, thereby giving a limiting form that is block triangular with many
small blocks on the main diagonal. If the conditions hold for all k (1 <_ k _< n- 1),
the limiting form is upper triangular.

Proof. Let 15i Pi’"pl, let $ (el,...,ekl, Sr ih(AoB-I)S, and -di
i(BAo)S. All of the hypotheses of Theorem 5.4 of [17] are satisfied, with the role
of A in that theorem played by either AoB or B-1A0. Consequently there exists

such that d(Sri, Tr) _</l/ and d(Sd, Td) <_ 1. Recall that (as shown in [17]
and elsewhere) i(AoB) (/ and i(BIAo) 2i. Consider the partition

( [(1i) (i)], 2i [2) 2i)], where ), (1i)
E (rnk. Since /i and i are

upper triangular, S 7()) and Sdi This is true even if i(AoB)
and (BAo) are singular, as the assumptions S A L/d {0}, S gb/r {0}, and
Ipi(j) > 0, j 1,... ,k guarantee that S contains no nontriviM null vectors of
(AoB) or (BIAo). Therefore the spaces Sd and Sr have dimension k for all
i. Applying Lemma 3.1 with the roles of C, G, Z, and played by Co, (, 2, and
C, respectively, we conclude that

where M 2x/t2]l/. v!

3.1. The generalized Rayleigh quotient shift. Suppose we plan to perform
GZ iterations of multiplicity m, where m << n. A natural way of choosing the shift
polynomials is to let pi be the characteristic polynomial of the m m lower right-hand
corner pencil .n(i)-.22 AB2)- We call this the generalized Rayleigh quotient shift strategy.

In [17] we proved that for the standard eigenvalue problem, the asymptotic conver-
gence rate of the GR algorithm with the generalized Rayleigh quotient shift strategy
is quadratic, provided that the eigenvalues of the given matrix are simple. This result
also holds for the generalized eigenvalue problem. Specifically, if the GZ algorithm
converges under the conditions of Theorem 3.2, and generalized Rayleigh quotient
shifts with m n- k are used, the asymptotic convergence rate will be quadratic,
provided AoB is simple. We omit the proof. The details are more tedious than
they are for the standard problem, but the ideas are the same.

4. Implementation of GZ algorithms. We assume from now on that the
initial transformation

Ao G1AZo, Bo Gff BZo

makes A0 upper Hessenberg and B0 upper triangular. We even assume that Ao is

a proper upper Hessenberg matrix; that is, all of its subdiagonal entries +,() are

nonzero. This implies no loss of generality, for if some of the entries ,(0)
i-l,i are zero,

we can reduce the problem to two or more subproblems, each of which has a properly
upper Hessenberg coefficient matrix. Since we are now concerned with the problem of
implementing one iteration of the GZ algorithm, we drop the subscripts and consider
the single iteration

(3) -A2, [ -B2,
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where

(4) p(AB-1) , p(B-1A) 2.

Here all matrices are in (rnn. The degree of the polynomial p is m, which is assumed
to be less than n. Normally m << n. Dropping the subscripts allows us to reintroduce
subscripts later for a different purpose.

An important relationship that follows directly from (3) and (4) is given in the
following lemma, which plays a key role in determining the structure of , / and
intermediate matrices that arise during the execution of a GZ iteration. (It is a
generalization of [10, (3.5)].) Although the lemma is used to study structure, it is not
itself dependent on any special structure of the matrices involved, except that it is
crucial that ( and Z be nonsingular.

LEMMA 4.1. Suppose A, ., B, [, , and are any n n matrices related by
(3) and (4), where and 2 are nonsingular matrices, and p is a polynomial. Then

=A and [= tB.

Proof. fil 2-1p(B-A) -Ap(B-A) -p(AB-I)A A. The
same argument shows that BS B, since the equation Bp(B-1A) p(AB-1)B
also holds.

As a first application of Lemma 4.1, consider a GZ iteration in which the matrices
p(AB-) and p(B-A) are nonsingular, as is usually the case. Then/ and are also
nonsingular, so the equations in Lemma 4.1 can be rewritten in the form

Since A is properly upper Hessenberg and B, /, and - are all upper triangular,
we see immediately that A is properly upper Hessenberg and/} is upper triangular.
Thus the special form is preserved from one iteration to the next.

4.1. The singular case. When p(AB-) and p(B-A) are singular,:the upper
Hessenberg-triangular form is not preserved, but something even better happens. A
small subpencil at the lower right-hand corner of the matrix can be deflated from the
pencil after the iteration. The part of the pencil that remains after deflation remains
in Hessenberg-triangular form. We consider this case in detail.

The matrices AB-1 and B-A are both properly upper Hessenberg. The proper
upper Hessenberg matrix W that appears in the following lemma is taken to be AB-or B-1A in the application.

If p(W) is singular, then at least one of the shifts (roots of p) is an eigenvalue of
W, and conversely. Any shift that is an eigenvalue is called a perfect shift.

LEMMA 4.2. Let W be a proper upper Hessenberg matrix, and let p be a polynomial
that has roots that are perfect shifts for W. Then

rank(p(W)) n- .
Furthermore, the leading n- columns of p(W) are linearly independent.

Remark. When we count perfect shifts, we allow repeated shifts, but we count a

repeated shift no more times than it appears as a root of the characteristic polynomial
of W.

This result is also proved in [10] as part of Theorem 4.1.
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Proof. The statement about the rank is just Lemma 4.4 of [18]. To get the other
assertion, let x p(W)el. Let K(W, x) denote the Krylov matrix

K(W, x) Ix, Wx, W2x,. wn-lx].

Then

(5) x) p(W)T,

where T K(W, el). Since W is properly upper Hessenberg, T is upper triangular
and nonsingular. Thus, for any k, the span of the first k columns of K(W, x) is the
same as the span of the first k columns of p(W). In particular, rank(K(W, x)) n-u.
The form of a Krylov matrix implies that if a given column is a linear combination
of previous columns, all subsequent columns will also be linear combinations of the
previous columns. Thus the first n- u columns of K(W, x), and hence also of p(W),
must be linearly independent, rl

THEOREM 4.3. Consider the GZ iteration (3), (4), in which of the shifts are
eigenvalues of A ;B. Then

where/11, 11, 211, 11 E ((n-u)x(n-r,), /11 and/11 are nonsingular, 11 is prop-
erly upper Hessenberg, and 11 is upper triangular. The eigenvalues of the subpencil
t. A: are exactly the perfect shifts.

Proof. In light of (4) and Lemma 4.2, the upper triangular matrices/ and both
have rank n- u and their first n- columns are linearly independent. This proves
that they have the stated form.

Writing the equations of Lemma 4.1 in partitioned form, we have

where C can denote either A or B. Equating the (2, 1) blocks of the partitioned
equation, we find that 2111 0. Since 11 is nonsingular, we have 021 0.

^-1
Equating the (1, 1) blocks and multiplying on the right by $11 we get

dll /)11CllSll nt-/12C21o11

In the case C B, we have B21 0, SO J11 /11Bl1-11, which shows that J11
is upper triangular. Now consider the case C A. Since A is upper Hessenberg,

^-1
A21 aelen_,T where a a,-+l,n-. Since Sll is upper triangular, we have

en_ for some ft. Let x R12el. Then

T211 /11All/-11 q- Xen_u.
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The first term on the right-hand side is properly upper Hessenberg and the second term
has nonzero entries only in the last column. Thus 211 is a proper upper Hessenberg
matrix.

The fact that the eigenvalues of 22 A/22 are just the u perfect shifts can be
deduced in the same way as in the standard eigenvalue problem by considering the

^-1
form of AB See Theorem 4.5 of [18].

Remarks. We have opted for a brief algebraic proof using Lemma 4.1. Alter-
natively one could prove the form of . and / geometrically, using the Hessenberg
form of A, the relationships between the underlying subspaces (spanned by the leading
columns of ( and 2), and the fact that the n-u dimensional spaces /-d (P(B-1A))
and 7"r 7(p(AB-*)) form a deflating pair for A- AB. Such a proof would be
lengthier but perhaps more revealing.

Theorem 4.3 generalizes Theorem 4.5 of [18] and some aspects of Theorem 4.1 of
Miminis and Paige [10]. However, the Miminis-Paige result addresses certain details
that we have chosen to ignore.

Theorem 4.3 shows that if of the shifts are perfect, then a subpencil can
be deflated from the problem after the iteration. The pencil -22- A/}22 may not
have Hessenberg-triangular form, but it is normally small enough that it can easily
be returned to that form and its eigenvalues found. Subsequent iterations can focus
on the pencil 211 )11, which does have Hessenberg-triangular form. Of course
this is only a theoretical result. In a GZ step with roundoff errors, 2, will be not
quite zero. Usually it will be far enough from zero to prevent deflation. In that case
a subsequent GZ step with the same p will often produce the deflation.

4.2. G/ decompositions and elimination rules. To introduce specific ver-
sions of the GZ algorithm, we need to consider how GR decompositions are carried
out in practice. The standard way to perform a GR decomposition of any type is
to "reduce the matrix to triangular form" by introducing zeros into the matrix one
column at a time. Each column of zeros is obtained by multiplying on the left by
a nonsingular matrix of a specified form. Algorithms of this type have the following
general structure. A matrix M E (rnn is reduced to upper triangular form in n- 1
steps. After i- 1 steps, M has been transformed to a matrix R-I whose first i- 1
columns have been reduced to upper triangular form. That is,

/-* 0 F

where T E -1i-1 is upper triangular.
(-1i_1, where G has the form

The ith step transforms /_, to /i

and (i G ((n-i-t-1)(n-i+l) is chosen so that (-*x ae,, where x is the first column
of F, and c is a scalar. After n- 1 such steps, M will have been transformed to the
upper triangular matrix =/n-. Clearly/ G1... G-M, or

where G... Gn-.
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Given any vector x E (l]m (_for any m >_ 2) we say that a matrix ( e (mm is
an elimination matrix for x if G is nonsingular and (-lx ael for some scalar c.
If ( is an elimination matrix for x, then ( is an elimination matrix for all nonzero
multiples of x.

Usually an elimination matrix G is embedded in a larger matrix G. We also refer
to the larger matrix as an elimination matrix.

An elimination rule is a map x - G having the following properties. (i) The
domain of the map is a subset of Uicx=2 (i. (ii) Each vector x in the domain is mapped
to a matrix ( that is an elimination matrix for x. (iii) The map is homogeneous, that
is, if x is in the domain, so are all nonzero multiples of x, and they are all mapped to
the same elimination matrix. (iv) Zero vectors are in the domain, and each is mapped
to the identity matrix of the same size. (v) If x [] (]In, where y Ck with
k < n, then x is in the domain if and only if y is, and x is mapped to the matrix
( diag{/, In-k}, where/ is the elimination matrix assigned to y by the map.

A complete elimination rule is one whose domain is all of [J.=2 " A partial
elimination rule is one whose domain is a proper subset of

Probably the simplest elimination rule is Gaussian elimination without pivoting.
It is a partial elimination rule, as it is undefined on those nonzero x that satisfy
x 0. An example of a complete elimination rule is Gaussian elimination with
pivoting, which interchanges x with the entry in x of largest magnitude before per-
forming the elimination. Another complete elimination rule is elimination by reflector
(Householder transformation). All of these types of elimination are discussed in [6]
and [15], for example. One can also build hybrid elimination rules from other rules.
For example, one can pick a tolerance - satisfying 0 < T < 1 and specify that x should
be eliminated by Gaussian elimination (without pivoting) if max2<<k
and by a reflector otherwise. This type of strategy has been used successfully in some
of the algorithms in [7]. There are also more exotic types of elimination rules. For
example, a symplectic (partial) elimination rule, which gives rise to the SR algorithm,
is described in [1].

Every elimination rule induces a rule for carrying out GR decompositions; namely,
carry out the "reduction to triangular form" described above using the specified elim-
ination rule. Hence each elimination rule, together with a mechanism for choosing p,
induces a GZ algorithm. If the elimination rule is not complete, the algorithm will
break down (fail) if at some point it needs to perform an elimination on a vector that
is not in the domain of the rule.

4.3. The explicit GZ algorithm. We now assume that we have chosen an
elimination rule and will perform all of our eliminations with that rule.2 Let us
examine closely the steps involved in performing a GZ iteration explicitly. First the
matrices p(AB-) and p(B-1A) are calculated. Then GR decompositions of both
matrices are performed, using our chosen elimination rule. As above, we assume
that of the shifts are perfect. If > 0, then by Theorem 4.3, the resulting upper
triangular matrices / and have rank n- , and their bottom rows zero. This

2 However, everything we do could be cast in greater generality. For example, we could allow a
’different rule to be used at each step of the decomposition. Another possibility is to prescribe different
rules for the two different GR decompositions on which the GZ iteration is based. Such an algorithm
was once proposed by Kaufman [9]. In this algorithm all of the "G" transformations are unitary and
all of the "Z" transformations are stabilized elementary (i.e., Gaussian elimination) transformations.
This is a GZ algorithm in which the decomposition of p(AB-1) is a QR decomposition and that of
p(B-1A) is an LR decomposition with partial pivoting.
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implies that the reductions to triangular form will be completed after n- u steps.
Thus, letting p min{n- u, n- 1}, the reductions have the form

zl... ZIZlp(B-1A).
Therefore

p(AB-)=0/ and p(B-1A)=2g,

where

=G...Gp and 2=ZI...Zp.

We then complete the iteration by performing the equivalence transformations

(6) ft O-A2 and / 0-B2.
Remark. In the case of the standard eigenvalue problem (B I), we have

p(ABS p(B-A) p(A), so Gi Zi, i 1,..., p, 0 2,/) , (-A(,
and B I. This is one iteration of a GR algorithm [17].

To determine how to do these operations implicitly, we break the transformations
(6) down into small steps and study the intermediate results. Let C denote A or B,
as before; define 00 C, and

(7) 0i-1/2 (-10i-1^ } 1,.. p.
Ci =Ci_/aZi

Then
We also give names to the intermediate matrices in the GR decompositions. Let

o p(AB-I), do p(B-1A), and

i= 1,...,p.

Then/-/p and
Since AB-1 and B-1A are proper upper Hessenberg matrices,/o and o satisfy

(o) (o)
j-t-m,j = O, = O, j 1 n- mj+m,j

and

}y)= y)-0 when i> j + rn,

where m is the degree of p. Thus they have the form
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where the entries outside of the outlined area are all zero. Since G1 is the elimination
matrix for the first column of/)0, G1 diag{(l, I}, where 1 E (]j(m+l)(m+l) is the
elimination matrix of [rll,...,r^(’ (m0)+l,1]T.
and -1 have the form

The form of Z1 is similar. In general

for 2,..., n- m. The first i- 1 columns are in upper triangular form. The ith
column has m nonzeros below the main diagonal. Thus G diag{I_l, G,I} and
Z diag{I_l, 2, I}, where and 2 are the elimination matrices of

[?-1) a(i-1) 1T and [g}-l) ^(i--1) T
lrn+i,i] 8m+i,i]

respectively. For i > n- m the transformations have the same form, except that
the vectors to be eliminated are shorter because we have reached the bottom of the
matrix. We then have Gi diag{Ii_l, i}, where (i is the elimination matrix of

[-1) ^(i-1)]T and similarly for Zirn,i
Let 0i GI’"Gi and 2i Z1... Zi, 1,...,p. Then for i < n-rn, i has

the form

i -11 0
0 I

.()
where C/ll is (m + i) x (rn + i). This is clear from the form of the factors. The form
of 2i is the same.

The initial pencil A- AB 0- A//0 is in Hessenberg-triangular form, and so is
the final pencil .- A/) p A/)p, except possibly for a small subpencil that can

be removed by deflation. The intermediate pencils i-1/2- A.[li-1/2 and
are not in Hessenberg-triangular form, but, as we shall see, they do not deviate from
it by too much. First note that

(8) i 7A2i and /)i Gi 1B2i,
for 1,..., p. Since also

(9) p(AB-1) i[i and p(B-1 A) 2,

we see that the pencil .i A/)i is the result of a partial GZ iteration driven by the
partial GR decompositions (9). Applying Lemma 4.1 to (8) and (9), we find that also

(10) A =/iA and ii iB.

We use these two equations in Lemmas 4.8 and 4.5, respectively, to help determine
the shape of i and/)i.

Similarly, we have

(11) 2i_1/2 OlA2i_l and i-1/2
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so the pencil i--1/2 )i--1/2 can be viewed as the result of a partial GZ iteration
driven by the partial GR decompositions

(12) p(AB-1) O,/i and p(B-1A) 2i-1i-1.

Applying Lemma 4.1 to (11) and (12), we obtain

(13)

These equations are used to help to determine the shape of i--1/2 and i--1/2"
We study first the shape of the "B" matrices.
LEMMA 4.4. For 1,..., n m 1, the last n m i rows of J-1/2 and [

are in upper triangular form. That is,

^(i--1/2)
bjk Ojk =0 if j > k and j > +m.

Pictorially, -1/2 and Ji have the form

Proof. Writing the transformation/)i i-lB2i in partitioned form, we have

/:111 12 X 0 Bll B12 Y 0
.a(i) .(i) 0 I 0 B22 0 I
/21 /22

.(i)
where the (1, 1) blocks all have dimension (m + i) (m + i). Clearly t21 0, and

/()
22 B22, which is upper triangular. Thus /i has the stated form. To prove

that /i-1/2 also has this form, apply the same partition to the equation/i-1/2

Lemma 4.4 suggests that /)n-m-I/2 and /)-m should be completely filled in.
Fortunately the transformations do not only destroy zeros, they create zeros as well,
as we see in Lemma 4.5. For the purpose of avoiding distracting complications in the
statement of this lemma, we define/)o+1/2 =/).

LEMMA 4.5. For 1,..., p, the first columns of [i and/)i+1/2 are in upper
triangular form. That is,

:(i+/)
k=oya =0 ifj>k and k<_i.

Pictorially, both [ and Ji+l/2 have the form
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Proof. By (10) /i =/B. We write this equation in partitioned form as

/11 //12 Sll $12 Rll R12 Bll B2
(i) c.(i) 0 $22 0 R22 0 B22//21 //22

where the (1, 1) blocks are all x i. The matrices Sll, Rll, and Bll are upper
triangular. We know that the first n- u columns of i are linearly independent, and
since i _< p _< n- u, $1: must be nonsingular. Therefore

:: i BIIS-I()
//21

.() (i)
Consequently, //11 RllBllS{-11 is upper triangular and //21 0. This proves that
/i has the stated form. To obtain the same result for/i+1/2, partition the equation

i+l/2i li+lB (from (13)) exactly as above.
Remark. In the nonsingular case, or even in the case v 1, Lemma 4.5 shows that

/ =/n-1 is upper triangular. If v >_ 2, we can conclude that/ =/}p has only its
first p n- v columns upper triangular; it is not guaranteed that the final v columns
get reduced to upper triangular form. But we already know from Theorem 4.3 that
this portion of the matrix will be removed by deflation at the end of the iteration.

Combining Lemmas 4.4 and 4.5, we have the following result.
THEOREM 4.6. For 1,..., p,

^(i-:/2)
bj 0 if j > k and either j > + m or k <_ -1,

()
jk =0 ifj>k and eitherj>i+m ork<_i.

Thus we see that when < n- m, [i-1/2 is upper triangular in its first i- 1 columns
and its last n m rows. Its nonzero pattern is

which would be upper triangular, except that it has a bulge. The tip of the bulge is
at the (i + m, i) position. We call this an m-bulge or a bulge of order m because it

protrudes m diagonals below the upper triangular part of the matrix. The form of
Bi is similar, but the tip of its bulge is at the (i + m, + 1) position. This is a bulge
of order m- 1. We see thus that the transformation/i-1/2 --* Bi shrinks the bulge
by deleting one column from the left side. On the other hand, the transformation
/}i /i+:/2 enlarges the bulge by adding one row to the bottom. Thus the bulge is
.chased downward and to the right as the GZ iteration proceeds. When n- m,
the bulge has reached the bottom of the matrix and begins to be pushed off the edge.
If _< 1, the bulge is eventually eliminated completely. If > 1, the iteration ends
with the last columns uncleared.

We now turn our attention to the "A" matrices.
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LEMMA 4.7. For 0,..., n m 2, the last n m 1 rows of and
-i+1/2 have upper Hessenberg form. That is,

3 (i-kl/2)
jk=jk =0 ifj>k+l and j>i+m+l.

^1
Proof. Write the transformation 2iq_l/2 G+IAZ in the unsymmetric parti-

tioned form

11 "12 X 0 A A2 Y 0
z(i-t-1/2) z(i-t-1/2) 0 I 0 A22 0 I
21 22

where z(i+l/2)l All E (I (i-bm+l)x(i+m) X E ((i+m+l)(i+m+l), Y E ((i+m)x(i+m).
z(+l/2) z(i+i/2)Clearly -2 0, and -22 A22, which is the bottom right-hand corner of

an upper Hessenberg matrix. Thus i+1/2 has the stated form. To prove that Ai also

has this form, apply the same partition to the equation i -lA2.
Thus it appears that n-m-1 is completely filled in. But again it turns out that

the transformations are not only destroying zeros, they are creating zeros as well.
LEMMA 4.8. For 2 <_ <_ p, the first i- 1 columns of .;ti_l/2 and fIi are in upper

Hessenberg form. That is,

(i-1/2)_(i)=0 if j > k + l and k < i -1jk ’jk

Proof.
partition

By (13) we know that -/2i- iA. Consider the unsymmetric

’11 12 $11 S12 Rll R12 All
^(i-1/2) (i-1/2) 0 $22 0 /i22 0
A21 22

A12]A22

^(i-1/2) ix(i-l) (i-1) x (i-1) {ixiwhere AI A E (I] S E (I] and RI
Rll are upper triangular and nonsingular. Thus

Both S and

A RI A^(i-/2) 0
A21

^(i-/2) (i-/2)Therefore A21 0 and RIAIS1. Since RI and S-I are upper
^(i-1/2)

triangular, and AI satisfies ajk 0 if j > k + 1, AI must also have this zero

pattern. This proves that fli-1/2 has the stated form. We obtain the same result for

by partitioning the equation ii iA in exactly the same way.
Remark. As long as u 1, Lemma 4.8 shows that both o-1/2 and are upper

Hessenberg. If u > 1, Lemma 4.8 states that the first p- 1 columns of o are
upper Hessenberg. In fact the situation is better than that. om Theorem 4.3 we
know that is block triangular; all of the entries in column p below the main diagonal
are automatically zero. Of course this is a theoretical result that is valid only in the
absence of roundoff error.

Combining the results of Lemm 4.7 and 4.8, we have the following theorem.
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THEOREM 4.9. For 1 <_ <_ p,

(i--1/2)
ajk =0 if j > k + l and either j > + m or k <_ -1,

(i)=0 if j > k + l and either j > + m + l or k < -1.jk

For i- 1,..., n- m- 1, i-1/2 has its first i- 1 columns and its last n- m-
rows in upper Hessenberg form. Thus it has the form

It has a bulge that has its tip at position (i + m, i). We call this a bulge of order
m- 1 because it protrudes m- 1 diagonals below the Hessenberg part of the matrix.

has its first i- 1 columns and last n-m- i- 1 rows upper Hessenberg. That is,
it has a bulge whose tip is at (i + m + 1, i). This is an m-bulge.

The transformation i-1/2 -- enlarges the^bulge^by adding one row to the
bottom. On the other hand, the transformation Ai --, Ai+l/2 shrinks the bulge by
removing one column from the left side. Thus the bulge in i moves downward and
to the right, just as it does in/,i. When n-m- 1, the bulge has reached the
bottom of the matrix and begins to be pushed off the edge.

Now let us consider the effects of the transformations on the A and B matrices
together. The transformation -1/2 --* enlarges the "A"-bulge while shrinking
the "B"-bulge. On the other hand, the transformation ( --. +1/2 shrinks the "A"-
bulge while expanding the "B"-bulge. The relative positions of the bulges in and
B can be seen by superimposing them on one array.

b b b b b b b
b b
a b b
a b b
a b b b b
a a a a b b

a b b
a b

Here we have pictured the case n 8, m 3, 2. The nonzero part of 2 is the
area outlined by the letter b. The nonzero part of 22 includes the nonzero part of
/}2 and in addition the entries marked with the letter a. This is an m-bulge for -2
and an (m- 1)-bulge for/}2. After the transformation 2 -- 5/2, the situation is
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as follows.

b b b b b b b
b b
a b b
0 b b
0 b b b b
0 bbb b b

a b b
a b

The "A"-bulge has been shrunk by the elimination of one column from the left (marked
by zeros), and the "B"-bulge has been enlarged by the addition of one row at the
bottom. Now the bulges coincide perfectly. This is an rn- 1 bulge in -5/2 and an rn

bulge in B5/2.
4.4. The implicit GZ algorithm. Now we are ready to use the information

amassed in the previous section to see how to carry out an iteration of the GZ algo-
rithm without actually rming the matrices/0 p(AB-1), o P(B-IA), or any
of the derived matrices Ri, i.

The first step is to find G, which is the elimination matrix for the first column
of/0 p(AB-) Thus we need to find x p(AB-)el. This can be computed
relatively inexpensively if rn << n. Indeed, p is given in the factored form p(/k)
(,k- a)... (- am). Thus x can be calculated by the recursion

(14) x(j) (AB-1 ajI)x(j-), j 1,..., m,

with x() e. Then x x(’). Since it does not matter whether we get x or a

multiple of x, in practice we would also rescale at each step to avoid over/underilow.
This is inexpensive. Since AB- is upper Hessenberg, only the first j components of
x(y-l) are nonzero. Now consider the jth step. If we let y(J) AB-Ix(j-), then
x(j) y(J) -ayx(j-). We can find y(J) by solving Bz(Y) x(j-l) for z() and then
calculating y(J) Az(J). Because only the first j components of x(j-) are nonzero
and B is upper triangular, the system Bz(j) x(j-) is in fact only a j j upper
triangular system, whose solution requires only O(j2) operations. Only the first j
entries of z(J) are nonzero. Thus the product Az(Y) involves only the first j columns
of A. The nonzero entries in these columns are confined to the first j / 1 rows, so y(J)
can be obtained in O(j2) operations. The computation X(j) y(J)- O’jX(j-l) requires
only O(j) operations. Thus the total operation count for the jth step is O(j). This
must be done for j 1,..., m, so the total cost of computing x is O(rn3), which is
small if rn << n.3

Once we have x, we can let G diag{(,I} be the elimination matrix for x
given by the chosen elimination rule and calculate

21/2 G-IA and 1/2 G-B.
Logically the next question would be how to find Z. However, we postpone that

and ask instead how one finds Gi, 2, 3,..., p, to make the transformations

3 This procedure can be modified in various ways. For example, a more accurate formula for the
case rn 2 is given in [11]. Also, although we are assuming throughout this paper that B is non-

singular, one might reasonably ask whether this process can be salvaged in case one of b11,..., bmm
happens to be zero. Deflation strategies for singular B are discussed in [11], [9], and [6, p. 400].
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(see (7)) given that i-: and /i-: are available, To deal with the two cases _<
n-m and > n-rn simultaneously, let k min{i + m,n}. Then Gi has the
form diag{Ii_l, i, In-k}, where i E (k-i+l)x(k-i+l) is the elimination matrix for
a(i--1) ^(i--1)]T. Call this (column) vector y. We need to find y or a multiple of y[ i,i rk,i

and we need to do it without knowledge of/i-1. We know that (-y he1 for some
scalar a. The fact that the first p columns of Ri are linearly independent guarantees
that a : 0.

We know from Theorem 4.9 that the operation

Gli_l fli_l/2
shrinks the bulge in -i-1 by removing column i- 1 from the bulge. All this means is
that the entries in positions (i + 1, i- 1),..., (k, i- 1) get set to zero. Let us focus on
this column. In transforming i-1 to Ai_1/2, the submatrix -1 acts only on rows
through k. As far as column i- 1 is concerned, the action is

^(i-) (i-t/2)hi,i-1
^(i-1) "i,i-1

~-1 ai+l,i-1 0
G

(i-1) 0
k,i-1

(i-1) (i-1) a(i-llIn other words, defining x (k-i+l by x [ai,i_ ai+l,i_l,.., tek,i_ IT we have
---1 (i-1/) One easily checks that/3 O. Indeed, subsequentG x =/el, where/3 ’i,i-1
transformations do not alter the entry in position (i, i- 1). Thus i,i-1, and
this is nonzero by Theorem 4.3. The relationship -lx /3e says that (i is an
elimination matrix for x. Since it is also an elimination matrix for y, x must be a

multiple of y. Indeed, x =/iel --/oz-ly.
This relationship can also be inferred directly from the equation 2i_1i_

/i-:A by comparing column i- 1 of the left-hand side product with the same column
of the right-hand side, which is analogous to the approach used in [10]. Focusing on

rows through k, and taking into account the zero structure of the various matrices,
we find that

(i-l) a(i-1)
hi,i-1 ri,i

(i-1)(15) i-l,i-1 hi,i-l"
a(i-l) ^(i-I)
k,i-1 rk,i

^(i-1)We know that hi,i-1 0 for all i, and 8i_1,i_ 7 0 as long as <_ p + 1. Thus x is a

multiple of y.
This solves the problem of how to find Gi. We see that we do not need /i--1, as

the required information for building Gi is also present in Zi_ 1. We summarize our
findings as a theorem.

THEOREM 4.10. Let 2 <_ <_ p, and let k min{i + re, n}. Then Gi
diag{Ii-1, (i, In-k}, where i is the elimination matrix of

(i-1) a(i-l) (i-1)T
ai,i_l ti+l,i_l tk,i_l]

We now turn to the question of how to compute the transformations Zi. Given
1 _< <_ p, let k max{/+ m, n}. We know that Zi diag{Ii_l, 2i, In-k }, where 2i
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is the elimination matrix for the vector

which is part of the ith column of i. We wish to determine this vector (or a multiple

thereof) without computing i. We have 2-1x cel, where a = 0.
We know from Theorem 4.6 that the transformation -1/2Z /} (from (7))

shrinks the bulge in/-1/2 by setting the entries in positions (i + 1, i),..., (k, i) to

zero. To see how Z-1 acts, we consider the inverse equation Z(-1B_1/2"-1 B"-1. We
know that/-1/2 has the form

Bll B12 B13 ]/_/ 0 B: Bea
0 0 B33

where Bll 6 (i-1)(i-1) B22 6 (k-i+l)x(k-i+l) and B33 E ((n-k)x(n-k)
Bll and B33 are upper triangular, but B22 is full, as it holds the bulge. Clearly

/--1/2 has exactly the same zero structure; it is upper triangular with a bulge of or-

der k-i. i has the same form as/i-1/2, except that the first column of/22 has been
set to upper triangular form. It is upper triangular with a bulge of order k- i- 1. Its
inverse has exactly the same structure. Thus the transformation Z-I-Jl/2 --1
shrinks the bulge in/}--1/2 by setting the entries in positions (i + 1, i),..., (k, i) to

zero. The submatrix 2-1 acts on rows through k. Within these rows, our interest
focuses on column i, the first column of B-2, as this is where the elimination takes

place. Call this column y; that is, y Bel. Then Z ly el, where / - 0

because B is nonsingular. Thus 2i is an elimination matrix of y. Since it is also
an elimination matrix of x, y must be a multiple of x. Indeed y 2iel a-lx.
Since y B-2lel, we can obtain it by solving the small system B22y el. We have
now proved the following theorem.

THEOREM 4.11. For 1 <_ <_ p let k min{i + rn, n}. Let B22 denote the
principal subrnatrix of -1/2 consisting of rows and columns through k. Let y be
the unique solution of B22Y el. Then Zi diag{I-l,2,In-k}, where is the
elimination matrix of y.

Theorem 4.11 can also be inferred from the equation

(16) D_I_ B,

which holds by (13). The vector x lies in the ith column of i-1, so consider the ith
column of (16), partitioned as

0 B22 B23 x R21 R22 0
0 0 B33 0 0 R32

where/-1/2 is partitioned as before, z (-1, x (k-i+l, /11 (i-1)i, R21
tlJ (k-i+l)xi, and b i. Since the first columns of/)i are upper triangular, R21 has

only one nonzero entry, ), which lies in the upper right-hand corner. Thus R21
(i)3,ele/r, where 3’ "ii = 0. We seek x. But clearly Bx Rlb /elerib 5el,

where ’),eb ")’bii = O. Thus we can find -lz by solvingB el.
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Theorems 4.10 and 4.11 justify the implicit GZ algorithm, which is summarized
in (17). Notice that the algorithm takes n- 1 steps, rather than stopping after p
steps. In practice p is usually unknown because is unknown. Even if is known
in principle, it is not well determined in the presence of roundoff error. When it
happens that > 1, the implicit algorithm differs from the explicit algorithm only
in one way. In this case a small subpencil can be deflated from the bottom of the
matrix. The implicit algorithm operates on this subpencil, reducing it to Hessenberg-
triangular form, whereas the explicit algorithm does not. This further reduction is
useful because we need to calculate the eigenvalues of the subpencil anyway.

IMPLICIT GZ ALGORITHM

for 1,...,n-- 1
k *-- min{i 4-m, n}
if (i 1) then
x ,--- p(AB-1)e (See the discussion following (14).)
y ,-- first k entries of x

else

end if
(17) ( -- elimination matrix of y (.)

G - diag{Ii-1,
A - G-IA B G-1B
B22 e- rows, columns through k of B
z -- B-21el
Z elimination matrix of z (**)
Z diag{Ii_, 2, In-k}
A-AZ, BBZ

Remarks. For standard eigenvalue problems (B I), we have already noted that
Zi G for i 1,..., n- 1. Thus we have Z G at each step of (17). This special
case is the implicit GR algorithm.

In [2] Bunse-Gerstner and Elsner developed a new version of the QZ algorithm
for unitary pencils, which are of interest in certain signal-processing applications.
Instead of using the Hessenberg-triangular form, they introduced a more condensed
block-diagonal form. Since our development is built upon the Hessenberg-triangular
form, it does not encompass the algorithm of [2] as a special case. However, the
methodology used here can be adapted to that situation and used to derive that
algorithm and its generalizations to higher multiplicity. In particular, if A and B are
unitary, the equations in Lemma 4.1 are joined by the two related equations

and /)*/) gB*.

Whereas the equations of Lemma 4.1 yield information about zeros below the main
diagonal (e.g., upper Hessenberg form is preserved from one iteration to the next),
these new equations give information about zeros above the main diagonal. In par-
ticular, block diagonal forms are preserved from one iteration to the next. Of course,
we must now insist that the G and Z transformations be unitary, so that the pencil
stays unitary from one iteration to the next.

4.5. The generic bulge-chasing algorithm. If one compares the implicit GZ
algorithm (17) with the standard double-step QZ algorithm, as presented in, for
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example, EISPACK [5], one notices an important difference. In (17) the transformation
Zi is designed to clear out one column of the bulge in B. In contrast, the corresponding
transformation in the standard code eliminates the entire B bulge before proceeding to
the computation of Gi+l. The bulge is annihilated row by row, using one elimination
matrix for each row. In the case m 2 (as in the EISPACK code) the added cost
of doing this is small. However, as m is made larger, the cost difference becomes
significant. On the other hand, the standard procedure may be substantially more
stable. The reason for this is that the Z calculated in (17) is designed so that the
transformation Z-1_11/2 [1 will clear out one column in the bulge in the inverse
matrix. As a consequence, the transformation [-1/2Z =/i will also, in principle,
remove one column from the bulge in/-1/2. However, these zeros are introduced only
incidentally; they are not enforced by the transformation. Therefore, in the presence
of roundoff errors these numbers will not be exactly zero. They may sometimes be far
enough from zero that they cannot be set to zero without compromising the stability
of the algorithm. After all, if the submatrix B22 should be ill conditioned at some
point, then the solution of B22z el and the resulting Z may not be well determined.
In contrast, the standard procedure introduces the desired zeros explicitly through
the mechanism of eliminating the entire bulge from B. Therefore there is no question
of having to set to zero some numbers that should be, but are not quite, zero. We
note finally that in the extreme case of singular B, the implicit GZ algorithm (17)
breaks down, whereas the standard procedure does not.

It is therefore desirable to broaden our class of algorithms to include procedures
of this type. To this end we introduce a generic bulge-chasing algorithm, which is
exactly algorithm (17), except that at the two steps labelled (,) and (**), where (
and Z are chosen, we do not require that they be determined by a specific elimination
rule. At (,) ~we allow any nonsingular ( for which (-ly cel for some c, and
likewise for Z at (**). That G-ly cel means exactly that (at the ith step) the
premultiplication by G-1 causes entries (/+ 1, i- 1),..., (i+k, i- 1) of the A matrix to
be transformed to zero. Similarly, that Z-lz el, where z B-2 el, means neither
more nor less than that (at the ith step) the postmultiplication by Z causes entries
(i + 1, i),..., (i + k, i) of the B matrix to be transformed to zero. We do not require
that the vector z be calculated explicitly, only that the transformations produce the
desired zeros. (Indeed this can be done even if B22 is singular, in which case z is not
well defined.) Thus algorithms that annihilate the entire bulge in B at each step fit
into this structure.

It is worth mentioning a class of algorithms that avoids the high cost of eliminating
the entire bulge in B at each step by never allowing that bulge to build up in the first
place [9, p. 75]: Suppose that after i- 1 steps of a generic bulge-chasing algorithm we
have A-I- ABe-l, where/i-1 has no bulge. The next step is to build an elimination
matrix G such that G-1 annihilates the entries in positions (i+1, i-1),..., (i+k, i-1)

G- .G-of -1. One can build such a G-I as a product of simpler matrices i,+1" i,+k,

where each G:. acts only on rows j- 1 and j (that is its nontrivial part is a 2
2 matrix) and annihilates the (j, i- 1) entry. One easily checks that the matrix

/-1/2 G-l/i-1 fails to be upper triangular only in that the entries in positions
(i + 1, i), (i + 2, + 1),..., (i + k, + k- 1) are nonzero. These can be annihilated
by a transformation B B_I/eZ, where Z Z#+k’" Zi,+l, and each Z,y acts

only on columns j 1 and j and annihilates the entry in position (j, j 1). Thus/i
is upper triangular. Algorithms of this type conform to the framework of the generic
bulge-chasing algorithm.
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Our analysis of the generic bulge-chasing algorithm will show that each iteration
amounts to an iteration of a generic GZ algorithm. Thus the generic bulge-chasing
algorithm lies within the class of algorithms whose convergence properties we studied
in 3. To this end we introduce some notation. In fact the notation is identical to
notation that we used earlier, but the symbols now carry slightly different meanings.
Let Gi and Z denote the transformations produced at the ith step of the generic
chasing algorithm (as we have already done in the previous paragraph), let G
GI""Gi, ZI... Z, fl 1A2, [ 1B2, i-1/2 1A2-1, and

[_/ 1B2_1, 1,... ,n- 1. These matrices may be different from those
featured in Theorems 4.6 and 4.9, but they have the same bulge structure; it is
exactly the function of the generic bulge-chasing algorithm to enforce this structure.
Let n-1 and/ =/n-1. These are the final products of ^(one iteration of) the
generic bulge-chasing algorithm. is upper Hessenberg, and B is upper triangular.
Assuming once again that B is nonsingular, let/0 p(AB-1) and 0 p(B-1A),
as before, and let /i G-1/_1 and Z-1_1 for 1,..., n- 1. Now we

are using the matrices G and Z to define/ and i, whereas in the development of
the explicit GZ algorithm we used/ and i to define G and Z. It is an immediate
consequence of the new definitions that

p(AB-) (/i and R(B-A) 2
for i 1,..., n- 1. The matrices/) and defined in connection with the explicit
algorithm were partially upper triangular. Whether or not the new/ and have
that property is not immediately clear from the definition. In fact they do, as the
following theorem shows.

THEOREM 4.12. For 1,...,n- 1, the matrices and defined in the
previous paragraph both have the form

0 X22

where XI E ( is upper triangular.
Proof. The proof is by induction on i. First let 1. The transformation

G1 is designed to annihilate p(AB-1)el, the first column of p(AB-) o. Since
/1 G-l/0,/1 must have its first column in upper triangular form, as claimed.

Now we show that, for 1,..., n- 1, if/ has the stated form, then so does. Since /)i 1B2, p(AB-1) (i/ and p(B-1A) 2ioOi, we can apply
Lemma 4.1 to obtain/)ii =/)iB or, equivalently,

Each of the three matrices on the right-hand side has the form (18), where Xll E (ixi,
SO i must also have this form.

We complete the induction by showing that for i 2,..., n 1, if/i-1 and i-1
have the stated form, then so does/i. Certainly the first i- 1 columns of/i are in
upper triangular form, for this is true of/i-1, and the transformation/)i G-1/i-1
does not alter these columns, as one easily checks. Thus we can focus on the ith column
of/i. Since i-1/2 lA2i-1, P(AB-) ili and p(B-1A) 2i-1i-1, we
can apply Lemma 4.1 to obtain

(19) 1i_1/2i-1 liA.
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We wish to pick out the ith column of/. Noting that a,-i = 0, we examine column
i- 1 of (19), partitioned unsymmetrically as

(20) 11 A12 v Rll R2 w
^(-1/2) 0 R2 R22 0

0 A22

where All E Rll E v E and w E The last entry in w
is a#-i. We already know that the first i- 1 columns of/ are upper triangular.
This implies that Rii is upper triangular, and all but the last column of R12 is zero.
Thus Ri2 xeT for some x. If we can show that x 0, we will be finished. Equating
second components of (20), we have 0 R2iw xeTw xa#-i. Since a,-i : 0,
we have x 0.

Let n-, 2 2n-, / /n--, and n-- Then/ and are upper
triangular by Theorem 4.12 with n- 1, and

(21) -A2 and / -IB2,

where

(22) p(AB-1)=Yl?:t and p(B-A)=2.

We conclude that one iteration of the generic bulge-chasing algorithm amounts to.one
iteration of the generic GZ algorithm.
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Abstract. Given a matrix A, a sufficient condition is given for the vector of diagonal elements
of UAV to cover a torus with specified base circle radii as U and V run over the special unitary
group.

Key words, singular values, subtracted terms, spectral inequalities
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1. Introduction. Let A be an n n matrix with complex elements and singular
values s >- >= Sn. Define n to be the n n unitary group. Some years ago, the
author [3] and Sing [2] (independently) characterized the principal diagonals of the
matrices in the b/n (R)/n orbit of A, under the group action for which U (R) V* takes A
to UAV, for U and V in g/n. (V* is the conjugate transpose of V.) The present paper
should be viewed as a supplement to [2] and [3], especially [3].

To explain the principal diagonal characterization, let dl,..., dn be complex num-
bers enumerated such that Idol =... = Idnl. Then [3], [2] unitary matrices U and Y
exist such that the principal diagonal of UAV consists of d,..., dn if and only if

k k

ldtl<st k=l n,
t=l t=l

n--1 n--1

t--1 t--1

This theorem solved a question posed by Mirsky [1] in 1964.
An unexpected facet of this theorem is the last inequality, each side of which has

a subtracted term.
The author, in [3], also investigated the proper orthogonal counterpart of this

theorem in which A is a real matrix with given singular values and nonnegative deter-
minant, and the unitary group//n is replaced by the real proper orthogonal group On.
The result was a somewhat similar theorem, except that under certain circumstances
the minus term on the left side of the last inequality is replaced with a plus term, with
the minus term on the. right still being present.

Since the publication of [3], it has been realized that singular values frequently
satisfy inequalities with subtracted terms; see [4] and [5].

Motivated by the real proper orthogonal theorem just mentioned, the objective of
this paper is to investigate the vectors of principal diagonal elements in the qNn (R) S//n
orbit of a given matrix A, where $b/ is the n n special unitary group, comprising
the unitary matrices with determinant one. While the diagonal vectors may satisfy
intricate conditions (see the lemma in 3) a tidy theorem is obtained if attention is

Received by the editors February 19, 1992; accepted for publication (in revised form) February
8, 1993. The work of this author was supported in part by a National Science Foundation grant.

Department of Mathematics, University of California, Santa Barbara, California 93106-3080
(thompsonmath. ucsb. edu).
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focused on diagonals covering a torus (definition below) in n space. Our theorem
furnishes a sufficient condition on the radii of the base circles in an n-tutus in order
that the diagonal vectors of the matrices in the orbit of A will cover it.

We say that a vector Ida,..., dn] of diagonal elements of a matrix UAV in the
8b/ (R) 85/ orbit of A belongs to a torus of diagonal vectors if [d,... ,nd] are
diagonal vectors of matrices in the orbit of A for every choice of ,..., n with I11

Inl 1. The radii of the base circles in the torus are Idol,...

2. The torus theorem. When studying the diagonal elements d,..., d of
matrix UAV in the orbit of A, no generality is lost if we assume that
since arbitrary rearrangements of the principal diagonal are obtained by passing to
P(UAV)P* for a suitable generalized permutation matrix P with determinant one.

THEOREM. Let A be a matrix with singular values s >= >= Sn, and let
Idol >="" >= Idol.

k k

(1) E Id l _-< , k 1,... ,n- 1,
t=l t=l

n n--1

(2) Eldtl Est-Sn,
t--1

then the diagonal vectors of the matrices in the $ln (R) $bln orbit of A cover the tutus
with ]dll,..., ]d] as the base circle radii.

In the last condition, there is no subtracted term on the left even though there is
one on the right.

We speculate that if the diagonal vectors of the matrices in the S5n (R) Sl, orbit
of A cover a torus with base circle radii Idol >__... >__ Idnl, then the Idol satisfy the just
displayed inequalities, of which only the last is conjectural.

In passing, we note that the $/ (R) Sb/n orbit of a matrix A with singular values
81 ’’" 8n contains & unique matrix diag(s,..., Sn-, Sn) where I1 1. This is
the special unitary version of the singular value decomposition.

3. The 2 2 case. The following lemm establishes the theorem and its converse
in the 2 2 case.

LEMMA. Let A be a 2 2 matrix with singular values s >= s2. Then the diagonal
vectors [dl, d2] of the matrices in the Sbl2 (R) 8bl2 orbit of A cover a tutus with fixed
base circle radii ]dll, ]dl if and only if Id[ + [d21 -<_ s s2.

Proof. Let det A ss2, where I1 1. We wish to construct a matrix

d z 1z d

in the /2 (R) Sb/ orbit of A, where z, z2 re complex numbers to be determined.
This matrix belongs to the orbit if and only if

Id l e -4-Idel e / Iz l -4-Iz l +
dd zz. ss.

A choice for arg(zlz2) exists to satisfy the second condition if and only if

Izlllzl- Idld2 @lS2l.
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Thus the existence of the desired matrix requires that the polynomial

w2 (s + s22 -Idll2 -Id212)w + Idld2 ss212
in w have two nonnegative roots Jzl[ 2, [z2[ 2. An equivalent form of this condition is

with

]dld2 -@1s212 (s21 + s22 -Id -Id2[

s + s22 -Idll2 -Id212 >_ O.

This inequality pair is the necessary and sufficient condition for the $b/2 (R) ,A2 orbit
of A to contain a matrix with diagonal d, d2.

We require that when dl, d2 satisfy these inequalities, so do 1dl and 2d2 for
any choice of 1, 2 with modulus one. Choosing and 2 to maximize the left side
of the first inequality, and using the second, we obtain this necessary and sufficient
condition:

(ldld2l + 8182) (8 + 8 --d -d21
This condition rearranges to become ([d+ld2)2 (s-s2)2, and therefore to become

4. The proof. The hypotheses and conclusion of the theorem are valid for a
matrix A whenever they are valid for A, where is a complex number with I1 1.
Choosing appropriately, it may be assumed that detA >__ 0. Then A is in the
-n (R) Sa/n orbit of diag(s,..., sn).

The following argument uses the proof of Lemma 1 of [3]. We briefly describe the
aspect of this proof that we need. Let complex numbers 51,52 and nonnegative real
numbers 0.1

_
(72 satisfy 1(11-" ](21 -- al +0"2, 1(11- 1(21 0"1--0"2, [(21- 151[ al --0.2.

Then unitary matrices U, V with determinant 1 exist such that Udiag(a, a2)V has
principal diagonal ]51], 152[. Multiplying from the left by D diag(eiarge’, eiarge2), we
obtain unitary matrices DU and V with (DU)diag(0.1,0.2)V having 51,52 as principal
diagonal elements, with det (DU) ei(agel+arge2), and with det V 1.

We now prove the theorem by induction on the matrix size, using techniques
similar to those in [3]. Let the matrices be n x n, and let d,..., dn be given with

Idll >_... _> Idnl. The n 1 case is trivial (the assumptions imply dl Sl 0), and
the n 2 case is settled by the lemma, so let n > 2.

First, suppose that si >= Idol >= si+ for some with n- 2. Let t si + Si+l
Idl]. Then si >= t >__ 8i+1, Idol + t <= si + 8i+1, [dl] t <= 8i 8i+1, t -]d <= si 8i+1.
By the remarks above, we can find unitary matrices U and V such that

We also have

Udiag(si, si+)V with det U eiargdl and det V 1.

Id21-<_ s,

Id21 +". + Idol <= s +... + 8i-1,

Id21 +"" + Idi+ll <= 81 -t-""-t- 8i-1 - t,

Id21 +’" + Idnl <= 81 -t-’"-- 8i-1 2t- t -t- 8i+2 -t-’"-t- 8n-1 8n.
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Therefore, by induction, we can construct a matrix in the ’n--1 @ /A/n--1 orbit
of diag(t, sl,... ,si-l,si+2,... ,Sn) with diagonal elements -1d2,... ,-ldn, where

e-i(argdl)/(n-1). Multiplying by , we get a matrix A Udiag(t,s,... ,si_,

si+2,..., sn)V with diagonal elements d2,... ,dn, where U1 and V1 are unitary with
det U1 -Cn-, det V 1. And now

[10 gl0] [g0 In--20]diag(sisi+1’81"’si-18i+2’"Sn)[V0 In-20 ][10 V10]
has d,..., dn as its principal diagonal with the left and right unitary factors

0 U1 0 In-2’ 0 I_ 0 V1

having determinants det U1 det U eiargdn-1 1 and det Vdet V1 1. Since
diag(si, Si+l, s,..., si-1, si+2,..., Sn) PAQ for suitable unitary matrices P, Q with
determinant 1, this case is finished.

Now let Idll <= Sn-. We choose a real number t satisfying

8n--1 -Jr" 8n
,dl, sn-1 2t-8;}

__
8n-1

81 -- nt- 8n--2 --]d2l Idnl.
This number t will exist if and only if the six inequalities comparing the extreme left
and right expressions are all satisfied, and this is the case exactly when ]d21+"" "-]-Idn] <=
81 -’’"-t- 8n--2. Assuming that this holds, we imitate the proof in the previous part
with n- 1.

First, we have

Idll t <= Sn_l Sn,

t- Idll <= 8n_ 8n,

implying that t Sn-1, and second we have

Id21 1,

Id21 +’" + Idn-ll = 81 4;-... - 8n_2,

Id21 +’" + Idol 5 81 -... 8n-2 t.

By the first set of inequalities and the proof of Lemma 1 of [3], unitary matrices
U and V exist such that Udiag(Sn_,sn)V has diagonal elements dl and t, with
det U eiargdl and det V 1. By the second set of inequalities, and induction, noting
that t <= sn-1, the S/A,_ (R)Sb/n- orbit of diag(t, s,..., Sn-2) contains a matrix with
diagonal elements -ld2,..., -ldn, where e-i(argd)/(n-1). Multiplying by , we
obtain unitary matrices U1 and V1 with det U n-1 and det V1 1 such that

Uldiag(t, 81, Sn_2)V1

has diagonal elements d2,..., dn. Now complete the argument as in the previous case.
So now assume that

Id2l +... + ]dn] > 81 r- nt- 8n--2, Idll <= 8n-1.
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We choose a number t satisfying

81 -t" + 8n--2 8n --Id21
Idll + Idnl 8n--1 = t = 8n-1 --Idll +

The left member does not exceed each of the right members, easily seen using Idll <=
Sn-1, so a real value for t exists. And 1411 + Idnl- Sn-1 >= 0 since we have: from
Id21+.. "+ldnl > sl-t-’" "+Sn--2, we get Sl +.-"+sn-3+ld,-ll+ldnl > Sl +’"" +sn-2,
and therefore Idn_ll + Id,l > Sn--2. This implies that Idll + Idnl > s-l, and therefore
t is positive.

Then two sets of conditions are satisfied. The first is

[d2[-<_

+" + <_- +"" +

and the second is

Idol + Idol 5 t -4-

Let satisfy n-lei(argdl+argd) 1.
Because of the first set of conditions, and by induction, we may find unitary

matrices U and V with determinant 1 such that

Udiag(sl,..., Sn-2, sn)V

has diagonal elements

Multiplying by , we obtain a matrix

(U)diag(sl,..., 8n--2, 8n)V

with diagonal elements d2,... ,dn-l,t and U and V having determinants n-1 and
1.

By the second set of conditions, and the proof of Lemma 1 of [3], we may choose
unitary matrices U1 and V1 such that Uldiag(t, Sn-1)V1 has diagonal elements dl,dn,
where U1 has determinant e(agd+ra dn), and det V1 1.

Then

[I0 U10] [0U 011 diag(sl, 8n-2, 8n, Sn_l)[Vo 011 [I0 vIO]
has diagonal elements d2,... ,dn-l,dl,dn and the left and right unitary factors have
determinant one.
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LANCZOS ALGORITHM*
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Abstract. This paper considers the problem of finding the principal eigenspace and/or eigen-
pairs of M x M Hermitian matrices that can be expressed or approximated by a low-rank matrix
plus a shift, i.e., A B + aI, where B is a rank d Hermitian matrix and d << M. Such matrices
arise in signal processing, geophysics, dynamic structure analysis, and other fields. The proposed
problem can be solved by a full O(M3) eigendecomposition, or by several more efficient alternatives,
e.g., the power, subspace iteration, and Lanczos algorithms. This paper shows that the Lanczos
algorithm can exploit the inherent structure and is generally more efficient than other alternatives.
More specifically, if A B+0.I, the Lanczos algorithm can be used to exactly determine the principal
eigenspace span{B} and 0. with a finite amount of computation. If A is close to B + 0.I, the Lanczos
algorithm can estimate the principal eigenvectors and eigenvalues in O(M2d) flops. It is shown that
the errors in the estimates of the kth principal eigenvalue Ak and eigenvector ek decay at the rate
of 2/(k 0")2 and s/(Ak a), respectively, where is a measure of the mismatch between A and
B + 0.I.

Key words, fast eigendecomposition, Krylov subspace, Lanczos algorithm, eigenvalue multi-
plicity

AMS subject classifications. 65F15, 65J99, 15A18

1. Introduction. In the fields of signal processing, geophysics, and image com-
pression, we often encounter the problem of estimating the principal eigenvalues and
eigenvectors, or often just the principal eigenspace, of an M

_
matrix that can be

either exactly expressed or approximated by a low-rank matrix plus a shift, say

(1) A B + aI,

where B is a rank d(<< M) positive semidefinite Hermitian matrix and is a real
number. The eigenvalues of such an A can be arranged as 1 _> A2 _> Ad > Ad+l

AM O. We can also easily verify that span{B} span{el,..., ed}, where
el,..., ed are the eigenvalues corresponding to the eigenvalues ,..., )d, respectively.
These will be called the principal eigenvalues and eigenvectors whose span is the
principal eigenspace.

1.1. Applications in signal processing. Such matrix structure arises in sev-
eral signal processing problems (see, e.g., [14], [15]) where the data vectors x(.) can be
decomposed into a signal part s(.) and additive noise part n(.), where s(.) is confined
to a low-dimensional subspace, called the signal subspace, while the noise is not so
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restricted. Given such data samples, the goal is to determine the signal subspace.
Assuming that the signal and noise are uncorrelated, as is often the case, the ideal
data covariance matrix of x(.) can be expressed as the sum of the signal covariance
B and the noise covariance hi, where a is the intensity of the white noise,

(2) A E{x(.)xz (.)} E{s(.)sz (.)} + E{n(.)n(.)} B + hi.

Since s(.) lies in the d-dimensional signal subspace, its covariance also has rank d,
and span{B} will be the signal subspace. Then, as mentioned above, span{B}
span{el,..., ed}.

In reality, however, the ideal covariance matrix (obtained from an infinite amount
of data samples) is often not available. Instead, one has the so-called sample covariance

matrix ,, that is estimated based upon a finite mmber (N) data samples. Neverthe-
less, for a reasonably large N, the estimation error is of order O(1/v) (see, e.g.,
[2]), i.e.,

(3) / A + O(1/v),
and for the eigenvalues and eigenvectors, we have

(4) 6i=ei+O(1/x/), i=l,...,d, i=Ai+O(1/v/), i=l,...,M,

where (i, 6i) denotes the ith eigenpair of r. By (4) d+l ’’" M a and they
are confined in a small region of size O(1/v/-) about a. In [4], it was shown that
the maximum likelihood (optimal) estimate of the signal subspace is span{6,..., 6d},
which has the O(1/v/) estimation error by (4).

1.2. Other applications. In dynamic structural analysis and image compres-
sion, among others, the matrix under consideration A (M M) has a few dominant
eigenvalues and many much smaller ones, i.e., A1 >-.. > d >> ,d+l >_’’" >_ ,. The
objective is to find a small number of dominant modes, i.e., the principal eigenvalues
and eigenvectors { Ai, ei }di=, so that the original large matrix A can be approximated

by a rank-d matrix / d-k= ek)kek" According to the Eckart-Young theorem,
such an approximation is optimal since it yields the minimum error A- in
the Frobenius norm sense among all possible rank-d matrices. If all the nonprincipal
eigenvalues are relatively small and can be bounded by a small quantity , i.e.,/kk <
for d + 1 < k <_ M, then the approximation error is of the order of , i.e.,

(5) llA-/irllF V/X+I +... + 2M 0().

1.. Problem saemen and conventional approaches. Summarizing the
above potential applications, we can make the following problem statement.

Given a Hermitian matrix A B + aI + 0(), where B is a rank-d matrix,
d << M and < IIBII is a small quantity, find its principal eigenspace, i.e., span{B}
or its principal eigenvalues and eigenvectors.

Obviously, the proposed problem can be solved by a full eigendecomposition,
which is computationally intensive (O(M3) flops) and difficult to implement in very
large scale integrated (VLSI) hardware. There are several more efficient alternatives,
e.g., the power method, subspace iteration, and the use of the Lanczos algorithm [6].
In this paper, it is shown that the Lanczos algorithm can nicely exploit the inherent
structure of the matrices of interest and is more efficient in solving the stated problem
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than the other alternatives. More specifically, we will show that the Lanczos algorithm
requires only O(M2d) flops to estimate the principal eigenpairs. Performance analysis
is also presented to show that after d Lanczos steps, the estimation errors of the kth
principal eigenvalue and eigenvector decay exponentially at the rates 2/(,k -a)2

and /(Ak- a), respectively. Since the optimal solution (complete eigendecomposi-
tion) to the above problems is only an O() approximation, the analysis results show
that the estimates obtained via the Lanczos algorithm achieve the same first-order
approximation as those derived from the more costly full eigendecomposition.

We remark that if 0, i.e., A B + aI, then via the Lanczos algorithm, we can
obtain the principal eigenspace (and also a) exactly in a finite number of steps. This
may seem surprising at first glance, but note that we are not finding the principal
eigenpairs; the fact that a single repeated eigenvalue can always, in principle, be found
in a finite number of steps. In other words, the task of finding the span{B} if 0,
is clearly not a conventional eigenproblem.

This paper is organized as follows. We briefly outline the finite-step procedure
for computing the principal eigenspace of an exactly structured matrix ( 0) in the
following section. This provides the motivation for a more realistic procedure given
in 3, along with the appropriate analysis. Some numerical examples are given in 4.

2. Matrices with exact structure. First, we introduce the Krylov subspace

(6) /Em (A, f) span{f, Af,..., Am-if},

where f is a vector to be specified later. The important property that ’(A, f)
Km(A- pI, f), for any scalar p, shows that (using (1))

(7) K:m(A, f) -/C’(A aI, f) K:’(A, f),

which we note has dimension at most d + 1, where d rank B. Suppose that f
is not orthogonal to any of the d principal eigenvectors and to at least one of the
nonprincipal eigenvectors, and that the d principal eigenvalues are distinct. Then, it
is not difficult to show that dim(ICd+l(A, f)) d + 1 [18], [19]. The Lanczos method
is an efficient way of finding an orthonormal basis Qm [q,..., qm] for /Cm(A, f)
as follows:

Given A (Hermitian); r0 ql (unit-norm); j 0
while/j = 0

qj+ rj/j; j "= j + 1; j H
=q) Aq

rj Aqy- ajqy-/j_qj_; fj ]lrjl]
end

Since dim(/Cd+l(A,f)) d + 1, it turns out that the Lanczos algorithm will
terminate at the (d+ 1)th Lanczos step, i.e.,/d+l will be zero. This early termination
determines d. Furthermore, we can show that the (d+ 1) x (d+ 1) (tridiagonal) matrix

Td+ Qd+IAQd+I has the eigenvalues {A,..., Ad, a}, where {A,..., Ad} are the
principal eigenvalues of A. Therefore, if an eigendecomposition is performed on this
matrix, we can exactly obtain the principal eigenvalues {Ai} and Qd+lSl,..., Qd+lSd
will be the principal eigenvectors of A, where {sk} are the eigenvectors of Td+l.

Now, an exact eigendecomposition requires an infinite amount of computation.
But in our special case, it is possible to exactly find the principal eigenspace in a finite

If f is randomly selected, it satisfies this condition with probability one.
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number of steps. One way of seeing this is to note that since

M d

(8) Tr(A) E Ak E Ak + (M d)a,
k--1 k=-I

d

Tr(Td+I) E Ak + a,
k--1

thus

(9) a
Tr(A)- Tr(Td+l)
M-d-1

Knowing a, the principal eigenspace will be the range space of any d independent
columns of A- aI B. However, an orthonormal basis can also be easily obtained.
Since a is an eigenvalue of Wd+l, we can solve (Wd+l --aI)s 0 and find the unit-
norm vector s. Then Qs is orthogonal to the principal eigenspace. Let us form
a Householder matrix H that transforms s to ld+l, where ld+l has zero elements
everywhere except the last one, which is one. Then the first d column of QH is
orthogonal to Qs and forms an orthonormal basis of B.

However, if some principal eigenvalues are repeated, the Lanczos algorithm ter-
minates before d + 1 steps and (9) is no longer valid. So we must work a little harder
to find a. Suppose that the Lanczos algorithm stops at the ruth step (rn < d + 1),
yielding AQm QmTm, where m is the number of distinct eigenvalues of A. In this
case, Tm no longer contains all the principal eigenvalues. To handle this, we can select
another initial vector fl that is orthogonal to Qm and apply the Lanczos algorithm to
the deflated matrix A- QmTmQm Proceeding in this way, we get orthogonal Q,
Q,... to block tridiagonalize A, i.e.,

(o) 0(2) C}(I) AQ(1)H c}(2)H
"m2 m ml

Tin1 0
0 Tin2

where each Tm is a tridiagonal matrix of size rni equal to the number of steps in the
ith application of the Lanczos algorithm. We can proceed with the above deflation
till a certain Tm is of block size one. Then we have exhausted all the principal
eigenvalues of A and the only element of Tmi must be a. Knowing a, we can easily
find a basis of the principal eigenspace from A- aI. In this case, the total number
of Lanczos steps is less than d + d’, requiring less than O(M2(d + dr)) flops, where
d (_< d) is the maximum multiplicity among all the principal eigenvalues.

3. Performance analysis of the Lanczos algorithm. In reality, the matrices
under consideration do not have exactly repeated eigenvalues, so that a more practical
problem is to estimate the eigenpairs of a matrix of the form

(11) A B + aI + 0().

We can still apply the Lanczos approach given in 2 to estimate the principal
eigenspace. However, as is made clear in the following, though the corresponding
estimation error is of the same order as for the approximation error of an exact
eigendecomposition, it may have a larger first-order coefficient. However, if we mod-
ify the above algorithm and adopt the well-known Rayleigh-Ritz (RR) approxima-
tion [12], we show that the error between the kth RR value and eigenvalue Ak is

O((s/(k --a))2(m-d)), while the error between the kth RR vector and eigenvector
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ek is O((e/(Ak- a))m-d), where k 1,... ,d and m(> d)is the number of Lanczos
steps. If m d + 2, we can see that the errors are O(e), and the Lanczos algo-
rithm achieves the same first-order approximation as an exact eigendecomposition. If
m(_> d + 2) Lanczos steps are executed, we can achieve the same (m d- 1)th order
approximation as the eigendecomposition.

3.1. Existing error bounds.
DEFINITION 3.1. For the matrix A and its Krylov subspace ]m(A,f) the RR

values Oi and vectors Yi are defined such that

(12) Ayi 0iyi A_ K:m(A, f).

In general, it is very difficult to estimate the errors between the eigenpairs and the
corresponding RR pairs. The only existing error bounds are stated below [12].

Saad bound: For j 1,..., m,

(3)

and

< IAM Al
sin_(f,g)
cos -_( ej)

-2

/--1
0t

T._( + 2,+,)

sin -If, gS) =1 A’-J
(14) tan_ (ej, K:m(A, f))_< cos_(f, ej) Tm-j(1 + 2j,j+I,M)’

where Yj,j+I,M (Aj Aj+)/(Aj+ AM), gJ span{e, e2,..., ej}, and Tm-j(’) is
the Chebyshev polynomial.

Kaniel bound: For j 1,..., m,

(15)

and

cos (f, ej)
l--I

Tm_j(1 + 2")’j,j+I,M)

j--1

+ (AM l) sin2 -(Yl, el),
/---1

(16) sin2 -(y/, el) _< (Ol- AI)+ -(,/+1 ,s)sin2 -(Ys, es) /(,/+1 --/l).
s--1

However, these bounds are not good enough for our purposes. For one thing, they
require knowledge of both the eigenpairs {Ak, ek} and the RR pairs {0k, sk}. Second,
the bounds are not tight enough. For example, when 0, we know from 2 that
the error is zero, while the bounds are obviously nonzero.

It is very difficult to derive a tighter error bound since, as is revealed in the
following, the relationship between RR values and the eigenvalues are highly nonlinear.
Now, it is known (see [12]) that by exploiting more knowledge of the eigenvalue
distribution, one can get a tighter error bound.
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The improved bound: If there are significant gaps between {A1,...,Ak-1} and
{Ak,..., At} and between {Ak,..., At} and {At+l AM}, then Tin-j(1 + 2"j,j+,M) in
the Kaniel and Saad bounds can be replaced by

(17)
k-1

/=j+l

where j < k < and
For the matrix of interest in this paper, there is a gap between {AI,...,Ad}

and {Ad+I,...,AM}- In this case, k d+l, M, and forj _< d, 3’jkt (Aj--
d+I)/(Ad+I--AM). We know that IAd+I--AMI is significantly smaller than (Aj--Ad+).
Therefore, the gap ratio 7jkt is much larger than its counterparts in the Kaniel and
Saad bounds; hence the improved bound for this special matrix is tighter than the
Kaniel and Saad bounds. However, it is still difficult to know how tight the error
bound is. As with the Kaniel and Saad bounds, the improved error bound is also a
function of the unknown RR values {Ok} and it is difficult to gain more insight from
the fairly complicated expression (e.g., Chebychev polynomial).

In the following, we introduce a new approach to obtain a tighter and more useful
error estimate of the RR approximation that also determines the speed of convergence.
Although such an error estimate is not a strict bound, it shows the order of the error
(in terms of e), which can be important in, for example, determining the asymptotic
performance of certain signal processing algorithms [17].

3.2. Convergence analysis and error estimate.
THEOREM 3.2. Let A1 > 2 > > AM be the eigenvalues of a Hermitian matrix

A. Suppose that the M- d smaller eigenvalues cluster in a small region with center
cr (Ad+l + AM)/2, while the principal eigenvalues are reasonably far away from a,
i.e.,

Let (Oi, Yi) be the RR pairs from E’(A, f), arranged in descending order according to
Oi, 1, 2,..., m, and m >_ d + 1. Then the error of the kth RR approximation is of
the order O((e/(Ak a))2(m-d)), for 1 <_ k <_ d, More specifically, for k 1, 2,..., d,

Ak a cos2 -(ek, f) =1 (Ai Ak)2 Ak a
i--k

2(m-d)

COS2-(ek, f)=1 (Ai- Ak)2 Ak--a

2(m-d)

’where gd span{el, e2,..., ed}.
First, we need to clarify the meaning of the symbol introduced in (19) and

(20). By a b, we mean (i) a,b O(ek); (ii) lime__,0 ae-k _< lims0 be-k. In other
words, a b means that the term in a with the highest power of e is no larger than
its counterpart in b.
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The proof of Theorem 3.2 is quite complicated and is described in Appendix A.
Its main ideas can be summarized as follows. First, by definition, the RR pairs obey
(see [12]) Ay,- 0y, _L ]cm(A, f)= ]cm(A- aI)or, equivalently,

(21) (A{f)H(Asy, p,yi) 0, j 1, 2,..., m,

where As A- aI and p, 0,- a. Using the fact that yi k(As)f/llk(As)fll
(by a corollary in [12, p. 240]), we can obtain rn independent equations for 01,..., Om,
where the polynomial

m

II(x

By the Cauchy interlace theorem [12], for k

_
d + 1, Ok lies between ’d+l and AM, or

by (18) Ok --a e for k >_ d / 1. Then, let us keep the terms with the lowest power
of e and drop all the higher power terms. After some algebra, we end up with a set of
Vandermonde equations from which we can recursively find the explicit expressions
of X1 -01, 2- 02, Based on this and the relationship between eigenvalues and
eigenvectors, we obtain the error estimate of the principal eigenvectors (20).

A referee suggested an alternative method of proof that is listed in Appendix B.
,Extending the results in this proof, we can also obtain the following result, where we
have strict upper bounds. For our further arguments, Theorem 3.2 is more useful,
but Theorem 3.3 has independent value.

THEOREM 3.3. For the same conditions and notation as defined in Theorem 3.2,
we claim

2(m-d)

(23) sin2 -(Yk, ek) <

I m

E cs2 _(ej, f) YI (/j 0’)2
j=l i=1
j’-k i’-k

k-1 d
cos FI FI

g=l

3.3. Other relevant results. We can use the same approach to derive the fol-
lowing results, whose proof is omitted.

COROLLARY 3.4. It holds that

cos2klf) = ()k-,j)2 Ak-a

2(m-d)
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where d + 1 < m < M, k 1, 2,..., d Pc- is a projection matrix that projects a
vector onto the orthogonal subspace of K:m(A, f). In the exact repeated eigenvalue
case, i.e., 0, Corollary 3.4 yields d+l 0, which is consistent with the results
in 2. It is also interesting to note that the error of the RR approximation decays
exponentially at the rate , while fm seems to stay at the 0() level when m > d+ 1.
The possible reason is that q/c is normalized by /c at each step.

3.4. Significance of Theorem 3.2. By Theorem 3.2, we can see that all the
quantities associated with the estimation error of the eigenvalues and eigenvectors in

(19), (20), (24), and (25) decay uniformly and exponentially after d Lanczos steps
at the rate of /(/c -a). Note that here is not the smallest eigenvalue of A but
the maximum difference between the smaller eigenvalues of A, which is usually small
for the structured matrices defined in (11). For the structured sample covariance
matrix, O(1/V), where N is the number of data samples. After the (d + 2)th
Lanczos step, the errors between the RR vectors and the corresponding eigenvectors
of the sample covariance matrix are O(1/N) or O(1/x/). Since in this case, the
principal eigenvectors are O(1/v/) approximation of the true basis vectors of the
signal subspace, the RR vectors achieve the same first order approximation as the
principal eigenvectors. In other words, span{el, ,ed} and span{yl,...,yd} are
asymptotically equivalent estimates of the signal subspace (see [18], [17] for more

details).
3.5. Selection of the initial vector f. From (19)-(20) in Theorem 3.2, we see

that the initial vector f plays an important role to achieve fast convergence. First,
if f is orthogonal to some eigenvector, then this eigenvector will not appear in the
Krylov subspace K:m(A, f). However, this is not the generic case. If f E $d, then
sin_(f,$d) 0. In this case, after d Lanczos steps, all the errors will be zero,
according to (19), (20), (24), and (25). If f is chosen to be very close to the principal
subspace, i.e., sin _(f, $d) is very small, the initial error will be small as well. In this
case, the total error can be made small enough in a very small number of Lanczos
steps.

According to (19), (20), (24), and (25), the accuracy of the kth eigenvalue and
eigenvector is also related to cos2 _(e/c, f). If f is chosen to be close to e/c, then
cos2 _(e/c, f) is large and the error associated with the kth eigenpair estimation tends

dto be small. Note that i=1 cs2 -(ek, f) 1- sin2 _($d f) < 1 and cos_(ei, f),
i k can be very small. Then, the error associated with other eigenpairs can be large
and require more Lanczos steps.

If we have any rough a priori information on the principal eigenpairs, we can take
advantage of this information to choose an appropriate f to achieve a well-balanced
convergence in terms of the estimation of the whole principal eigenspace in the smallest
number of steps [19]. In many applications, we do have such a priori information. In
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target tracking problems, the sample covariance matrix at the current time sector is
close to the one at the previous time sector, whose principal eigenpairs have been
estimated. These eigenpairs can be used as the a priori information to find a good
initial vector f.

3.6. Estimation of the principal eigenspace dimension. Detection schemes
for estimating the dimension of the principal eigenspace are problem dependent and
are very difficult to unify into a common framework.. In fact, several papers [1],
[3], [13], [16] appeared in various special problems, e.g., direction finding, harmonic
retrieval, autoregressive moving averaging (ARMA) estimation, etc. Most of the
techniques used in these papers (such as the so-called minimum description length
(MDL) and an information theoretic criterion (AIC) schemes [16]) require all the M
eigenvalues, which are not available at any intermediate Lanczos step. Therefore, new
detection schemes based on the accessible information at certain Lanczos steps need
to. be developed. In the following, we just give a general discussion on the kind of
information that can be exploited to design a proper detection scheme.

In the exact repeated eigenvalue case,/m =7= 0 is the criterion for estimating d. By
Corollary 3.4,/d+l falls below the O() level at the (d+ 1)th Lanczos step. Therefore,
the fundamental difference between the value of tim for rn < d + 1 and rn d + 1
can be used as one criterion to estimate the dimension of the principal eigenspace.
One approach is to compare/m with a predetermined threshold 5; once tim
d rn- 1. In this case, the RR approximation is carried out only at the last Lanczos
step, but not at the intermediate steps.

A more reliable scheme relies on the RR values at each Lanczos step. Since the
smallest M- d eigenvalues of A, viz., Ad+,.’.,AM, are close to each other, their
quadratic mean and arithmetic mean should be also approximately the same. Hence
the ratio of these two means should be close to one or

(26) (rid log
k--d+1

0
M

M-d E
k-’d+l

Clearly, if < d or the hypothesis is wrong, d is significantly larger than d. Based
on this fact, we can design a detection scheme by checking d.7<: j where /d is a
properly predetermined threshold. Now the problem is how to compute d without

knowing these M- d smallest eigenvalues. The trick to circumvent this difficulty is
to properly use the available information, i.e., RR values, Tr(A) (Trace of A), IIAIIF
(F-norm of A). It is well known that

M M

(27) Tr(A) A, IIAII2 A.
k--1 k:l

Since by Theorem 3.2, the d principal eigenvalues can be well approximated (to order

o(em-d)) by their corresponding RR values from the ruth Lanczos step, if _< d,
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m>_d+l,

(28) qo, log
( )
Tr(t) kl 0k

It can be shown that d O(1), for a < d and d O(e2), when d. To avoid any
possible numerical problems, it is recommended to use only the well-converged RR
values in (28) instead of all the m RR values. We can summarize the new detection
scheme for the ruth Lanczos step below.

NEW DETECTION SCHEME
1. Set 1.
2. Set null hypothesis H0" d .
3. Evaluate j using the converged RR values.
4. If oj <_ accept H0 and stop.
5. Otherwise, reject H0; if < l, := a+ 1, return to 2, where is the number of

the converged RR values. Otherwise, m := m + 1, continue the ruth Lanczos
step.

As we know, the computation of Tr(A) and IIAI[ requires about M and M2/2 flops.
According to [12], it takes approximately 9m2 flops to find the RR values (not the RR
vectors) of an m m tridiagonal matrix. Therefore, the computational complexity
involved in the above detection scheme is marginal.

The last issue is how to choose the threshold 7d. It all depends on the a priori
information on d and the answer to this question varies from problem to problem.
For example, if A is a sample covariance matrix as in many signal processing problems,
we can show that N(M- d)d is asymptotically Chi-square (A"2) distributed with
I(M d)(M d + 1) 1 degrees of freedom, where N is the length of data samples.2
Therefore, "Yd can be chosen based on the tail area of the A’2 distribution function.
In this case, we can also show that the above detection scheme is strongly consistent

[17], [19].

3.7. A basic algorithm. According to (19), (20), and (25), the errors regarding
the RR values and vectors, i.e., 0k Ak and sin2 -(Yk, ek), converge at the same rate.
Since it only takes about 9m2 flops to find the RR values at the mth Lanczos step
versus O(m3) flops for computing the RR vectors, one can save a reasonable amount
of computation by using only the RR values to check convergence at intermediate
Lanczos steps. The RR vectors will be computed at the last Lanczos step after
convergence is achieved.

Now, we can present a basic algorithm.

THE BASIC ALGORITHM
1. Start with a nondegenerate initial vector f.
2. Carry out the ruth Lanczos step, i.e., Steps 1-6 of the Lanczos algorithm.
3. Compute the RR values and vectors (0},), ym), i= 1, 2,..., m).

(m-1)l. 50 If yes, store4. Check the convergence of the RR values: [0(") -0k
them in the set of the converged RR values.
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5. Perform an appropriate detection scheme based on the converged RR values.
If d is determined, then go to Step 7. Otherwise, return to Step 2 and execute
the (m + 1)th Lanczos step.

6. Compute the RR vectors and stop.

In the above algorithm, 5e is the threshold for 0. We present this basic algorithm only
to show the basic ideas of the proposed approach. Interested readers can modify it to
their problems. Obviously, if d is known, Step 6 can be skipped.

3.8. Numerical issues. According to Paige [10]-[12], when /m and (km)
IIAy(km)- 0(km)y(km)II are too small at the mth Lanczos step, numerical problems may
arise because the qm may not be orthogonal to qj, j _< m- 1. By Corollary 3.4,
for 1 <_ m <_ d, m and /(km) are not necessarily small until rn >_ d + 1, in which

case, d-l"’"m O(m-d) and /(km) o(m--d). If the initial vector does not lie
too close to one specific eigenvector, the errors in all the principal eigenvMue and
eigenvector estimates are 0(2(m-d)) and o(m-d), respectively, at the ruth Lanczos
step. Therefore, once m and k

(’) become really small, the estimation of these
principal eigenpairs becomes accurate enough and the algorithm should be terminated.
Nevertheless, if f is selected improperly to be very close to one eigenvector, e.g.,
cos _(f, e{) is close to one, but cos _(f, ek) close to zero, for k = i, then by Theorem 3.2,
,(m) is very small but "k

(m) k = is large. As discussed above, if we have some a priori
information about the principal eigenvalues and eigenvectors, we can find a good initial
f so that the convergence is well balanced and the algorithm is numerically better.
At any rate, even if/m or (m) is small but the estimation error is still above the
tolerance level for various reasons, we can always alleviate the numerical problems
by adopting selective reorthogonalization [12] or even complete reorthogonalization.
Since d << M, there will not be a significant increase of computation load. In short,
the numerical problem is not that serious in the proposed algorithm, because the
algorithm usually terminates before /k becomes very small and d << M. A large
number of computer simulations also verified this point.

3.9. Computational complexity and parallel implementation. To insure
the required precision of the results, we may need to carry out a few more Lanczos
steps than in the repeated eigenvalue case. Nevertheless, since the error for the kth
principal eigenvalues decays exponentially at the rate of (/(A-a)), there is not any
significant increase of computational load compared to the finite-step algorithm in 2.
Another small increase of computation arises from the calculation of the RR values for
some Lanczos steps and the calculation of the RR vectors at the final step. The total
cost for the RR approximations is no more than O(log Md+d3) multiplications. Since
we only calculate the RR vectors in the final step and d << M, the total computational
load is essentially the same as that in the exact repeated eigenvMue case, i.e., O(M2d)
flops.

Of course, if the matrix has more structure, e.g., Toeplitz, Hankel, quasi-Toeplitz,
or sparse, another order of computation reduction may be achieved. Since the covari-
ance matrix of a stationary process is Toeplitz, Toeplitz matrices may often arise in
detection and estimation problems. Due to the fact that the Toeplitz/Hankel and re-
luted matrices have a so-called displacement structure [5], the matrix-vector product
can be accomplished via a fast convolution that only takes O(M log M) flops instead of
O(M2). Therefore, only O(Mdlog M) flops in total are required for the displacement
structured matrices if the proposed algorithm is employed.
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TABLE
Errors estimated based on (19), (20), i.e., Ok )k and sin2 -(Yk,ek).

Step
5
6
7
8
9
i0
11
12

1st eigenpair 2nd eigenpair 3rd eigenpair 4th eigenpair

0.03603206781589 108.4226447382217 65.79516628446760 20.68879578437555
0.00041257928669 2.69068133137723 1.78579056097178 1.22903248875567
0.00000475146281 0.06715930815559 0.04874933959596
0.00000005432513 0.00166419298210

0.00003257192336
0.00132117538868

0.07343332502233
0.00435588642811

0.00000000049059 0.00002828098024 0.00020408079980
0.00000000000490 0.00000070498603 0.00000066946184 0.0000105365497
0.00000000000006 0.00000001759064 0.00000001826927 0.00000063155630
0.00000000000000 0.00000000030903 0.00000000035102 0.00000002655900

Obviously, the most computational intensive operation in our approach is the
matrix-vector product (O(M2) flops), which is very easy to implement in parallel. If
we have M or M2 multipliers or array processors, we can reduce the computational
time to O(Md) or O(d3) accordingly. Moreover, the computation of the RR values
and RR vectors can also be done in parallel with the calculation of qm.

4. Numerical examples. To give some intuitive ideas of how the Lanczos al-
gorithm achieves fast convergence via exploitation of the matrix structure, we applied
it to the following two numerical examples. For comparison, we also tried the power
method and the subspace iteration method for the same matrices. In the first ex-
ample, we have a 20 20 matrix with exact repeated eigenvalues. The matrix in
the second example is a perturbed version of the first one. The eigenvalues of both
matrices are listed below.

Matrix with repeated eigenvalues.

{Ai} {11.2115, 9.2050, 9.0024, 7.8380, 5.0000, 5.0000, 5.0000, 5.0000, 5.0000, 5.0000,
5.0000, 5.0000, 5.0000, 5.0000, 5.0000, 5.0000, 5.0000, 5.0000, 5.0000, 5.0000}.

Matrix with near-repeated eigenvalues.

{)i} {11.1178, 9.1882, 9.0093, 7.7430, 5.4246, 5.4103, 5.3240, 5.2159, 5.195.9, 5.1501,
5.1130, 5.0707, 5.0470, 5.0034, 4.9937, 4.9190, 4.8851, 4.8705, 4.8424, 4.7789}.

Obviously, according to the eigenvalue distribution, d 4. To simplify the com-

parison, let us assume that we know the principal eigenspace dimension and set the
convergence threshold to be 10-2. We begin with the matrix with repeated eigen-
values. It took 19, 37, 19, 13 iterations for the power method to converge to the
corresponding four principal eigenvectors. Similarly, the subspace iteration method
required 14 iterations. Since each iteration of the subspace iteration requires four
matrix-vector multiplications, reorthogonalization, and RR approximation, the total
cost is more than 14 4 56 equivalent power iterations. Therefore, the total compu-
tational load for the power method and subspace iteration methods exceed M3 flops
and these methods may not gain much advantage over a conventional eigendecompo-
sition. Nevertheless, as was shown in 2, the error of the Lanczos algorithm became
exactly zero at the fifth or (d + 1)th Lanczos step.

Now let us consider the perturbed matrix. For the power method, the iteration
numbers were similar to those in the previous case, i.e., 21, 23, 21, 14. The subspace
iteration method also required 14 iterations. In this case, we notice that the distances
among these 16 eigenvalues are clustered together, i.e., Ii jl <- 5.4246- 4.7789
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TABLE 2
Errors between the four principal eigenvalues and RR values: )k Ok.

Step 1st eigenvalue 2nd eigenvalue 3rd eigenvMue 4th eigenvalue

5 0:00127069170465 0.11723150268288 1.24173355526221 2.43979635361673
0’.00029638584599 0.1088478998’i9 1.04544880742115 0.97290479633678
0.00000028814013 0.00129038695552 0.00083054572480 0.00039517091821

8 0.0000000017460 "0.00000167845553 ’0’.00000116550693 0.0000019693565
9’ 0.00000000000018 0.00000006381801 0.00000000290035 0.00000000654457
i0" -0.0000000000000 ’0.00000000000379 0.00000000000315 0.00000000001583
11 -0.00000000000000 0.00000000000001 0:00000000000001 0:00000000000007
2 ’-0.oooooooooooo0o-0,oooooooooooooo 0.00000600000000 :o.oooooo0oooo0o0

TABLE 3
Errors between the four principal eigenvectors and RR vectors: sin2 -(Yk, ek).

Step II
5
6
7
8

1st eigenvector 4th eigenvector

0.00051569936262
0.00012468583362

2nd eigenvector 3rd eigenvector

0.64204461430267 0.98085706907710
0.595i 1588056001
0.00034470804766

0.89825111642592
0:99997877981132
0.80663424313299

0.00000004752066 0.00024292507197 0.00014696836596
0.00000000002858 0.00000040255868 0:00000029218890 0.0000004420797
0.00000000000003 0.00000000096714 0:00000000076980 0.00000000262875
0.00000000000000 0.00000000000092 0.00000000000081 0.00000000000601

0.00000000000000 0.00000000000000 0.00000000000003o.oooooooooooooo
o.ooo6oooooooo0o 6.00ooo00o0ooooo" o,0oooo0ooooooo0 0.0000000000000

0.6457. The Lanczos algorithm was used to exploit this property. The errors Ak -Ok
and sin2 -(Yk, ek) estimated according to (19), (20) are listed in Table 1, while the
actual estimation errors are in Tables 2 and 3. By Table 1, the error estimates of
Theorem 3.2 became below 10-4 (threshold) at the ninth step. However, the actual
errors were below 10-6 at the eighth step. Therefore, only a few more Lanczos steps
are required to remedy the perturbation according to the analytic error bound and the
actual error illustrated in Tables 1, 2, and 3. In fact, this example should be a difficult
case for the Lanczos algorithm since there are two close principal eigenvalues, 9.1882
and 9.0093, whose difference is even much smaller than e 0.6457. Nevertheless, as
shown in these tables, this difficulty could be easily overcome by three more Lanczos
steps. Therefore, in most cases, the closely spaced principal eigenvalues do not pose a
very serious problem since there are many more near (almost) repeated nonprincipal
eigenvalues. Of course, if the principal eigenvalues are reasonably far apart, then more
rapid convergence is expected.

In the following, we give more practical examples in array signal processing. Here,
a 15-element uniform linear array was used to estimate the direction-of-arrival (DOA)
of two uncorrelated sources from 35 and 45, respectively. In this case, the sample
covariance matrix estimated based on 500 data samples should be close to a rank-2
matrix plus shift. Standard eigendecomposition and the Lanczos-based algorithms
were used to estimate the principal eigenspace. Since d was unknown, the aforemen-
tioned AIC and MDL techniques were used to detect d based on all 15 eigenvalues.
Alternatively, the suggested Lanczos-based algorithm plus a new detection scheme was
also carried out for comparison. The ESPRIT algorithm [14] was utilized to estimate
the DOAs based on the principal eigenspace estimates from both eigendecomposition
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l00

lO-1

Lanczos 35 deg

Lanczos 45 deg

..Eig 45 deg

..Eig 35 deg

Signal-to-Noise Ratio (dB)
FIG. 1. Comparison of the MDL, AIC, and Lanczos-based detection schemes.

and Lanczos (with random f). The quality of the detection is characterized by the
probability of detection based on 500 independent trials for each case, while the accu-

racy of the signal subspace estimation is measured by the standard deviation of the
DOA estimates based on the same number of trials. Here, the signal-to-noise-ratio
(SNR) varied from -20 dB to 0 dB, and the results are shown in Figs. 1 and 2. From
Fig. 1, it is clear that the AIC scheme is not strongly consistent since it stays at 90%
even if the SNR increases. As shown in [16] and [17], MDL and the new scheme are
strongly consistent. Hence, their probability of correct detection approaches to one
after SNR > -14dB, as illustrated in Fig. 1. It is interesting to note that the new
schemes work a little better in the low SNR case. When SNR _> -14dB, typical
eigenvalue distribution of the sample covariance matrix is illustrated below:

{76.00, 65.67 49.91, 47.10, 45.89, 44.50, 42.50, 40.78, 39.85, 38.46, 38.40, 36.68, 34.56,
2.o, 0.0}

Therefore, the gap between the principal and nonprincipal eigenvalues is not very
large and the proposed fast method still works reasonably well. For the cases where
the correct detection is made, i.e., SNR > -14dB, the DOA estimates are given in
Fig. 2, from which we can tell that there is no significant difference between these two
methods except when SNR 14 dB. However, the flop counts were also recorded and
the fast approach achieves a factor of 10 computational savings on average, which is

quite significant.

5. Concluding remarks. In this paper, we studied the problem of estimating
the principal eigenspace or eigenpairs of certain structured matrices that can be ex-

pressed as a low-rank matrix plus a shift. Though this problem can be solved by
a full eigendecomposition and several other faster alternatives, we .observed that the
Lanczos algorithm can exploit the inherent matrix structure and is more efficient than
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Signal-to-Noise Ratio (dB)
FIG. 2. Comparison of the DOA estimation of eigendecomposition and Lanczos.

most of the other existing algorithms. We first briefly described a finite-step Lanc-
zos based algorithm to find the principal eigenspace of an exact low-rank-plus-shift
matrix. A new analytic error estimate of the RR approximation for the structured
matrix was then presented, which is more useful and accurate than the existing error
bounds. Such an analysis also showed that the estimation error of the RR approxima-
tion decreases exponentially at a small rate as the Lanczos algorithm proceeds. We
discussed several important implementation issues such as parallel computation, esti-
mation of the dimension of the principal eigenspace, and exploitation of other matrix
structure. Numerical examples were given to demonstrate the superior performance
of the Lanczos-based algorithm over its alternatives.

Appendix A. Proof of Theorem 3.2. By definition, Ayk--0kYk _k K:m(A, f).
It is well known that Krylov subspace is invariant of shift, i.e.,/cm(A, f) K:m(A-
hi, f) (see, e.g., [12]). Let #i Ai- a and p 0i- a, where a (,d+l--
Clearly I#- #jl IAi- Ajl < e and #i < e for d + 1 < i, j < M. Also, Ayk- OkYk
(A aI)yk pyk. Hence, it is equivalent to study the problem with As A aI
instead of A (except for a shift in the eigenvalues). Starting again from the definition
of the RR pair, viz., Asyk- 0ky I/Era(As, f), we obtain

(A.1) (Af)H(Ay- py)=0, j 0,1,...,m- 1.

By coronary in p.  42], Substituting into (A.1) and
recalling that 7r(As) 7rk(As)(As pI), gives

(A.2) fHATr(As)f fSA(As paI)Tra(As)f 0.

Obviously, the eigendecomposition of As is EAsE, where E [e, e2,..., eM] and
As diag(#, #2,..., #M). Let us define f to be [efff I[f[[ cos _(ei, f). Then (A.2)
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becomes

(EHf)HAr(hs)EHf 0

or

M

k--1

Write out all d equations for m- d <_ j < m- 1 and move the terms containing 7r(#i),
i > d + 1 to the right-hand side. Then

(A.4)
m-d 2 m-dr2 2-dyl( + + d Yd(’d) (’,+--’dW JdW MfM(M)
m-lf(.d m-1 2-lf(l) + +d ,+ &+(,+) ,-yL(,, ).

Let xk fk m-d
k r(k), k 1, 2,... ,d. Then (A.4) becomes a set of d linear equa-

tions. Now let us examine the quantities on the right-hand side of (A.4). For k d+ 1,
mr(k) Hi(k P) H=d+(k P). We know that the RR values p, m

re the eigenvalues of QHAsQ. Then, according to the Cauchy interlace theorem,
we have M--m+ Pi . For d+ 1, M-m+ 1 > d+ 1. Therefore
lp kl < max(lpi p[, l+M--m kl) < e, k m + 1 d + 1 by sumption. So
r(,k) o(em-d). Also note that ,k[ < e. For k > d, ,r(,k) o(em-d+J). Clearly,
the dominant term on the right-hand side is the one with the lowest power of e, i.e.,
e2(m-d), when j m- d. Let us neglect the higher power terms of e nd write (A.4)
in matrix form

The matrix on the left-hand side of the above equation is a Vandermonde matrix.
Hence, there is a closed form solution for this set of linear equations, namely,

(A.5)
d M

i=d+l
i=k

where k 1, 2,..., d. Let us start with k 1. In this case, by the Cauchy interlace
theorem, p < /z fori 1,2,...,m. Since/z1 > /z, pl-p > /z-/z, fori > 2.
Hence

(A.6) 1- /91

_
(--1)d

1
d

Pi
m 1

u

/Zn-d (i --/Zl)2 /Zl --/9i
/Z J; 7r(i).

"-- 1"-- i=d+l

Sincel#i-#j[ <eford+l_<i,j-<M,

(A.7)
M

i=d+l



990 G. XU AND T. KAILATH

Also, we know # pi =/-tl + 0(), for d + 1 _< <_ m. Thus,

m

(A.8) H tt p
i=d+l

M

i=d+l

Hence,

M

# f = (#

2(m-d)

Let us try k 2. Using the Cauchy interlace theorem again, we can still replace
by tt for i > 2. Hence,

M

i=2

2(m-d)

From (A.9), #1 Pl O(e/l) for m >_ d + 1. Therefore, #2 Pl (t2 1) "- (1
Pl) (#2 ttl) + O(e/#l) and we can replace #2 Pl by #2 #1 and maintain the
same approximation order ((e/#2)2(m-d)).

(A.11) #2 P2
2

M

i--2

2(m-d)

Similarly, trying k 1, 2,..., d, we will be able to obtain

(A.12)
tk

M

i--I
i--k

2(m-d)

Since #k Ak a, p Ok a, fk2 Ilfll 2 COS2 (ek f) Ei=d+lM fl ilfll _Ei=lf/2=d
ilfll2(1 cos2 _(gd, f)) ilfll2 sin2 _(gd, f)

(A.13) Ae Oe
)k O"

sin2 _(gd, f) (Xi a)2 e

cos2:k:f) ,= (Ak--Ai)2 Ak--a
i-’k

Now let us evaluate the error between the eigenvectors and RR vectors, i.e., the
angle between the ek and yk, k 1, 2,..., d

(A.14) cos2 _(ek,yk) leykl2 leffrk(A)fl2

Itrk (A)fll2

HAs kef it is easy to see thatSince ek

llefrr(A=)fll = H u =
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Write As in terms of its eigenvalues and eigenvectors, i.e., As EAsEH. Then,
7vk(As)f Erk(As)EHf. Thus,

M

IIr(A)fll 2

i--1

(A.15) sin2 -(ek, yk) 1 cos2 _(ca, Yk) 1

M

2 2a(#a)f :
M

i--1 i--1

Let us examine 7r(Ai) in three cases: (i) < d, = k; (ii) k; (iii) > d+l.
Starting with case (i), by (A.5), we have

(A.16)

In case (ii), i.e., k.

(A.17)

In case (iii), viz., i _> d + 1, since # O(e) and pj #j + O(e), for 1 _< j _< d, thus

(A.lS)

m d m

7rk
J=l J= j=d+l
=k

2(m-d)

j=l
j-’k

2 (#)f2 i.e.Hence, the term in case (ii) is the dominant term of the sum rk
i=1

(A.19)
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Nevertheless, since the numerator of (A.15) does not have this term (A.17), its smallest
power of e is then 2(m d) corresponding to case (iii). Hence,

2(m-d)

Therefore, by (A.15), we obtain

M

(A.21) sin2 -(ek’Yk) i=d+lf .= (#k #Y--#y
2(m-d)

Since Ed+ f2 iiflle sin2 _($d, f) and f llfll 2 cos2 -(ek, f),

(A.22) sin2_(ek,yk) sin2 _($d f) (j--a)2 e

cos2-(ek,f) = (Ak- j)2 ,k O"
j-’k

Appendix B. Another proof of Theorem 3.2. For m >_ d + 1, let us create
the (m- 1)th order polynomials pk(x), 1 < k <_ d:

(B.23)
k-1 d

p(x) 1-I ( o1 I-[ (x 1, ( )r-
j=l j=k+l

It is clear that pk(A)f e/m(A,f) Since {Oj }j=l are roots of pk(x), then as shown
in [12], tk pk(A)f _1_ yl,...,yk_. Clearly, (0i,yi), 1 _< i <_ m are the eigen-
pairs corresponding the projection of A onto K:m(A,f). Since tk E /Cm(A,f) and

tk _l_ Yl,... ,Yk-1, it is not difficult to show that the Rayleigh quotient p(A, tk)
tAt/lltlle < 0 (see e.g., [2]). Then,

(B.24) Ak Ok < Ak p(A, tk) p(AkI A, tk).

Let us write A M’i=/ieie/H and define f/= lefl cos _(ei, f). It is not difficult
to show that

M M

()( a)f?,(B.25) IItll _p()ff, t(,kI--A)tk=E 2

i=1 i=1

and
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The inequality in (B.26) is due to the fact that Ak--Ai _< 0 for < k and p(Ai)f >_ O.
The equality from (B.26) to (B.27) results from the fact that Pk(A) 0 for k
i <_ d, as these A’s are the roots of pk(x) according to (B.23).

Let us start with k 1. Combining (B.24)-(B.27), we obtain

M

E f(A Ai)" (Ai A2)2"’" (Ai Ad)2(Ai a)2(m-d)
i=d+l(B.28) A 0 < f(-) .( )( a)(-)
M

E f?(Ai- 1)" (i- 2)2"’" (i- d)2
2(m-d)

(B.29) < i:d+l

f( ) (1 ) a

The inequality in (B.29) holds because A- a[ < , d + 1 i M. For the same
reason, we can replace the Ai in (B.29) by a without affecting the order 82(m--d) term.
Realizing that f cos2 (ei, f) and i=d+M L2 sin2 (f, sd), we can easily obtain
(19) for k 1. Let us consider the case: k 2. Then (8.27) yields

(B.0)
M

f( )( )(-) (-) (_)

f(A2 0)2(A2

E f(A- Ax)2(A2 A,)(Ai- A3)2... (Ai- Ad) 2
2(m-d)

I( 01)( a)’’" ( e)

Since, by (B.29) 01 1 + O(e(-e), 0 in (B.a0) can be replaced by 1 without
affecting the most significant term (i.e., the e(-a) term) on the right-hand side.
(19) can be obtained for k 2. ollowing the similar procedure, we can show (19) for
k 2,..., d. With (19) and the relationship between eigenvalues and eigenvectors,
(20) can be shown as in Appendix A.

Although this simpler proof and the one in Appendix A seem to give the same

results, they are significantly different in several respects. Since the simpler one starts
with a particular trial polynomials {pk(z)}, it is an ad hoe approach and does not
indicate how tight the bound is. In other words, we do not know whether e(m-a) is
the largest order of the eigenvalue error after the ruth Lancos step, while the other
one (in Appendix A) starts with the exact equations on 0’s and obtain the final
error estimates by sequentially removing the higher order error terms and keeping the
dominating terms. Knowing that 0i - O(e), it indicates that the best possible
order of error in terms of e is 2(m- d) for the principal eigenvalues and m- d for the
principal eigenvectors.

There are also some differences between this proof and the proof of the improved
bound in [12]. Although the improved bound is a strict bound and Theorem a.2 is an
error estimate, the improved bound is not as tight as the intermediate results of this
proof, e.g., (B.29) for k 1 and (B.a0) for k 2, which are also strict bounds. The
reason is that the improved bound [12] is derived with certain unnecessary enlargement
such as

(B.31) IIp(A)hll < II(A 01I)... (A Ok_l)Ill. II:(A)hll,
where k(x) pk(x)/((X- 01)’’" (X- 0k-l)) and h is the projection of f onto the
orthogonM subspace of k span(el,...,
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LCP DEGREE THEORY AND ORIENTED MATROIDS*

WALTER D. MORRIS, JR.t

Abstract. It is shown that the degree of a square-oriented matroid A/[ can be defined in terms
of the number of solutions to the oriented matroid complementarity problem defined by a point
extension of A/l, and that this definition is independent of the point extension. If Ad is represented
by a matrix [I,-M], then this degree is the same as the degree of the LCP mapping defined by
M. The average value of the degree is determined. A new characterization of P-matrices in terms
of degree theory is given. A negative result concerning Q-matrices defining maps of degree zero is
presented.

Key words, linear complementarity problem, degree theory, oriented matroids

AMS subject classification. 90C33

1. Introduction. In [231 and [241, Todd developed a framework for using ori-
ented matroid theory for studying the linear complementarity problem (LCP). One
of the main results of that work was the development of an algorithm for oriented
matroid programming that both preserved feasibility and avoided cycling. This was
a major discovery for oriented matroid theory. A great deal of LCP theory that had
been developed to consider more general instances of LCPs than those considered in
the papers by Todd was shown in [11] to be derived in a unified way by considering
the degree of a mapping, given in [4], defined by the matrix of an LCP. In particular,
degree theory can be used in many instances to show that the number of solutions of
a certain type to an LCP is the same for all nondegenerate choices of the right-hand
side. LCP degree theory has been applied in several papers [8], [9] recently to study
the stability of solutions to LCPs. LCP degree theory is also central to the study of the
class of Q-matrices (matrices that define LCPs that have solutions for any right-hand
side).

We show that one can also incorporate the theory of the degree of an LCP map-
ping into Todd’s oriented matroid LCP framework. The LCP mapping itself has no
direct analog in oriented matroid theory, but the calculation of its degree is made
by examining the circuits of the oriented matroid represented by the matrix of the
LCP. Thus LCP degree theory gives a new integer valued function on the set of ori-
ented matroids, and we investigate some properties of this function. Readers familiar
with LCP degree theory know that many results are proved by theorems involving
homotopies. The analogous process of changing one oriented matroid into another by
changing the orientation of one basis at a time has received much attention, and it is
known that in some cases it is not possible. Therefore, we cannot use arguments of
this type. However, we show that such analytical tools are unnecessary and derive all
our results combinatorially.

The mapping of an LCP is determined by its matrix, and the degree is calcu-
lated using the right-hand side. It is proved in [11] that under certain nondegeneracy
assumptions, the number calculated is independent of the right-hand side at which
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it is calculated. We develop n anMogous result for oriented matroids, showing that
the degree of a square oriented matroid, calculated with n extension of the oriented
mtroid, does not depend on the extension chosen. Once this is accomplished, we
determine that the average value of the degree of a square oriented matroid on 2n
elements is 2-n. This is proved using results on the degrees of oriented matroids
obtained from each other by reorientations. We will Mso derive characterization of
P-oriented matroids (generalizations of P-matrices) in terms of their "reorientation
vectors."

For matrices, this implies that the average degree of the LCP mapping defined
by matrix chosen "at rndom" is 2-n, and that matrix is a P-matrix if and only if
the degrees of the mappings defined by it and the matrices obtained by changing the
signs of its rows and columns follow a certain pattern.

The Q-matrix problem, finding necessary and sufficient conditions on a matrix
M so that an LCP defined by it always has a solution, is one of the main problems of
LCP theory. The discovery of Q-mtrices representing maps of degree zero, in [12], put
limits on the extent to which oriented mtroid theory could aid in the investigation
of the Q-matrix problem. On the other hand, it is s yet unknown how large the
set of such matrices is. We show that the degree zero Q-matrix given by Howe [10]
represents a Q-oriented matroid; that is, every oriented matroid complementarity
problem defined by an extension of the oriented matroid represented by this matrix
has a solution.

2. Definitions. Oriented matroid theory was developed independently by vari-
ous researchers. The papers of Bland and Las Vergnas [2] and Folkman and Lawrence
[5] are two of the earliest papers on the subject. Todd [23] introduced the study of
complementarity in oriented matroids. A simplified development of Todd’s theory in
more general setting is found in a recent paper by Fukuda and Terlaky [6]. As in [23],
we mostly use the notation found in [2]. The oriented matroid axioms that we have
found most convenient to use are from [16]. Our definition of lexicographic extensions
becomes simpler using these axioms. Apart from these considerations, the definitions
and facts from this section follow those in [23] directly.

Let M be in ann and q in Rn. The linear complementarity problem defined by
M and q (the LCP(M, q)) is to find vectors y and x in Rn stisfying y- Mx q,
yTx O, y>_0, x>_0. Background on the linear complementarity problem, as well as
definitions of matrix classes used in this paper, can be found in [3]. The LCP can
be seen as the search for a vector in the nullspace of the matrix [I,-M,-q] having
prescribed sign pattern. We cn think of such sign patterns as combinatorial objects
that can be manipulated according to certain rules. This leads us to oriented matroids.

Let E be a finite set. A signed set on E is a pair X (X+, X-) of disjoint subsets
of E. The set X__ X+ U X- is called the set underlying X and -X (X-,X+) is
called the opposite of X. An oriented matroid on E is a pair (E, ]C), where E is a

finite set and/C is a collection of signed sets on E satisfying the following:
(K1) (), )) e K:, and K /C implies that -K
(K2) If K1, K2 e , then K3 (K+ U (K2+ \ K{-), K{- U (K- \ KI+))
(K3) If K, K2, e )C, e e (gl+ gl K-) U (K{-

Ka, ((KI+ \ K)U(K+2 \K) K+a ((K \K+)U(K \ KI+)) C_ K,Ka

_
/1i..J/2

The signed set K3 obtained in (K2) is said to be the composition of K and K2,
written K3 K o K. A signed set K3 obtained as in (K3) is said to be obtained
by eliminating e between K and K2. The nonzero members of K: with minimal
underlying sets are called circuits of j[. We write K: K:(J). A fundamental



LCP DEGREE THEORY AND ORIENTED MATROIDS 997

result of [2] is that members of E can be conformally decomposed into circuits of
A/; that is, for any K E K:(A/) there exist circuits C1, C2,..., Ck of K:(A/) so that
K+ C+ UC2+ U ...UCk+, K- C UC U...UC;.

An oriented matroid A/ on a set E {el, e2,..., en} is said to be represented by
an mn matrix A if K:(/) is the collection of signed sets ({e" x
for x satisfying Ax O.

A maximal subset of E that does not contain the underlying set of any circuit of
A/ is called a base of A/. All bases of J have the same cardinality, called the rank of
A/. Let B(A4) be the set of bases of j4, and let (A4) be the set of ordered bases of
A/. Las Vergnas showed (see [15]) that there is a map " (A/) {-1, 1} satisfying
the following:

(El) If ,2 are two orderings of a base B, then () s(2) if 2 can be
obtained from by an even permutation.

(E2) If is an ordering of B1, 2 is an ordering of B2, and 1,2 agree in all
but one position, then () (2) if each circuit C of M with C c_ B U B2 has
B \ B2 c_ C+ and B. \ B C_ C- or vice versa.

Furthermore, if 1,2 satisfy the above, then 1 +/-2. A map satisfying (El)
and (E2) will be called a consistent assignment of signs to the bases of A. We may
drop the word consistent. In the case in which A/ of rank m is represented by an
mn matrix A, the bases of J correspond to nonsingular mm submatrices of A,
and one of the assignments of signs to bases of J assigns to each base the sign of the
determinant of the corresponding m m submatrix of A.

If B is a base of J4 and f E\B, there is a unique circuit C C(B, f) with
C c B U f and f C+. This is called the fundamental circuit associated with B and
f.

If F, G are disjoint subsets of E, define an oriented matroid /\F/G on E\(FUG)
by 1C(A4\F/G) {(K+\G,K-\G) K e /(:,K q F 0}. We say that A4\F/G
is obtained from A4 by deleting F and contracting G. We will write J/i\q as an
abbreviation for A4\{q}/0.

A point extension of an oriented matroid A4 on a set E is an oriented matroid
JQ on EUq so that JQ\q A4. We say then that q extends j to A?4. All of
the point extensions JQ considered in this paper are of the same rank as A4. Of
particular importance to us are the lexicographic extensions, originally defined in [14].
Let A4 be an oriented matroid on a set E, and let F (f, fu,..., fk) be a nonempty
subset of E that does not contain the set underlying any circuit of A4. For every
base B of f14 and every 1,...,k define (B, fi) (O, fi) if fi B, (B, fi)
(C(B, fi)+\f, C(B, fi)-) if f B. Then define C(B, q) to be the signed set (q,
((B, f) o...o ((B, fk). From [23] we get that the set C {C C is a circuit of
j} [2 {C(B,q) B is a base of J} U {-C(B,q) B is a base of A/l} is the set of
circuits of a point extension j4 of A/I, in which case we say q lex(f, f2,..., fk)
extends A4 to A4. Todd showed that every circuit of A?4 containing q will then have
at least k + 1 elements in its underlying set.

A square oriented matroid .A4 is an oriented matroid on a set E S T where
S {s,s2,...,Sn}, T {t,t2,...,t}, SCqT 0 and S is a base of A4. Oriented
.matroids represented by matrices of the form [I,-M], for M e R are square, with
the elements s, s2,..., Sn corresponding to the columns of I. A subset A of such a

set E is called complementary if I{s, t} q AI_<I for 1,..., n. If p extends a square
oriented matroid A4 to jQ, the oriented matroid complementarity problem (OMCP)
defined by A4 is to find a circuit C of j4 so that C- 0 (C is positive), p C+, and



998 WALTER D. MORRIS JR.

_C\p is complementary.
We will work with three different nondegeneracy assumptions for our square ori-

ented matroids"
(TND) All circuits of A/[ have n + 1 elements.
(ND) No circuits of j4 are complementary.
(WND) No positive circuits of A/[ are complementary.

If J is represented by the n2n matrix [I,-M], then A/[ satisfies TND (totally
nondegenerate) if every nn submatrix of [I,-M] is nonsingular, J/[ satisfies ND
(nondegenerate) if there is no nonzero x E Rn so that x(Mx)i 0 for 1,..., n,
or equivalently, all principal minors of M are nonzero. A/[ satisfies WND (weakly
nondegenerate) if there is no nonzero x E Rn with x>_0, Mx>_O, and x(Mx) 0
for i 1,..., n, i.e., M is an R0-matrix. It should be clear that TND == ND =
WND.

3. The degree of a square oriented matroid. In this section we show that
it is possible to define the degree of a square oriented matroid in terms of the solution
set of the O4CP defined by an extension and that this definition is independent of
the extension chosen.

DEFINITION 3.1. Let J4 be a square oriented matroid of rank n. Let be the as-
signment of signs to bases ofA that satisfies (81,82,...,Sn) 1. For every comple-
mentary base B of ]4, define the index of B, ind(B), to be (--1)lBnTl(bl, b2,..., bn),
where bi {si, ti} for 1,..., n.

DEFINITION 3.2. Let be a square oriented matroid of rank n satisfying WND.
Let p extend ]/[ to J, so that every positive circuit C of j containing p with C\p
complementary has n + 1 elements. Then the degree of J/[ is the sum of the values of
ind(B) for the bases B of4 for which C(B,p) solves the OMCP of

To show that the degree is well defined, we pick a particular extension and
show that the degree calculated with any other extension gives the same number.
For a square oriented matroid j4 of rank n represented by a matrix [I,-M], q
lex(sl, s2,..., Sn) extends A/[ to an oriented matroid represented by [I,-M, r], where
r (e,2,..., n)T, for all sufficiently small positive e.

THEOREM 3.1. Under the assumptions of Definition 3.2, the degree ofA is well

defined.
Proof. Let J4 and JO be as in definition 3.2. Let q lex(sl, s2,..., 8n

to A/[. Using the ideas of [22] and [23], one can construct a graph for which the vertices
correspond to the positive circuits C of A/[ that have C\{p, q} complementary. Two
vertices corresponding to circuits C1 and C2 are connected by an edge if IC/C21 2.
This graph turns out (see [23]) to be the union of disjoint paths and cycles, where
every vertex corresponding to a circuit containing p and q has two neighbors, and every
vertex corresponding to a circuit containing exactly one of p or q has one neighbor.
We also have (see [23]) that"

(1) If C(B,p) and C(B.,p) correspond to the two endpoints of a path, or if
C(BI,q) and C(B2, q) correspond to the two endpoints of a path, then ind(B1)
-ind(B2).

(2) If C(B,p) and C(B2, q) correspond to the two endpoints of a path, then
ind(B) ind(B2).
This implies that if we add up the values of ind(B) for all B for which C(B, p) solves
the OMCP of A4, we get the same number as when we sum up the values of ind(B)
for all B so that C(B, q) is positive and __C(B, q)\q is complementary. But these are
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the solutions to the OMCP defined by JQ A:4\p, the same oriented matroid as the
extension of J by q lex(sl, s2,..., s,). [-]

Some ideas of the above proof go back to Lemke [25]. With oriented matroids
one must take extra care, since two extensions may not be compatible. If p extends
A/[ to jQ and q extends j4 to JQ, there does not necessarily exist an oriented matroid
A[ so that A}l\q A4 and A\p JQ. Fortunately, this lexicographic extension
is compatible with any other extension. The lexicographic extension is also useful
because it guarantees that all of the circuits corresponding to vertices of the graph
contain n + 1 elements.

The assumption that AJ satisfies WND is sufficient for the graph defined in the
proof to have the structure described. When .4 does not satisfy WND, things can
easily go wrong. For example, if n 1 and j4 is represented by the matrix [1, 0], then
j4 does not satisfy WND as (tl, ) is a positive complementary circuit. Calculating
the degree using the extension represented by [1, 0, 1] gives 0 as the answer, while
calculating it at [1, 0,-1] gives 1. However, the assumption is not strictly necessary.

0 oLet M (0-)" Then the oriented matroid represented by [I,-M] does not satisfy
WND, but calculating the degree at any extension as in the definition yields 0. There
does not seem to be any obvious simple necessary and sufficient condition for the
degree to be well defined, but the assumption WND includes many important cases.

If j4 satisfying WND is represented by a matrix [I,-M], then the degree of
is the same as the degree of the mapping determined by M, as defined in [11]. This
mapping sends the standard basis vectors of Rn to themselves, sends the negative of
the ith standard basis vector to the ith column of-M, for 1,..., n and is linear
on each orthant. A consequence of the definition is that the mappings defined by two
matrices M1 and M2, for which the oriented matroid represented by [I,-M1] is the
same as that represented by [I,--J2], have the same degree.

Recent work by Stewart [21] (see also [7]) gives a method for calculating the
degree of A/I with extensions A for which there are solutions to the LCP of jQ that
have less than n + 1 elements. Lemma 3.1 gives an indication of how one can deal
with extensions for which some of the solutions to the resulting OMCP have less than
n + 1 elements.

LEMMA 3.1. Let J be a square oriented matroid satisfying WND. If the degree
of A/[ is nonzero, then the OMCP defined by any extension of /[ has a solution.

Proof. Let A/[ be a square oriented matroid of nonzero degree. Let q extend
to jO. If (q, q)) is a circuit of Ai, then this is a solution to the OMCP of A)[. If not,
then there is an ordered base F of jQ containing q in the first position. Let p lex(F)
extend A4 to A4, and let A}[ JQ\q. Then A4 satisfies the conditions of Theorem 3.1,
so its OMCP must have a solution. A solution C(B, p) to the OMCP of jQ implies,
by the definition of lexicographic extensions, that there is a circuit C(B, q) of that
solves the OMCP of A.

It was observed in [11] that specifying the signs of the principal minors of a matrix
M does not determine the degree of the LCP mapping defined by M. On the other
hand, from the definition of lexicographic extensions one sees that if is represented
by [I,-M] and q lex(s,s2,...,sn) extends to A4, then the solutions to the
OMCP of A4, and hence the degree of A/, are determined by the circuits of A of the
form C(B, s), where B is a complementary base of A not containing s. By (E2)
these circuits in turn are determined by the values of () for orderings of bases
B that are either complementary or contain {s, t} for exactly one subscript (Here
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we assume that e(81,82,..., 8n) 1). In the representable case, these values of e are
determined by the determinants of square submatrices of M that either are principal
or are defined by a set of rows I and a set of columns J with II/JI 2.

4. Reorientation results. All of the square oriented matroids in this section
are assumed to satisfy ND. We would like to obtain relationships between the degree
of a square oriented matroid JM and the degrees of its minors.

DEFINITION 4.1. If F is a subset of E S U T, then define the oriented matroid

JM by K(AAe) {((K+\F) U (K- N F), (K-\F) U (K+ C F)),K e E(Ad)}.
The oriented matroid 3de is said to be obtained from reorienting F. We write

deg(3/[) for the degree of AJ. If e is an assignment of signs to bases of JM, then
defined by ee(/) e(Z)(--1)lnFI is an assignment of signs to bases of

DEFINITION 4.2. Let .M be a square oriented matroid. Let be an assignment
of signs to ordered bases of ]M. Define the assignment signs e\si of signs to ordered
bases of A/[\ti/si by e\si() e(), where is obtained from by inserting si in the
ith position. Similarly, define e\ti for ]td\si/ti by e\ti() e(l), where is obtained
from/ by inserting ti into the th position.

LEMMA 4.1. Let ]M be a square oriented matroid satisfying ND. Then
(1) deg(Ad) + deg(2td) deg(JM\ti/si);
(2) deg(2td) deg(Ad) deg(3d\si/ti)(e(ai))

for 1, 2,..., n, where ai is the ordering of S\si t9 ti for which the subscripts are in
increasing order and e(Sl,S2,..., sn) 1.

Pro@ We first prove (1). Let F be a complementary ordered base of 3d con-

taining ti in the first position. Let q lax(F) extend Ad to 2Q. Note that if B is a
complementary base of Ad containing ti, then in 24 we must have ti E C(B, q)- by
the definition of lexicographic extensions. Thus all complementary bases B that solve
the OMCP of Ad contain si. The same is true for all bases B that solve the OMCP
of A4g, and no base can solve both the OMCP of 2Q and the OMCP of 32t. For
any base B that solves the OMCP of 2Q or A24, the base B\s of Ad\t/s solves the
OMCP of ./4\ti/8i. If e is the assignment of signs to ordered bases of JM satisfying
e(Sl, s2,..., Sn) 1, and is a complementary ordered base of Ad containing si, then
e(/) -e () (e\si)(l\si). But e is the opposite of the assignment of bases to
ordered bases of A24 that assigns 1 to (Sl, s2,..., Sn). Thus if is an ordering of B,
then the index of B in 324 is the same as the index of B in 2Q, and this is the same

as the index of B\si in JO\ti/si. Thus (1) follows.
To prove (2), we analogously extend jt4 to JQ by q lax(F), where F is an ordered

base of 3d with si in the first position. For a complementary ordered base of
containing ti we still have e() -e (), but now if e assigns 1 to (Sl, s2,..., Sn), so
does e. We also have e() e\t(\ti), but here e\ti assigns 1 to (sl, s2,..., Sn)\Si
only if e(ai) 1. The index formula counts IB C TI, so we must multiply by -1 to
account for deleting t.

If JM is represented by [I,-M], then: 3//f is represented by [I,-M1], where

M1 is obtained from M by negating the ith column; A/le is represented by [I,-M2],
where M2 is obtained from M by negating the ith row; Ad\ti/si is represented by
[I,-M3], where M3 is obtained from M by deleting the ith row and column;
is represented by [I,-Ma], where M4 is obtained from M by first pivoting on the
ith diagonal element of M and then deleting the ith row and column of the resulting
matrix. Finally, e(ai) is the sign of the ith diagonal element of-M.

When n 1, there are only two square oriented matroids satisfying ND. These
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are the oriented matroids represented by the matrices [1, 1] and [1,-1]. It is easy to
check that if we define the empty oriented matroid A/I (0, {(0, )}) to have degree
1, then Lemma 4.1 holds in the case n 1.

THEOREM 4.1. Let J4 be a square oriented matroid of rank n satisfying ND.
Then if N {1,2,...,n}

E deg(A/IB, 1,
ICN

where SI {si E I}.
Proof. The proof is by induction on n. By the definition of the degree of the

empty oriented matroid, the statement is true for n 0. For n 1, the oriented
matroid represented by the matrix [1,-1] has degree 1, and the oriented matroid
represented by [1, 1] has degree 0. If A/ is one of these two, then A/I is the other.
Suppose next that the statement is true for all square oriented matroids of rank n- 1,
and let A/ be a square oriented matroid of rank n. Then

E deg(A/l,)
ICN

E
JC_(N\n)

=?2
JC_(N\n)

deg(M, + deg(AJs,u,

deg(M,\tn/Sn) 1.

The last equality is the inductive hypothesis.
Since there are 2n subsets of {1, 2,..., n}, it follows that the average value of the

degree of a square oriented matroid satisfying ND is 2-n. The implication for the
matrix case is stated as a corollary.

COROLLARY 4.1. Let P be a probability measure on anxn for which (1) P(ND)
1, where ND is the set of matrices in pnxn with all principal minors nonzero.

(2) If GC_Rnn and H is obtained from G by negating the ith row of each element
of G, then P(G) P(H) for 1, 2,..., n.

Then the expected value of the degree of the mapping defined by a matrix chosen
at random from R’ according to P is 2-.

Due to the asymmetry of Lemma 4.1, Corollary 4.1 does not remain true when
"row" is replaced by "column."

Theorem 4.1 implies that for at least one of the subsets I, the degree of
must be nonzero. Matrices for which the corresponding maps have nonzero degree
are known to be Q-matrices. (This also follows from Lemma 3.1.) This justifies the
following corollary.

COROLLARY 4.2. Let P be as in Corollary 4.1, and let Q be the set of Q-matrices
in anxn. Then P(Q) >_ 2-’.

It is plausible that as n approaches infinity, P(Q) goes to zero for P as above. It
seems to be difficult to prove this.

One can get various other equations similar to those of Lemma 4.1. For example,
we have the following lemma.

LEMMA 4.2. Let J4 be a square oriented matroid of rank n satisfying ND. Then
(1) deg(A//) + deg(A/l) deg(A/l\ti/si),
(2) deg(A/la) deg(A/l) deg(Jl\si/t)(e(a)), and
(a) deg(A/[) + deg(A/[,) deg(A/[) deg(M) 0 for 1, 2,..., n.
Parts (1) and (2) are proved similarly to Lemma 4.1 and part (3) is a linear

combination of the first parts of Lemmas 4.1 and 4.2, or a combination of their second
parts.
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The degree of a square oriented matroid is not always determined by those of its
minors. For example, if M1 (-1 21) and M2 (-1-2-2-1), and A//1 is represented by
[I,-M1], A2 is represented by [I,-M2], then ]/l\ti/s J2\t/si and A/l\s/t
A/2\s/t for 1,2. On the other hand, deg(A/l) -1 while deg(A/2) 0.

We would like to organize the study of equations such as those proved above by
introducing the reorientation vector of a square oriented matroid. This is a vector
with 22n components, indexed by the subsets of E S U T ordered lexicographically.
For a square oriented matroid A/ of rank n, the component of the reorientation vector
of A/ corresponding to a set IC_E is deg(A/i). The reorientation vector is not defined
if A/ does not satisfy ND, because if 4 has a complementary circuit, then this circuit
is positive for some reorientation of

PROBLEM 4.1. Characterize the set of reorientation vectors of square oriented
matroids of rank n.

One hope is that a characterization of the set of reorientation vectors would
indicate a relationship between this set and other sets of vectors in combinatorial
geometry, such as the set of f-vectors of convex polytopes. This search is partly
motivated by the fact that the tools from algebra instrumental in proving the upper
bounds on the components of the f-vectors were also used by the author in proving
special cases of the conjectured bound on the entries of the reorientation vector in
[19]. The conjectured bound, given in [18], on the degree of an LCP mapping is

A trivial observation to make is that for any IC_E, we have A/I A/. This

cuts down the dimension of the linear span of the reorientation vectors to 22n-1.
Theorem 4.1 and Lemma 4.2 give us more affine and linear equations satisfied by
these vectors.

In the case that A/ satisfies TND, we can.get help from oriented matroid theory.
We first prove the following lemma, which is valid under a weaker nondegeneracy
assumption.

LEMMA 4.3. Let ]4 be a square oriented matroid satisfying WND. If (A/) does
not contain the signed set (E, ) then deg(A/) 0.

Proof. If ]C(A//) does not contain the signed set (E, 0), then there is an element
e E E so that no positive circuits of. K:(A/) contain e. Furthermore, e is the first
element of some ordered base F. Let q lex(F) extend 4 to A4. Then jQ has no

positive circuits containing q. Hence we have that the OMCP of A4 has no solutions
and deg(A) 0.

An oriented matroid J4 with (E, ) E K:() is said to be acyclic. If A/ is
represented by [I,-M] with M square and is acyclic, then M is an S-matrix.

If A/ satisfies TND and A/ is square, it follows from [13] that ,4i is acyclic for
exactly half of the subsets IC_E. Furthermore, the collection of these subsets of E has
the combinatorial structure of a "barely unlopsided set" (see [13]).

COROLLARY 4.3. If of rank greater than zero is square and satisfies TND,
then at least half of the components of its reorientation vector are zero.

We close this section by showing that the set of P-oriented matroids is character-
ized by its reorientation vectors. A square oriented matroid A//is called a P-oriented
matroid if for every circuit C of A/ there is a subscript so that {s,t}c_C+ or
{s, t}c_C-. See [14] for other equivalent characterizations of these oriented matroids.
A matrixM for which [I,-M] represents a P-oriented matroid A//is a P-matrix.
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THEOREM 4.2. A square oriented matroid J of rank n is a P-oriented matroid

if and only if for all subsets J of E we have deg(J4 j) 1 if J Sx t2 Tx for some

IC_(1,2,...,n}, deg(jIj) 0 otherwise.
Proof. Suppose first that j is a P-oriented matroid. From [23] it follows that

the OMCP of every extension of j4 has a unique solution. In particular, if q
lex(sl, s2,..., Sn) extends JA to JQ, then the OMCP defined by J4 JQ4 has as its
solution C(S, q). Since ind(S) 1, deg(A/[) 1. If J S U TI for some I, it is clear
that A/[ is also a P-oriented matroid, hence its degree is also 1. If J is not of the
form SI T for any I, assume without loss of generality that si E J, ti J. Let F
be an ordered base of [ containing si in the first position, and let q lex(F) extend
A/[ to jQ#. As in the proof of Lemma 4.2, we see that all solutions B to the LCP
of A)I must contain t. However, since the only index j for which {sj, t } C_ C(B, si)
for such a B is i, we must have t C(B, s)- by the P-oriented matroid property of
M. Thus the OMCP of j has no solution and deg(M) 0.

The opposite implication will be proved by induction on n, the rank of A/I. The
implication is true for n 0 because we defined the degree of the empty oriented
matroid to be I and it is a P-oriented matroid. The case n 1 can be quickly
checked. Suppose next that A/I is of rank n > 1, and that for all subsets J of E we have
deg(A/[) 1 if J is of the form S TI, deg(J4) 0 otherwise. Let J S U TI for
some IC_(N\n). Then by Lemma 4.1, deg((JPl)\tn/Sn) deg(A/l/) + deg(A/ljs
1+0 1. On the other hand, if Jis not of the form SltOTx for any I, and also
j g {sn, tn} 0, then deg((JWl)\tn/Sn) deg(A/l) + deg(A/12o, 0 + 0 0 and
deg((M)\Sn/tn) :t:(deg(A/lz)-deg(jlj--077)) +(0-0) 0. By induction we can

say that JV4\t,/Sn is a P-oriented matroid. If we apply Theorem 4.1 to (M,)\Sn/t,
where Ig(N\n), we have that deg((MS,oT,)\s/t 1. Thus we can also say by
induction that Wl\Sn/tn is a P-oriented matroid. Here n was arbitrary, so we can
replace n by any 1, 2,..., n. Finally, if C is a circuit of A/I, then there must be an
element of E that is not in C__, say Sn. Then C lC(M\s/t), which is a P-oriented
matroid. Thus there is a subscript in {1,2,...,n- 1} for which {s,t}c_C+ or

{s, t}c_C-. This means that

5. A degree zero Q-oriented matroid. A matrix M in Rnn is a Q-matrix
if the LCP defined by M and a vector q has a solution for all q Rn. It is well known
that if the degree of the mapping defined by M is nonzero, then M is a Q-matrix. On
the other hand, the discovery by Kelly and Watson [12] of a Q-matrix defining a map
of degree zero, showed that the Q-matrix property is more difficult to establish than
the calculation of the degree. The Kelly and Watson example gave a matrix on the
boundary of the set of Q-matrices, showing that the set of Q-matrices is not open in
anxn. The set of matrices in Rnn defining maps of nonzero degree is open. Kelly
and Watson go on to ask if there are other interesting open sets of Q-matrices.

Part of the mystique concerning Q-matrices is generated by the fact that the
only known method that can guarantee to tell if a matrix is a Q-matrix, due to Gale,
requires the solution of n2 linear programs in the worst case, each with 2’ constraints.
Recent work by Naiman and Stone (see [20]) has reduced the amount of work needed
to a roughly O(23n2) algorithm. Compare this to the obvious algorithm for calculating
the degree by solving 2n linear systems for some arbitrary right-hand side. The result
is that one can calculate the degree by hand for 44 matrices quite easily, whereas
showing that a 4 4 matrix is a Q-matrix often involves a "proof by picture" argument
as in [12].
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For a square oriented matroid AJ of rank n satisfying TND, the set of matrices
M E Rnn for which [I,-M] represents j4 is an open set. (However, for n >_ 5, it
is not necessarily connected! See [1].) Thus, if we can produce an oriented matroid
j4 satisfying TND so that for any point extension A4, the OMCP has a solution, we
have an open set of Q-matrices.

DEFINITION 5.1. A square oriented matroid is called a Q-oriented matroid if
for every point extension ./O of ]/[ the OMCP of J4 has a solution.

If a matrix M is a Q-matrix, it is not necessarily true that the oriented matroid
j4 represented by [I,-M] is a Q-oriented matroid. A/[ may have nonrepresentable
extensions or representable extensions that cannot be represented by adding a column
to [I,-M], for which the OMCP has no solutions. An example of a Q-matrix M for
which the oriented matroid A4 represented by [I,-M] satisfies TND, but is not a
Q-oriented matroid, is given in [17]. Thus the boundary of the set of Q-matrices can
run through the interior of a set of matrices representing a particular TND oriented
matroid of degree zero. It is not a priori clear that there must exist such a set entirely
contained within the set of Q-matrices. Theorem 5.1 shows that there is such an
example.

THEOREM 5.1. There exists a Q-oriented matroid of degree zero.

Proof. Let
-4 3 3 5

/3 -4 3 5
3 3 -4 5
5 5 5 -4

Howe [10] showed that the mapping defined by M had degree zero. Howe also showed
that M was a Q-matrix. Let J4 be the oriented matroid represented by [I,-M]. The
proof of [10] can be translated into oriented matroidese to show that j4 is a Q-oriented
matroid. We do this for the benefit of those not conversant with this language.

LEMMA 5.1. If .All is a square oriented matroid satisfying, for some i,
(1) for all j = i, s C(S, t)-
(2) .h/l\ti/si is a Q-oriented matroid.

Then if q extends j4 to J4 with si C(S, q)-, the OMCP of jQ will have a solution.

Proof of Lemma 5.1. Let Ci be a solution to the OMCP j4\t/s. Then there is

a K E ]C(j4) with K\s C. If s K+, then K is a solution to the OMCP J4.
Suppose that s K-. If T gK , then K C(S, q), contradicting s C(S, q)-.
Otherwise, eliminate tj for some tj T K between K and -C(S, tj), obtaining
K’ K:(J4) with s E g’-, q K’+, IT K’ IT K 1, K’- T . Continue
this way until T N K_K_ is empty, obtaining a contradiction.

Howe also showed that the maps defined by the 33 principal minors of M
are all of nonzero degree. It follows that the oriented matroids J\ti/si are Q-
oriented matroids for i 1, 2, 3, 4. Lemma 5.1 then shows that there only remains

to find a solution to the OMCPs of extensions JQ of JQ with C(S,q) (q,S).
Let be such an extension. One can calculate that )(J) contains the posi-
tive circuits ({s, s4, ti, t2, t3}, O), ({82, 84, tl, t2, t3}, 0), and ({83, 84, tl, t2, t3}, 0). For
B {t, t2, t3, s4}, these are the circuits C(B, s), for i 1, 2, 3. By successively elim-
inating s between C(S, q) and C(B, s) for 1, 2, 3, as in the proof of Lemma 5.1
above, one gets C(B, q), with {t, t2, t3}C_C(B, q)+. If s4 e C(B, q)+, then C(B, q)
will solve the OMCP of A4. Suppose then that s4 C(B, q)-. We can also calculate
that K:(J4) contains the circuits C ({s,s2,t3, t4},tl), C2 ({s,s2, s4, t3, ta}, ),
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and C3 ({sl, s2, t3, t4}, t2). Eliminate tl between C(B, q) and C1 to get K1
({Sl, s2,t2,t3, t4, q}, s4) of E(A4). Then eliminate s4 between K1 and C2 to get
K2 ({sl, s2, t2, t3, t4, q}, 0) E (A)i). Finally, eliminate t2 between K2 and C3
to get ({sl, 82, t3, t4, q}, 0), which solves the OMCP.

The oriented matroid A4 did not satisfy TND, so we cannot say that the set of
matrices M for which [I,-M] represents A/I is an open set. However, one can get a
perturbation of A4 that satisfies TND and that has the relevant properties of J74. The
idea of perturbations was shown in the proof of Lemma 3.1, where q was replaced by p.
Because q was in the first position of F, circuits of A)[ with n / 1 elements, containing
q become circuits of AI with p replacing q. We can start with A:4 and replace t by
t this way successively for 1, 2,..., n. The resulting oriented matroid will satisfy
TND. All of the relevant circuits of A/I used in the proof contained n + 1 5 elements,
hence they will also be circuits of the perturbed oriented matroid. Thus the set of
matrices M for which [I,-M] represents this perturbed oriented matroid will be an
open set of Q-matrices defining maps of degree zero.

6. Remarks. Theorems 3.1 and 5.1 were written in an earlier version of this
paper that was not submitted for publication. Comments of M. J. Todd were very
helpful for the improvement of this paper. The anonymous referees also provided very
helpful comments.
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VARIATION OF THE UNITARY PART OF A MATRIX*

RAJENDRA BHATIAt AND KALYAN MUKHERJEA:

Abstract. The derivative of the map that takes an invertible matrix A to the unitary factor U
in the polar decomposition A UP is evaluated. The same is done for the map that takes A to the
unitary factor Q in the QR decomposition A QR. These results lead to perturbation bounds for
these maps. Other applications of the method developed are discussed.

Key words, polar decomposition, QR decomposition, Cholesky factorisation, perturbation,
manifold, tangent space, unitarily invariant norm, singular value, Frchet derivative

AMS subject classifications. 15A45, 65F99

1. Introduction. Let M(n) be the space of all n n (complex) matrices; let
(L(n) be the group consisting of all invertible matrices and let U(n) be the subgroup
of unitary matrices. Every matrix A has a polar decomposition A UP, where
U E U(n) and P is positive semidefinite. The positive part P, written as IAI, is
unique and is equal to (A’A) 1/2. If A E (L(n) then the polar part U is also unique,
since U AP-.

Let F GL(n) U(n) be the map F(UP) U, which takes an invertible ma-
trix to its polar part. Our first result, Theorem 2.1 below, gives an explicit expression
for the Fr6chet derivative of this map. As corollaries we obtain the value of the norm
of this derivative with respect to any unitarily invariant norm on M(n), and then a
perturbation bound for the polar part.

Another expression for the derivative of F has been obtained by Barrlund [1].
Using this and some results on Hadamard products, Mathias [12] has obtained the
perturbation bound (13) derived below. Our coordinate-free approach to these ques-
tions is in line with some of our earlier work [3], [6], and [2, Chaps. 4, 5]. This
approach has two merits. First, it is adaptable to more general contexts such as the
KAK decomposition in semisimple Lie groups. We do not pursue that direction in
this paper. Second, it works well for other matrix decompositions like the QR fac-
torisation and the Cholesky factorisation. We illustrate this in later sections of this
paper. Results similar to these have been obtained by Stewart [13] and, more recently,
by Sun [15]. Here our approach clarifies some of the issues, unifies the work on these
different questions, and clearly brings out the similarities and the differences between
them.

We will denote by II1" III any norm on M(n) that is unitarily invariant, i.e., a
norm that satisfies the condition III UAV III III A III for all A e M(n) and U, Y e
U(n). Basic properties of such norms may be found in [2]. The singular values of
A will be denoted as s(A) >_ s2(A) >_--- >_ sn(A). The operator bound norm, also
called the spectral norm in the numerical analysis literature, will be denoted by I1" Ii
and the Frobenius norm by I1" liE" We have

IIA[I s (A),
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IIAIIF E sj(A)

If T is a transformer, i.e., a linear map on the space M(n), then for any norm

II1" III on M(n), we define

We will use some elementary facts of calculus on manifolds that the reader may
find in texts such as [7].

2. Variation of the unitary part. Let TAGL(n) be the tangent space to the
manifold GL(n) at a point A in it. Since GL(n) is an open subset of M(n) we have
TAGL(n) M(n). This is a special instance of the correspondence between a Lie
group and its Lie algebra. Here the Lie Mgebra corresponding to the group GL(n) is
gl(n) M(n). The Lie algebra corresponding to the group U(n) is u(n), the set of
all skew-Hermitian matrices. This is the tangent space to U(n) at the point I. The
tangent space to U(n) at a point U is TuU(n) U.u(n) {US: S E u(n)}. The
derivative of F at a point A UP of GL(n), denoted by DF(UP), is a linear map
from M(n) to U. u(n).

Let h(n) denote the space of all Hermitian matrices. We have h(n) =. u(n). We
have a vector space decomposition

(1) M(n) u(n) + h(n),

in which every matrix splits uniquely as

(2) X--S+H,

where

X X* X + X*
(3) S- -------, H .

We can now state our first main result.
THEOREM 2.1. Let F: GL(n) ---, U(n) be the map defined above as F(UP)

U. Let X be any element of M(n) and let X S + H be its splitting into skew-
Hermitian and Hermitian parts. Then the value of the derivative DF(UP) on the
tangent vector UX is given by

(4) DF(UP)(UX) 2U e-tPSe-tPdt.

Proof. Let P(n) be the set of all n x n positive definite matrices. This is an open
subset of the real vector space h(n). Hence for every P E P(n) the tangent space
TpP(n) h(n).

Let V(n) P(n) ---, GL(n) be the map (U, P) UP and let (I) be the
inverse map ((UP)= (U, P). Then writing (I)= (1, (I)2), we have F (I)1.

The derivative D(U,P)is a linear map with domain WvU(n)+ WpP(n)
U. u(n) + h(n) and range M(n) U. u(n)+ U. h(n). By definition, this derivative
is evaluated as

d [q2(UetS p + tH)]t=o USP + UH(5) D(U, P)(US, H) -
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for all S e u(n), H e h(n).
Now note that for small values of t, P+tH is positive for any H E h(n), and hence

we have Ol(UP+ tUH) 1(UP) U. So the kernel of DO1 (UP) contains U. h(n).
In fact, ker DOl(UP) U. h(n), since is a diffeomorphism from GL(n) onto
U(n) x P(n) and each of u(n) and h(n) has half the dimension of M(n). So we need
to compute the value of DO1(UP) only on tangent vectors of the form US, S u(n).
Let

(6) D(UP)(US) (UM, N),

Since I/-1 we have using (5)

M e u(n), N e h(n).

US D(U, P)(UM, N) UMP + UN.

We want to determine M from this equation. So, we must solve the equation

Taking adjoints we have

MP+N=S.

-PM + N -S.

From these two equations we obtain

(8) MP + PM 2S.

This is the familiar Lyapunov equation and its solution (see [9], [10]) is

P e P(9) M 2 e dt.

Equation (4)now follows from (6)and (9).
COROLLARY 2.1. For every unitarily invariant norm II1" III on M(n) we have

(10) I[IDF(UP)[I[ lIP-11[ sl(A).

Proof. This follows from (4) by a familiar argument that we repeat for the reader’s
convenience.

Since the norm is unitarily invariant, we have

(11) IIIDF(UP)(UX)III < 2 Ille-tPse-tPllldt.

Then, since IliBCDI[ <_ I[BII. I[ICI[I" lIDll for all B, C, D, we have

<_ [l - Pii llislll" ll - P]l

<_ e-=  ’,A)IIIXII

using the fact IIISIII _< IIIXlll.
From (11) and (12)we obtain

IIIDF(UP)III suPlIIXIII=IIIIDF(UP)(UX)[II <- sl(A)
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Choosing X zI/lllIIII one sees that this is actually an equality. F1

Using the mean value theorem, we obtain from Corollary 2.2.
COROLLARY 2.2. Let Ao and A1 be two elements of GL(n) with polar parts Uo

and UI, respectively. Assume that the line segment A(t) (1 t)Ao + tA1, 0 <_ t <_ 1,
joining Ao and A lies inside GL(n). Then for every unitarily invariant norm

(13) I[IUo U.III <_ max IIA(t)-l[.][IAo A[I ].
0<t<l

These statements can be expressed in another language by saying that in any
unitarily invariant norm, the condition of the function F at any point A of GL(n) is
given by s(A).

We should remark that the solution of (8) can also be expressed as a Hadamard
product [10], [11]; from this we can obtain estimates like ours either directly or by con-
verting this formula to the integral expression (9). We have chosen the integral form
of the solution because it might be useful in analysing infinite dimensional problems
as well. An effective use of such integrals was made earlier in [5].

3. The QR decomposition. Every square complex matrix A can be written
as a product A QR where Q is unitary and R is upper triangular. If A is invertible
then so is R. Furthermore, we can choose the diagonal entries of R to be positive and
with this added restriction this product decomposition is unique for every A E GL(n).
This decomposition called the QR decomposition is extremely important in numerical
analysis. See [14] for details.

We will now analyse the variation of the unitary part in this decomposition in
the same way as for the polar decomposition.

Let B(n) denote the set of all upper triangular matrices with positive diagonal
entries and let b(n) be the set of all upper triangular matrices with real diagonal
entries. Then b(n) is a real vector space and B(n) is an open subset of it. So, the
tangent space TRB(n) to B(n) at any point R of it is the space b(n). (One may note
here that B(n) is a Lie groUp and b(n) is its Lie algebra.)

The QR decomposition associates with every element A of GL(n) a unique ele-
ment Q of U(n) and a unique element R of B(n). Let F: GL(n) -- U(n) now be
the map F(QR) Q. The derivative of F at A QR is a linear map from M(n) to

The subspaces u(n) and b(n) are complementary to each other in M(n) and we
have a vector space decomposition

(14) M(n) u(n)+ b(n).

This decomposition is not as familiar as the one in (1) and it has some different
features. If a matrix X splits as

x + T

in the above decomposition then we must have the following relations between the
entries of these matrices

kjj zIm xjj for all j, kij -x-i for j > i, kij xij for > j,

(16) tjj Re xjy for all j, tij Xij -- -ji for j > i, tij 0 for > j.
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Whereas, in the case of the decomposition (1) the projections onto both the
components are norm-reducing for every unitarily invariant norm (just use the triangle
inequality), this is not the case for the decomposition (14). Instead, we have for the
Frobenius norm the following lemma.

LEMMA 3.1. Let T)I and 7)2 be the complementary projection operators in M(n)
corresponding to the decomposition (14). Then

(17)

Proof. From (15) and (16) one can easily see that IIKII 21txIl and IITII
211XII. The first inequality becomes an equality when X (000), the second when

X=( 10)" [-]

Reark g.1. If instead of he obenius norm he operator norm is used then
the norms of the projections Pl and P grow with the dimension n. To see this, note
hat if X is Hermitian then

(18) T 2A(X)- diag X,

where A is the triangular truncation operator, i.e., for any matrix A,A(A) is the
matrix obtained from A by replacing the entries below the main diagonal by zeros.
It is well known that the norm IIAII grows as log n. For example, if X is the n x n
Hermitian matrix whose diagonal entries are zero and whose off-diagonal entries are

xj x/-Z/(i- j), then IlXll <_ r and I[A(X)[I >_ -log n. (See [8, p. 39].) On the
other hand, ][diagX[[ _< [[XI[. So 117)211 must grow at least as log n. Hence so must

Returning to the map F(QR) Q, let us see how far an analysis similar to
the one in 2 takes us. Now define U(n)x B(n) GL(n) to be the map
(Q,R) QR and let (I) be its inverse map O(QR) (Q,R). If (I) is written as

(I) ((I)1, (I)2) then F (I)1. The derivative D(Q, R) is a linear map whose domain
is WQU(n) + TRB(n) Q.u(n) + b(n), and whose range is M(n) Q.u(n) + Q.b(n).
The derivative is evaluated as

(19)
d [(QegD(Q, R)(QK, T) - R + tT)]=o QKR + QT

for all K e u(n), T e b(n).
If R e B(n) and T e b(n) then for small values of t, R + tT is in B(n). By

the uniqueness of the QR factorisation, (I)1 (QR + tQT) I(QR) Q. Hence the
space Q. b(n) is contained in kerD(I) (QR). But, then counting their dimensions we
can conclude that Q. b(n) kerD(QR). So we need to compute the values of
D(QR) only on tangent vectors of the form QK, g e u(n). Let

(20) DO(QR)(QK) (QM, Y), where M e u(n), Y e b(n).

Since -- I/-1 we have from (19) and (20)

(21) QK QMR + QY.

To determine M from this we need to solve the equation

(22) MR + Y K.
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Here the similarity with the analysis in 2 ends. In (3) P and N were selfadjoint, so
taking adjoints we could achieve a major simplification by eliminating the redundant
variable N. We cannot do that here. However, we can still obtain an expression for
M from (22). Rewrite this equation as

M + YR-1 KR-1.

Note that M e u(n) and YR- e b(n). So M Pl(KR-) in the notation used
earlier. We have thus proved the following theorem.

THEOREM 3.1. Let F GL(n)---, U(n) be the map defined as F(QR)= Q. Let
X be any element of M(n) and let X K + T be its splitting in the decomposition
M(n)= u(n) + b(n). Then the value of the derivative DF(QR) on the tangent vector
QX is given by

(23) DF(QR)(QX) QP(KR-),
where T) is the projection operator in M(n) projecting onto u(n) along the comple-
mentary space b(n).

Note that the quantities occurring in the above formula can be explicitly computed
from the relations (16).

COROLLARY 3.1. For every matrix A QR in GL(n), we have

(24) IIDF(QR)IIF <_ x/llR-ll x/l]A-ll.

Proof. Use Theorem 3.1, Lemma 3.1, the unitary invariance of the Frobenius
norm, and the inequality IISTIIF <_ I]SIIFIITI] that is valid for any two matrices S
and T.

Using the mean value theorem we obtain the following corollary.
COROLLARY 3.2. Let Ao QoRo and AI QR be any two elements of GL(n).

Suppose that the line segment A(t) (1 t)Ao + tA, 0 <_ t <_ 1, joining Ao and A
lies entirely inside GL(n). Then

(25) IIQo- QIIF <- x/ max IIA(t)-ll IIAo- AIIF.
O_<tl

We should remark that from (23) we could surely derive some estimates for
IIIDF(QR)III for any unitarily invariant norm. These would, however, involve 1117)1111
and for this we have good estimates only in the case of the Frobenius norm.

4. The Cholesky factorisation. A common feature of our analysis of the polar
decomposition and the QR decomposition is that we replaced the study of the map
(I), which takes a matrix to its factors, by that of its inverse map 9. This, being a

multiplication map, is easier to handle. A similar idea is useful in the perturbation
analysis of the Cholesky factorisation.

Every positive definite matrix A has a unique factorisation A R’R, where R is
an upper triangular matrix with positive diagonal entries. This is called the Cholesky
factorisation.

In our notation, we now have a map P(n) ---, B(n) defined as (I)(A) R,
where R is the Cholesky factor of A. The inverse map is (R) R*R. The derivative
DiP(R) is a linear map from the tangent space TRB(n) b(n) to the tangent space
TAP(n) h(n). This derivative is evMuated as

d
[(R + tT)] R* T*(26) D@(R)(T) - t=o T + R,
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for every T E b(n).
Now, for H E h(n) let

Then since

Dq(A)(H) T, where T b(n).

we must have

R*T + T*R H.

To estimate IIIDO(A)III, we need to estimate T in terms of H and R. Rewrite (28) as

(29) TR- + (TR-1) (R*)-HR-1.

Since TR-1 e b(n), we have from (29)

Since IITIIF <_ IITR-IIFIIRII, this gives

1
(30) IITIIF <_ -IIRII IIR-1112 ]H]F.

om (27) and (30), we get

1 1
(31) [D(A)[F <_ [R[ [[R-[2 [A[I/2 [A-[.

For the map @, we could write from (26)

(32) [[D(R)][ suplllTlll= [[R*T + T*R}[ 2][R[],

for every unitarily invariant norm.
Inequalities (31) and (32) can be used to write perturbation bounds for and

as before.
Finally, we remark that from results of2 and 3, we can obtain some information

about the variation of the positive part P in the polar decomposition nd the upper
triangular part R in the QR decomposition.

Note. In a sequel to this paper [4], the above analysis has been carried further to
obtain perturbation bounds for several other matrix decompositions.
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AN UPPER BOUND FOR THE REAL PART OF NONMAXIMAL
EIGENVALUES OF NONNEGATIVE IRREDUCIBLE MATRICES*

SHMUEL FRIEDLAND AND LEONID GURVITS:

Abstract. Let A be a nonnegative irreducible matrix. In this note an upper bound is given for
the real part of an eigenvalue of A that is different from its spectral radius.

Key words, nonnegative matrices, nonmaximal eigenvalues
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Introduction. Let Mn(R) denote the algebra of n x n real valued matrices.
Assume that A (aij) E Mn(R) is a nonnegative irreducible matrix. The Perron-
Frobenius theorem yields that p(A), the spectral radius of A, is an algebraically simple
eigenvalue of A with the corresponding positive right and left eigenvectors

(1) Au p(A)u, ATv-- p(A)v, 0 < u, v e R.
Arrange the eigenvalues of A in the following order

(2) p(A) AN(A) > (A-I(A)) >_... >_ (AI(A)).

A is called diagonally symmetric if there exists a diagonal matrix D with positive
diagonal entries and a nonnegative irreducible symmetric C so that A D-1C. Note
that if A is diagonally symmetric, then all the eigenvalues of A are real and A is
diagonable. The results of [Fri, 4] yield that any nonnegative irreducible diagonally
symmetric matrix A satisfies

1
(3) p(A) An- (A) >_ -(p(A) l<i<nmaX aii)(d, u, v)2.

Here

(4)
(A,u,v) inf

O#UC n} ,card(U)

_
inf

O#uc n},card(U)_< J

EiEU,jE{1 n}\U aijviuj -}- ajivjui

-iEu 2(p(A) ai{)v{u
ieU,je{1 n}\U aijviuj + ajivjui

EiU,l_j=i_n aijviuj --]’- ajivjti

The aim of this paper to prove the following extension of (3).
THEOREM. Let A (aij) be a nonnegative irreducible matrix with the positive

right and left eigenvectors u and v, respectively, satisfying (1). Arrange the eigenvalues
of A in the order (2). Let e(A, u, v) be defined by (4). Then

1
(5) p(A) (A_I (A))>_ -(p(A) l<i<nmaX ai)e(A, u, v)2.

*Received by the editors April 6, 1992; accepted for publication (in revised form) January 26,
1993.
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Assume that A is an irreducible stochastic matrix. Then choose u e (1,..., 1)T
and v r (rl,..., 7rn)T to be the stationary probability vector of the Markov chain
corresponding to A. As p(A) 1 we get (5) with

(6) e(A, e, r) inf
0UC{ n},card(U)_[

EieU,je{1 n}\U aijTri -nt- ajiTrj

2(1 aii)?ri

Let A be an irreducible permutation matrix, i.e., A has one cycle. Hence, the n
2 Noteeigenvalues of A are the nth roots of unity. In particular, (An-I(A)) cos -h-"

that A is orthogonal and hence a normal matrix. In tiffs case we let u v e. A
straightforward computation shows that e(A, e, e) -1" Hence the inequality (5) in
this case reduces to

2r 1
1-cos.-- > n>2.

n 2(n- 1)2,

In the case where a stochastic matrix A corresponds to a time reversible Markov
chain, i.e., A is diagonably symmetric, the inequality (5) is due to Sinclair and Jerrum
IS-J, Lemma 3.3].

Proof of the Theorem. Let D diag(dl,..., dn) be a diagonal matrix with posi-
tive diagonal entries. Set DAD-1 (diaijdl). As A and are similar A and

have the same spectrum. We next note that

A p(A)’5, ATb p(A)’b, ’5 Du, D-iv.

It now follows that e(A, u, v) e(, t, 3). Thus, it suffices to prove (5) for ft.. Choose
the unique D with positive diagonal entries so that fi 3 w. Hence, without loss of
generality, we may assume that Aw ATw p(A)w, w > 0. Set B (A + AT)/2
(bi/), bii aii, i 1,..., n. Thus, B is a nonnegative irreducible symmetric matrix.
As w is a positive eigenvector of B, we deduce that p(B) p(A). Furthermore, it is
straightforward to check that e(B, w, w) e(A, w, w). Theorem 4.5 in [Fri] states that

1
p(B)- An-I(B)>_ -(p(B)- l<i<nmaX b,i)x(B, w)

2

where

x(B, w) inf
07UC n},card(U) <_

EiEu,jE{1 n}\U bijwiwj

EieU, <_j=i<_n bijwiwj

As Bw p(B)w and B is symmetric, it is straightforward to show that x(B, w)
e(B, w, w). Thus, to prove (5) it suffices to show that

(7) n--1 (B) }(n-1 (A)).

Let w+/- be the orthogonal complement of span(w) in Rn. Thus, Aw+/-, ATw+/-, Bw+/- C

w+/-. Choose an orthonormal basis of R of the form w w/X/’wTw, w2,..., wn. That
is w2,..., Wn is an orthonormal basis of w+/-. In the new basis Wl,..., wn the matrices

A, B are represented by the matrices (p(A)) A1, (p(A)) ( B1 such that the following
equalities hold:

A, B e Mn-1 (It), B1
A1 +AT Aj(A1) Aj(A),



UPPER BOUND FOR NONMAXIMAL EIGENVALUES 1017

Recall that (A1) {z x*Ax" x e Cn-l, x*x 1} i8 the numerical range of A.
It is well known that (A1) contains all the eigenvalues of A. As N(x*Ax) x*Bx
we deduce that N((A1)) u(B). Since B is a real symmetric matrix its numerical
range is [A(B),An-I(BI)]. In particular, (An-I(A1))

_
An-I(B). The proof of

the theorem is completed. [:!
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BLOCK DOWNDATING
OF LEAST SQUARES SOLUTIONS*

L. ELDNt AND H. PARKS

Abstract. This paper introduces new algorithms that extend the LINPACK downdating al-
gorithm for a single row downdating, to downdating of a block of rows in an efficient way. The
method of the corrected seminormal equations is then applied to the LINPACK-type block down-
dating algorithm to produce accurate downdated solutions. A sensitivity analysis of the Cholesky
block downdating problem is presented. Based on this analysis, a hybrid algorithm is developed that
has the advantages of the lower computational cost of the LINPACK-type algorithm and the higher
accuracy of the corrected seminormal equation (CSNE) block downdating algorithm. Numerical test
results comparing the accuracy of these three new block downdating algorithms for the recursive
least squares sliding window method are presented.

Key words, block downdating, seminormal equations, iterative refinement, least squares, level
3 BLAS

AMS subject classifications. 65F20, 65F25

1. Introduction. In linear least squares problems, we need to solve

(1.1) min IlXw- [t2, x Rpxn, p > n.
w

If rank(X) n and the QR decomposition of the data matrix (X s) is

(1.2) QT(x s)= 0 e Rpx(n+l),
0

where Q E Rpxp is orthogonal, then the least squares solution w is obtained from

(1.3) Rw u,

and the residual vector r and its norm satisfy

Frequently, one knows the factorization in (1.2) and wishes to find the solution
to a modified problem

min IIw 112,

where a block of k new observations (Y y) E akx(n+l) is added (block updating)"

X- y a-
Y
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or a block of k old observations (Z z) E Rk(n+l) is removed (block downdating)"

X= f( s=

Throughout this paper, we assume that the data matrices have full rank, i.e.,

rank(X) rank() n.

Often the modified problem involves both an updating and a downdating. From
(1.3) we see that the solution to the modified problem can be obtained by modifying
the R factor of the corresponding augmented matrix (X ). If R and R are the R
factors of X and X, respectively, then for updating we have

T RTR + yTy

and for downdating

:T RTR ZTZ.

The case when k 1 has been considered in several papers. For information concern-
ing updating, see [13, p. 596]. Downdating for k 1 has been studied, e.g., in [1],
[4], [7], [10], [12], [15], [19]. Downdating a block using a variation of the Householder
transformation is treated in [5], [6], [16].

In this paper we consider the downdating problem when k > 1, which we refer to
as block downdating. The block updating problem is easy in the sense that a backward
stable algorithm can be obtained by a straightforward generalization of the algorithm
for the case k 1 [16].

The LINPACK downdating algorithm due to Saunders [17] has been analyzed in
[19]. A generalization of the LINPACK algorithm to block downdating can be found
in [18]. Recently we developed accurate downdating methods for k 1 based on
the LINPACK algorithm combined with iterative refinement [4]. In this paper, we
introduce generalizations of these methods for block downdating and compare their
accuracies and computational complexities. In 2, we discuss some properties of the
block downdating problem. In 3, we analyze the sensitivity of the Cholesky block
downdating problem. Then we present two algorithms generalizing the LINPACK
and CSNE algorithms for single row downdating [4], to handle block downdating in

4 and 5, respectively. As in the case when only one row is downdated, it is possible
to compromise between the LINPACK algorithm that is faster but less accurate when
the downdating is ill conditioned, and the CSNE algorithm that has a higher com-
putational complexity but better stability properties. Thus a hybrid method, which
is an intermediary between the LINPACK-type algorithm and the CSNE algorithm
with some significant virtues of both, is described in 6. Finally in 7, some nu-
merical experiments are presented that show that the hybrid algorithm produces far
more accurate solutions than the LINPACK-type algorithm when the problem is ill
conditioned, with a modest increase in computational complexity.

2. Block downdating. Assume that the matrix (X s E apx(n+l) has the
QR decomposition

(2.1) (X s)= ) =Q 0
0
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where Z z) E Rk(n+l) is the block of k rows to be deleted and

p>_ k+n, n > k.

We first show that removing the block (Z
factorization of

z) is equivalent to updating the QR

Ek X s ( IkO xZ z

whereEk= IIk)0 andlk is the k k identity matrix. From (2.1), it follows that

QT(Ek X
Q R

8 qT 0 p
Q 0 0

where (Q q Q2T) e Rp denotes the first k rows of Q. We can now determine an
orthogonal matrix U that makes QT (Ek X s upper triangular, i.e.,

(2.2) UTQT Ek X 8) UT qT 0 p 0 0
Q2 0 0

0 0 0

for some V Rk and f R 1. Then we have

(2.3) T( IkO .Z z)g 0 R
0 0
0 0 0

where QU. Equating the first k columns on both sides of (2.3), we obtain

TEk Ek, so the first k rows in are equal to those of EkT. Hence, must have
the form

and it follows that (V f) (Z z). Dropping the first k rows and columns from (2.3)
gives the downdated QR decomposition

(2 o
0

The new algorithms described in this paper are based on the above derivation.
An important fact in downdating the QR decomposition is that the downdating trans-
formation U is determined based on the first k rows of the square orthogonal factor Q.
Thus, the first k rows (QT q Q2T of Q must be known or recovered to determine
the downdating transformation U in (2.2). We consider only the case when the full
orthogonal matrix Q is not available.
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3. Sensitivity of the Cholesky block downdating problem. The sensitivity
of the Cholesky downdating problem has been treated previously in [19], [14] for the
case of a single row downdating (k 1). We now discuss the sensitivity of the
Cholesky block downdating problem to perturbations, with the purpose of motivating
the hybrid algorithm that we present in 6. A more detailed investigation of sensitivity
analysis is presented in [9]. The problem is formulated as that of downdating a
Cholesky decomposition

(3.) RR zz,
and we first consider perturbations of the type

(R + E)(R + E) Zz,
where E is the perturbation matrix, satisfying IIEI]2 <_ e.

LEMMA 3.1. Assume that RTR-zTz is positive definite, and thus the Cholesky
decomposition

T RTR ZTZ

exists. Then there is a matrix C E Rnn, such that

(3.2) T[ RTR ZTZ RTTR,
where the singular values, ai(), 1 <_ <_ n, of satisfy

ai.(C) 1, i- 1,...,n-k,
1 >_ (Tn_k+l()

_
grn_k_}-2( _’’"

_
(7n() > O.

Proof. We have

Rr( ,Q)R,

where Q1 R-TzT I:tnxk. Since/7T/ is assumed to be positive definite, the same
must be true of I- Q1Q1T and can be taken as the Cholesky factor of I- Q1QT.
Since 0T0 is a perturbation of the identity matrix of rank at most k, it has at
least n- k eigenvalues equal to one and the remaining eigenvalues are one minus the
nonzero eigenvMues of Q1QT1 Since the eigenvalues of Q1QT are nonnegative, the
corresponding eigenvalues of C must lie in the half open interval (0, 1]. D

We can now prove a perturbation theorem for the Cholesky block downdating
problem.

THEOREM 3.2. Assume that RTR- zTz is positive definite, and thus that
the Cholesky decomposition .T[: RTR_ zTz exists. Further assume that for a

perturbation matrix E, satisfying IIEII2 <_ ., the Cholesky decomposition

T (R -- E)T(R + E) zTz,

exists. Then there is a matrix C Rnn such that

T RTTR,
and the eigenvalues ofT satisfy

2 i 1 n,(r) () + ,
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where ai() are the singular values of the matrix defined in (3.2), the ri are bounded
by

(a.a) _< + i=

and an(R) is the smallest singular value of R.
Proof. We have

T (R + E)T(R + E) ZxZ v + RT(FT + F + FTF)R,
where F ER-1. From Lemma 3.1, we have/T/ RTTR, for some matrix 0,
and TI-- RTTR, where

T dTd nt FT T F -t- FTF.

Using classical perturbation theory for eigenvalues of symmetric matrices [13, p. 411],
we get

2IA(cTc) ()1 -< 211FII2 + IIFII22 <_ 2ellR-1112 + e2llR-1112.
Since IIR-1112 tT"1, (3.3) follows. [:!

The same inequality (3.3) can be obtained for a perturbation in Z using the
technique of the above proof and the relations Q1 R-TzT and IIQII2 <- 1; see

The theorem shows the importance of the magnitude of the singular values ai(C),
and it implies that C and C can deviate in norm by a large amount. This can be seen
as follows. Since, for nonnegative x and y, the inequality xlx- Yl <- x + yllx- yl
holds, we get from (3.3),

<
O.i() \tTn

Therefore, since II(-dll2 >_ max lai()-ai(d)l, we see that Ilt- (ll can be as large
as e/an((J)(2/an(R)+e/a2n(R)). Furthermore, if an(() <_ V/2/a,(R) + e/a2(R), then
we can expect that a(C) and cry(C) do not agree to any significant figures.

It is seen that we can take

(3.4) Ndown m/ax{a-2(’)} 1/a2n(O),

as a measure of the conditioning of the block downdating problem. This is a general-
ization of the results by Stewart for a single row downdating [19].

The a_rguments in~[19] that we referred to above are concerned with the singular
values of R (and not C) for the special case of a single row downdating (k 1). It is
shown in [19] that if any singular value of R is reduced (to a singular value of R) by
a considerable amount, then the downdating problem is ill conditioned. Therefore, to
ascertain the downdating conditioning, all of the singular values of R and/ must be
examined, and it is inefficient to numerically estimate the conditioning this way.

In contrast, the singular values of C give clear information about the reduction of
quantities from R to/), i.e., a small a() represents a quantity that has been reduced
from one in R, and thus it signals that the downdating problem is ill conditioned.
Later, in 6 we demonstrate how downdating condition estimation based on tdown
can be implemented efficiently.
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If down is large, then the downdating problem is ill conditioned. Also, if the
condition number of R is large, then the computation of the matrix Q1 via R-TzT is
sensitive to errors, and so is the downdating problem. In (3.3), an(R) appears in the
denominator, and if an(R) is small, then the bound in (3.3) for Ir/il is large. However,
the following example shows that the downdating problem can be ill conditioned, even
if a,(R) is not small.

Example. Let

T 0 0
0 T 0
1 0 0
0 1 0
0 0 1

where - >> 1, and let Z consist of the first two rows of X. Then

V/T2 + 1 0 O)0 V/"2 + 1 0
0 0 1

and a3 1. From

T/v/ir + 1 0 )Q1 0 T/V/T2 i
0 0

it follows that Cl 1, c2 c3 1/V/T2 + 1, and tdown T2 + 1, which indicates that
this downdating problem is ill conditioned. In fact, downdating from R to/ is here
equivalent to computing the diagonal elements in R from the formula

v/r2 -2, r2 r2 + 1.

Consider the perturbed problem

where e is small. A simple computation shows that

(I+Ze (l+Te),

which shows that the problem is ill conditioned. If T > 1/V/-fi, where # is the unit
round-off of the floating point system, then the downdating will fail completely, since
/ will be computed as

0 0 O)0 0 0
0 0 1

where all information from the first two rows of X is lost.
For the case k 1 we have down 1/al()2, which is the same as 1/(1- !]q1[[22),

where q is the vector consisting of the first n elements of the first row of the orthogonal
matrix Q, see 2. This is essentially the quantity discussed in [19] and [4] as an
indicator of ill-conditioning for the downdating problem in the special case k 1.
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4. Generalization of the LINPACK algorithm. In 2, we showed that to
downdate the first k rows of the data matrix, we need the first k rows, QT q Q2T e
RkP, of the orthogonal matrix Q. From (2.1), we have

(z z)=(Q q Q) o =(Q q) n
0

0 p

It follows that (1 and q can be computed by solving the triangular sYstem

ZT )
which gives Q R-TzT. Using the relation uTQ1 uTR-TZT wTzT, where w
is the solution of the least squares problem (1.1), we obtain

(a.) (z- Z)/, ( 0).

If p 0 then q cannot be computed from (4.1). However, it is seen below that the
computations can be arranged so that the assumption p 0 is not needed.

Now we need to determine a matrix Q2 that satisfies

T(4.2) QQ + qqT + Qe Qe I.

The orthogonM transformation U in (2.2) can be chosen in such a way that Q2 is
first reduced to upper triangular form without changing R, u, or p. Therefore it is

sucient to determine an upper triangular matrix Rkk that satisfies

+ +r .
This can be done simply by computing a Cholesky decomposition

cho( ),

where is upper triangular and T Ik- QQ1 -qqT. Next we determine a

product of plane rotations U such that

(4.3) UT qT 0 p 0 t
r oo o o

We can initially choose an orthogonal matrix J that affects only rows from (n + 1)
to (n + k + 1) of (4.3)

J ( qT 0(4.4)

where 1-’ Nkxk is upper triangular. Then, since rr qq +, we can obtain
the upper triangular matrix r from

(4.) r ho(Z ).

rom (4.1) and (4.4), we obtain

(4.6) h r-r(z Q), (p hrh)/.
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Note that q in (4.1) is not used, so the assumption that p - 0 is not needed.
If Ik- QQ1 is not positive definite, then the downdating procedure would break
down. This is equivalent to the case whenT is not positive definite. Consider the
Cholesky downdating problem

T RTR zTz RT(In Q1Q)R,

where Q1 R-TzT. The matrix/T/ is positive definite if and only if all the eigen-
values of In QIQT are positive, in which case all the eigenvalues of Ik QTIQ are
also positive (the former matrix has additional n- k eigenvalues that are equal to
one). Since we have assumed that rank() n, Ik- QQ is positive definite and F
is nonsingular. Thus, under the assumption that rank(X) n the algorithm is well
defined. Summarizing these results we get the following algorithm.

ALGORITHM BDLIN" LINPACK-type algorithm for block downdating
Given R, u,p, w, and (Z z), the following algorithm computes the downdated

quantities R, , t5 and -1. (a) Compute Q1 and F from

ZTRTQ1 r .= chol(I QT Q).

(b) Compute h from

rrh (z QTu).

2. Apply a product of Givens rotations, , such that

3. Compute the new solution @ and the residual norm from

/ , t5 (p2 hTh)/2.

In Step 2, we assume that the sequence of Givens rotations in the adjacent planes
is generated in the order of annihilating the elements (n + 1, 1), (n, 1),..., (2, 1), (n +
2, 2), (n + 1, 2),..., (3,2), etc., of (QF1). Assuming that k < n, this algorithm takes
the total of approximately 2.5n2 k flops (one flop is taken to be one multiplication and
one addition). For k 1, the Saunders LINPACK algorithm requires 3n2 flops; thus
applying it k times for downdating k rows would require about 3n2k flops. However,
by a simple modification of the Saunders LINPACK algorithm for the k 1 case, we
can avoid solving a triangular system each time and reduce the complexity of single
row downdating to 2.5n2. With this modification, the above algorithm has about
the same computational complexity as applying LINPACK algorithm for a single row
downdating k times.

5. Block downdating using seminormal equations. As in the case of k 1
[4], we can improve the accuracy of the solution vector for the downdated least squares
problem by applying the method of CSNE. The seminormal equations (SNE) for
solving a least squares problem mince IIXw- sl12 are defined.as

RTRw XTs,
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where R is the upper triangular factor in the QR decomposition of X, which we denote
as

R

Applying one step of iterative refinement on the solution computed from the SNE, we
have the method of CSNE

(5.1) RTRw XTs, r s Xw,
RTRSw XTr, wc w -t- rc r- XSw.

We assume that all computations are performed in single precision. For details, see

The following theorem shows how the CSNE method can be used to recover the
rows in the orthogonal matrix Q more accurately based on which the downdating
transformation is determined.

THEOREM 5.1. Let V be the solution to

(5.2) min
V k

Then the R factor of (X Ek) is

(5.3)

where the upper triangular matrix F E Rkk is the same as the upper triangular factor
of qr(Ek XV). The matrix V satisfies the equation Q1 RV.

Applying the CSNE method to (5.2), we obtain

(5.4) RTQI ZT, RV Q, T Ek XV,
(5.5) RTSQI XTT, Q Q1 + 6Q1,

(5.6) R6V 6Q, Tc T- XSV

and more accurate F (5.3) can be computed as the R factor in the QR decomposition
of Tc. We can also apply the CSNE method to downdate the augmented upper
triangular factor for solving the least squares problem

(5.7) minl]Ek-v,$ (X8)(T)I1.
In this case, we have

o
0 0 F

where u E Rn

obtain
p e R, q e Raxe, and ’ R. First, from (5.7) and (5.8), we

p qT)( ZT
ZT )
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which gives

n-Z (z Q)/p ( z)/(5.9) Q1 q

with the assumption that p 0. This assumption is eliminated in the following. Next
we solve

which gives

f =q/P, y R-(Q uf) V wf.
The residual matrix Ta for the augmented problem (5.7) is

Ta Ek (X s) (T ) Ek XV- (s- Xw)qT/p= T- (s- Xw)qT/p

The equation

and

r qr(Ta).

is analogous to the first equation in (5.5). Since xT(s- Zw) --0, we have XTTa
XTT, and therefore Ql Q1, where Q1 is defined by (5.5). From (5.10) we get

q Tf (s Xw)/p.

Similarly, from

0 p 5qT

which is analogous to the first equation in (5.6), we obtain

6f 6q/p, 6Y 6V- w6qT/p, T: Ta X6V- (s- Xw)6qT/p.

As in the generalization of the LINPACK algorithm for block downdating, we can

choose an orthogonal matrix J to make J(qr ) upper triangular, i.e.,

(5.11) J
0

which gives

(5.12) h pF-Tq, 2 p2 hTh p2(1 qTF-1F-Tq)"

By applying the Sherman-Morrison formula [13] to

(5.13) qqT
__
T FTF,
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we have

(5.14) qT[,-1F-Tq qT-l-Tq/(1 + qT-l-Tq)

and

(5.15) 2"

We now summarize the above derivations in the following algorithm.

ALGORITHM BDCSNE" Block downdating using CSNE.
Given R, u, p, w, and the data (X s) the following algorithm deletes the first k

rows (Z z) of (X s) and computes the downdated quantities R, , t5 and :
1. Compute Qx, V, and T from

(a) RTQx ZT, (b) RV Q1, (c) T := Ek XV.

(a) Update Q1, V, and T"

RTSQ XTT,
RSV 5Q1,

Q Q + 5Q,
T:=T-XSV.

(b) Compute a QR decomposition of T to determine F:

r qr(T).

3. Set h := 0, t5 := 0

+ #
(a) compute the normalized residual" r "--(s- Xw)/p,

T(b) modifyT: q:--Ek r, T T- rqT,
(c) updateqandT: 5q := TTr, q "= q + Sq, T := T- rSqT,
(d) compute h from FTh pq,
(e) compute F qr(T),
(f) determine y from Ty q, and compute t5 Ilhl12/llyl12.

4. Determine an orthogonal matrix UT as a product of Givens rotations such
that

o r Oh"

5. Compute the new solution from

Applying the CSNE algorithm for a single row downdating requires approximately
4pn + 4.5n2 flops [4]. Thus, if we downdate k rows by applying the CSNE algorithm
for a single row downdating k times, the computational complexity becomes about
4kpn + 4.5kn2 flops. Assuming that k < n and n < p, the above algorithm takes
a total of approximately (3k + 1)pn + 4kn2 flops. This algorithm is rich in level 3
BLAS [8] operations: solution of triangular systems with k right-hand sides, matrix-
matrix multiplications. Therefore, it should execute efficiently on vector and parallel
computers.
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6. A hybrid algorithm. For a single row downdating, the CSNE algorithm
gives much better accuracy than the LINPACK algorithm when the downdating prob-
lem is ill conditioned [4], but the computational complexity of the CSNE algorithm
is considerably higher than that of the LINPACK algorithm. We have recently de-
veloped a hybrid algorithm for a single row downdating [4], and have shown that
it produces accurate solutions that are comparable to those of the CSNE algorithm
with lower computational cost. In the hybrid algorithm, the CSNE algorithm is used
if the downdating is ill conditioned and the LINPACK algorithm is used otherwise.
Thus, the hybrid algorithm will be a competitive alternative if a good indication of
the conditioning of the downdating problem is available so that the iterative refine-
ment is used only when it is necessary. We now introduce a hybrid algorithm for
block downdating that is a combination of the block LINPACK-type algorithm and
the block CSNE algorithm we presented in the previous sections.

Before we develop the hybrid algorithm, we state the following two properties of
the block downdating that are essential in our hybrid algorithm.

First, from the sensitivity analysis of the block downdating problem presented in

3, we know that if any of the singular values of is small, where ( is the Cholesky
factor of I- Q1QT, then the downdating problem is ill conditioned. Since F, which
is the Cholesky factor of I- QTIQ1 has the same singular values as , apart from a
number of singular values equal to one, we can determine the downdating conditioning
by estimating the singular values of F.

Second, since we have

x 2 Q
0

where Z E Rkn, applying a permutation on the first k rows of the matrices X and
Q does not change the block downdating problem mathematically. In other words,
the result of downdating a block of the first k rows is not affected by a permutation
on these k rows. Thus, removing the block Z z is also equivalent to updating the
QR decomposition of

where Hk E Rk k is any permutation matrix. Then from (2.1), it follows that

QV(P x
QII R u)s qTl-Ik 0 p
Q.IIe 0 0

Proceeding as in 2, we find an orthogonal downdating transformation that makes
QT pk X s) upper triangular.

In our hybrid algorithm, we incorporate a diagonal pivoting strategy when we

compute the upper triangular matrix F as a Cholesky factor of Ik QTQ (see Step
l(a) in Algorithm BDLIN): in the first step of the Cholesky decomposition algorithm,
we permute the rows and columns of Ik- QTQI so that the largest diagonal element is

moved to position (1,1), and similarly in the subsequent steps. This is mathematically
(but not numerically) equivalent to computing the matrix R in the QR decomposition
with column pivoting, see [13, 5.4]. By using diagonal pivoting, we permute and
partition the block Z z into two parts so that we downdate the better conditioned
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first block of rows by the less costly algorithm, and apply one step of the iterative
refinement to the ill-conditioned block of the rest of the rows to improve the accuracy.

Specifically, assume that after steps of the Cholesky decomposition procedure
on Ik --QTQ1, we have computed the partial decomposition

0 r() 0 r()
22 22

where II()’s are permutation matrices and r() Rx1 E is upper triangular. The pur-

pose of the pivoting is to find the maximal triangular matrix ’() for which the corre-11
sponding block of rows of Z z constitute a well-conditioned downdating problem.
We use the incremental condition estimator (ICE) [2] to get an estimate () of the
smallest singular value of r’() in each step of the Cholesky procedure, and if &() > tol-11
for some given tolerance "tol," we conclude that the downdating problem so far is
well-conditioned enough to be handled using Algorithm BDLIN. The first time when
() > tol and gr(+) < tol, the downdating problem is partitioned into two blocks
between rows and + 1, and we apply Algorithm BDLIN to the block of first rows
after the permutation determined from the pivoting and Algorithm BDCSNE to the
rest.

ALGORITHM BDHYB" Hybrid block downdating algorithm.
Given R, u, p, w, and (X s), the following algorithm deletes the first k rows (Z z)

of (X s) and computes the downdated quantities R, ,/5 and "1. Compute Q1 from

ZTRTQ1

2. Compute a Cholesky decomposition with diagonal pivoting of Ik- QTQ
until the last index such that &({)(FI) > tol is found, where FI
1 <_ <_ k, and

0 ’ 0 ’
Permute the rows of X and s (including Z and z), and the columns of

X(1 k HTx(1 k,:); s(l"k) T
," "=Hs(l’k), Q:=Q,Hk

3. If k (use LINPACK-type algorithm for the whole block),
Perform Steps l(b)-3 of Algorithm BDLIN

else if i 0 (use CSNE algorithm for the whole block),
Perform Steps l(b)-5 of Algorithm BDCSNE

else
(a) (Separate the data that are needed for downdating the first i rows of

(Zz).)

Q’=Q(:,I’i), F.=FI, z:=z(1.i).

(b) (Downdate rows 1 to of (Z z))
Perform Steps l(b) 3 of Algorithm BDLIN, giving downdated/,
and .
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(c) (Downdate rows + 1 to k of Z)
Take/, t, 5, and from step (b), and rows i + 1 to k of Z as input and
perform Algorithm BDCSNE.

We remark that it is also possible to replace Step 1 in Algorithm BDHYB by Step
1 in Algorithm BDCSNE. Then 1"11 can be obtained from a QR decomposition with
column pivoting [13, 5.4] of the residual matrix T instead of a Cholesky decomposi-
tion with diagonal pivoting of Ik -QTIQ1 in Step 2, since TTT Ik --QTIQ, 1. This
variant should have slightly better stability properties than the usual LINPACK-type
block downdating algorithm since the data matrix X is used in the computation of
T. We do not pursue this here, however, since Algorithm BDHYB performed well in
our tests and since it is more efficient.

The computational complexity of Algorithm BDHYB is between 2.5kn2 (when the
LINPACK-type algorithm is applied for the whole block) and 3kpn + 4kn2 (when the
CSNE-type algorithm is used for the whole block), and in general, it depends on the
index where the block of rows is partitioned. If p is much larger than n, then we can
expect the hybrid algorithm to be considerably faster than the CSNE algorithm. The
ICE only requires 3i2/2 approximately, where is the number of rows to be downdated
by Algorithm BDLIN. Hence its contribution to the overall computational complexity
is minimal. The numerical experimental results presented in the next section show
that the accuracy of the above algorithm is far superior to that of Algorithm BDLIN
and the additional cost is modest.

7. Numerical experiments. In a sliding window method, a least squares so-
lution is computed based on the p latest rows of an observation matrix A, where p is
the number of rows in the window matrix [1]. In each step, a new block of k rows of
observations, is updated into the QR decomposition, and an existing block of k rows
of the data matrix is downdated from the decomposition, on a first in, first out basis.

Numerical tests for the recursive least squares method using the sliding window
method have been performed in Pro-Matlab with IEEE double precision floating point
arithmetic to compare the accuracy of the block downdating algorithms that have been
presented. The solution obtained from the QR decomposition of the window matrix
was used as a reference. In each figure, we present the relative error in Euclidean
norm in the downdated solution vector produced by algorithms BDLIN, BDCSNE,
and BDHYB. A measure of the conditioning of the downdating of the whole block of
k rows, 1/a(F), and the spectral condition number x of the window matrix to be
downdated are shown. To illustrate the conditioning of the subproblem that is treated
by Algorithm BDLIN in the hybrid algorithm, we give estimates 1/((i))2 (obtained
from ICE) of 1/a(1 ). The digits in the plot denote the size of the row block that
was downdated in the hybrid algorithm using Algorithm BDLIN. We have used the
following criterion in the hybrid method: if is the last index such that 5(i) > tol,
then Algorithm BDCSNE is applied to the part that starts from the row i + 1. The

approximation (i) of the smallest singular values of r’(i)
11 was computed using ICE [2]

and tol was chosen to be 0.5.
The following two test problems are similar to those in [4] and [10], which we used

earlier to compare the accuracy of several downdating algorithms when k 1. They
were also used in the context of adaptive condition number estimation in [11].

Test I. A random matrix A E R2x12 was constructed with elements taken from
a uniform distribution in (0, 1). An outlier equal to 6.10a was added in position
(a4,a). The right-hand side vector b was taken to be b Axo + br, where br has



1032 L. ELDIN AND H. PARK

10-6

10-9

10-12

10-15
0

10

10

102

",, 10 ,10 9 rO 9 rO 8 tO, ,8 ,10 9 ,10 1,0 ,9, 7, 8 8 , 9,"
0 2 4 6 8 10 12 14 16 18 20

index for the step

FIG. 7.1. Test I. The upper graph shows the relative error in Euclidean norm in the downdated
solution vector by the BDLIN (solid line), BDCSNE (dashed), and BDHYB (dotted) algorithms.
The lower graph shows the condition number x of the window matrix to be downdated (dashed),
1/(r(F) (solid line), and the ICE estimate 1/(((i))2 (dotted). The digits in the graph show the
number of rows (in the block of 10 rows) treated by Algorithm BDLIN in the hybrid method.

random elements uniformly distributed in (0, 10-6) and x0 is 12 1 vector with ones
as its components. The window size p is 20 and ten rows are added and deleted each
time, i.e., k 10.

The results are shown in Fig. 7.1. It is seen that the relative error in the solution
using Algorithm BDLIN is considerably magnified in the ill-conditioned downdating
step and that it remains on that high level even if the subsequent downdating problems
are well conditioned. The BDCSNE and BDHYB algorithms are much less affected
by the ill-conditioned downdating and the errors remain on a low level throughout.

The digits in the plot show that in Algorithm BDHYB the major part of each
downdating was performed using Algorithm BDLIN. In fact, over 88% of the total
number of rows was downdated using Algorithm BDLIN. This shows that the hybrid
algorithm can be much more efficient than Algorithm BDCSNE and can produce
solutions that are far more accurate than those from Algorithm BDLIN.

Test II. A 76 6 matrix was constructed by taking a 38 6 Hilbert matrix as
the first 38 rows and the same rows in reversed order as the 38 last rows. Then
a perturbation from a uniform distribution in (0, 10-5) was added to each matrix
element. The right-hand side was constructed as in Test I, p 8 and k 4.

The results are shown in Fig. 7.2. Throughout this test, the downdating problem
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18

F(]. 7.2. Test II. Modified Hilbert matrix with perturbations from a uniform distribution in
(0,10-5).

is rather ill conditioned, but even so, the CSNE branch of the hybrid algorithm is
used only for one third of the total number of rows downdated. It is remarkable that
Algorithm BDLIN performs so much worse than the others. This is probably due to
the fact that the window matrix is very ill conditioned, which leads to large errors in
the computed approximations of Q1. In Algorithm BDCSNE, this vector is refined
and much better accuracy is attained.

8. Conclusion. In this paper, we have considered generalizations of the LIN-
PACK and CSNE algorithms for single row downdating to handle block downdating.
The block downdating algorithms are rich in level 3 BLAS operations and this makes
them amenable to efficient implementation on vector and parallel computers. The
sensitivity of the block downdating problem to perturbations has been analyzed and
a method of estimating the conditioning of the downdating problem has been devised.
Based on this analysis we have developed a hybrid method in which the more efficient
LINPACK-type algorithm is used for the well-conditioned part of the block downdate
and the more expensive CSNE algorithm is used for the ill-conditioned part.

Preliminary numerical experiments indicate that the block downdating LINPACK-
type and CSNE algorithms have properties that are similar to those of their single
row counterparts, i.e., the latter is much more accurate (but considerably more ex-
pensive) than the former. The hybrid method has accuracy comparable to that of the
CSNE algorithm, and it is almost as fast as the LINPACK-type algorithm. Therefore
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it appears to be very promising for applications, where both speed and accuracy are
essential.
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AN ATTAINABLE LOWER BOUND FOR THE BEST NORMAL
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Abstract. Lower bounds for the distance of a complex n x n matrix A from the variety of
normal matrices are established. The weaker version gives a lower bound of the form dep(A)/vf,
where dep(A) is Henrici’s "departure from normality." Recall that dep(A) itself is an upper bound
for the distance at issue. The tighter bound contains n diagonal sums coming from the Schur form,
hence its computational cost is larger; however, it is attainable. The main result is showing this
property. To this end some lemmas concerning normal and triangular matrices are needed, and a set
of triangular and (closest) normal matrices with properties of independent interest is introduced.

Key words, best normal approximation, departure from normality, lower bound, extremal
normal matrices, Schur decomposition
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1. Introduction. Let A be a complex matrix of order n, and denote by (A)
its distance from the set of normal matrices, i.e., let

,(A) F(A) rain {IIA- NIIF N is normal}.

There exist a number of measures of nonnormality with several inequalities holding
between them, e.g.,

(i) the "departure from normality" defined by Henrici [4, p. 27]:

where {Ai} are the eigenvalues of A; or

(ii) the commutator of A and A*, more precisely,

1/2corn(A) --IIA*A- AA*II F
The latter one is suitable for estimating (A) both from below and above; see

(C1), (C3), (C5)in nlsner-Paardekooper [2, p. 111]"

com2(A)/(411All2) (A) _< ((n3 -n)/12)/4com(A).

However, this is unsatisfactory in some sense as stated by Higham [5, p. 16], "Un-
fortunately the lower and upper bounds differ by orders of magnitude when ,(A)/IIAIIF
is small."

In light of this fact, it is remarkable that there exist lower and upper bounds for
(A) in terms of dep(A)--without the trouble mentioned:

(i) dep(A)/x/ <_ (A) <_ dep(A).

*Received by the editors June 15, 1992; accepted for publication (in revised form) April 21,
1993.

Department of Numerical Analysis, Ebtvbs Lornd University, Mfizeum krt. 6-8, 1088 Bu-
dapest, Hungary (llaszlo@ludens.elte..hu).
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The second inequality here is an easy consequence of the Schur decomposition
theorem (see, e.g., Elsner-Paardekooper [2, p. 115], or auhe [8, p. 587]), while the
first one is new, see Theorem 2.

In fact we will obtain a tighter lower bound, which is attainable, i.e., the coeffi-
cients involved are optimal.

THEOREM 1. Let A be n x n with a Schur decomposition

A WRW*

and let N be its closest normal matrix in the Frobenius norm. Then

with .. denoting elementwise (Hadamard) product and T and E are upper triangular
Toeplitz matrices with first row

tl (0, 1/n, 2/(n + 1),..., 1/2)1/2 and (0, 1, 1,..., 1),

respectively. No single element of t can be replaced by a larger number.
Remark. Observe that the theorem is formulated in terms of a fixed Schur de-

composition; hence the lower bound [JR.. TIlE does not depend on A only, but also
on R, the Schur form used. (As an illustrative 3 3 example for the nonunicity of
the Schur decomposition, see [6].) However, the following weakened version gives an
underestimate, independent on R.

THEOREM 2. Let A be n x n with eigenvalues {Ai }. Then (1) holds.
Remark. Recall that relations between dep(A) and com(A) also are available; see

(C1),(C2) in [2, p. 111]. We prove Theorems 1 and 2 in 4.
2. Notations. We mention in advance that the subscript F at the matrix norms

is omitted since the Frobenius norm is exclusively used. The order of all square
matrices occurring through this paper is denoted by n, while n _> 2, respectively,
n >_ 3 in certain cases. The classes of right triangular, unitary, and normal matrices
are denoted by T, b/, Af, omitting the index n for the sake of simplicity. Matrix
elements are referred to with the corresponding lower case and indices if not otherwise
stated.

Any R E 7 can be partitioned into the diagonals

r(m) (rl,m+l, r2,mq-2,..., rn--m,n)T, O<_m<_n-1.

In particular, the main diagonal--as the vector of the eigenvalues--is denoted by
i.e.,

We use four auxiliary matrices in conjunction with elementwise operations (in-
cluding square rooting). They are defined in 1 and 3, more precisely" E and T in
Theorem 1; S in Lemma 1; M in Lemma 2.

3. Preliminary lemmas. The first two statements of this section are true for
arbitrary normal matrices. (We use for them the notation Z instead of N to avoid
writing "nij" for the entries.)

LEMMA 1. If Z A/’, then

IIz. , sll IIz. , 8 1[



AN ATTAINABLE LOWER BOUND FOR THE BEST NORMAL APPROXIMATION 1037

where S is the upper triangular Toeplitz matrix with first row

(0, 1,2,...,n- 1)1/2

Proof. The equality of the main diagonal elements in ZZ* Z*Z yields

n n

j=l j-----1

By summation for 1

_ _
k and subtracting the equal terms, we have

k n k n

i=1 j=k+l i=1 j=k+l

Izjil 2, 1 <_ k <_ n-1.

Now we add these equalities for 1
accordance with the scheme

< k

_
n- 1, then we rearrange both sides in

n--1 k n n-1 n

k=l i=1 j=k+l i=1 j=i+l

and we change the indices on the right to get

n--1 n n--1 n

E E E E
i--1 j=i+l j=l i=j+l

The normal, very nearly triangular matrices play a significant role in the treat-
ment.

DEFINITION 1. Jf0 { Z E Jf: zij 0 if > j and (i, j) (n, 1)}.
For example,

Z= 0 -2 4 eJkf0.
5 0 1

In Lemma 2 the class Jkf0 is characterized. We denote elementwise division by ./,
so that A./B (aj /bij ).

LEMMA 2. IIZ./M[I

_
IIZII with equality for Z e Afo, where M is the upper

triangular Toeplitz matrix with first row

(1, (n 1)/n, (n 1)/(n + 1),..., (n 1)/(2n 3), 1/2) 1/2.

Proof. We have

n n n n

IIZl[2 IIZ’/MII2 EE IziJl2 EE(n + j 1)/(n 1)Izijl 2
i=1 j=l i=1 j=i

n--1 n n n

E E IziJ]2 EE(j -i)/(n- 1)Izijl 2.
j--1 i--j+l i=1 j=i
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Applying Lemma 1 to the second term, we get

n-1 n

IIZII2 IIZ’/MII2 E E (n + j 1)/(n 1) Izijl2.
j=l i=j+

Since here every term is nonnegative, the first statement is true. On the other
hand, this double sum contains only terms with indices > j, while the coefficient
of Izijl 2 is positive except when (i,j) (n, 1); hence the second statement holds as
well.

The following definition is based on [7, Thm. 4(i)], using the equivalence of the
problems

and

max{ Ildiag UAU*

min{[[A- Nil2" N e Af}

as investigated in [1] and [31.
DEFINITION 2. For R E Tg, Z Af let

A(R, Z) IIn- Zll 2 IIR,, TII 2.

Remark. Because of the theorem mentioned, this quantity is always nonnegative,
since any upper bound "ub" for (2) automatically yields a lower bound "lb" for (3).
This can be seen by observing that

IIA- U’DUll2 -IIUAU*-Dll2 I[UAU*II 2 -I[diagUAU*][ 2

IIAII 2 ub IIRII 2 ub lb

holds for any diagonal D and unitary U, i.e., for any N U*DU Af; R is an
arbitrary but fixed Schur form of A as in Theorem 1. Consequently, by taking the
upper bound ub IIR., MII2 from [7, Thm. 4(i)], we immediately get lb IIR,, Tll 2
and, at the same time, IIA- Afll 2 IIR- Afll 2 >_ lb.

Remark. Lemma 2 and inequality IIR. * Mll _< IIRII can be extended to a chain
of inequalities

IIZ./MII 2 _< IlZll 2 _< IIn., MII 2 _< Ilnll 2,
where

(i) the first <_ is true for every Z Af,
(ii) the third <_ is true for every R T,
(iii) the second _< holds if Z is the best normal approximation to R, since then

IIn-z]]2=]lnll2-11Zll 2, IIR..T]I2=llnll2-1IR.*MI]2, and A(R,Z)>_0.

DEFINITION 3. R T is called extremal if there exists Z Af such that

ZX(R, Z) o.

If, moreover, the restrictions

0<m<n-1
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also hold, then R is perfectly extremal.
Remark. If R is extremal, then Z at issue is necessarily its best normal approxi-

mation, i.e., the closest normal matrix to R.
Our last preparing lemma yields a useful representation for A(R, Z).
LEMMA 3. A(R, Z) I[R. * M- Z./M]I 2 %- IIZ]I 2 IIZ./MII 2.
Proof. By Definition 2 we have

n n n--1 n

z) EZ + E E
i--1 j--i j--1 i--j+l

n n

EE(j-i)/(n+j-i-l) Irijl 2
i=1 j--i

n n

EE(n 1)/(n + j i 1) Irij (n + j i 1)/(n 1) zijl 2
i=1 j--i

n--1 n n n

+ E E IziJl2 EE(j -i)/(n- 1)Izij[2
j-----1 i--j+l i=1 j--i

Y]1%- Y]2 Y]3,

where we have applied elementary algebraic transformations. Let

n n

i--1 j--i

then
x(n,z) z + (z + ro) (z + Zo)

Iln. * M- Z./MII + IlZll IIZ./Mll,
and the lemma is proved. [3

Remark. By virtue of Lemmas 2 and 3 extremal matrices can be characterized
by using the equivalence

A(R,Z)=0 R.,M=Z./M and ZeAfo.

4. Perfectly extremal matrices: proof of the main result. Before con-
structing perfectly extremal matrices of any order n, we distinguish between the cases
n-2andn>3.

(i) In case of n 2 every R 7 is extremal. For, if

0 A2

then

and
A1 r/2 )N

er/2 A2
e Af
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for a suitable complex e with ]] 1. (If z (A1 2) : 0 then s z/2; otherwise
e 1 can be taken). Hence we have

IIR- Nil 2 1/2 Irl 2 IIR][2 IIR. * Ml[ 2 -IIR. * Tll 2,

thus R is extremal.
(ii) In case of n _> 3 one would have a simple way of proving Theorem 1, namely,

constructing n extremal n n matrices such that

IIr(m)ll 2 # 0 and IIr(i)[I 2 -0, 0 n- 1, = m
holds for the ruth one. However, this idea is not executable, as the following example
/n 4, m 2/shows: among the matrices with pattern

0 0 0

/0 0 0
0 0 0 0
0 0 0 0

there is no extremal matrix! Thus, constructing perfectly extremal matrices cannot
be avoided.

Proof of Theorem 1. The second inequality is well known: it states that

]IA A/’]] IIR Azll _< ]IR diagR]l.

Since the first inequality is a reformulation of [7, Thm. 4(i), p. 297], it suffices to prove
that it can be attained. To this aim we choose U I, i.e., A R E T, and assume
n >_ 3. There will be defined perfectly extremal matrices of

k [(- )/]

free parameters, by means of the following "big steps."
I. We give a matrix R E T of k free parameters.
II. We give a matrix Z Af0 in terms of the above free parameters.

In detail the following instructions should be kept.
I. (R1) R is real;

(R2) R is persymmetric, i.e.,

Tij Tn--jWl,n--i+l l <_i,j <_n;

(R3) The elements of R "within the upper triangle" are zero, i.e.,

rj 0, l<i<j<n;

II.

(R4)
()
()
(z)
(z.)
(Z3)
(z4)
(z)

r rnn n- 2; rii -2, 2

_
i _< n- 1; /’In 2n;

0 ri, 2 _< i _< k + 1 are free parameters;
(n+i-2)rl,n+_i (2n-l-i)ri, 2<_i<_n-1.
Z is real;
Z is persymmetric;
zij 0, 1 <i<j<n, and ZAfo;
z Znn n-2; z ----2, 2<_i<_n-1; zn n;
z r(n-1)/(n + i 2), 2<_i_<k+l;
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n(z6) z,.+_ z, 2 < <_ n- ; a.d z. (E=.z)/..
It is easy to check that I and II uniquely determine R E 7 and Z E Af0 in terms

of the parameters (R5), while (Z5) implies that

R..M Z./M.
Hence, from the last remark of the previous section it follows that R is extremal, and
owing to (R5), R can be assumed t.o be perfect. The theorem is proved.

Proof of Theorem 2. The following chain of (in)equalities yields a lower bound
for [[R., T][ 2"

n--1

IIR. , TII ,/(n + ,- )
m--O

n--1

IIRII II.Xll (n 1)/(n --I-- m 1) IIr()ll
’m.--

n--1

> IIRII II,Xll (- 1)/ II,.(,)11
m=l

]IRII IlmlI (n- 1)/n (IIRII -IIAII)
1/n (IIRII -IXll ’)
1/ (IIAII : -I.XlI’)

-dep2(A)/n,
using A r(0) and IIAII 2 IIRll e. Applying the first relation in Theorem 1 gives the
first inequality of (1). The second inequality is equivMent to that of Theorem 1, by
observing that dep(A) IIR., Ell. The proof is complete.

Remark. Observe that the first inequality of (1) corresponds to the "simple ver-
sion" [7, Thm. 3(iv)]. Therefore it can be proved also by rewriting that theorem in
terms of the best normal approximation, i.e., from (2) into (3), to get

IIA- NIl > IIAII 1
]A] + ]IAII dep2(A)/n.

n
i--1

n

Example. The following choice of the free parameters yields a quite special
"canonical" pair {R, Z}

rl{ n+i-2, zl{ n-l, 2<_i<_n-1.

For illustration, we display the ninth order special extremal triangular and normal
matrices R9 and Z9. (This case is distinguished by the fact that the left bottom
element in Z9 is integer, too.)

,7 9 10 11 12 13 14 15 18\
0 -2 0 0 0 0 0 0 15
0 0 -2 0 0 0 0 0 14
0 0 0 -2 0 0 0 0 13
0 0 0 0 -2 0 0 0 12
0 0 0 0 0 -2 0 0 11
0 0 0 0 0 0 -2 0 10
0 0 0 0 0 0 0 -2 9
0 0 0 0 0 0 0 0 72
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7
0
0
0
0
0
0
0
23

8 8 8 8 8 8 8 9
2 0 0 0 0 0 0 8
0 -2 0 0 0 0 0 8
0 0 -2 0 0 0 0 8
0 0 0 -2 0 0 0 8
0 0 0 0 -2 0 0 8
0 0 0 0 0 -2 0 8
0 0 0 0 0 0 -2 8
0 0 0 0 0 0 0 7j

Example. (The case n 3). The matrix R3 R3(p) below is extremal for any
real value of the free parameter p; moreover, it is perfect if and only if p : 0:

1 p 6)0 p
0 0 1

The best normal approximation to R3(p) is

1 2p/3 3 )Z3(p)= 0 -2 2p/3
q 0 1

where q (9 + 4p2/9)1/2.
Observe that the "canonical" pair {R3, Z3} defined in the above example can be

obtained for p 3.
Remark. The matrices constructed in the theorem are real. This makes one think

that all matrices involved in the problem of extremality can be assumed to be real.
However, this conception is fundamentally false: the optimal unitary U, corresponding
to a perfectly extremal R, is in case of n >_ 3 necessarily complex!

To see this, we must consider parallel with

/](A) min{llA- Nil" N UAU*, A" diag, U" unitary},

also the quantity

/]real(A) min{llA- Nil" N UAUT, A" diag, U" real orthogonal}.

Then we have
IIR. * EII/x/ < /]real(A)

for any A R e 7. (This follows from [7, Remark 3] and [7, Lemma l(e)], using the
equivalence of the problems (2) and (3).) At the same time, if

IIr(m)ll 2 # 0

holds for at least one m, 1 <_ m <_ n- 1, then obviously

showing that the lower bound IIR., TII cannot be attained for real orthogonal matrices.
We illustrate this phenomenon by the help of 3 x, 3 matrices.
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Example. Consider the matrices

R- 0 -2 6 ETa, N- 0 -2 4 E Afo.
0 0 1 5 0 1

Both matrices are real. Furthermore, A(R, N) 0, consequently, R is extremal (in
fact, perfectly extremal) and N is its best normal approximation. By the considera-
tions above, the minimum in preal(R) is not attainable for real orthogonal matrices,
or equivalently, the eigenvectors of N cannot be pure real. This can also be checked
by calculating its characteristic polynomial

det(AI- N) A3 18A- 108 (A- 6){(A + 3)2 + 9}.
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Abstract. Perturbation and error bounds for the generalized Sylvester equation (AR-LB, DR-
LE) (C, F) are presented. An explicit expression for the normwise relative backward error asso-
ciated with an approximate solution of the generalized Sylvester equation is derived and conditions
when it can be much greater than the relative residual are given. This analysis is applicable to any
method that solves the generalized Sylvester equation. A condition number that reflects the structure
of the problem and a normwise forward error bound based on Dif-l[(A, D), (B, E)] and the residual
are derived. The structure-preserving condition number can be arbitrarily smaller than a Dif-1-
based condition number. The normwise error bound can be evaluated robustly and at moderate cost
by using a reliable Dif-1 estimator. A componentwise LAPACK-style forward error bound that can
be stronger than the normwise error bound is also presented. A componentwise approximate error
bound that can be evaluated to a much lower cost is also proposed. Finally, some computational
experiments that validate and evaluate the perturbation and error bounds are presented.

Key words, generalized Sylvester equation, backward error, condition number, perturbation
bounds, error bounds.
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1. Introduction. In this paper we study the sensitivity of and derive perturba-
tion and error bounds for the generalized Sylvester equation

AR- LB C,(1) DR-LE=F,

where L and R are unknown m n matrices, (A,D), (B,E), and (C,F) are given
pairs of m m, n n, and m n matrices, respectively, with real (or complex) entries.
If we choose D and E to be the identity matrices and F as the zero matrix then
(1) reduces to the (standard) Sylvester equation AR- RB C. Using Kronecker
products the matrix equation (1) can be written as a 2mn 2mn linear system of
equations [6]

(2) In (R) D
-BT(R)Im ] [ col(R) ]_ [col(C) ]-ET (R) Im col(L) col(F)

where the column vector col(X) denotes an ordered stack of the columns of a matrix
X from left to right starting with the first column. We write the system (2) in compact
form as

(3) Zx=b.

The coefficient matrix Z in (2) is 2mn 2mn, which for moderate rn and n is already
quite a large matrix. So this equivalent formulation is mainly of interest for theoretical
purposes.

Received by the editors March 26, 1993; accepted for publication (in revised form) July 30,
1993. The work of this author was supported by the Swedish Board of Industrial and Technical
Development grant NUTEK 89-02578P.

Department of Computing Science, Ume University, S-901 87 Ume, Sweden (bokg(C)cs. umu. se).
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One important application of the generalized Sylvester equation originates from
computing stable eigendecompositions of matrix pencils [6]. It can be formulated in
terms of a block-diagonalizing equivalence transformation P-I(M- AN)Q, where

(4) M- AN
0 B -A

0 E

We want to find (L, R) such that

0 0 0 B 0 E

The first m columns of the transformation matrices in (5) (P-1 and Q, respectively)
span a pair of eigenspaces (deflating subspaces) associated with A(A,D) [21]. By
solving for (L,R) in (1) we also get a pair of complementary eigenspaces (deflating
subspaces associated with A(B,E)) from the last n columns of P- and Q, respec-
tively. One can show that (1) has a unique solution if and only if the regular pencils
A- AD and B- AE have disjoint spectra [20]. If these pencils have common spectra
or are singular (i.e., det(A- AD) 0 or det(B- AE) _= 0 for each A), the generalized
Sylvester equation will not generally be consistent. An important quantity that mea-
sures the sensitivity of these eigenspaces is the separation of the matrix pairs (A, D)
and (B,E)[20], [21],

(6). Dif[(A, D), (B, E)] inf II(AR- LB, DR- LE)IIF.

The relationship with the generalized Sylvester equation is that Dif[(A, D), (B, E)] >
0 (Dif for short) if and only if (1) has a unique solution. Furthermore, it can be shown
[6] that

(7) Dif-[(A, D), (B, E)] IIZ-111 O’min(Z) -1,

where amin(Z) is the smallest singular value of Z.
A new direct method for reordering eigenvalues in the generalized real Schur

form of a regular matrix pair is based on solving sequences of generalized Sylvester
equations where m, n are 1 or 2 [14]. In [16] and [17], algorithms for computing an
additive decomposition of a (generalized) transfer matrix are presented. The problem,
computing the stable projection with respect to a specified region F in the complex
plane of a transfer matrix given by its generalized state space realization, comprises
both a reordering of eigenvalues and a block-diagonalization as described above.

Recently, Higham [13] presented a perturbation analysis of the standard Sylvester
equation AR- RB C. By taking full" account of the structure of the Sylvester
equation, he derives expressions for the backward error of an approximate solution R
and a condition number that measures the sensitivity of a solution to perturbations in
the data (A, B, C). One important result from [13] is that a small value of the residual
A/-/B C does not necessarily yield a small backward error. The main purpose
of this paper is to generalize these results and extend the analysis to the generalized
Sylvester equation.

An alternative form of a generalized Sylvester equation with applications in con-
trol theory is

(s) AXBT + CXDT E,
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where A and C are m m, B and D are n n, and E and the desired solution X are
m n [7]. The matrix equation (8) has a unique solution if and only if (A, C) and
(-D, B) are regular matrix pairs with disjoint spectra [5]. By introducing R XBT
and L CX, (8) can be recast in the form (1)

AR + LDT E,
CR- LBT O.

The solvability condition for (8) (which is similar to the solvability condition for (1))
implies that at least one of B and C must be nonsingular, so X can be resolved from
L or R. However, if both B and C are ill conditioned with respect to inversion (or
one of them is singular and the other is ill conditioned), it is recommended to solve
(8) directly [7].

The rest of the paper is outlined as follows. In 1.1 we collect the notation used.
In 2 we briefly review algorithms for solving the generalized Sylvester equation and
discuss residual bounds for an approximate solution (,/). Section 3 is devoted
to a normwise backward error analysis. An explicit expression for the normwise
relative backward error associated with an approximate solution of (1) is derived and
conditions when it can be much greater than the relative residual are given. This
analysis is of course applicable to any method that solves the generalized Sylvester
equation. In 4 we derive a condition number for the generalized Sylvester equation
that reflects the structure of the problem and a normwise forward error bound based
on Dif-1 [(A, D), (B, E)] and the residual. The structure-preserving condition number
can be arbitrarily smaller than a Dif-l-based condition number. The normwise error
bound can be evaluated robustly and at moderate cost by using the Dif- estimators
in [18]. Section 5 presents a componentwise forward error bound that can be stronger
than the normwise error bound. This forward error bound can be converted to a

LAPACK-style [1] error bound as for the standard Sylvester equation [13]. We also
propose a componentwise approximate error bound that can be evaluated to a much
lower cost. Finally, in 6 we present and discuss some computational experiments
that validate and evaluate the perturbation and error bounds.

1.1. Notation. The following notation is used in the paper. A(A, B) denotes
the spectrum of a regular matrix pair (A, B) or pencil A- AB. If B I we only
use A(A). IIAII2 denotes the spectral norm (2-norm) of a matrix A induced by the
Euclidean vector norm. IIAIIF denotes the Frobenius (or Euclidean) matrix norm.

IIAIIM max,j lajl, i.e., the maximum of the absolute values of the matrix entries.

to(A) --IIAII211A+II2, where A+ is the pseudoinverse of A, and denotes the condition
numbers of a matrix A with respect to the 2-norm. a(A) denotes the set of singular
values of a matrix A. Especially, amax(A) and amin (A) denote the largest and smallest
singular values of A, respectively. For a square matrix A, we have that IIAII2
anax(A) and IIA-1112 O’min(A) -1. A (R) B denotes the Kronecker product of two
matrices A and B whose (i,j)th block element is ajB. AT denotes the transpose of
A. AH denotes the conjugate transpose of A. denotes the conjugate of A. IAI and

Ixl denote the matrix and the vector whose elements are layl and Ixl, respectively.
Inequalities such as IAI <_ IBI, Ixl <_ lYl are interpreted componentwise. D diag(x)
denotes a diagonal matrix wih d x.

2. Algorithms and residual bounds. In [18], algorithms for solving (1) are
presented that are generalizations of the Schur method [3] and the Hessenberg-Schur
method [8] for solving AR- RB C. Both methods are based on orthogonal equiva-
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lence transformations (unitary transformations if the matrix entries are complex) and
involve the following four steps.

1. Transform (A, D) and (B, E)to simpler form:

(A1,D1) := (pTAQ, pTDQ),
(B1, El) :-- (UTBV, UTEV).

2. Modify the right-hand sides (C, F):

C1 :-- pTcy, F1 :-- pTFV.

3. Solve the transformed system for (L1,R1):

A1R1 L1BI C1,(9) DR LE F1.

4. Transform the solution back to the original system:

L := PLUT, R := QRVT.

In the generalized Schur method [18] (AI,D) and (B,EI) are in generalized
real Schur form with A1 and B1 (upper) quasi triangular and D and E (upper)
triangular. A quasi triangular matrix is block triangular with 1 x 1 and 2 x 2 diagonal
blocks. The 2 x 2 blocks correspond to pairs of complex conjugate eigenvalues of the
associated matrix pencil and the ratios of the 1 x 1 diagonal blocks are the real eigen-
values. (In the generalized complex Schur form A1 and B will be (upper) triangular
t(o, which simplifies the discussion below.) Suppose the transformed matrix equation
(9) is partitioned according to the diagonal block structure of A and B1. Let Aii of
size a x a, a 1, 2 and Bjj of size b x b, b 1, 2 denote the diagonal blocks of A1 and
B, respectively, and let p,q be the number of diagonal blocks of A and B. Then
(9) is solved by the GS algorithm that can be written compactly as [18]

( p j-1AkRkj k=l LkBkj) GijAiiRij LijBjj Cij ,Ek--i+l(10)

for j 1, 2,..., q and p, p 1,..., 1. In total we solve p- q small subsystems (10).
Each of them can be written as a linear system

(11) [ Ib(R)Aii-Bj(R)Ia ] [col(Rj) I [ col(Gj) 1/b (R) D -E (R) Ia col(nj) col(H/j)

of size 2, 4, or 8. Note that even if Aii and Bjj are upper triangular, the subsystems
(11) cannot generally be transformed to upper triangular form only by permutations.
This is in contrast to the Schur method for AR- RB C.

In the generalized Hessenberg-Schur method [18], (A, D) is only transformed to
a generalized Hessenberg-triangular form, where A is (upper) Hessenberg and D1
is (upper) triangular. The solution (L, R1) is computed by solving a sequence of
banded linear subsystems.

In both methods we use Gaussian elimination with partial pivoting to solve the
generalized Sylvester equation (subsystem (11)) in each step. A rounding error anal-
ysis of the generalized Schur method is presented in [18]. The conclusion is that the
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method is weakly stable [4], meaning that the relative errors in the computed solution

(, ) are small for well-conditioned problems. More precisely, the relative errors in

(L, R) are proportional to a condition number times a smooth function of the relative
machine precision. The analysis in [18] applies standard results on backward error
analysis for products of orthogonal matrices (steps 1, 2, and 4) and for Gaussian elim-
ination with partial pivoting for solving (9) in step 3 as ZlXl bl (3). Since steps
1, 2, and 4 are backward stable processes, in general, the computed solution 2 of (3)
satisfies (e.g., see [9])

(12) (Z + AZ) b, [AZ[ <_ 2mnu(31Z + 5pT[z[ [0Z[),
where ]z, z are the computed LU factors, P the permutation matrix, and u is the
unit roundoff (Z is 2mn x 2mn). From (12) we can derive the following normwise
bounds on the residual of (1) for &:

IIC- A_f + LBIIF <_ Cm,nPm,nU (IIAIIFIIIIF + I[IIFIIBIIF](13)
<-- Cm,nPm,n"a (IIAIIF + lIB[IF) mx(llLIIF, II/IIF)

and

IIF D + LEIIF <_ Cm,nPm,nU (IIDIIFII&IIF / IILIIFIIEIIF)()
< m,nPm,U (IIDIIF + IIEIIF) mx(llLIIF, IIIIF),

where Cm,n i8 a modest function in the dimension8 m and n, Pm,n is the growth
factor in Gaussian elimination. One interpretation of the bounds (13), (14) is that
the relative residuals are bounded by a modest multiple of Cm,nPm,nU. The size of the
relative residuals is mainly determined by the (maximum) growth factor that measures
how large the numbers become during the elimination processes. In practice, flm,n
is usuMly of order 10 but it can Mso be as large as 2k-l, where k is the size of the
linear system solved. A similar error analysis can be performed for the generalized
Hessenberg-Schur method that also results in residual bounds similar to (13), (14).

A LAPACK-style [1] block algorithm for solving (9) is under development [15I.
Gaussian elimination with complete pivoting and tests for underflow and overflow are
used to solve the subsystems (11). This will hopefully prohibit a large growth factor
(in the residual bounds) despite the fact that examples have been found with growth
factors greater than the problem size [10].

3. A normwise backward error analysis. Let (,/) denote an approximate
solution of the generalized Sylvester equation (1). The normwise backward error of
(],,/) is defined by

r/(,,/) min{ e "(A + AA)/)- (B + AB) C + AC,
(15) (D + AD)/- L(E + AE) F + AF,

II(AA, AD)IlF < ec, II(AB, AE)IIF < eZ, II(AC, AF)IIF _< e}.

It holds that r/(].,/) is a measure of the distance to the closest perturbed gener-
alized Sylvester equation that has (,/) as the exact solution. By choosing a

II(A, D)IIF ,/3 II(B, E)IIF 9/= II(C, F)IIF, rl(]-,, ) corresponds to the normwise rela-
tive backward error with respect to the Frobenius norm. The perturbed generalized
Sylvester equation in the definition (15) can be written as

AA/- LAB- AC C- (A/- JB) R1,
(16) AD/- ],AE- AF F- (D/- ,E) R2,
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where (R1, R2) denotes the residual corresponding to (L, ). From (15) we can bound
Ri as

(7)

Since II(R1, R2)IIF (]]RIIF + IIR.II=F) 1/2 it follows that a small backward error of
the generalized Sylvester equation implies a small relative residual. In the following
analysis we show that a small relative residual will not always give a small (relative)
backward error 7(]-,/).

We use a similar technique as in [13] and start to rewrite (16) by using Kronecker
products:

(/T (R) I,)col(AA)- (IN (R) ],)col(AB) -col(AC) col(R1),
(T (R) Im)col(AD) (In (R) )col(AE) -col(AF) col(R2),

or equivalently

I ](18) T/z r, 7-/=
0 /2/

where

(19)

and

Og(T (R) Ira) --/(In (R) L) --"yXmn

Z

col(AA)/a
col(AB)//
col(AC)/’
col(AD)/a
col(AE)//
col(AF)/’y

col(R1) ]r= col(R)

The system (18) is underdetermined where 7-/is of size 2mn (2m2 + 2n2 + 2ran). If
"y - 0, H is of full (row) rank and (18) has a minimum 2-norm solution

(20) z 7+r.

It follows from (18), (20) and the definition of r/(],,/2/) that

(21) r/(L,/) _< I1+’11.
On the other side,

Ilzll II(AA’D)II + II(AB AE)II II(AC, AF)II:
F < 32

/- + ./

In summary, we have

(22)

or in words, the maximum size of the backward error relative to the residual II(R, Re)liE
is dependent on 1[7-/+112 drain(/:/) -1, where/2/is defined by (19).
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Now, let/- UREnV and ]- ULELVLH be the singular value decompositions
of/ and ,, respectively, giving

(23) / O(’R-]Ur ( Ira) --/(In ( UL’LVLH) --’Imn ].
As in [13] we can find unitary transformations

Q V (R) Uff, P diag{R (R) UL,R (R) VL,R (R) UL)

such that

(24) QP a(E (R) Im) --(In (R) EL) --’Imn ].
Since/=/and/ are unitarily equivalent they have the same singular values, namely,
the square roots of the eigenvalues of the diagonal matrix:

(25) /H a2(EER @ I) + 32(i ELE) + 72Imn.
Let a() and a() for 1,..., min(m, n) denote the singular vlues of and
in decreasing order (a() a+l()), respectively, and define a() a() 0 for
i min(m, n) + 1,..., max(m, n). Then, suming h full (row) rank, we have

(26) i1+11 i1+11 (2n()2 + 2m(L)2 + 2)-.
Substituting (26) in (22) gives us

(27) r/(L,/) < #(L, k)

where

(28) #(L,/)

II(R,Re)IIF

(.() +Z(L) + )1/2

By squaring both sides^of^(28), we see that #(],/) > 1 and as for the standard
Sylvester equation^ [13], #(L, R) is a growth factor that measures by how much the
backward error (L, R), at most, can be greater than the relative residual as defined
in (27). It is now interesting to examine the size of #(],/) more closely.

If D Ira, E In, and F 0, then (1) reduces to the standard Sylvester
equation AR-RB C, and by choosing a IIAIIF, IIBIIF, IICIIF, #(L, R) is
at most a factor V times the growth factor for the standard Sylvester equation [13].

The detailed discussion of the growth factor in [13] can be extended to our case.
For clarity, we accomplish some of it here. If m n then

(II(A, D)IIF + II(B, E)IIF)II(L,/)IIF + II(C, F)IIF(29) #(L,h)
(ll(A,O)llF2amin()2 + ii(B,E)[[F2amin(L)2 + II(C,F)IIFe) 1/2

The growth factor is large only when

(30) II(L, h)llF >> ami(/), amin(])
and

(31) II(L,/)IIF > II(C,F)IIF
II(A,D)IIF + II(B,E)IIF’
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i.e., (J,/) is an ill-conditioned, large-normed solution to the generalized Sylvester
equation.

If m # n, one of an(/) and am() must be zero and we will have a large growth
factor if the data is badly scaled: (A, D) (if m < n) or (.B,E) (if m > n) greatly
exceeds the rest of the data in norm. The effect on #(L, R) from badly scaled data
can be overcome by regarding (A, D) and (B, E) as one set of data and choosing
a 3 II(A,D)IIF + II(B,

In practice, when solving the generalized Sylvester equation, we typically have
(A, D) and (B, E) in generalized Schur form, i.e., A and B are quasi triangular and
D and E are triangular. If we wish to restrict the perturbations to have the same
structure, this can be done by removing elements in col(X), X AA, AB, AD, AE
in (18) that correspond to the "zero triangles" of A,B, D, E and deleting the corre-
sponding columns of . However, removing columns of will result in a possibly
smaller amin and potentially a larger backward error.

4. Normwise perturbation and error bounds. Consider the perturbed gen-
eralized Sylvester equation

(32) (A + 5A)(R + 5R) (L + 5L)(B + 5B) C + 5C,
(D + 5D)(R + 5R) (L + 5L)(E + 5E) F + 5F.

By dropping second order terms in (32), we obtain

(33)
ASR- 5LB 5C 5AR + LSB,
DSR- 5LE 5F 5DR + LSE.

The system (33) can be written

(34)

L, (R) D -ET (R) Im col(SL)

RT(R)Im -Im(R)L --Iron 0 0 0
0 0 0 RT(R)xm -Im(R)L --Iron

col(SA)
col(SB)
co1(5C)
col(6D)
col(SE)
col(6g)

If we solve for (SL, 5R) in (34) and measure the perturbations normwise by

(35) max II(A,,SD)IIF II(B, E)IIF II(eC,,SF)IIF)a

where a [I(A, D) F, II(B, E)I[ F, II(C, F)liE, can derive the following
relative perturbation bound.

THEOREM 4.1. Assume that the unperturbed and perturbed matrix equations (1)
and (32), respectively, are given, and that the perturbations in (32) fulfill (35). Then

ill Z-l xll2(36) 11(SL, SR)IIF <  ZIR)IIF
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where Z is the coefficient matrix in (2), (34), and

(37) x=[H 0 ]0 H

with

(38) H a(RT (R) Ira) --l(In (R) L) --’yImn ].

Proof. From (34) we obtain

II(L, R)IlF <_ Ilz-lxll2lldiag{o-l,-l,,-y-l,oz-1,/-l,,-y-1}

col(SA)
col(SB)
col(C)
col(SD)
col(SE)
col(SF)

The 2-norm of the second term above is equivalent to

which from (35) is less than or equal to ex/g. Cl

The perturbation bound (36) is sharp to first order in e and

(39)

is the corresponding condition number for the generalized Sylvester equation. From
(36) it is possible to derive a (weaker) normwise perturbation bound that relates to

COROLLARY 4.2. Assumptions from Theorem 4.1. Then

(40) (SL, 5R)IIF
II(L,R)IIF

where

(41) --Ilz-lll2

Proof. We have IIz-lxlle _< IIZ-ll.llxll. and

IIX[12 IIHII2 <_ allRT (R) Imll2 +/3[[In (R) Llle +

which in (36) gives (40). V1

In [18] a similar bound was derived by applying standard perturbation theory for
linear systems to (2). If IIZ- 112(a +/3)e < r <_ 1 then that theory (see, e.g., [9]) gives
us the following strict bound for the relative error

(42) II(L,R)IIF < 2e/g"
II(L,R)IIF 1-r



1054 BO K/GSTRM

It is of course interesting to know how much the bounds (36) and (42) differ. From
definition we know that _< (I). In general the bounds will be of the same magnitude.
But there are examples where (36) can be arbitrarily better than.(42) (see 6). The
reason is that the bound (42) does not take any account to the special structure of
the problem. This is in contrast to the bound (36).

We can also show the following (a posteriori) forward error bound for a computed
solution.

COROLLARY 4.3. Let (L,) be a computed solution to (1) with residuals

R1 A- LB C,
R2 D[- E- F.

Then

(43) (L, R) (],,/) lie < [[Z-1[12

Proof. Let (, ) (L + 5L, R + 6R) and set (hA, 5D) (0, 0), (6D, 5E) (0, O)
and (6C, 5F) (R, R2) in (34) and apply Theorem 4.1.

The normwise error bound (43) holds in general but can be weaker than one based
on componentwise errors that are described in the next section.

5. Componentwise error bounds. We will now derive a LAPACK-style error
bound [1] for an approximate solution of the generalized Sylvester equation. In [13]
it was shown that such a bound could be derived for the standard Sylvester equation
and estimated by the technique used in the LAPACK library for linear systems. For
clarity, we outline the technique used for the Ax b case. Let & be an approximate
solution and r b- A&. Then the following error bound holds:

(44)

This bound can be interpreted as a componentwise bound since it measures the largest
error in the components of the quantities involved. To obtain a strict error bound,
we must add a term r for rounding errors in forming r (let d- Irl + Irul)"

(45)

The trick is to write D diag(d) and let e (1,..., 1)T. Then the numerator of the
error bound (44) can be written as [2]

A- ]Dell A-IDlelI IIA- DII .
Let B (A-D)T and IIBTII can now be estimated by the 1-norm estimator de-
scribed in [11] and [12] (also implemented in LAPACK). It estimates IIBII at the cost
of computing a few matrix-vector products involving B and BT, that is, solving a few
linear systems involving AT and A, respectively.

Now we apply the same technique to the generalized Sylvester equation. The
rounding errors in the computed residuals can be expressed as

fl(C- (A- ],B)) R + AR1,
/}2 fl(F- (D/t/- ],E)) R2 + AR2,
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where

IRI _< (ICl + (, + )1111 + (n + )IIIBI) Ru,
]AR2I _< u (3IF + (m + 3)lD]l/ + (n + 3)I].IIEI) R2u.

Introducing

= Icon([ . ])1 +col([ R R. ]),
and G diag(g), we get the bound

(46)

From (46) we see that large elements in the kth column of IZ-11 can be offset by a
small kth element of g. This situation can never be reflected in the bound (43) which
in these cases is a weaker bound. Accordingly, (46) has better scaling properties than
(43) but none of the bounds are invariant under diagonal scalings of the (generalized)
Sylvester equation [13]. ZTy is not a transposed generalized Sylvester equation
(1) (as in the standard case). However, y can be recovered at the same cost by utilizing
that the matrix pairs (A, D) and (B, E) are already in generalized real Schur form
[15]. The cost for solving (9) using the GS algorithm is O(m2n + mn2) flops (see 2
and [18]).

We would like to compare the strict bound (46) with the following componentwise
approximate error bound:

(47) II(L, R) (], )IIM < IIZ-lrIIM
ll(L, "/) M II(L, "/:) M

where

r=col([ 1 /2 ])-}-col([ R1u R2u ]).
The bound (47) is easy to compute and corresponds to the defect in one step of
iterative refinement of (3). To compute Z-lr is equivalent to solving a generalized
Sylvester equation (1) with the right-hand sides (C, F) (/1 + R1u, R2 + R2"). The
bound (47) has the same appealing properties as (46) and only requires one generalized
Sylvester solve. Estimating (46) is an iterative process that typically requires four-six
generalized Sylvester solves [15]. In our extensive testing we have only seen once that
(47) underestimates the exact error. In this case the error bound was still the same
order as the exact error.

6. Some computational experiments. In the following we illustrate the per-
turbation analysis of the generalized Sylvester equation on some test problems ranging
from well-conditioned to extremely ill-conditioned problems.

Examples. The first set of test problems illustrates well-conditioned to (moderately)
ill-conditioned generalized Sylvester equations [18]. In the first example we let A
J,(1,-1),D Im and B J(1 -a, 1),E In, where Jk(d,s) denotes a Jordan
block of size k with d and s as diagonal and superdiagonal elements, respectively,
and a > 0 is a real parameter. When a -- 0, the separation between (A, D) and
(B,E) is of order O(are+n+1) [22]. Furthermore, we apply unitary random equiva-
lence transformations to (A, D) and (B, E), respectively, and choose (L, R) randomly,



1056 BO K/ItGSTR)M

TABLE
Condition numbers for well-conditioned to moderately ill-conditioned problems.

10 10 1/2
6 6 1/16
2 I0
8 4
I0 6
I0 I0
2 10
8 4
10 6
10 10

II(L,h)ll
3.21e+00
8.46e+00
4.85e+00
3.91e+00
4.43e+00
6.1le+O0
8.02e+00
3.77e+00
4.61e+00
6.47e+00
8.46e+00

O’min (Z
1.94e-04
1.95e-ll
1.05e- 16
1.93e-03
1.94e-04
1.27e-05
6.27e-07
3.56e-04
1.02e-05
1.02e-09
4.53e-08

3.76e+04
5.73e+11
9.03e+16
5.88e+03
5.84e+04
1.12e+06
2.65e+07
2.51e+04
8.85e+05
1.16e+lO
3.23e+08

1.14e+04
1.19e+11
1.72e+16
2.16e+03
1.32e+04
2.34e+05
4.58e+06
9.48e+03
1.69e+05
2.70e+09
5.37e+07

3.30e+00
4.82e+00
5.27e+00
2.73e+00
4.43e+00
4.77e+00
5.78e+00
2.65e+00
5.24e+00
4.30e+00
6.01e-t-00

which similarly specifies the right-hand sides (C, F). The second example comprises
upper triangular random problems. First, two upper triangular (m + n) (m + n)
matrices M and N are generated with entries chosen randomly (uniform distribution
on [-1, 1]). Then A,B, C,D,E,F are given from the partitioning (4). Finally, the
third example comprises quasi upper triangular random problems, i.e., M is chosen
with 2 2 diagonal blocks and N upper triangular as before.

The second test problem illustrates badly scaled data. The examples chosen are
upper triangular random problems (as above) and scaled in the following way: A
cA, D cD (if m < n), and B aB, E aE (if m > n), where a 1013, 1016, and
1019"

The third set of test problems illustrates ill-conditioned (generalized) Sylvester
equations [13]. In the first example, A- J3(0, 1),D I3, B J3(c, 1),E- I3, and
the entries of C, F are chosen to 1 and 0, respectively (Cij 1, Fij 0). In the
second example, we have

1 -1
B=A-c

0 -1 0 1

First we choose col(C, F) as the right singular vector corresponding to the smallest
singular value of Z (a). In the second case, col(C) is chosen as the left singular
vector of the smallest singular value of I (R) A- BT (R) Ira, the coefficient matrix of
the corresponding Zx b representation of the standard Sylvester equation [13] and
F=O.

Test results and discussion. In Tables 1, 4, and 7 quantities that reflect the con-

ditioning of our three sets of test problems are displayed. Besides II(],,/)llF and
Dif[(A, D), (B, E)] amin(Z), he Dif-based condition number (I) (41), the new struc-
ture preserving condition number (39) and their ratio (I)/ are shown. In Tables 2,
5, and 8 associated computed residuals and backward error bounds are displayed.
More precisely, II(R1, R2)IIF, the relative residual II(R1, R2)IIF/((a h- fl)ll(L, 1)IIF--)
the exact backward error 117-/+r112 (22), an upper bound on the backward error r/(L, R)
(27), and the growth factor #(n, R) (28) that measures by how much the backward
error, at most, can be greater than the relative residual. Finally, exact (relative)
errors (when the exact solution is known) and the forward error bounds (43), (46),
and (47) are shown in Tables 3, 6, and 9.

All results presented are computed in the MATLAB environment [19] with unit
roundoff 2.2 10-16, and (L,/) is obtained by solving the system Zx b (3)
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TABLE 2
Backward error bounds for well-conditioned to moderately ill-conditioned problems.

m n o

4 4 1/2
10 10 1/2

/
2
8
10
10

10
4
6
10

2 10
8 4
10 6
10 10

8.80e- 15
2.30e- 15
2.41e-15
3.38e- 15
6.25e- 15
1.35e-14
1.95e-15
2.09e- 15
4.48e-15
1.72e-14

4.32e-17
9.29e-- 17
5.01e-17
5.44e- 17
6.73e-- 17
7.23e- 17
1.01e--16
5.80e- 17
5.05e- 17
5.84e- 17
1.39e- 16

4.11e-16
1.36e-- 15
3.77e--16
4.13e-16
3.99e- 16
4.42e-16
9.54e-16
3.88e- 16
3.58e- 16
3.89e- 16
9.36e- 16

8.91e-16
3.66e- 16
3.42e-16
3.99e- 16
4.42e-16
7.09e- 16
2.97e-16
3.15e-16
3.89e- 16
9.35e-16

6.24e+00
9.59e+00
7.30e+00
6.28e+00
5.93e+00
6.11e+00
7.00e+00
5.13e+00
6.23e+00
6.66e+00
6.73e+00

by Gaussian elimination with partial pivoting. In some cases we would (probably)
obtain better results (for example, smaller residuals) if we use the generalized Schur
methods [18]. Notice that some of the test problems are standard Sylvester equations
that we solve as generalized Sylvester equations. As a consequence we should expect
less favourable results compared to the standard case.

The first set of test problems have all small-normed solutions and the ratios (I)/
are of size O(1), i.e., the Dif-based and the structure-preserving condition numbers
are similar. We also see that the relative residuals and the relative backward errors
are both of the size O(e), where e denotes the relative machine precision, and the
growth factors tt(L,/) are of size O(1). Finally, the normwise and componentwise
forward error bounds are similar and quite accurate.

The badly scaled data illustrate that the ratio (I)/ can be arbitrarily large and
show that these problems are not really ill conditioned ( of size O(102)). Notice that
the relative backward errors are at the machine precision level but are much larger
than the relative residuals. The componentwise forward error bounds are in most
cases better than the normwise forward error bounds, but this is not always the case

(m 2, n 4, c 1016).

TABLE 3
Forward error bounds for well-conditioned to moderately ill-conditioned problems.

m n

a a /2
10 10 1/2
6 6 1/16
2 10
8 4
10 6
10 10
2 10
8 4
10 6
10 10

JJ(L,/) JJF
4.15e--14
2.44e--07
9.78e--03
1.70e--14
5.37e--13
1.56e--13
6.85e-- 11
1.17e--13
7.88e--12
5.00e-- 10
6.24e-- 10

2.31e--ll
4.29e--04
6.13eT01
5.99e--12
5.34e-- 11
1.09e--09
3.10e--08
2.84e-- 11
8.25e-- 10
1.26e--05
3.98e--07

II(L,/)IIM

9.41e--14
1.37e--06
3.38e--02
5.94e-- 14
1.62e--12
6.51e--13
3.37e--10
2.73e--13
2.28e-- 11
1.37e--09
2.55e--09

II(L,/) IIM
3.08e-12
3.90e-05
2.23e--01
4.01e--13
2.57e--12
9.35e-- 12
3.69e--10
4.44e-12
1.09e- 10
4.96e--07
1.01e--08

lilZ--GilM
II(L,/)IIM

2.00e-- 11
2.03e--04
1.14e+01
3.06e--12
1.25e- 11
1.35e-- 10
7.76e--09
1.o7e-ll
4.53e-10
6.45e--07
1.65e-07

The third set of (ill-conditioned) test problems illustrates the situation when the
relative backward error is much larger than the relative residual. The problems
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TABLE 4
Condition numbers for badly scaled data.

1013
1013
1016
1016
1019
1019

5.28e/02
3.98e+02
9.89e+00
4.28e+02
2.29e+00
5.37e+02

(:rmin (Z)

1.71e-03
1.20e--03
2.16e-02
4.92e-02

0
0

9.16e+15
9.80e+15
6.89e+17
2.37e+17

1.90e+03
2.53e+02
1.49e+02
4.94e+03
2.71e+01
8.70e+02

4.81e+12
3.87e+13
4.62e+ 15
4.79e+13

TABLE 5
Backward error bounds for badly scaled data.

m

1013
1016
1016
1019
1019

4.73e--14
3.48e-- 14
1.30e-- 15
7.05e-- 14
3.40e--16
3.77e--14

(+)IICL,h)IIF+’

5.73e-30
7.41e-30
8.84e-33
1.41e-32
1.22e-35
6.12e-36

4.08e-- 17
4.41e-17
1.02e- 16
8.16e-17
1.15e-16
7.56e- 16

u.b. ?(L,/)

1.86e- 14
1.66e- 14
5.60e- 16
3.45e-14
1.66e-16
1.57e-14

TABLE 6
Forward error bounds for badly scaled data.

m n ol

4 2 103
2 4 1013
4 2 1016
2 4 1016
4 2 1019
2 4 1019

2.33e- 12
2.89e-12
2.13e--13
8.19e-14

II(L,&)IIM

5.16e--15
3.46e--15
3.01e--14
2.66e-- 13
8.77e--15
6.11e--14

IIIZ--GIIM
II(L,.) IIM

9.61e-15
3.54e-- 14
7.12e--14
2.86e-- 13
6.30e-- 14
7.15e--14

TABLE 7
Condition numbers for ill-conditioned problems.

3.24e+15
2.24e+ 15
6.34e+16
2.44e+18
1.36e+19
2.56e-F21

m

10-2
I0-3

2 2 10-6

2 2 10-6

8.49eW10
8.49e+15

6.30e+11
2.83e+18

O’min (Z)

1.18e-ll
9.61e--17

2.21e-16
2.21e-16

3.80e+11
4.65e+16

2.22e+16
2.22e+16

1.11e+07
1.11e+10

3.46e+12
4.90e+12

3.43e+04
4.21e+06

6.41e+03
4.53e+03

are characterized by a large-normed solution (],,/), a small Dif[(A,D), (B,E)] (Z
is almost singular) and a quite large . The condition numbers a(L),a(R) of the
first example are moderate and, therefore, the computed solutions are nevertheless
quite accurate (relative backward errors and componentwise forward error bounds of
size O(102e)). Note that the componentwise forward error bounds are much smaller
than the normwise error bound for this example. However, in the second example
(],), (/?/) are large ((],,/) are large normed and ill conditioned [13]) and the com-
puted solutions have almost no accuracy at all. It is clear that the last example
reflects an extremely ill-conditioned (generalized) Sylvester equation, but it is still
an open problem (in general) to identify the exact conditions for an ill-conditioned
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TABLE 8
Backward error bounds for ill-conditioned problems.

m

10-2 4.46e--12
3 3 10-3

2 2 10-6

2 2 10-6

1.19e--07
4.10e--05
1.25e+01

(c+f) (L,/) F+V

1.17e--23
3.14e--24
1.33e--17
1.13e-17

1.69e--15
1.91e--15
3.05e-05
5.18e--05

u.b.

4.23e- 14
1.13e-10
4.00e-05
9.01e-05

3.60e+09
3.60e+13
3.02e+12
8.00e+12

TABLE 9
Forward error bounds for ill-conditioned problems.

jjz-lii2ii(R1,R2)IiF IlZ-lrilM liiZ-tGiIM
m n ly.

II(/-,,&)IIF II(L,)IIM II(L,&)IIM

3 3 10-2 1.60e-04 2.66e-15 2.24e-14
3 3 10-3 1.96eT01 1.99e--15 2.27e-14
2 2 10- 1.61e+01 2.77e-01 8.87e+03
2 2 10-6 1.60e+01 1.01e+00 8.88e+03

(generalized) Sylvester equation.
In all of our test examples we see that the componentwise error bounds (46) and

(47) overall give very similar results. In most cases, the approximate error bound (47)
gives the sharpest bounds.

Acknowledgments. I am grateful to Nick Higham and Ji Guang Sun for reading
and commenting on the manuscript.
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UNIFORM STABILITY OF MARKOV CHAINS*

ILSE C. F. IPSEN AND CARL D. MEYER:

Abstract. By deriving a new set of tight perturbation bounds, it is shown that all stationary
probabilities of a finite irreducible Markov chain react essentially in the same way to perturbations
in the transition probabilities. In particular, if at least one stationary probability is insensitive in a

relative sense, then all stationary probabilities must be insensitive in an absolute sense. New measures
of sensitivity are related to more traditional ones, and it is shown that all relevant condition numbers
for the Markov chain problem are small multiples of each other. Finally, the implications of these
findings to the computation of stationary probabilities by direct methods are discussed, and the
results are applied to stability issues in nearly transient chains.

Key words. Markov chains, stationary distribution, stochastic matrix, sensitivity analysis,
perturbation theory, stability of a Markov chain, condition numbers

AMS subject classifications. 65U05, 65F35, 60J10, 60J20, 15A51, 15A12, 15A18

1. Introduction. The purpose of this paper is to analyse the sensitivity of
individual stationary probabilities to perturbations in the transition probabilities of
finite irreducible Markov chains. In addition to providing perturbation bounds that
are much sharper than the traditional bounds, our analysis demonstrates that all
stationary probabilities in an irreducible chain react in a somewhat uniform manner
to perturbations in the transition probabilities. This property of uniform sensitivity
markedly distinguishes Markov problems from general linear systems. Examples are

presented in 3 to illustrate why a Markov problem should not be treated as just
another linear system.

Previous perturbation theory for irreducible chains focused on the derivation of
norm-based bounds of the following kind. Let P and /5 p + E be transition prob-
ability matrices with respective stationary probability vectors 7T and -T satisfying

For suitable vector and matrix norms, it is known that

where values for the condition number a can be derived in various ways. Schweitzer
(1968) derives a value for a from the fundamental matrix of Kemeny and Snell (1960)
whereas the group inverse A# of A I- P is used by Meyer (1980), Golub and
Meyer (1986), Funderlic and Meyer (1986), Meyer (1994), Meyer and Stewart (1988),
narlow (199a), and Stewart (1991). Seneta (1991) suggests using a coefficient of
ergodicity for a.
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These norm-based bounds are not satisfying for two reasons. First, there exist
irreducible chains for which the bounds are not tight, so the condition number a may
seriously overestimate the sensitivity to perturbations. Secondly, the bounds generally
provide little information about the relative error Izrj-#jl/zry in individual stationary
probabilities. We remedy this situation in 4 by derivingtight perturbation bounds for
individual stationary probabilities. On the basis of these bounds, we prove a uniform
sensitivity theorem saying that if at least one stationary probability has low relative
sensitivity, or if at least one large stationary probability has low absolute sensitivity,
then all probabilities have low absolute sensitivity.

In 5 we relate our measure of sensitivity to the traditional condition numbers for
the Markov problem, and we prove that all relevant condition numbers for the problem
7rTA 0 are small multiples of each other. After discussing the ramifications of the
perturbation results on direct methods for computing the stationary probabilities, we
consider the case of nearly transient chains in 6 and 7. We show that under special
perturbations even small stationary probabilities may have low relative sensitivity. In
addition, we give conditions under which a nearly transient chain is absolutely stable
under general perturbations.

2. Norms and notation. Throughout the article the infinity-norm is exclu-
sively used for matrices and column vectors, and the one-norm is used for row vectors.
Since it will always be clear from the context whether a quantity is a matrix, column,
or row, the subscripts on * ][oo and * [[1 are suppressed. Row vectors will always
be transposed (e.g., 7rT ), and column vectors will be untransposed. The jth column
of the identity matrix I is denoted by ej and the column of all ones is denoted
by e. The matrix P denotes the transition probability matrix of an n-state irre-
ducible Markov chain with stationary distribution zrT whose entries satisfy ri > 0
and zr- 1. We define A I-P and A# denotes the group inverse of A,
properties of which can be found in Campbell and Meyer (1991), Meyer (1975), and
Meyer (1982). The matrix P P + E is a perturbation of P that represents the
transition matrix of another irreducible chain with stationary distribution #T. The
perturbation matrix E is not necessarily constrained to be small. We use E(J) to
denote the matrix obtained by deleting the jth column of E, and A denotes the
principal submatrix obtained by deleting the jth row and column from A I- P.
Finally, we let N denote the matrix obtained by replacing the last column of A by
a column of ones.

3. Absolutely stable chains. The solution of a general ill-conditioned lin-
ear system Ax b need not be uniformly sensitive to small perturbations. Some
components of x can be sensitive while others are not. Furthermore, as shown in
Chandrasekaran and Ipsen (1992), the sensitivity of the xi’s need not be a result of
their size. Our purpose is to demonstrate that this cannot happen for Markov chains,
but first it is important to distinguish between absolute sensitivity and relative sensi-
tivity in the Markov chain setting.

Example 3.1. For the three-state chain whose transition matrix is

P(e) 1 e 0 e
1 0 0

the associated stationary distribution is

1

(2 +
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If P P(10-s) is perturbed to become /5 P(10-4), then the magnitude of the
perturbation E P- P is

IIEII- 2(10-4- 10-8)

Consider the change in the respective stationary distributions

7r
T 7T(10-8) and #T 7rT(10-4).

The absolute change (the change relative to 1) in 73 is

10-8 10-4
1 + 10-8 1 + 10-4

10-4- 10-8 IIEII10-4 10-8=
(1 + 10-4) (1 + 10-s) 2

but the relative change (the change relative to the original value) is

1-
10-4 (1 + 10-s)
10-8 (1 + 10-4)

If the change in probabilities is assessed in an absolute sense by comparing it to 1,
then r3 is not at all sensitive to the perturbation because the change of magnitude
[IE[[ in the transition probabilities produces a change in r3 of only [JEll/2. We say
that 3 is absolutely insensitive. But if the change in probabilities is assessed in a
relative sense then the change in r3 is large, so r3 is relatively sensitive. As for the
sensitivity of the other two probabilities rl and r2, if a is element (i, j) in the
group inverse A# of A I- P, then, as shown by Funderlic and Meyer (1986), the
absolute error in the jth stationary probability is bounded by

In this example, maxi,j [a[ < 1, so all three stationary probabilities are insensitive in
the absolute sense. Because rl and r2 are both very close to .5, they are insensitive
in the relative sense as well. This example motivates the following definition.

DEFINITION 3.1. An irreducible chain is said to be absolutely stable whenever
each rj is insensitive to perturbations in P in the absolute sense; i.e., whenever
there is a small constant a such that for all perturbations E,

where the term "small" is to be interpreted in the context of the underlying application.
Sufficient conditions for absolute stability are well-known. The results in Barlow

(1993), Funderlic and Meyer (1986), Golub and Meyer (1986), Meyer (1980), Meyer
(1994), Meyer and Stewart (1988), Stewart (1991), for instance, use the fact that a
chain is absolutely stable if the group inverse A# of A I- P has no large entries

(relative to 1). The results of 5 will establish that the converse of this statement is
also true.
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4. Componentwise analysis. In this section we derive tight upper bounds
on the relative change in individual stationary probabilities, and we prove that all
stationary probabilities show essentially the same sensitivity to perturbations in the
transition probabilities.

We make use of the following properties of M-matrices, details of which can be
found in the text by Berman and Plemmons (1979). If P is an irreducible stochastic
matrix of order n, then A I- P is a singular M-matrix of rank n- 1. Moreover,
if Aj is the principal submatrix of A obtained by deleting the jth row and column
from A, then Aj is a nonsingular M-matrix. Hence A-I > 0, and if e is the column

vector of all ones, then IIA-flell IIA-III. The following theorem demonstrates that

the entries in A-I determine the relative sensitivity of the jth stationary probability
to perturbations in the transition probabilities.

THEOREM 4.1. If E(J) denotes the matrix obtained by deleting the j th column
of E, then

7j j TE(J)A- e.

Furthermore,

and there always exists a perturbation E (dependent on j) for which equality is at-
tained.

Proof. By applying a symmetric permutation to P, the states may be reordered
so that a particular stationary probability occurs in the last position of T. Thus it
suffices to prove the theorem for j n. With the partitioning

T T n A=
cT 5

7rTA 0T implies T _TrncTA-. Replacing the last column of A by the vector
of all ones produces a nonsingular matrix

(An e) (Al(/-eT)
with inverse N-N

cT 1 T rn

The stationary distribution of the original chain is the solution of the system

T where T7rTN--en en (0 0 1),

and the stationary distribution for the perturbed chain is the solution of

T where F (E(n) 0).#T(N F) e,

Consequently,

(4.1) 7T T _TFN-,

so
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and therefore
71"n ’n .T]-,(n)A-

7rn
eo

Applying HSlder’s inequality and IIAlell IIA111 yields

71-n 71-n

7rn

To see that equality is always attainable, let k be the position where the largest
component of Ale occurs so that

eTA e A e A
and let E ee(ek -en)T. Then rTE(n) e" and IIE(n)ll e, so that

7rn 7r rTE(n)A-e eeA-le ellAlll IIE(n)ll IIAII
7rn

COROLLARY 4.1. An irreducible chain is absolutely stable if and only if 7rjl[Alll
is small for every 1 <_ j <_ n.

The resUlts of Theorem 4.1 and its corollary suggest the following definitions.
DEFINITION 4.1. Let Aj be the principal submatrix obtained by deleting the j th

row at. ,2 column from A, and let rj denote the j th stationary probability. The relative
condition number for rj is defined to be

p IIA-II and we set p m!n{pj}.

The absolute condition number for rj is defined to be

and we set c m.ax{cj}.

In terms of his notation, Theorem 4.1 states

_< py lIE(Y)II, Iry 1 -< cy IIEII, and

so c is the absolute condition number for the entire chain.
Notice that if a stationary probability is relatively well-conditioned, then it is

absolutely well-conditioned but not conversely, cf., Example 3.1. It may be of interest
to note that the existence of a small pj means that the (n 1)st singular value of A
is large (Barlow (1993)).

We now arrive at one of our principal conclusions which states that the sensitivity
of the stationary distribution is uniform in the sense that all 71"j ’S are absolutely well-
conditioned if and only if at least one rj is relatively well-conditioned.

THEOREM 4.2. For every 1 <_ j <_ n,

Consequently, an irreducible chain is absolutely stable if and only if at least one 7rj is
relatively well-conditioned.
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Proof. As in the proof of Theorem 4.1, assume that the states have been permuted
so the best relatively conditioned stationary probability is in the last position; i.e.,
Pn P. If

N= cr 1

is the matrix obtained by replacing the last column of A by ones then, as in (4.1),

From

7r
T rT ---rTFN-1, where F E(n) 0 ).

(4.2) Y-1 ( dl(I- eT) -TrnAle) (dl O) (I-eT -Trne)T 71.n 0 1 KT rn
it follows that

7rj #j _#TFN-
-#TE(n)A-I(ej 7rje) if

ej
-rTE(n)Al(-rJe) if

Since Ile rjell max{rj, 1 rj} < 1 and IIAeII IIA-III Pn, we have that

l<_j<_n.

Therefore, if at least one stationary probability is relatively well-conditioned, then all
stationary probabilities are absolutely well-conditioned. The converse follows from
Corollary 4.1 because at least one rj must be greater than or equal to 1/n. D

The following two statements are direct consequences of Theorem 4.2, but they are
important to state because they drive home the extent to which there exists uniform
stability in Markov chains.

COROLLARY 4.2. If any stationary probability is relatively well-conditioned, then
all large stationary probabilities are relatively well-conditioned.

COROLLARY 4.3. If any large stationary probability is absolutely well-conditioned,
then the chain is absolutely stable.

A natural question arises at this point. We know that the existence of one rela-
tively well-conditioned rj implies the chain is absolutely stable, but does the existence
of one absolutely well-conditioned rj insure absolute stability? Unfortunately, the
answer is "no," and this can be seen by considering

e/2
P= e/2 1-e e/2 rT= 1

(1 1 e)
o

for small 0 < e < 1. The absolute and relative condition numbers are

1 (_ 4) 2 2 4 2
-}- O3 Pl P2 + --, and P3 -,O1 O2 2 + 2 +e e

so, for small e, 71"3 is absolutely well-conditioned, but rl and r2 are not. The chain
is not absolutely stable, and no rj is relatively well-conditioned.

Small stationary probabilities are the ones that appear least likely to be relatively
well-conditioned. Therefore it makes sense to try to determine features that may be
responsible for the small size. The following theorem shows that those rj whose
associated submatrix Aj is well-conditioned cannot be small. It also shows that a
nearly reducible matrix A that is far from being uncoupled produces small rj.
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THEOREM 4.3. If Q is a permutation matrix such that

QTAQ-- (AJ bJ I
then

<r<

Proof. Let rTQ cT (-T -Trj). Since eTA 0 implies
Hblder’s inequality gives the lower bound

-TrjcyA;1

-T1-Trj e rjlcyA-lel <_ rjpj.

--TTo obtain the upper bound, use Ilcyll -cye 5j and 5jrj - bj, and again
apply HSlder’s inequality,

5. Condition numbers and linear systems. It was demonstrated in the
previous section that the sensitivity of the stationary distribution is governed by p.
We now compare this measure of sensitivity to other condition numbers, and we relate
these results to numerical techniques for computing stationary probabilities by solving
certain linear systems.

The nonsingular matrix

(An e) TN
cT 1

and the associated system 7rTN en

are focal points of the development. The expression (4.2) together with the fact that
Pn IIAlll > 1 (because e =-Alb) produces

(5.1) 1 < [IN-Ill < 2pn.

T is a well-This means that if rn is relatively well-conditioned, then 7rTN en
conditioned nonsingular system and therefore any stable algorithm can accurately

T should be attemptedsolve it. But it is not clear that the solution of 7rTN en
when Pn is large, even if the chain is absolutely stable. Theorem 4.1 insures that
some pj must be small, but, as Example 3.1 demonstrates, it need not be Pn. Of
course, safety can be guaranteed if one is willing to determine a value of k such that

T
Pk P because the same logic that produced (5.1) insures that the system 7rTj ek
is well-conditioned where is the nonsingular matrix obtained by replacing the kth
column of A by e. But determining p (or its position) is prohibitively expensive, and
this may be why this approach is dismissed as "naive" by Paige, Styan, and Wachter
(1975) and not included in their comparisons.

Surprisingly, it does not matter which column of A is replaced by e. This is a
consequence of the next theorem that relates N-x to the group inverse A#.
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THEOREM 5.1. For the numbers a and p given in Definition 4.1,

A#
< I[N-111 < 2 I]A# + x

2

and
o < IIA#11 < 4p.
2

Proof. We derive the upper bounds first. It is easily verified (Meyer (1975)) that

A# (I eTrT) ( AIO O0 ) (I eT)

{ (I eT)AI(I eT)
_TA (i eT

7rnTA- e

A symmetric permutation can bring any principal submatrix Aj of A to the upper
left-hand corner of QTAQ. Then (QTAQ)# QTA#Q, and

.Q (’ .)
imply

QTA#Q (I- eT) ( AIO
( (I- e-T)A-I(I- --rJ(I-- e-T)A-le)-1_-TA_ (I e-T) 7rio Aj e

The second upper bound is now immediate because

IIA#11 IIQTA#QII <_ 4pj for all j.

The first upper bound follows from

--CT --6

which can be verified by using (5.2), so that IIN-II _< 211AII + 1. To establish the
lower bounds, use the expressions for A# and QTA#Q to write

and rjA I --e QTA#Q ( jI
Hence [[AII <_ 211N-II and, for every j,

The group inverse is relevant because

(.3) r # #EA# and
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(Meyer (1980)), so if IIA#11 is small, then the chain is absolutely stable. While
conjectured, the converse of this statement has never been proven. However, on the
basis of Theorems 4.2 and 5.1, the converse is now evident.

The logic used in proving Theorem 5.1 dictates that replacing any column of A
by e results in a well-conditioned matrix when the chain is absolutely stable, and when
the chain is not absolutely stable, all such matrices are ill-conditioned. Consequently,
it does not matter which column of A is replaced by l’s, so the problem addressed
by Harrod and Plemmons (1984) and Barlow (1986, 1993) of having to locate a well-
conditioned principal submatrix Ay in order to build a well-conditioned system is
obviated. Furthermore, since N is nonsingular, standard numerical techniques can

Tbe applied to solve 7rTN en
So far we have viewed the stationary distribution 7TT aS a solution to two different

Tlinear systems; the singular system rTA 0 and the nonsingular system rTN en
There is a yet a third linear system of which 71"T is & solution, namely

(5.4) 7rTM Ten+ where M (A e).

The augmented matrix M is of order n x (n-t- 1) and has full row rank. The perturbed
system is .T(M -t-- E) eTn-t-1 so

7TT TT TEMt,

where Mt is the Moore-Penrose pseudo-inverse (Campbell and Meyer (1991)), and

Hence IIMt is a condition number for measuring absolute stability. Another such
number is IIZII where z (A is the Kemeny and Snell (1960) fundamental
matrix because rT- #T #TEZ and Irj -#jl <- I11111EII IIZII (Schweitzer (1968)).
The following lemma shows that IIMtll and IlZll re small multiples of each other
and that they are not significantly different from IIA# II.

LEMMA 5.1. For the matrices M and Z defined above,

llzll < IIM*II < e IlZll and
3 IIA II- 1 _< Ilzll _< IIA II / 1.

Proof. The first set of inequalities follows from the identities

Z= ((I- erT) e)M and T Z,

each of which is straightforward to verify. The second set of inequalities is a conse-
quence of the fact that Z A# + eTrT (Meyer (1975)). [l

Combining the results of Lemma 5.1 with those of Theorems 4.2 and 5.1 produces
the following complete statement concerning the stability of irreducible Markov chains.

Gaussian elimination with exact arithmetic generates positive pivots, but floating-point arith-
metic may produce a zero or negative pivot (Funderlic and Mankin (1981)). This can be avoided
with diagonal adjustment schemes as discussed by Grassmann, Taksar, and Heyman (1985), Stewart
and Zhang (1991), and Barlow (1993).
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THEOREM 5.2. For an n-state irreducible Markov chain, the following statements
are equivalent.

At least one stationary probability is relatively well-conditioned.
The chain is absolutely stable.
All entries of the group inverse A# are small.
The matrix N and the system TN eTn are well-conditioned.
The matrix M and the system 7TM Ten+ are well-conditioned.
All entries in the Kemeny and Snell fundamental matrix Z are small.

6. Sensitivity of nearly transient chains. In this section we examine the
sensitivity of stationary probabilities of irreducible chains with nearly transient states;
i.e., irreducible chains in which the states can be ordered so that the transition matrix
is almost block triangular in the sense that

(6.1) p (Pll P19. with "P21 <<1"P. P.\ /

We prove two results, one for structured perturbations and one for more general
perturbations.

The first theorem establishes a result similar to the one by Stewart (1992b). It
says that small stationary probabilities of an absolutely stable chain are relatively
well-conditioned if only the states corresponding to these probabilities are perturbed
and all other states remain unaffected.

THEOREM 6.1. If E can be symmetrically permuted so that

o) IIEII= ,E=
E2

and if roT= (rr rT2 is partitioned conformably, then

_< 4ep, 1 _<j _< n.

Proof. Combine (5.3) with the fact IIA#II <_ 4p from Theorem 5.1.
The second theorem concerns nearly transient chains, but no restriction is placed

on the structure of the perturbation matrix.

THEOREM 6.2. Suppose P in (6.1) is s s, and let

(An b) An___ (Bll B12) and b- (bl)A cT 5 B21 B22 b2

where Bll is s s,
rn is bounded by

b is s 1, and bi 0 for each i.

2 max { Bi-11 II, B-21 }
Pn <

The relative condition of

so the chain is absolutely stable whenever BI and B22 have small inverses.
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Proof.

A,-
0 B22 0)0 T + K= T(I + T-1K)"

If ]IT-1K]I < 1, then, from results in 2.3.4 in Golub and Van Loan (1989),

Pn IIAIII <_ liT-ill ]l(I + T-1K)-lll <_

Since A is an M-matrix, B > 0, Bij <_ O, and b <_ 0. Consequently, Ae 0
implies

0 <_ -BllB12e e + Bi-llbl _< e.

By assumption, bl 0, so Bi-1lbl < 0, and thus

liB{-11B12ll IIB1B12ell < 1.

A similar argument shows that IIIBIII < 1. Since

T_I= (B- -B11B12B; ) (I-B11BI2) ( Bfl 0 )o o o

we have

liT-111 (1 + IlBi-11B1211)max{lIB5111, IlBlll } < 2max{llBi-lll[, IlBll }.

Similarly,

implies

T_1K=(-B11B12B21B21 O)BB21 0

T-1K II <_ max{ B11B12B2B2111, IIB2-2B2111} < B2B2111,

so
2 max { IIBi- I1, IIB }

7. Small probabilities in nearly transient chains. Let 7rT (1T
the stationary distribution of the nearly transient matrix P in (6.1), and set

2T be

A= I-P= (AIA21 A22A12) where IIA2111-- IIP2II-- e.

Since T -A21A- implies IIffll -< llAi-lll, we see that the trailing stationary
probabilities dominate the leading ones provided IIAI is not too large. For nearly
transient chains with a finer block structure, say

(7.1) A

All A12 A13 Alk
F21 A22 A23 A2k
F31 F32 A33 Aak r 3

Fkl Fk2 Fk3 Akk rk

Fj+ I,j

Fj+2,j
Fj+3,j

Fe,y
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1 <_ j <_ k- 1, the same should be true; i.e., the trailing stationary probabilities
tend to be larger than the leading ones. We will quantify this statement by providing
bounds in terms of ej on the probabilities j associated with each block.

The strategy is to proceed inductively by applying the above 2 2 case to
successive diagonal blocks. This is accomplished by applying the following lemma that
provides a perturbation of size e that essentially uncouples All from the remaining
blocks. In particular, the lemma shows that the remaining probabilities are the exact
probabilities of a perturbed problem of the same form (the only difference being that
the sum of the probabilities is less than one).

LEMMA 7.1. Let

A_(AllA21 A22
with IIA2111

_
e. If

A A2eTA2
2TA21e

then A22 + A is a singular M-matrix such that

2T(A22 +/%) 0, (A22 + A)e O, and IIAII <_ .
Proof. We first verify that A satisfies the required equations. From 7TA 0

and Ae 0 we get rT =2-TA22 =--TA and r2 A2e =-A2e, so one can
write

A-- r2r
T2 r2"

Since A -rT it follows that 2T(A22 -t- A) 0, and thus A satisfies the first
equation. To prove that A satisfies the second equation, observe that TA 0 and
Ae 0 imply

Thus,

A r2rT

so Ae --r2 and (A2 + A)e 0. As for the bound on the norm of A, notice that
rl and r2 both consist entirely of nonnegative elements since A is an M-matrix so
A consists entirely of nonpositive elements. This means

Moreover, since all elements of A are nonpositive, the off-diagonal elements in A.2+A
are more negative than those of A22. This implies with (A22 + A)e 0 that the
diagonal elements must be nonnegative. From > 0 it follows that A22 +/% must be
irreducible, for otherwise a component of #2 would be zero. According to Corollary 1
in 3.5 of Varga (1962), the signs of the matrix elements and the irreducibility imply
that every principal submatrix of A22 +/k is an M-matrix. Therefore, A.u + A is a
singular M-matrix. V1

Now we can prove the following theorem that says that in a nearly transient chain,
the size of the i in the jth block is controlled by the smallness of the preceding off-
diagonal columns 1,..., j- 1, and by the condition of a perturbed jth diagonal block.
The size of this perturbation is again determined by the smallness of the off-diagonal
columns 1,... ,j- 1. This implies that the trailing solution components tend to be
larger than the leading ones.
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THEOREM 7.1. If A is partitioned as indicated in (7.1), then IlsrT <_ (1;1 with
IIAIlI. Furthermore, there exist matrices Xj+I,j+I such that

[[Aj+,j+ Xj+I,j+ - 1 -}-""-[- j, 1 <_ j <_ k 2,

and
-< (1 -]- -]" j+l)/’i;j+l, where IIx -  ll,

Proof. The statement8 for follow from the 2 2 block partitioning.
apply the same argument recursively to the matrix

Now

A22 *
F32 A33 * *

A22 ". -- A,Ak-l,k- *
Fk2 Fk3 Fk,k-1 Akk

where A is given by Lemma 7.1. For instance, X2 is the leading diagonal block
of fi22 with IIX-lll a2. Lemma 7.1 insures IIAII _< e and IIA22 X211 _< A <_ e.
Since the norm of the first off-diagonal column is bounded above by e +e2, Lemma 7.1
 ives I1  11 <- +

8. Concluding remarks. Our goal was to better understand how individual
stationary probabilities are affected by unstructured perturbations to the transition
probabilities. Consequentiy, we measured all perturbations relative to 1 rather than
relative to A I- P or relative to the structure of P. In other words, we mea-
sured the magnitude of a perturbation by ]]EI]/[[P[I ]]El[ instead of []E][/I]A[] or

maxij ]eij I/Pij. The latter two measures result in significantly different interpretations
of sensitivity. For example, perturbations that are small relative to 1 can greatly affect
the stationary probabilities of

1 -e e )P= e<<l,
e 1-e

but measured relative to IIAII- or measured by maxj I  jl/p j, small pertur-
bations cannot have a drastic effect (Meyer (1980), O’Cinneide (1993), and Zhang
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AN EFFICIENT ALGORITHM TO COMPUTE ROW AND COLUMN
COUNTS FOR SPARSE CHOLESKY FACTORIZATION*

JOHN R. GILBERTt, ESMOND G. NG:, AND BARRY W. PEYTON

Abstract. Let an undirected graph G be given, along with a specified depth-first spanning
tree T. Almost-linear-time algorithms are given to solve the following two problems. First, for every
vertex v, compute the number of descendants w of v for which some descendant of w is adjacent
(in G) to v. Second, for every vertex v, compute the number of ancestors of v that are adjacent
(in G) to at least one descendant of v.

These problems arise in Cholesky and QR factorizations of sparse matrices. The authors’ al-
gorithms can be used to determine the number of nonzero entries in each row and column of the
triangular factor of a matrix from the zero/nonzero structure of the matrix. Such a prediction makes
storage allocation for sparse matrix factorizations more efficient. The authors’ algorithms run in
time linear in the size of the input times a slowly growing inverse of Ackermann’s function. The best
previously known algorithms for these problems ran in time linear in the sum of the nonzero counts,
which is usually much larger. Experimental results are given demonstrating the practical efficiency
of the new algorithms.

Key words, sparse Cholesky factorization, sparse QR factorization, symbolic factorization,
graph algorithms, chordal graph completion, disjoint set union, column counts, row counts

AMS subject classifications. 65F50, 68Q20

1. Introduction. Direct solution of a sparse symmetric positive definite linear
system requires four steps [7], [15]" reordering, symbolic factorization, sparse Cholesky
factorization, and sparse triangular solutions. Let A be the n x n coefficient matrix
of the linear system after it has been reordered to reduce fill, and let L be the lower
triangular Cholesky factor of A. This paper presents improved algorithms for comput-
ing the number of nonzero entries in each row and column of L prior to the symbolic
factorization step. We refer to these parameters as the row counts and column counts
of L.

In least squares computations, A is rn n, with rn >_ n. It is often necessary to
compute the orthogonal factorization A QR. Our algorithms can be used also to
predict upper bounds on the row counts and column counts of the upper triangular
factor R, since the structure of R is always contained in the structure of the Cholesky
factor of ATA [12].

Throughout the paper we assume familiarity with graphs, trees, and such basic
techniques as depth-first search [24]. We also assume a basic knowledge of the four
steps in solving sparse systems by Cholesky factorization, and with the use of graphs
in these algorithms [15]. More specifically, we assume familiarity with elimination
trees [19], skeleton graphs [18], postorderings, supernodes [1], [2], [16], [20], [21], and
the subscript compression scheme for L [15], [25].
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1.1. Applications. Here we survey some of the sparse matrix settings in which
it is useful to precompute the row counts, the column counts, or the total number of
nonzeros in the Cholesky factor of a sparse matrix.

Either the row or column counts can be used to compute ILl, the total number
of nonzeros in the factor. (We write IXI for the number of nonzeros in a matrix X
or the number of elements in a set X.) Knowing ILl before the numeric factorization
step makes it possible to allocate storage all at once instead of dynamically. In
sparse Cholesky factorization, the time required to compute ILl by existing methods
is dominated by the time required for numerical factorization; but there are at least
two settings in which it is valuable to be able to compute ILl as fast as possible.

First, some methods for large-scale numerical optimization use Cholesky factor-
ization on a Hessian matrix [5], [6]. If the Hessian is indefinite, Cholesky factorization
will abort, but the partial factorization contains enough information to help determine
a good descent direction containing negative curvature information. In this case, the
symbolic factorization time may dominate the time spent on the numeric factoriza-
tion before it aborts. Thus it may be more efficient to skip the symbolic phase and to
build the data structure for L during the numeric factorization. However, for this to
be efficient, we still need to find ILl (and perhaps the column counts) before starting
the factorization.

Second, much research remains to be done on the issue of how best to reorder the
initial matrix to reduce fill, i.e., to reduce ILl. It is sometimes useful to compute ILl
for many different orderings of the same matrix, both in experiments with reordering
algorithms and when trying to optimize an ordering for a specific matrix. Our new
algorithms make this much faster.

Besides fill, there are several other measures of the quality of a reordering. Some
of them can be computed from the column counts; for example, the total number
of arithmetic operations is the sum of the squares of the column counts, and the
maximum front size is equal to the largest column count. The smallest maximum
front size, over all reorderings of a graph, is one more than the graph’s treewidth [3].
Thus the fast column count algorithm may also be useful in experimental studies of
treewidth.

Two applications related to the supernodal structure of L also require the column
counts. Supernodes are clusters of columns with related nonzero patterns, which can
be exploited to use fast dense matrix computation kernels in sparse factorization; 3
describes them in more detail. First, there is a simple, flexible O(n) scheme for com-
puting supernode partitions [2], [17] that takes the column counts and the elimination
tree as input. This algorithm is more versatile and faster than the O(IAI) algorithm of
Liu, Ng, and Peyton [20], which takes the original matrix and its elimination tree as
input. The latter algorithm computes the so-called fundamental supernode partition.
Given a fast algorithm to compute column counts, the more flexible scheme could be
used efficiently to compute coarser supernode partitions [2], which trade extra fill for
a simpler sparsity structure that can be used to improve efficiency on vector super-
computers or to reduce synchronization overhead on shared-memory multiprocessors.

The second supernodal application of the column counts is to compute the storage
required for indexing information for L in the usual compressed format generated
by the symbolic factorization step [25]. Current software packages [4], [9] do not
precompute the space needed for this compressed symbolic factorization, because it
is too expensive using the currently known algorithms. The storage required for the
other three steps in the solution process is usually computed in advance; we believe



ROW AND COLUMN COUNTS FOR SPARSE CHOLESKY 1077

that the new algorithms introduced here are efficient enough to be used by a software
package to precompute the storage requirement of the symbolic factorization step as
well.

Finally, we know of only one application that specifically requires the row counts
rather than the column counts. The row counts are the numbers of column modifica-
tions (sparse SAXPYs) required to complete each column in sparse Cholesky factor-
ization algorithms. Some parallel implementations [13], [14] need the row counts to
determine when all the modifications have arrived for each column.

1.2. Previous work. Like many combinatorial algorithms in sparse matrix fac-
torization, all the efficient algorithms for row and column counts begin by computing
the elimination tree of the matrix (defined in the next section). The fastest known
elimination tree algorithm is due to Liu [19]. The time complexity for this algorithm
is dominated by disjoint set union operations, which take time O(m a(m, n)), where
A is n n and has 2m off-diagonal nonzeros. Here a(m, n) is a slowly growing inverse
of Ackermann’s function defined by Tarjan [27]; for all values of m and n less than
the number of elementary particles in the observable universe, a(m, n) _< 4. Thus a
function that is O(rna(m, n))is often called "almost linear."

The fastest previously known algorithm for computing row and column counts is
also due to Liu [19]. It first computes the elimination tree of A and then traverses
each "row subtree" of the elimination tree (defined in the next section). The total
size of the row subtrees is the number of nonzeros in the factor, so the running time
of this step is O(ILI). Unless the factor is extremely sparse, the subtree traversals
dominate the time to find the elimination tree. To put this in perspective, suppose A
is the matrix of an n-node finite difference mesh ordered by nested dissection. Then
rn is O(n), and ILl is O(n log n) in two dimensions or O(n4/3) in three dimensions.

The algorithm in this paper also takes A and the elimination tree as input but
runs in almost-linear time O(ma(rn, n)); the time complexity for the new algorithm
is dominated by disjoint set union operations. Thus it computes the row and column
counts in the same asymptotic time needed to find the elimination tree. As we will
see in 4, this asymptotic efficiency is also reflected in practice.

1.3. Outline. Section 2 presents the row and colunn count algorithm from a
graph-theoretic point of view. Here it is convenient to think of the input not as the
graph G(A) of a matrix, but as the graph G(A)U T(A) that has edges both for the
matrix nonzeros and for the elimination tree. (The elimination tree T(A) usually has
edges not contained in G(A).) The elimination tree is a depth-first spanning tree of
the graph G(A) T(A); thus for the purpose of the high-level view in 2, the input
is just an undirected graph with a specified depth-first spanning tree. In this setting,
we suspect that our results may be useful in efficient algorithms involving chordal
graphs, chordal completion, and treewidth.

In 3 we return to the matrix-computation point of view, and discuss details of
the implementation in the sparse matrix setting. Two points of practical importance
arise here: we modify the algorithm slightly to make only one pass over its input,
and we take advantage of supernodal structure to compute only with a subgraph
called the skeleton graph. We show how to organize the entire computation, including
the skeleton graph reduction, within the framework of the fundamental supernode
algorithm of Liu, Ng, and Peyton [20].

Section 4 contains experimental results. We experiment with both the nodal
and supernodal versions of the algorithm, as well as with several implementations of
the disjoint set union operations (UNION and FIND) that dominate the asymptotic
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running time. The best version is the supernodal algorithm with path-halving and
no union by rank (definitions are in 3.3); it performs well enough that we argue it
should be a standard part of high-performance sparse factorization codes. Finally, 5
contains concluding remarks.

2. The algorithm.

2.1. Definitions and problem statement. Let G (V, E) be a connected
undirected graph with n vertices and m edges, and let T be a specific depth-first
spanning tree for G (e.g., G G(A)UT(A) and T T(A)). We call vertices v and w
adjacent if they are joined by an edge in G; that is, if (v, w) E E. We say that vertex v
is an ancestor of vertex w if v is on the path in T from w to the root of T. Vertex v is
a descendant of w if w is an ancestor of v. Note that a vertex is its own ancestor and
its owndescendant; a proper ancestor or descendant is one that is different from the
vertex itself. We write T[v] for the set of descendants of v and also for the subtree
of T (rooted at v) that those vertices induce.

Since T is a depth-first spanning tree, every edge of G (whether or not it is an
edge of T) joins an ancestor in T to a descendant in T [24].

To simplify notation, we assume that the vertices of G are the integers 1 through n.
We also assume that the vertex numbers are a postorder on T; that is, that for every
vertex v, the vertices of T[v] are numbered consecutively, with v numbered last. Thus
vertex n is the root of T.

The level of vertex v, which we write level(v), is its distance in T from the root.
The least common ancestor of vertices v and w, which we write lca(v, w), is the
ancestor of v and w with the smallest postorder number (or the largest level). Both
a postorder numbering and the vertex levels for an arbitrary tree can be computed in
linear time by depth-first search [26]. Given a set of k pairs {v, w} of vertices, the k
least common ancestors lca(v, w) can be computed in O(kc(k, n)) time, where ( is
the very slowly growing inverse of Ackermann’s function mentioned above [28]. We
describe these algorithms in more detail in 3.

We consider the following two problems.
Problem 1 (row counts). For every node u e V, let row[u] be the set of descendants

v of u for which either v u or there exists an edge (u, w) with w T[v]. The problem
is to compute rc(u) row[u]l for every u.

Problem 2 (column counts). For every node v e V, let col[v] be the set of ancestors
u of v for which either u v or there exists an edge (u, w) with w e T[v]. The problem
is to compute cc(v) --Icol[v]l for every v.

Note that v row[u] if and only if u col[v], and that u is an element of both
row[u] and col[u]. For each u, the subgraph of T induced by row[u], denoted by Tr[u]
and referred to as the row subtree of u, is connected; it is a "pruned subtree" rooted
at u. The subgraph of T induced by col[v] may not be connected.

We conclude by briefly describing the relationship between these problems and
sparse Cholesky factorization. It may seem a bit confusing that we include the elimi-
nation tree edges in the graph G in the graph problem but not in the matrix problem;
however, the answer is the same in either case.

Let an n n symmetric, positive definite matrix A be given, and let G(A) be its
undirected graph (whose vertices are the integers 1 through n). Let G+(A) be the

filled graph of G(A) [22] obtained by adding to G(A) edge (v, w) whenever there is a
path in G(A) from v to w whose intermediate vertices are all smaller than both v and
w. The graph G+(A) is chordal, and (ignoring numerical cancellation) is the graph of
L + LT, where L is the Cholesky factor of A [23].



ROW AND COLUMN COUNTS FOR SPARSE CHOLESKY 1079
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FIG. 1. Example of path decomposition.

The elimination tree of A, denoted T(A), has vertices 1 through n, and the parent
of vertex v is the smallest w > v such that (v, w) is an edge of G+ (A). Lit [19] surveys
the uses and properties of this structure. It is a forest with one tree for each connected
component of G(A); if A is irreducible then T(A) is a tree. The elimination tree may
not be a subgraph of G(A), but it is a subgraph of G+ (A), and in fact it is a depth-first
spanning tree of that graph. If A’ is a matrix whose graph is G(A’) G(A) (2 T(A),
it is straightforward that G+(A’) G+(A) and T(A’) T(A).

Now consider problems (1) and (2) above for G G(A’) and T T(A’). It is
easy to show [19] that the edges of G+ (A) G+ (A’) are exactly those (u, v) for which
v :/: u and v E row[u] (or u col[v]). Thus rc(u) is the number of nonzeros in row u
of the Cholesky factor L of A, and cc(v) is the number of nonzeros in column v of L.

2.2. Row counts. We count the vertices in row[u] by counting the edges in the
pruned subtree Tr[u] of T that row[u] induces. The following lemma lets us partition
those edges into paths.

LEMMA 2.1. Let Pl < P2 < < Pk be some of the vertices of a rooted tree R
(where < is postorder), and suppose all the leaves and the root ofR are among the pi ’s.
Let qi be the least common ancestor ofpi and pi+ for i <_ < k. Then each edge (s, t)
of the tree is on the tree path from pj to qj for exactly one j.

Proof. Suppose t is the parent of s in R. The descendants of s include at least one

leaf, so they include at least one pi. Let pj be the largest pi among the descendants
of s. Then pj <_ s < pj+. (There must be a pj+wthat is, we cannot have j k--
because Pk is the root, which is a proper ancestor of s.) Since s is an ancestor of pj
but not of pj+, the least common ancestor qy of py and py+ is a proper ancestor
of s, and hence an ancestor of t. Therefore (s, t) is on the path from py to qj.

Now consider an : j. If s is not an ancestor of pi, then (s, t) is not on the path
from pi to its ancestor qi. If s is an ancestor of pi, then pi <_ s, and :/: j implies
pi _< pi+l <_ s. Since postorder assigns consecutive numbers to the vertices in a

subtree, this means that s is also an ancestor of pi+, and hence of the least common
ancestor q. Thus (s,t) is not on the path from pi to qi.

Figure 1 shows an example of the path decomposition.
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Recall that T is a depth-first spanning tree of G and hence every edge of G joins
an ancestor in T to a descendant in T. Now consider a vertex u of G. If the lower-
numbered neighbors of u in G are pl < p2 < < Pk-1, and if Pk u, then the
pruned subtree R-- Tr[u] induced by row[u] satisfies the hypotheses of Lemma 2.1.
Thus the number of edges in Tr[u] is the sum of the lengths of the paths in the lemma.
The length of the path from pi to its ancestor q is the difference of their levels. The
number of vertices in row[u] is one more than the number of edges, so

1 +

(Here lca and level are taken in T rather than T[u], but it is clear that for any two
vertices in row[u] the least common ancestor and the difference in levels are the same
in either tree.)

Let ladj[u] be the lower numbered neighbors of u in G. The algorithm to com-
pute rc(u) for all u first sorts each set ladj[u]{u} by postorder, then computes all the
necessary least common ancestors, and finally computes the sum above for each u.
Computing level numbers (and the postorder itself if necessary) takes linear time,
and sorting the sets ladj[u] U {u} into postorder takes linear time by a lexicographic
bucket sort. There is one let-common-ancestor computation for each edge of G, so
the dominant term in the algorithm’s time complexity is O(m (m, n)).

2.3. Column counts. Because u o[v] ir and only if v row[u], the column
count cc(v) is equal to the number of row subtrees T[u] that contain v. We could
compute cc(v) by traversing each row subtree in turn, and counting the number of
times each vertex w traversed [19]. This, however, would take time proportional to

To get a faster algorithm, we define weights wt(v) on the vertices of G in such a
way that the column count for vertex v turns out to be the sum of the weights of the
descendants of v. The key observation is that we can compute these weights as a sum
of contributions from each row subtree, and that the row subtree contributions can
be computed efficiently using the same least common ancestors as in the row count
algorithm.

Here are the details. For each vertex u, define X to be the characteristic function
of row[u], so that X(v) 1 if v e row[u] and X(v) 0 otherwise. Define wt by

(1) wtu (v) Xu (v) Xu (Y).
children y of v

These weights may be positive, negative, or zero. This definition implies that

(2)
xeT[v]

In a sense, wt= is a "first difference" down the tree of the characteristic function of
row[u]. Finally, define

(3)  t(v)
uV

Now we prove three lemmas relating the column counts to the weights, the weights
to the sets row[u], and finally the row[u], once more, to the least common ancestors.
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LEMMA 2.2. For every vertex v,

xeT[v]

Proof. Because v e row[u] if and only if u e col[v], we have

Ico [ ]l
uEV

Equation (2) states that this is equal to

 tu(X).
uEV xT[v]

The result follows by reversing the order of summation and using (3).
Lemma 2.2 implies that we can compute the column counts easily and efficiently

from the weights by traversing the tree in postorder and summing the weights of the
subtrees. It remains to describe how to compute the weights.

LEMMA 2.3. Let u and v be vertices. Suppose that d of the children of v are
vertices of row[u]. Then

1-d ifvErow[u],
wt(v) -1 if v is the parent of u,

0 otherwise.

Proof. This is immediate from (1) and the definition of X.
Lemma 2.3 implies that the only vertices v for which wtu(v) is nonzero are the

leaves of the pruned row subtree Tr[u], the internal vertices of Tr[u] that have more
than one child in T [u], and the parent of u. The following lemma allows us to compute
wtu(v) for each v from the same pi’s and qi’s we used in the row count algorithm.

LEMMA 2.4. Let Pl < P2 < < Pk be some of the vertices of a rooted tree R
(where < is postorder), and suppose all the leaves and the root ofR are among the pi ’s.
Let q be the least common ancestor of pi and p+, for 1 <_ < k. Then for each
vertex v of R, the number of children of v in R is

I{i q v}l I{i p v}l + 1.

Proof. Let Q I{i" q v}l, let p I{i’p v}l, and let d be the number of
children of v in R. Consider the set of directed paths from p to q in R, for 1 _< < k.
For any collection of directed paths, each path that includes vertex v either begins
at v or enters v along edges from other vertices. Similarly, each path that includes
vertex v either ends at v or leaves v along edges to other vertices. Consequently:

The number of paths that either begin at v or enter v along edges
from other vertices must be equal to the number of paths that either
end at v or leave v along edges to other vertices.

(This is essentially Kirchoff’s law for a flow of unit size from pi to q for each i.)
Lemma 2.1 says that every edge of R is on exactly one of these paths. Therefore one
path enters v from each of the d children of v; exactly one path leaves v, to its parent,
unless v is the root; one path begins at v for each such that p v (except for k
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Sort the vertices and their lists of neighbors by a postorder of T;
Compute level(u) as the distance from u to n (the root), for all u;
Compute lca(p, p’) for every p and its successor p’ in ladj[u] U {u}, for all u;
rc(u) *-- 1, for all u;
wt(u) - 1, for all u;
for u .-- 1 to n do

if u : n then
wt(parent(u)) +- wt(parent(u)) 1;

end if
for p E ladj[u] (in order) do

p’ - the successor of p in ladj[u] U {u};
q - lca(p,p’);

end for
end for
cc(v) .- wt(v), for all v;
for v .-- 1 to n- 1 do

Cc(parent(v) - cc(parent(v) + cc(v);
end for

FIG. 2. Algorithm to compute row and column counts.

if v is the root); and one path ends at v for each i such that qi v. A trivial path
with pi q v both starts and ends at v, but does not enter or leave v. Thus the
relation above is

P+d=Q+I

if v is not the root of R, or

(P-1)+d=Q+O

if v is the root. In either case, we have d Q- P + 1 as desired. D
Now consider a vertex u of G. If the vertices of ladj[u] are pl < P2 < < Pk-1,

and if pk u, then the pruned subtree R Tr[u] induced by row[u] satisfies the
hypotheses of Lemma 2.4. Therefore, using Lemma 2.3, if v is a vertex of row[u] then
wt(v) I{i: pi v}l- I{i: qi v}l. Thus we could compute wry(v) for all v by
initializing each weight to zero, setting the weight of the parent of u to -1, and then
adding one to the weight of each pi and subtracting one from the weight of each qi.

In fact we do not need to compute wtu(v) separately for each u; we can compute
wt(v) -u Wtu(V) all at once. The algorithm begins, like the row count algorithm,
by sorting each set ladj[u] {u} in postorder and computing all the necessary least
common ancestors. It initializes wt(u) to one for each u. Then, for each u, it subtracts
one from the weight of the parent of u, adds one to wt(p) for each p ladj[u],
and subtracts one from wt(q) for the least common ancestor q of each pair p and
p’ of consecutive members (in postorder) of ladj[u] t2 {u}. Finally, the algorithm
computes cc(v) for all v by summing the weights of each subtree in postorder. Figure 2
sketches the algorithm to compute both row and column counts. The only step
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that takes more than linear time is the least common ancestor computation, and the
dominant term in the algorithm’s time complexity is O(rna(rn, n)).

3. Implementation. The discussion in the previous section was in a general
graph-theoretic setting. However, to obtain the most efficient implementation of the
new algorithm for our applications, we need to switch back to a sparse matrix setting.

Consider a symmetric matrix A and its graph G(A). Assume that the elimination
tree T(A), the postordering, and the values level(u) (with respect to T(A)) have been
computed, as required in Fig. 2. Two other requirements must be met to obtain a
practical and efficient implementation of the new algorithm.

First, we must reorganize the computation to avoid sorting the adjacency lists by
postorder and precomputing all the least common ancestors. Indeed, direct implemen-
tation of the’ algorithm in Fig. 2 would require that G(A) be processed three times,
and we doubt that any multiple-pass implementation will come close to realizing the
practical efficiency of the single-pass implementation presented in this section.

Second, we must discard some edges of G(A) that do not affect the result. Recall
from Liu [18] that the skeleton graph G-(A) is obtained from G(A) by removing every
edge (u, v) for which v < u and the vertex v is not a leaf of Tr[u]. The skeleton graph
is the smallest subgraph of G(A) whose filled graph is identical with that of G(A).
Consequently, the new algorithm produces the same results when applied to G-(A)
as when applied to G(A). Indeed, if G G-(A)UT(A) rather than G G(A)UT(A)
in Lemmas 2.1 and 2.4, then every vertex pl,p2,... ,Pk- is a leaf in the tree R. This
reduces the number of edges searched and least common ancestors computed by the
new algorithm to the minimum possible. Since G-(A) often has far fewer edges than
G(A) in practice, an implementation that processes G-(A) rather than G(A) promises
to be substantially faster; we see in 4 that this is indeed the case.

The skeleton graph G-(A) is closely related to fundamental supernodes of A, and
can be computed efficiently in linear time by a simple modification of the algorithm
of Liu, Ng, and Peyton [20] to find fundamental supernodes. Indeed, that algorithm
is a good framework for implementing our new algorithm, whether the skeleton graph
is exploited or not. We can combine the two algorithms to obtain an efficient single-
pass implementation. As this implementation processes the edges of G(A), it discards
edges not in the skeleton graph, and uses only the skeleton edges to compute the data
for the row and column counts. If rn- is the number of edges in G-(A), then this
scheme runs in O(m + rn- a(rn-, n)) time.

Section 3.1 below reviews the material we need from Liu, Ng, and Peyton [20].
Section 3.2 presents a detailed version of the new combined implementation. Sec-
tion 3.3 briefly describes our implementation of the disjoint set union algorithm for
computing the least common ancestors, upon which the time complexity of our algo-
rithm depends.

3.1. A fast algorithm for finding supernodes. Liu, Ng, and Peyton [20]
introduced an O(IAI) algorithm to compti/e a fundamental supernode partition. Their
algorithm assumes that the elimination tree T(A) has been computed and that the
vertices are numbered by a postordering of T(A). Let the higher adjacency set of v,
denoted by hadj[v], be the set of neighbors of v in G(A) that are numbered higher
than v, and let had2[v] be the higher adjacency set of v in G+(A). Ashcraft and
Grimes [2] defined a fundamental supernode as a maximal contiguous set of vertices

{v, v + 1,..., v + s} such that v + i is the only child of v + i + 1 in the elimination
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tree (for 0, 1,...,s-- 1) and

had2 [v] had3 Iv + s] U {v + 1, v + 2,..., v + s}.

The fundamental supernodes partition the vertices of G(A).
In matrix terms, a supernode is any group of consecutive columns in L with a

full diagonal block and with identical column patterns below the diagonal block. A
fundamental supernode is maximal subject to the following condition: every column
of the supernode except the last is an only child in the elimination tree. Liu, Ng, and
Peyton [20] give several reasons why fundamental supernodes are the most appropriate
choice of supernodes for most applications, one of which is that they are independent
of the choice of postordering for T(A).

Finding the set of fundamental supernodes is equivalent to finding the first vertex
of each supernode. These "first vertices" are characterized by the following result.

THEOREM 3.1 (Liu, Ng, and Peyton [20]). Vertex v is the first vertex in a funda-
mental supernode if and only if vertex v has two or more children in the elimination
tree, or v is a leaf of some row subtree of T(A).

The key observation is that the vertices required by the row/column count algo-
rithm (the pi’s and qi’s) are in fact first vertices of fundamental supernodes. It follows
from the discussion immediately after Lemma 2.3 in 2.3 that the vertex pairs pi, pi+l

whose least common ancestors must be found can be restricted to vertices that are
leaves of some row subtree of T(A). This is equivalent to restricting the algorithm
in Fig. 2 to the skeleton graph G-(A). Furthermore, when the pi’s are restricted in
this manner, it is clear that every least common ancestor q lca(pi, p+) has two
or more children. Consequently, the Liu, Ng, and Peyton algorithm is an excellent
vehicle for an efficient implementation of our new algorithm.

3.2. Detailed implementation of the new algorithm. The details of our
single-pass, column-oriented implementation are given in Fig. 3. Note that it traverses
the higher adjacency sets hadj9] rather than the lower adjacency sets used by the
algorithm in Fig. 2. Again, the vertices are numbered by a postorder of the tree T(A),
but here no assumption is made concerning the order of the vertices in hadj9], nor are
the least common ancestors computed in advance. Consequently, this implementation
makes only a single pass through G(A).

The vector of markers prev_p(u) stores the most recently visited vertex pr that is
a leaf in Tr[u]. The pairs p, pr produced by the algorithm are precisely the multiset
consisting of every consecutive pair of leaves in every row subtree Tr[u]. The reason
for this is that one of the if tests in the algorithm screens out all edges in G(A) except
those in the skeleton graph G-(A). The lines marked with asterisks have been added
to the algorithm solely for this purpose. Of these, the key line is the test for whether
or not the first (i.e., lowest numbered) descendant of p (fst_desc(p)) is greater than
the most recently visited vertex in ladj[u], namely the vertex stored in the marker
variable prev_nbr(u). It is not difficult to verify that when the condition holds true,
no descendant of p is adjacent to u in G(A); hence p is indeed a leaf in Tr[u]. For full
details of this test, see Liu, Ng, and Peyton [20].

The implementation is correct with or without the starred lines. We have imple-
mented both versions: we call the one with the starred lines the supernodal version,
and the one without these lines the nodal version. We experiment with both versions
of the algorithm in our tests in 4.

In the nodal version, prev_p(u) functions precisely as prev_nbr(u) does in the supernodal version.
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Sort the vertices by a postorder of T(A);
Compute level(u) as the distance from u to n (the root), for all u;
Compute fst_desc(u) as the first (least) descendant of u in T(A), for all u;
prev_p(u) --O, for all u;
prev_nbr(u) -O, for all u;
rc(u) -- 1, for all u;
wt(u) -- O, for all nonleaves u in T(A);
wt(u) +- 1, for all leaves u in T(A);
for p +- 1 to n do

if p n then
wt(parent(p)) -- wt(parent(p)) 1;

end if
for u E hadj[p] do

if fst_desc(p) > prev_nbr(u) then
wt(p) - wt(p) + 1;
p prev_p(u);
if p 0 then
() - ()+ wt()- w();

else
q .- FIND(p’);

wt(q) - wt(q)- 1;
end if
prev_p(u) - p;

end if
prev_nbr(u) -- p;

end for
UNION(p, parent (p));

end for
cc(v) wt(v), for all v;
for v-lton-1 do

cc(parent(v) - cc(parent(v) + cc(v);
end for

FIG. 3. Implementation of algorithm to compute row and column counts.

3.3. Disjoint set union. To compute least common ancestors, the algorithm in
Fig. 3 must manipulate disjoint sets of vertices, each of which induces a subtree of the
elimination tree. The highest numbered vertex in each set (the root of the subtree)
is used to "name" the set, and is called the representative vertex of the set. Initially
each vertex p from 1 to n is a singleton set. As the algorithm proceeds, it executes a
sequence of FIND and UNION operations which are defined as follows.

FIND(p): return the representative vertex of the unique set that
contains p.
UNION(u, v): combine the two distinct sets represented by u and v
into a single set, which will be represented by the larger of u and v.

It is not hard to show that the call to FIND(p’) in our algorithm returns lca(p’,p);
see Tarjan [28] for details.
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Each disjoint set is implemented as a tree stored using a parent vector (not to be
confused with the parent vector in the elimination tree). The operation UNION(u, v)
joins the two distinct trees represented by u and v together by making one of the
roots a child of the other root. Consequently, UNION is a constant-time operation.
This is not the case for FIND. The operation FIND(p) traces the find path from p to
the root of p’s tree. This root either is the representative vertex or contains a pointer
to the representative vertex, depending on the implementation of UNION.

Tarjan [29] describes several techniques to shorten the find paths and thus reduce
the amount of work spent on the FIND operations. Union by rank makes the shorter
tree’s root a child of the taller tree’s root in UNION, which tends to keep the trees
short and bushy. With no other enhancements, union by rank ensures that find paths
are no longer than O(log2(n)). This is usually combined with one of two techniques
for shortening the find path during a FIND operation. The first of these is path
compression, which, after finding the root, makes the parent for each vertex on the
find path point to the root during a second pass along the path. Alternatively, path
halving resets the parent pointer for every other vertex on the find path to point to its
grandparent. Path compression shortens the find path more, but requires two passes
over the find path; path halving needs only one pass.

Tarjan [27], [29] showed that when union by rank is combined with either path
compression or path halving, any sequence of n UNION’s and m FIND’s takes only
O(.m (m, n)) time. Tarjan [28] pointed out how to use the disjoint set union algorithm
to find the least common ancestors of an arbitrary set of pairs of vertices from the
same tree; our implementation of the row and column count algorithm uses the same
method. Consequently, we can implement the nodal version of our algorithm to run
in O(m a(m, n)) time, and similarly we can implement the supernodal version to run
in O(m + m- c(m-, n) time.

Gabow and Tarjan [10] showed that if the order of the UNION operations is known
in advance (as is the case in our problem), then disjoint set union can be implemented
so that a sequence of n UNION’s and m (>_ n) FIND’s takes only O(m) time. Their
sophisticated hybrid algorithm partitions the vertices into microsets and performs all
the operations in a hierarchical fashion, using table look-up to answer queries within
the microsets, and using the standard disjoint set union algorithm on the microsets
themselves. We did not implement this algorithm; we believe its increased overhead
would wipe out the difference between O(m a(m, n)) and O(m) in our application.

We implemented and tested the following six combinations.
1. No union by rank, no path compression or halving.
2. No union by rank, path compression.
3. No union by rank, path halving.
4. Union by rank, no path compression or halving.
5. Union by rank, path compression.
6. Union by rank, path halving.

We found surprisingly little difference in performance among the various options. Far
more important is whether or not the row/column count processing is limited to the
skeleton graph, as we see in the next section. We found that any gains due to union by
rank were more than offset by the additional overhead required for its implementation.
The third option--no union by rank, path hMvingwperformed slightly better on most
machines we tried. Path halving was clearly superior to path compression when the
skeleton adjacency structure was not exploited. Consequently, we recommend path
halving to those implementing the method, and in the next section all our timings
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were obtained using path halving and no union by rank.

4. Experimental results. We ran the new algorithms on several problems from
the Harwell-Boeing.sparse matrix collection [8]. Table 1 lists our test problems, and
Table 2 contains the problem statistics that have a bearing on the observed perfor-
mance of our algorithms. Throughout this section supcnt refers to the "supernodal"
version of the algorithm (Fig. 3 with the starred lines), which identifies the edges of
the skeleton graph G-(A) and uses only those edges in its row and column count cal-
culations, and nodcnt refers to the "nodal" version of the algorithm (Fig. 3 without
the starred lines), which uses all the edges of G(A).

4.1. Performance of the disjoint set union options. The primary purpose
of Table 3 is to explain two things we observed in our tests: (i) why exploiting the
skeleton graph is so beneficial and (ii) why the various disjoint set union (DSU)
implementation options have so little influence on the performance of our code. The
number of FIND operations required by nodcnt and supcnt is bounded above .by m
and m-, respectively, and bounded below by m- n and m- -n. Thus, the huge
difference between the number of FIND’s required by nodcnt and the number of
FIND’s required by supcnt (see Table 3) simply reflects the fact that the skeleton
graph of A is typically much sparser than the graph of A (see Table 2).

Each FIND(p) operation traverses the find path in p’s tree beginning at p and
ending at the root of the tree. The average number of vertices on these find paths
is reported for each DSU implementation. We tested only two options for nodcnt:
path compression and path halving, both without union by rank. Note that the
average number of vertices on a find path ranges from 2 to 2.7, with path compression
faring slightly better than path halving. The performance of path compression suffers,
however, because the find path must be traversed twice, compared with once for path
halving. Our tests indicate that path halving does indeed substantially outperform
path compression, and in nodcnt, where the number of FIND’s is large, the gain in
efficiency is substantial.

We tried all six options mentioned in 3.3 in our implementations of supcnt and,
as noted earlier, we saw little difference in performance from one option to the next.
The primary explanation for this phenomenon is the small proportion of supcnt’s
total work devoted to DSU operations. The number of FIND operations is small
relative to m, and the average number of vertices on a find path is small (from 1.4 to
2.6) for five of the six options tested. For the sixth option (no DSU enhancements),
the average number of vertices on a find path is still quite modest (from 3.6 to 5.8),
with less work required for each vertex visited. Consequently, even this option is
competitive in our tests.

When path compression or path halving is used, union by rank obtains only
modest reductions in the average number of nodes visited. The overhead costs associ-
ated with union by rank more than offset any advantages conferred by the technique.
Comparing path compression and path halving with no union by rank, the same ob-
servations made previously for nodcnt hold for supcnt also. The primary difference
is that the total work associated with DSU operations in supcnt is so small that the
performance edge of path halving over path compression is quite small. Nonetheless,
path halving with no union by rank has proven most effective overall and has the
added advantage of simplicity. Finally, note that for our chosen option the total num-
ber of vertices visited by FIND operations is much less than m for most of the test
problems.
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TABLE 1
List of test problems.

Problem Brief description
NASA1824
NASA2910
NASA4704
BCSSTK13
BCSSTK14
BCSSTK15
BCSSTK16
BCSSTK17
BCSSTK18
BCSSTK23
BCSSTK24

Structure from NASA Langiey, 1824 degrees Of freedom
Structure from NASA Langley, 2910 degrees of freedom
Structure from NASA Langley, 4704 degrees of freedom
Stiffness matrix--fluid flow generalized eigenvalues
Stiffness matrix--roof of Omni Coliseum, Atlanta
Stiffness matrix--module of an offshore platform
Stiffness matrixwCorps of Engineers dam
Stiffness matrix---elevated pressure vessel
Stiffness matrix--R. E. Ginna nuclear power station
Stiffness matrix--portion of a 3D globally triangular building
Stiffness matrix--winter sports arena

TABLE 2
Problem statistics.

Problem Dimension

NASA1824
NASA2910
NASA4704
BCSSTK13
BCSSTK14
BCSSTK15
BCSSTK16
BCSSTK17
BCSSTK18
BCSSTK23
BCSSTK24

1824
2910
4704
2003
1806
3948
4884
10974
11948
3134
3562

Edges in G(A)
m

Edges in G- (A)
m

18692
85693
50026
40940
30824
56934
142747
208838
68571
21022
78174

3565
8113
9672
5598
4352
13186
11665
24569
23510
8500
6977

Edges in G+(A)
m+

71875
201493
276768
269668
110461
647274
736294
994885
650777
417177
275360

TABLE 3
Average number of vertices on a find path for DSU implementation options: PC is path compression,
PH is path halving, R is union by rank, and NR is no union by rank.

Problem

NASA1824
NASA2920
NASA4704
BCSSTK13
BCSSTK14
BCSSTK15
BCSSTK16
BCSSTK17
BCSSTK18
BCSSTK23
BCSSTK24

nodcnt supcnt
verticesvertices

path

.PC PH FIND’s none
NR NR R

2’ 2:3 17050 4.1 1.9
2.0 2.1 83071 3.6 1.6
2.2 2.3 45809 4.1 1.9
2.1 2.2 39125 5.5 2.2
2.1 2.2 29200 4.2 1.7
2.2 2.3 53468 4.7 2.0
2.1 2.1 138121 4.4 2.0
2.1 2.1 199092 4.1 1.9
2.3 2.5 59624 5.5 2.2
2.4 2.7 18419 5.8 2.4
2.0 2.1 74762 3.8 1.7

path
PC

NR R
2.3 1.6
2.1 1.4
2.2 1.6
2.2 1.8
2.2 1.5
2.2 1.6
2.1 1.7
2.2 1.6
2.5 1.8
2.4 1.9
2.1 1.6

PH FIND’s
NR ’R’"
2.5 1.6 1923
2.2 1.4 5491
2.4 1.6 5455
2.4 1.8 3783
2.3 1.5 2728
2.3 1.7 9720
2.2 1.7 7039
2.2 1.6 14823
2.8 1.9 14563
2.6 1.9 5897
2.2 1.6 3565
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TABLE 4
Run times in seconds on an IBM RS/6000 (model 320).

Problem E-tree

NASA1824 .035
NASA2920 .156
NASA4704 .096
BCSSTK13 .078
BCSSTK14 .057
BCSSTK15 .108
BCSSTK16 .262
BCSSTK17 .391
BCSSTK18 .144
BCSSTK23 .044
BCSSTK24 .143

Post-
ordering

.006

.009

.016

.006

.005

.013

.016

.037

.040

.010

.012

Row/column counts
Liu’s
lnzcnt

.076

.256

.261

.238

.118

.513

.691

.965

.549

.310

.295

New
nodcnt

.047

.198

.128

.098

.074

.142

.331

.500

.197

.059

.184

Super-
supcnt nodes

.038 .031

.144 .128

.104 .085

.074 .064

.056 .048

.113 .091

.239 .216

.408 .329

.181 .141

.054 .039

.134 .120

4.2. Performance of the row and column count algorithm. We coded
nodcnt and supcnt in Fortran 77 and ran our tests on an IBM RS/6000 (model 320).
We used the standard Fortran compiler and compiler optimization flag (xlf -0). We
used a high-resolution timer (readrtc) to obtain our timings on this machine, re-
peating each run ten times in succession and returning the average elapsed time. The
results are shown in Table 4. We used path halving and no union by rank in the
implementation of the disjoint set union algorithm for both nodcnt and supcnt. The
time required to compute the elimination tree and postordering are of interest for two
reasons. First, they must be computed before the row/column counts can be com-
puted. Second, the algorithm for computing the elimination tree is, like nodcnt and
supcnt, a single-pass O(m c(m, n)) algorithm that relies on efficient implementation
of the disjoint set union operations for efficiency. Thus it is interesting to compare its
performance with that of the new algorithms.

Both nodcnt and supcnt are much more efficient than lnzcnt, the O(]LI) al-
gorithm from Liu [19]. Algorithm nodcnt is 1.29 to 5.25 times faster than lnzcnt,
while supcnt is, in turn, 1.08 to 1.39 times faster than nodcnt. For every problem
but one, supcnt is at least twice as fast as lnzcnt. (For NASA2920, supcnt is 1.77
times faster than 1nzcnt.) For four of the problems, supcn; is more than three times
faster than lnzcnt. For BCSSTK15 supcnt is 4.54 times faster, and for BCSSTK23
supcnt is 5.74 times faster.

Finally, it is interesting to compare the timings for the elimination tree algo-
rithm [19] and the supernode algorithm [20] with those for supcnt. First, supcnt can
be viewed as an extension of the supernode algorithm, and consequently the time for
supcnt should be bounded below by the time for the supernode algorithm. Though
there are some differences in the amount and kind of O(n) work performed by the
two algorithms before and after the main loop, the difference in the two timings can
nevertheless be viewed as a crude measure of the cost of adding the instructions nec-
essary to compute row and column counts to the supernode algorithm. Clearly, this
cost is quite small, especially considering the simplicity and demonstrated practical
efficiency of the supernode algorithm. Note also that the timings for supcnt and
the elimination tree algorithm closely track each other. From these observations, we
conclude that it is probably not possible to improve the performance of supcnt much
beyond what we are currently observing.
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5. Conclusion. We have considered in this paper the problem of predicting the
row counts and column counts in the Cholesky factor L of a sparse symmetric positive
definite matrix A, given the zero/nonzero structure of A and the elimination tree T(A).
We have presented new algorithms for determining the counts, the complexities of
which are linear in IAI times a slowly growing inverse of Ackermann’s function; the
previously known algorithms ran in O(ILI) time. The key to the new algorithms is the
computation of least common ancestors in a tree using the disjoint set union algorithm.
We have investigated different ways of implementing the disjoint set union operations
in our algorithms. Based on our experimental results, we conclude that pth halving
with no union by rank is the best technique for an efficient implementation of the
disjoint set union algorithm.

We have further improved our new algorithms by exploiting the skeleton graph
of A. We hve demonstrated that the supernodal version is faster than the nodal
version in all of the problems we tested. Moreover, both the nodal and supernodal
versions are much more efficient than the previously known O(ILI)-time algorithms.
we expect the algorithms described in this paper to be of practical use in a wide
range of sparse matrix computations.
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CONVEXITY AND CONCAVITY OF THE
PERRON ROOT AND VECTOR OF LESLIE
MATRICES WITH APPLICATIONS TO A

POPULATION MODEL *

STEPHEN J. KIRKLAND AND MICHAEL NEUMANN:

Abstract. This paper considers the Leslie model of population growth and analyzes its

asymptotic growth rate and its asymptotically stable age distribution as functions of the fecundity
and survival rates of each age group in the population. This analysis is performed by com-

puting first- and second-order partial derivatives of the Perron root and vector of a Leslie
matrix with respect to each relevant entry in the matrix, with emphasis on the second
partial derivatives. The signs of these derivatives as well as the qualitative implications that the
results have for the Leslie model are discussed. Where possible, quantitative interpretations of the
results are also given. Throughout, the techniques employ ideas from the theory of group generalized
inverses.

Key words. Leslie matrix, group inverse, Perron root, Perron vector

AMS subject classifications. 15A09, 15A18, 92D25

1. Introduction. This paper investigates first- and second-order effects of
changes in fecundity and survival rates of various age groups on the asymptotic rate
of growth and the asymptotically stable age distribution vector of the Leslie popu-
lation model. This population model can be represented by a nonnegative matrix
whose Perron root and an appropriately normalized Perron eigenvector that fur-
nish the rate of growth and the stable age distribution of the model, respectively.
The first- and second-order effects are obtained by computing the first- and second-
order partial derivatives of the Perron root and Perron vector with respect to those
matrix entries that represent the fecundity and survival rates of each age group.
The existence of these derivatives is assured because, in the problem’s setting,
the Perron root is simple. It should be mentioned that first-order effects of
changes in the fecundity and survival rates upon the growth rates of the model have
already been obtained by authors such as Demetrius [8], Goodman [14], and Lal and
Anderson [17].

In the Leslie model it is assumed that the population consists of n age groups.
Let xi(t) denote the number of individuals in the ith age group at time t. Let Fi,
1,..., n, denote the fecundity of each individual in the ith age group and let Pi,
1,..., n- 1, denote the probability of survival of an individual from age i to age + 1.
Assume that both the fecundity and survival rates are independent of the time t.
Then, as can be readily ascertained, the age distribution at time t + 1, t >_ 0, can be
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described by the matrix-vector relation

(1.1) x(t+l)

\0 Pn- O z

x (t) =: (t),

where x(-) (Xl(-)... Xn(T))T for all - _> 0. For more background material on the
Leslie population model, see Pollard [20] and Caswell [4].

Papers in demography [8] say that the population has reached a stationary age
distribution if there exists a time to and a constant A > 0 such that

(1.2) x(t+l)=Ax(t) V t>t0.

In this case A is called the growth rate of the population. The term stationary age
distribution comes from the fact that if (1.2) holds, then from time to + 1 onward the
ratio between the various age groups in the population is maintained. We note further
that if (1.2) holds, then

(1.3) Ax (t) x (t + 1) x (t) fit+ix (0) V t > to.

Because a stationary age distribution is reached in finite time only when the initial
age distribution vector x(0) is a linear combination of a Perron vector and a gener-
alized null vector of A, we prefer to think of Demetrius’ notions of growth rate of
the population and stationary age distribution as the asymptotic growth rate and the
asymptotically stable age distribution vector, respectively.

If . is an irreducible matrix, then by the Perron-Frobenius theory (see 2 for
preliminaries and Berman and Plemmons [2] for a comprehensive background), A must
be the Perron root of and x(t) is a corresponding right Perron (eigen)vector and
the theory guarantees the existence and differentiability of both, the latter subject to
an appropriate normalization. Furthermore, if A is primitive, namely, it is irreducible
with a single eigenvalue of maximum modulus, then, for example, the power method
for computing dominant eigenvalues and corresponding normalized eigenvectors [21,
p. 340] shows that the righthand side of (1.3) will always converge to a Perron vector
of A so that asymptotically (1.2) holds. We comment now that just as the entries of
the nonnegative matrix A have a physical interpretation, we see that the Perron root
and vector and their derivatives also have a physical meaning for the model.

One can relax the assumption of irreducibility. Even then the special structure of
the Leslie matrix implies that its Perron root remains simple, thus ensuring that the
Perron root and vector are still differentiable. While the reducible case may lead to
some interesting questions, we nevertheless restrict ourselves to the case of irreducible
Leslie matrices, i.e., we always assume that Fn > 0 since this captures the largest part
’of the mathematical content and difficulty.

It is natural to ask how the growth rate and the stable age distribution vectors
are affected as we change the fecundity and survival probabilities at each age group.
Demetrius [8] has investigated one of these questions by looking at the derivatives of
the Perron root with respect to the fecundities and the survival rates that he obtained



1094 STEPHEN J. KIRKLAND AND MICHAEL NEUMANN

via the characteristic equation for a Leslie matrix. His results can also be obtained
from a more general theorem giving expressions of the partial derivatives of a simple
eigenvalue of a matrix with respect to the matrix entries as follows: Let B (bi,j) be
an n n real or complex matrix and let tt be a simple eigenvalue of B. Let and
be right and left eigenvectors of B corresponding to # normalized, such that T 1.
Then it is known (see, for example, Stewart [21, Exer. 1, p. 305]) that

(1.4)

where O#/O,j is the derivative of # with respect to the (i, j)th entry at B.
Consider the matrix C #I- B. Zero now is a simple eigenvalue of C and

therefore the group generalized inverse of C, C#, exists and, as is known, T
I CC#. Thus, we see that the group inverse of C can be used to express first-order
partial derivatives of p with respect to the matrix entries at B. Furthermore, as is
shown in Deutsch and Neumann [9], the second-order partial derivatives of # with
respect to the (i,j)th entry can also be written in terms of C#. Specifically, they
showed that

(1.5) 02# (B)
02..

2 (I CC#)j,i C#.,3, Vl _< i, j <_ n.

Assume that B is an n n nonnegative and irreducible matrix. Since any right
and left Perron vectors of B can be chosen positive, (1.4) readily confirms the well-
known fact that the Perron value is a strictly increasing function in any of the matrix
entries. In a series of papers, Cohen [5]-[7] established the fact that the Perron root
is a convex function in the main diagonal of the matrix. His principal approach to
proving this fact was probabilistic relying on evolution equations due to Kac. In [9]
a matrix theoretic proof of this fact is presented. Moreover, from the formula (1.5),
which was found in [9], we see that for any pair (i, j), the convexity or concavity of
the Perron root with respect to (i,j)th entry is determined by the sign of the (j, i)th
entry of C# (AI- B)#. Perturbation and convexity theory of the Perron root
have been investigated by a number of authors. To list a few we mention Elsner [11],
Friedland [13], Golub and Meyer [15], Haviv, Ritov, and Rothblum [16], and Meyer
and Stewart [19].

Let us return to our Leslie matrix and assume that it is irreducible. In this
paper we explicitly compute expressions for the first- and second-order derivatives of
the Perron root and an appropriately normalized Perron vector of a Leslie matrix with
respect to its entries in the first row and on its subdiagonM. We then interpret what
meaning our results have for the population model that the matrix represents. Most of
our results show that younger ages exert more influence on the behavior of the growth
rate and the stable age distribution vector than older age groups do. Our experience
is that it is much more difficult to analyze the effects of changes in survival rates on
the population than it is to analyze changes in the fecundity rates.

In 2 we present further notation and preliminaries necessary for the work here.
We obtain an explicit formula for the group inverse of AI- A. In 3 we derive formulas

See 2 for a more precise discussion of the partial derivatives of eigenvalues of matrix with
respect to matrix entries.
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for the second-order derivatives of the Perron root of a Leslie matrix with respect to
its top row and subdiagonal. In doing so, some results of Deutsch and Neumann in

[10] on the first and second derivatives of the Perron vector are extended. In 4 we also
extend for the partial derivatives of the Perron vector of .. In 3 and 4 we explain
the implications of our results on the population model both qualitatively and where
possible quantitatively.

2. Notation and preliminaries. In this paper we use the following notation.
Ik denotes the k-dimensional real space.
k,k denotes the space of all k k real matrices.
e E ]k denotes the k-dimensional vector whose entries are all l’s.
ei E Rk denotes the k-dimensional unit coordinate vector, 1,..., n.

Ei,j ]k,k is the matrix whose (i,j)th entry is 1 and whose remaining entries
are 0.

The symbol indicates algebraic expressions with the same sign. Let u
(Ul,..., Uk) ]Ik and v (vl,..., Vk) Ik. We write that u _> v, if u _> v,
1,..., k. We say that u majorizes v, in notation u v, if

k k

EuJ >_ Evj, i-1,...,k-1 and EuJ Evj.
j--1 j----1 j--1 j--1

Let C ln,n and consider the matrix equations

CXC-C, XCX X, and CX XC.

A matrix X n,n which satisfies all three equations, if it exists, is called the group
inverse of C and is denoted by C#. Moreover, if C# exists and D is any nonsingular
matrix, then

(2.1) (D-ICD)# D-C#D.

In particular, if D is a diagonal matrix whose diagonal entries are all positive, then
all the entries of the matrices C# and D-1C#D have identical signs in the same
locations. It is known [1], [3] that a necessary and sufficient condition for C# to exist,
the elementary divisors, if any, of C corresponding to the eigenvalue zero are all linear.
Thus, if B is an n n nonnegative and irreducible matrix so that its Perron root is
simple, then 0 is a simple eigenvalue of C hi- B, showing that the group inverse
of C exists.

Suppose that B n,n has a simple eigenvalue called it(B). It readily follows
from considerations involving the minimal polynomial that there is an open ball in
n,n about B such that every matrix in the ball has a simple eigenvalue. Thus, for any
E n,n and for sufficiently small t , B + tE has a simple eigenvalue #(B + tE),
such that #(B + tE) - #(B) as t - 0. Wilkinson [22, pp. 66-67] shows that for
sufficiently small t, #(B + rE) can be expanded in a convergent power series about B.
Hence, the derivatives of all orders of it with respect to t exist at B. In particular, the
partial derivative of it with respect to the (i, j)th entry at B is given by the limit

(2.2) /)it /)it (B)
lim it (B + tE,j) it (b) by(1.4)j?i

0, 0, t-0 t

where (B) (-.. n)T and (B) (-..,)T are right and left eigen-
vectors of B corresponding to it(B) normalized so that their inner product is 1. In a
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similar manner we define the higher-order partial derivatives of # at B with respect
to the matrix entries. Wilkinson goes on to show that if one of many standard nor-
malizations (but not the infinity norm) is applied to the eigenvector corresponding to
(B + tE) throughout the ball, then the entries of the corresponding eigenvector can
be expanded in a convergent power series. Therefore they too are differentiable with
respect to t at B. When it is absolutely clear from the context, we shall suppress the
letter representing the matrix from the expressions for the partial derivatives, viz., we
write O/Oi,j for O#(B)/Oi,j and so on.

Our approach is to first develop our results for stochastic Leslie matrices and
then transform them to general Leslie matrices from which we shall be able to draw
our conclusion for the population model under consideration. To do so it is helpful
to have formulas connecting the partial derivatives with respect to the Perron root
of a general nonnegative and irreducible matrix/) and the stochastic and irreducible
matrix B to which B is transformed using the diagonal similarity

1D-XD(2.3) B X
where

(2.4) D diag (1, 2,..., n)
and where 2 (21"" gn)T is 13, right eigenvector of B corresponding to its Perron
root A. Throughout we shall normalize all right Perron vectors so that their first entry
equals 1. Thus, if ) is the left Perron vector of/) normalized so that 2T 1, then it
follows from (1.4), (1.5), (2.1), (2.3), and (2.4) that

02 2 ()

where Q I- B. Similarly, relations for the eigenvectors will also be useful. In
particular, the following formulas can be obtained:

O &J D--Ox l i,j n(2.6)
0i,i i 0i,i’

and

(2.7)
0 X-i D--Ox 1 < < n.
0 0’1,i 1,i

For the specific case of the Leslie matrix A as given in (1.1), the right Perron
vector is given by

(2.8) 1
P PP2 P1-’- P-

With (2.3) and (2.4) in mind, we find that can be transformed into the stochastic
and irreducible Leslie matrix

a2 an- an
0 0 0

". ". 0 0
(.) A

0 1 0



THE PERRON ROOT AND VECTOR OF LESLIE MATRICES 1097

where

F1
>0 and ai= >0, i-2, ,n,(2.10) al- A Ai

with an > O.
LEMMA 2.1. Let A be an irreducible stochastic Leslie matrix whose top row is

given by (al an). Set

(2.11) Q-I-A.

Then

(2 12) Q# r/(Q#)1,1
L (Q#),

where

(2.13)
(Q#)1,1 M-1 q- xM-lerTM-1 q- xerTM-2

+ X2 (rTM-2e) erTM-1,

(2.14) (Q#)l,2 -xM-le x (rTM-ue) e,

(Q#)2,1 xrTM-2 + x2 (rTM-2e) rTM-1,

and

(2.16) _x2(rTM-2e)

and where e E Rn-l,

(2.17) (o) E IR-1 and X 1 rTM-le n--1Ei=O (1- si)an

and

(2.18)

M__I
1

an

Here

1 80
1 so
1- so

1 so

Sn--1 81

1--Sl
1--81

l--s1

8n--1 82

8n- 82
1- s2

1--82

8n-1 Sn-3 8n-1 8n-2

8n-1 8n-3 8n-1 8n-2

8n--1 8n--3 8n--1 --8n--2

1 8n--3 1 8n--2

(2.19) so 0 and si E aj
j=l

Vl<i<n-1.
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Proof. Let M be the (n- 1) (n- 1) leading principal submatrix of Q. It is not
difficult to check using the fact that the ai’s sum to 1 that Q admits the full rank
factorization

(2.20) Q- rT I -e =: BC.

According to Ben-Israel and Greville [1], Q# B(CB)-2C. Now it can be verified
that (CB) -1 M-1 + xM-lerTM-1, where X and M-1 are as given in (2.17) and
(2.18), respectively. That Q# is given by (2.12) and as specified in (2.13)-(2.19) can
now be ascertained from the above partitioning of C and B and the aforementioned
formula for (CB)

We comment that the above lemma is a specialization to the case of a singular
M-matrix obtained from an n x n irreducible Leslie matrix of a formula for the
group inverse of a singular M-matrix obtained from a general n x n nonnegative and
irreducible matrix found by Meyer [18, Thm. 5.2].

3. The Perron root of a Leslie matrix as a function of top row and
subdiagonal. We begin by determining the second-order behavior of the Perron root
as a function of the top row.

THEOREM 3.1. Let A be an n n irreducible stochastic Leslie matrix whose top
row is given by (al,..., an). Then the entries in the first column of the group inverse

of Q I- A are given by

[(3.1) Qi, x n-i- x__ (1-sj)(n-l-j) i-1,...,n,
an an .=

where X and the sj’s are as in (2.17) and (2.19). In particular, the entries of the
first column of Q# are strictly decreasing from first to last. Moreover, there ex-
ists an integer ko < (n + 1)/2 such that Q1#,1,..., Qk#o,1 are all nonnegative, whereas

Q#o+1,1’ Qn,1 are all nonpositive.
Proof. For each 1 _< i _< n- 1, we find from (2.13) that

QI eT M-1 + XM-lerTM-1 + XerTM-2 + X2 (rTM-2e) erTM-1] el.

Also from (2.18), we have that

rTM-2e (rTM-1) (M-le) E 1 sj (n 2 j)
1 sj

an --=o an
j=o

It now follows after several algebraic reductions that

Qi#,l X
an

(1 so)(1 xrTM-2e eTiM-le).

Further algebraic manipulations now yield (3.1). A similar calculation shows that
(3.1) holds also for the case n.

From (3.1) it readily follows that the entries in the first column of Q# are strictly
decreasing from first to last and that the first entry is always positive (which is a
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general result of Meyer [18] for all diagonal entries of the group inverse of a singular
and irreducible M-matrix, and it is also an outcome of Cohen’s results described in
the introduction), whereas the last entry is always negative. To complete the proof
we need only show that if _> (n + 1)/2, then Q,# _< 0. From (3.1) we find that for

2 _< i <_ n- 1, Q,# is nonpositive if and only if

(3.3)
n--1 n--1

(n-i) E (1-sj)_<E (1-sj)(n-l-j).
j=0 j--0

But (3.3) holds if and only if

n--l--i i--2

(3.4) E (1-sj+i)(j+l)<_E (1-sj+2_i)(j+l).
j--0 j--0

Since 1-sy+i < 1-8j+2-i for each 0 < j < n-i-l, it now follows that if/> (n+l)/2,
then (3.4) always holds. Consequently, Qi,#l < 0 whenever > (n + 1)/2. 0

Several comments are in order. (i) Theorem 3.1 shows that the sign change in the
first column of Q# always occurs somewhere before the-L(n + 1)/2Jth position. The
following example shows that the sign change can occur at any position after the first
and before the (n + 1)/2th if n is odd or before the [(n + 1)/2Jth if n is even. Fix
2 _< k < (n + 1)/2. Let A be given by (2.9) with

a if j-k-l,
ay= 1-c ifj=n,

0 otherwise,

where

n (n- 1 2k) n (n + 1 2k)<c< <1
(n- k)(n- k- 1) 2 (n- k)(n- k + 1)

with 0 <_ ( <_ 1. Then a straightforward exercise shows that QI > 0 > Qk#+l,1 a.nd
that such an a causes the sign change to occur at the desired admissible .position.
(ii) Our next comment, which is given in a form of lemma, shows that under certain
conditions on the stochastic Leslie matrices A and , there is a relationship between
Q# and #, (Q),I, 1 <_ <_ n. The proof of the lemma follows directly from (3.1).

COROLLARY 3.2. Let a (hi.. "an) and (.. "5n) be the top wws of the
irreducible stochastic Leslie matrices A and , respectively. Suppose a . Then

___Qn# > Qi, > V1 < < n
n,1 i,1

and

Q1#,1 -< = Q,#I <- v1 < < n.
1,1 i,1

Next we examine the behavior of the Perron root of a Leslie matrix as a function
of its entries on subdiagonal. From (1.5) and the preceding discussion we know that
it suffices to determine the signs of the superdiagonal entries of Q#. As we shall see,
determining expressions to represent these entries is no more difficult than determining
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expressions for the entries of Q# down its first column. But determining the signs of
the entries on the superdiagonal, especially in the top first half, appears to be more
difficult than determining the signs of Q# down the first column.

THEOREM 3.3. Let A be an n n irreducible stochastic Leslie matrix whose top
row is given by (al.. "an). Then, providing we interpret any summation sign from
a lower limit that exceeds an upper limit to be zero, the entries in the superdiagonal
positions of the group inverse of Q I- A are given by

{( / [ (1-sj/ ]1 s k- 1 +-X (n- 2-j)X an
n

j=o
an

k 1,...,n- 1,
j=k

an

where X and the sj’s are given by (2.17) and (2.19), respectively. The positive entries
on the superdiagonal of Q#, if any, appear consecutively from the (1,2)th entry and
form a nonincreasing sequence. The (k, k + 1)th entries, where k >_ (n- 1)/2, are all
negative and for k >_ (n + 1)/2 those entries form a nondecreasing sequence.

Proof. For each 1 _< k <_ n- 2, we find from (2.13) that

(3.6)

Qk,k+l# ekT [M-1 + xM_lerTM_ + xerTM_2 + X2 (rTM_2e)erTM-] ek+.

Also recall the expression for rTM-2e given in (3.2). Examining each term in the
expansion of (3.6) and referring to (2.18) we find that

and

e" --le
1 sk

k+l 1,
an

TM_Ie
1 8j (n- k- 1)ek an

j=0

1--skrTM-ek+l _,

rTM-2ek+l (rTM-1) (M-lek+l
1 sk 1 8j 1 sj

an an an
j--0 j=0

A number of algebraic reductions now. yield (3.5). A similar calculation shows that
(3.5) holds also when k n- 1.

To see that the positive entries in the superdiagonal positions of Q#, if any,
beginning at the (1,2) entry are consecutive and form a nonincreasing sequence, we

need only show that if Qk#,k+l >_ 0, then Q#k-l,k >-- Qk#,k+l" To this end, note that if

,+a > 0, then, in particular, from (3.5) it follows that

n-1

n_k_l_xE 1-sj
(n-2-j)>0.

an
j=0
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But from (3.5) we find that

8k 8k_

an n_k_l_xE 1-sj
(n-2-j)

j=0
an

The claim now follows from (3.7).
Now let k >_ (n- 1)/2. From (3.5) we find that

-j=o (1 sy)(k j)# (1 (j
Qk k-t-1 n-1Ej=0 (1 sj)

n--1

j--k-t-1

(1 sj).

The numerator in the first term of the above expression can be rearranged as

n-k-1 k

E j (Sk-j 8k+j) E j (1 St;--j),
j--1 j--n-k

which is evidently nonpositive. Consequently, #Qk,k+l -- O. Next, consider the differ-

ence (3.8). Note that if Qk,k+l# is nonpositive and if

(3.9) n-- 1 ’3j (n- 2- j) <_ 0,n-k-l-x an
j=0

#then, necessarily, Qk-l,k# -< Qk,k+l <- 0. But (3.9) holds if and only if

(3.10)
n--2 k-1

an (n l) + E (1 8j)[j (k 1)] _< E (1 sj)[(k 1) j].
j--k j--O

If k >_ (n+ 1)/2, the terms in (3.10) can be paired off to yield the equivalent expression:

[(k-1)-an(n-k)]
+ (s s-2). 1

+ (s+ s-3). 2

+ (sn-2 S2k-n)(n 1 k)
+ (1 s2k-(n+l))(n- k)

+ (1 81)(]- 2)

_
0.

Observe that each of the terms on the lefthand side above is nonnegative. Since we

already proved that Q#_I, -< 0, the proof of the theorem is now complete.

Note that Theorem 3.3 implies that either the Q# ’sk,k+l are all nonpositive or there

is an index k0, necessarily less than (n- 1)/2, such that for 1 _< k _< k0, Qk,k+l
and for k0 + 1 < k < n- 1 Q# < 0 Although we are not able to show that therek,k+l
exist cases where k0 attains the value L(n- 1)/2J, the following example shows that
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some Q#k,k+l can be positive when n is sufficiently large and when k is not too large
compared with n. Specifically, consider the n x n stochastic Leslie matrix whose top
row is given by

(3.11)
17/20 ifj-k+l,

aj 3/20 if j n,
0 otherwise.

From (3.5) it can be shown that #Q,k,k+l is positive provided that

(3.12)
(102n + 68) + V/(102n + 68)2 + 4 (119) (21n2 72n + 51)

238

For k 1, (3.12) yields that the minimal value of n that guarantees that for the
matrix given by (3.11), Q1#,2 > 0, is n- 11. For k 2, the minimal such n is 17. As
n - c, the righthand side (3.12) is asymptotic to

(3.13) (-102 + v/20400n 3 ]
0.1715n.

Let us now revert to a general Leslie matrix . From the discussion in 2 we see
by (2.5)_that the derivative of the Perron root with respect to the entries in the top
row at A is given by

02A 2 1 PP2 gi-1 #(3.14) 02 X n-1 -/-1 (i,1, i-- 1,..., n,
1,i j=0 (1 sj)

where Q I- A and A is as in (2.9) and (2.10). From this formula and the results
of Theorem 3.1, it follows that if A > maxl<i<n-1 Pi, then

(3.15)
02A 02A 02A
02

>0=v -- >--, j>i., , 0,

In particular, for A as above,

(3.16) max
(02 (2l<i<n 1,i 1,1

Similarly, with respect to the subdiagonal entries, we have that

02A 2A 1- sk Q# k- 1 n- 1(3.17) O+l,k p n-1 k,k+l,Ej=0 (1 sy)

In particular, if Pj >_ Pi and j > i, then

>0 >(3.18) (0+1, (/2+1,i_ (022.+1,j
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We now discuss the implications of the results obtained in this section on the
population model that the Leslie matrix represents. First, we consider the qualitative
interpretations. Theorems 3.1 and 3.3 show that the asymptotic rate of increase can
only be a convex function of the fecundity and survival rates of younger age groups and
that it is a concave function of these rates in older age groups. This suggests that only
changes in the vital rates for younger age groups can yield a sharp change in the rate of
increase of the asymptotic growth rate of the population. In attempting to compare the
effects of changes in fecundity rates to changes in survival rates, we note that Theorem
3.1 always guarantees that for some younger age groups the asymptotic growth rate
is a convex function of the fecundity. This is not necessarily the case for the effects
of changes in the survival rates. Indeed, in our experience, it is difficult to produce
examples where the asymptotic growth rate is a convex function of the survival rate of
even the first age group. In this sense, the example given after Theorem 3.3 is atypical.
It requires a peculiar fecundity distribution and, as we observe, a large number of age
groups for changes in survival rates to have a sharp effect on the asymptotic growth
rate.

Next, we consider the quantitative implications of our results on the popu-
lation model. Recall that Demetrius’ result [8, p. 134, Eq. (8)] asserts that if >
maxl<<n_l Pi, then

0 0
--, j>i.(3.19)

O,i
>

Ol,j

Our result in (3.15) reinforces (3.19) by showing that not only are the first partial
derivatives of the asymptotic growth rate with respect to the fecundities ordered,
but so are the second partial derivatives, at least for younger age groups. Next, we
comment on what quantitative effects have changes in the rates of survival of the
population on its growth rate? Here Demetrius’ result [8, p. 134, Eq. (11)] is that

0 0
(3.20) Pj_>Pi and j>i= >

0+, 0+1,

Once again our result in (3.18) reinforces (3.20). Earlier we noted that the condition

02A/02+1# > 0, which appears in (3.18), can only occur for younger age groups if at
all. However, when this is the case, the hypothesis Py > Pi for j > seems reasonable
when is small because the survival rate for newborns is likely to be lower than that
for slightly more mature individuals.

4. The Perron vector of a Leslie matrix as a function of top row and
subdiagonal. We now examine the derivatives of the Perron vector of a stochastic
Leslie matrix with respect to the entries in the top row and subdiagonal of the matrix.
We then infer implications concerning the asymptotically stable age distribution vector
of the general Leslie population model.

Let be an n x n general irreducible Leslie matrix whose Perron root is A A().
Throughout, its right Perron vector x x() will be normalized so that its first entry
is equal to 1. Denote by y y() the left Perron vector of normalized so that yTx
.1. Since now all the derivatives of the first entry of that Perron vector are zero, it will
be convenient for us to work with the truncated form of x (1 x2 Xn)T, viz.,
(X2 Xn)T. Before truncation all vectors that we work with in this section will be
in and a bar over them shall indicate their truncation to an (n- 1)-dimensional
vector by deleting their first entry. This notation is consistent with [10] and, for Leslie
matrices, some results in that paper are also generalized here.
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In the interest of convenience we derive a basic relation for the derivatives of the
5, which in essence are already contained in [10]. Put Q AI- . On differentiating
the matrix-vector relation Ax Ax with respect to the (i, j)th entry, we obtain, on
recalling (1.4), that

Ox Ox
E,jx + 0, xjyx + 0,--

or

(4.1)
Oi,j

where No is the (n- 1) (n- 1) trailing principal submatrix of O.
For the special case of a stochastic Leslie matrix we obtain the following.
LEMMA 4.1. At the n n irreducible stochastic Leslie matrix A whose top row is

given by a a,

(4.2)
02 1

(1 2 n- 1)T 1 < < n,n--101,i Ej=0 (1 s)

and

(4.3)

02 1
n-1Ok-t-l,k Ej--O (1 sj

(1- Sk)
--2(1-- Sk)

--(k--1)(1--Sk)
n--1Ej=0 (1 sj)- k (1 sk)

n--1-j=0 (1 sj) (n- 1)(1 Sk)

1 <_k<_n-1,

where the si’s are given in (2.19).
Proof. For the stochastic Leslie matrix A, we have that x(A) (1

and for Q I- A,

1 0 0
1 1 0

1 1 1

Furthermore, if y y(A) is the left Perron vector of A normalized as above, then

1yT
V’n-1 ((1 so) (1 81) (1 8n--1)).
Z_j=0 (1 Sj)

The expression for O-/Ol,i now follows on substituting these values of x, y, and N
into (4.1) and on noting that -f 0. The expression for O-/Ok+l,k follows
similarly. [3
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Considering (4.2), we see that each entry of (/01,i is negative for each
1,..., n. This fact is actually a consequence of a more general result of Elsner, Johnson,
and Neumann [12, Thm. 1]. In contrast to (4.2), (4.3) shows that the signs of the
entries of the O-2/Ok+l,k are not necessarily uniform. Clearly, the first k- 1 entries are
negative and the remaining ones form a decreasing sequence. The following argument
shows that O/Ok+,k always has at least one positive entry. Note that

n--1 k

E (1 sj)-(k + 1)(1 sk) E (sk sj)+ E
j=0 j=0 j=k+

(1-sy)>O, l_<k_<n-2.

Thus, we see that the kth and (k + 1)th entries of O-/Ok+l,k are always positive for
1 _< k _< n-2. A similar argument shows that the last entry of 0/0n,n-1 is also always
positive. From the above we see that either the entries of OS/Ok+l,k in positions k
through n- 1 are all nonnegative or there is an index i0 _> k+ 1 such that the entries in
positions k through i0 are nonnegative and the remaining entries are nonpositive. To
see that each such sign pattern can be realized, consider the stochastic Leslie matrix
whose top row has 0 < a < 1 in the (k + 1)th position and 1 -( in the nth position.
It is readily verified that each admissible sign pattern can be obtained by a suitable
choice of a.

We next investigate the sign pattern of the second partial derivatives of with
respect to the entries of the top row of a stochastic Leslie matrix.

THEOREM 4.2. Let A be an n x n irreducible stochastic Leslie matrix whose top
row is given by (al an) and let x x(A) be its right gerron vector normalized
so that its first entry is 1. Then

(4.4)
022

21
1 + 1

0-,/] 2yn= (1 sj) 2 + i-
j=0 (1 sj)(j + 1)

E =0
for all 1 <_ <_ n- 1 and 1 <_ <_ n and where the si’s are as specified in (2.19).
Furthermore, when is fixed, there is at most one sign change in the entries of
from minus to plus as increases. Similarly, when is fixed and i is increased, there
is at most one sign change in the sequence formed from the lth entries of the vectors

025/012,, 1,..., n. In particular,

(4.5)
/+1 n+l--- + > >0

and an all pluses sign pattern is possible when either or is sufficiently large.
Proof. As usual let Q I- A and let y be the left Perron vector of A norInalized

so that yTx- 1. From formula (4.13) in [10] we find that

(4.6) 02 --2ylXi ylxiNl--QlI Nlz, i-1,...,t.
1,i

Substituting in the expressions for x, y, and N() developed in Lemma 4.1 and using

the formula for Qi,#l given in (3.1) yield after some simplification (4.4). The claims
concerning the sign patterns follow readily by inspecting (4.4). That (4.5) holds can
be established by the same argument given in Theorem 3.1, which was used to show
that Q#, <_ 0 tbr >_ (n + 1)/2.
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As in our remarks following Theorem 3.1 concerning the sign pattern of the entries
of the first column of Q#, examples can be constructed to show that when is fixed
and is increasing, the switch from minus to nonnegative in (025/02,)1 can occur at
any index l0 < n- 2i. A similar remark holds for the sequence 02/012# when is fixed
and is increasing.

We now return to a general Leslie matrix i.. From (2.6) we have that for the first
partial derivatives of the Perron vector with respect to the top row and subdiagonal,

Ox(i) P1P2 Pi- ,Ox (A)
1,..., n,(4.7)

01, i
ND

Ol,i

Ox(ft) 1 ,Ox (A) k 1,..., n 1,(4.8)
Ok+l,k Pa ND OkTl,k

where A is given by (2.9) and (2.10). Similarly, for the second partial derivatives of
the Perron vector with respect to the first row, we have from (2.7) that

(4.9) 02x(A)02 n--1

1 PIP2.’.__ P- No 02x(A)1,i Ej=0 (1 sj) 1,i

for all 1,..., n. From (4.8) we can conclude that

(4.10)

( )max Pi and Ox-
0Ok+lk ]l<i<n--1 Ok+l,k

j J kOk+l,k]l
l>j.

In particular,

(4.11) max Ok+ikl<_j<_n--1 Ok+l,k
J k

We come now to interpret our results on the Perron vector for the population
model. We begin with qualitative observations. For our analysis of the behavior of
the asymptotically stable age distribution vector to make sense, we must choose a
frame of reference, and the one we select is to compare the size of any age group to
the size of the first age group.

(i) Formula (4.2) in Lemma 4.1 implies that raising the fecundity of any age group
decreases the ratio of the size of any age group beyond the first to the size of the first
age group.

(ii) Formula (4.3) in Lemma 4.1 shows that raising the survival rate of the kth
age group has the effect of increasing the ratio of the size of the (k + 1)th age group
to the size of the first age group and possibly of raising those ratios for subsequent
age groups while diminishing the those ratios for age groups 2,..., k.

In the way of quantitative interpretation of our results on the Perron vector for
the population model, the only definite conclusion that we can draw follows from (4.3)
and (4.11). Here we see that increasing the survival rate at the kth age group has the
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effect of raising the ratios of the sizes of some age groups corresponding to ages other
than 1 to the size of the group at age 1 while decreasing the ratios of sizes of other age
groups to that of the size of the group at age 1. However, when _> maxl<i<n-1 Pi, it
follows from (4.8) that the ratio that increases the most corresponds to the (k + 1)th
age group.
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STABLE NUMERICAL ALGORITHMS FOR EQUILIBRIUM
SYSTEMS*
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Abstract. An equilibrium system (also known as a Karush-Kuhn-Tucker (KKT) system, a

saddlepoint system, or a sparse tableau) is a square linear system with a certain structure. Strang
[SIAM Rev., 30 (1988), pp. 283-297] has observed that equilibrium systems arise in optimization,
finite elements, structural analysis, and electrical networks. Recently, Stewart [Linear Algebra Appl.,
112 (1989), pp. 189-193] established a norm bound for a type of equilibrium system in the case when
the "stiffness" portion of the system is very ill-conditioned. This paper investigates the algorithmic
implications of Stewart’s result. It is shown that several algorithms for equilibrium systems appearing
in applications textbooks are unstable. A certain hybrid method is then proposed, and it is proved
that the new method has the right stability property.

Key words, equilibrium systems, KKT systems, stable algorithms, linear algebra

AMS subject classifications. 65F05, 65F35, 65G05

1. Equilibrium systems. Recently, Strang [21] observed that the problem of
solving the structured linear system

D
(1) AT -A)(x)0Y (b)c
for x and y arises in many physical applications. Here, D is an m m matrix, A is
an m n matrix, x and b are m-vectors, and y and c are n-vectors. We call this
system an equilibrium system.

The focus of this paper is on the stability of algorithms for this linear system.
Table I summarizes the applications and the interpretations of D, A, x, y, b, and c in
these applications. In the case of finite elements, we have indicated the interpretations
in the context of a heat equilibrium problem (that is, V. (g(x, y)Vu) -f(x, y) on, u 0 on 0, where is a suitable domain in IR2 or IR3, and f(x, y) and g(x, y)
are given functions, g being strictly positive).

The reader will observe that there are some similarities among the various inter-

pretations. For example, one similarity is that, for the three physical applications,
x and c are measured in the same physical units (e.g., amps), as are y and b (e.g.,
volts). This is also the case in certain optimization problems such as flow problems.
This observation has some importance for numerical algorithms.

In all of these applications, the following two assumptions are commonplace and
they are made throughout the paper.

A1. Matrix D is symmetric and positive definite.
A2. Matrix A has rank n, i.e., full column rank.
These assumptions imply that (1) is a nonsingular linear system with a unique

solution.

Received by the editors May 13, 1992; accepted for publication (in revised form) March 18, 1993.
This research was supported in part by a Presidential Young Investigator Award with matching funds
received from AT&:T and Xerox and by the the National Science Foundation, the Air Force Office of
Scientific Research, and the Office of Naval Research through NSF grant DMS-8920550.

Department of Computer Science, Cornell University, Ithaca, New York 14853 (vavas+/-s0
cs. cornel:[, edu).

1108



STABLE ALGORITHMS FOR EQUILIBRIUM SYSTEMS 1109

TABLE 1
The interpretations of the variables in (1) for various applications.

Electrical
Variable Optimization networks Finite elements Structures
D Objective Resistances Thermal Element

function Hessian resistance flexibility
A Constraints Node-wire Node-element Node-element

adjacency geometry geometry
x Primal variables Currents Element heat Element forces

flow
y Lagrange Voltages Nodal Nodal

multipliers temperatures displacements
b Objective Voltage sources Applied Element dilations

function gradient temperature
gradient

c Distance from Current sources Applied heat Applied nodal
constraints sources forces

The main focus of this paper is what happens when D is severely ill-conditioned.
BjSrck [1] calls this case the "stiff" case, in analogy with systems of ordinary differen-
tial equations. Where D is well conditioned, the numerical problems associated with
solving (1) are generally not as troublesome, and most standard methods will give
good answers. Thus, we make the following assumption.

A3. Matrix D is very ill conditioned.
The most natural framework for this assumption is an optimization algorithm

involving a barrier function. The primary example of a barrier function in optimiza-
tion is the class of interior point methods for linear programming. In an interior
point method, matrix D becomes very ill-conditioned when the iterate approaches
the boundary of the feasible region. (See Karmarkar [13] for the first interior-point
method proposed for linear programming. See Wright [26] for a description of barrier
methods and linear programming and their relationship.) For linear programming,
since the solution is always on the boundary of the region, ill-conditioning in D always
occurs during the algorithm.

Ill-conditioning of D can also occur in the other three applications listed above.
In electrical networks, ill-conditioning occurs, for example, when one wishes to model
the leakage currents to ground through insulators in the electrical network. In this
case, some of the resistances are many orders of magnitude larger than others, leading
to a very ill-conditioned D. The same ill-conditioning occurs if the linear equilibrium
system is a model of a time-varying system in which certain circuit elements have
switched "off."

In structural analysis, ill-conditioning in D occurs when the elements of the struc-
ture have widely different rigidity properties. In the finite elements for a heat appli-
cation, ill-conditioning in D would occur if part of the domain under analysis were a
thermal insulator and another part were a thermal conductor.

In the case that D is severely ill-conditioned, it is not at all apparent that an

accurate numerical solution to (1) is possible, since ill-conditioning in D presumably
means extreme sensitivity to roundoff errors. A perturbation theorem developed
in 2, based on a recent theorem due to Stewart [20], shows that, in principle, an
accurate solution can be computed under further assumptions. The perturbation
result in 2 leads us to propose a definition of "stable" algorithms. None of the
standard algorithms are stable when compared with the perturbation bound, as we
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demonstrate in 4. There is a possibility, however, that some recent techniques in the
literature might lead to stable Mgorithms--this possibility is discussed in 5.

Our main contribution, aside from the new definition of "stable," is a new algo-
rithm described in 6 and 7 that can accurately solve (1).

Most of the analysis of this paper is valid only under certain further assumptions
that we now state.

A4. We are more interested in recovering y in (1) rather than x.
A5. In (1) the vector c is zero.
A6. Matrix D in (1) is a diagonal matrix.
In 9 we discuss how A4, A5, and A6 could be relaxed.
Assumption A4 is similar to obtaining error bounds on individual components of

the solution of a linear system. See, for example, Chandrasekaran and Ipsen [3]. In
our work, the objective is to obtain a bound for a block of components of the solution.

In the context of optimization, A5 means that the current point is feasible. In
the context of electrical networks, this assumption means that no external current
sources are applied--only voltage sources (e.g., batteries or generators).

Assumption A6 holds in the context of interior point methods for linear program-
ming. It also holds for electrical networks composed of batteries and resistors. It
holds for finite elements for the varying-coefficient Poisson equation above, provided
A is correctly formed. It does not hold for structural anMysis in the general case; one
usually obtains a matrix D that is block diagonal. There are, however, special cases
of structural analysis where D is diagonal that we will review in future work.

A fifth application of the equilibrium system not listed in Table 1 is a discretization
of Stokes flow. Stokes flow is a linear approximation to the Navier-Stokes equations
for incompressible fluid flow under the assumption of a very low Reynolds number.
Assumption A6 is never satisfied for Stokes flow (even in one dimension), which is
why we do not discuss it further.

2. Stewart’s norm-bound result. Under the assumptions made in 1, we can

apply Stewart’s theorem. Because of A4, it is useful to write an explicit formula for
y in terms of the other variables. This formula is obtained by eliminating x from (1)
and also substituting A5:

ATD-1Ay _ATD-lb.

Because of A1 and A2, the matrix ATD-IA is invertible. Thus, this linear system
uniquely determines y:

y _(ATD-1A)-ATD-b.

We are now in a position to state Stewart’s theorem. For the sake of completeness,
we replicate his proof of the theorem because we refer to some of the proof steps in
our algorithm construction.

THEOREM 2.1 ([20]). Let T denote the set of all positive definite m m real
diagonal matrices. Let A be an rn n real matrix of rank n. Then there exist constants

XA and (A such that for any D E T),
(a) II(ATD-A)-ATD-III <_ XA, and
(b) IIA(ATD-A)-ATD-[] <_ A.
In this theorem, we have assumed the use of 8ome matrix norm [1" that is idd

by a vector norm (also ll II).
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A closely related result was obtained independently by Todd [23] as part of an
analysis of Karmarkar’s algorithm. In particular, Todd shows that

I](ATD-A)-ATD-b][ <_ c(A, b).

This bound can be extended to obtain Theorem 2.1 with a compactness argument
involving b. Todd’s proof is geometric and completely different from Stewart’s proof.
We follow Stewart’s proof because it contains algebraic information useful for further
development.

Before beginning the proof, we discuss the interpretation of the theorem. Except
for sign, the matrix in (a) is the same matrix that is applied to b to obtain y according
to (3). Thus, (a) says that y cannot be much larger than b, no matter how D is chosen.
In the context of electrical networks, this has a very natural physical interpretation:
For a fixed electrical network with no current sources, no matter how badly the
resistors are out of scale, there can never be a voltage level in the circuit that is much
higher than the applied battery voltages.

Statement (b) also has an algorithmic interpretation. Specifically, if we know y
and are trying to obtain x, we observe from (1) that

Dx- Ay b.

The second term on the left-hand side is precisely

A(ATD-1A)-IATD-lb.

Thus, the matrix in (b) can occur in the process of recovering x.

Proof ([20]). First, we observe that statements (a) and (b) imply each other. For
example, if we could prove (a), then we would observe that

IIA(ATD-A)-ATD-][ <-IIAII"
and thus we could take A to be IIAII.XA. Similarly, the following inequality allows
us to derive (a) from (b)"

II(ATD-A)-ATD-II <_ I[(ATA)-ATII. IIA(ATD-A)-ATD-II.

Thus, we prove (b) only. We first need a preliminary lemma, which is also due to
Stewart. This lemma is cited later in the paper.

LEMMA 2.2 ([20]). Define two subsets X and Y of iRm as follows:

X {z’z Aw for some w, and Ilzll 1}

and

Y {z" ATD-lz 0 for some D E 7)}.

Then X N Y O.
Here Y denotes the closure of Y in the topological sense.

Proof ([20]). Suppose there were a z E X g Y, so that z Aw for some w and

Ilzll 1. The statement that z is in Y means that there exists an infinite sequence of
vectors zl, z2,. converging to z and an infinite sequence of matrices D, D2,. in 7)

such that ATD-lzk 0 for all k. Taking the inner product of this equation with w,
and substituting wTAT zT, yields zTDzk 0 for all k. But since zk converges
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to z, there is some k large enough such that for all nonzero coordinate entries of z,
the corresponding entry of zk has the same sign. This means that zTD-lzk > O,
contradicting the previous equation.

Now we use the lemma to conclude the proof of Theorem 2.1. Since X is compact
and Y is closed, and since they are disjoint, there is a positive lower bound, say p, on
the distance between these spaces measured in the I1" II norm.

Next, choose some D E 79. Choose an arbitrary vector x. Let

y A(ATD-I A)-IATD-lx.

The goal is to get an upper bound on IlYll in terms of Ilxll. A one-line calculation
shows that ATD-I(x- y) is zero. Thus, let v x-y so that ATD-lv 0. Set
t= 1/llyll. Then we have

tv + ty tx.

Note that tv is in Y and -ty is in X. Thus, the norm of the left-hand side of this
equation is at least p. Thus, Iltxll > p, i.e.,

pllyll Ilxll.
This gives us the upper bound of lip on 2A and concludes the proof.

For the rest of the paper, given a matrix A, we define XA and A to be the
suprema implicit in Theorem 2.1, i.e.,

X.A --sup{I[(ATD-1A)-ATD-II" D e T)}

and

A sup{IIA(ATD-1A)-IATD-111 D e V}.

Stewart gives a bound for )A that was proved by O’Leary [14] to be an exact for-
mula. The formula seems to require an exponential number of steps to compute 2A.
Moreover, this formula is not completely constructive in finite precision arithmetic
because of Stewart’s observation that the parameters XA and 2A in Theorem 2.1 do
not depend continuously on A. In particular, Stewart shows that 2A for A [0, 1]T
is one, but 2A for A [e, 1]T tends to infinity as e tends to zero.

It would be very interesting ifthere were an algorithm to compute or approximate
XA, 2A overcoming either of these difficulties (i.e., the algorithm gives the right answer
in finite-precision arithmetic or the algorithm requires only a polynomial number of
steps or both). In 8, we give a bound for XA, 2A for a special class of matrices.

One would like to apply Theorem 2.1 to give algorithm stability results for finite-
precision arithmetic. Here is an example of a straightforward perturbation result in
this direction. For this theorem, I1" II is restricted to being a p-norm. (In a p-norm, we
know that the norm of a diagonal matrix is equal to its maximum absolute diagonal
entry.)

THEOREM 2.3. Let y be the second component of the exact solution to (1) (when
c 0). Let r be a computed solution to this system, such that is the exact solution
to the perturbed system

(4) (D+E-A) () (b+e)AT 0 p 0
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where E satisfies the bound IE] <_ . ]D] and Ilell _< ellbll, where e < 1/2. Then

(5) IlY- :11 -< XAe’ I]bll" ()A + 8/3).

The novel property of this theorem is that the error bound in (5) is independent
of the condition number of D or of the condition number of (1).

Note that we have used the matrix absolute value notation from Golub and Van
Loan [11]. Thus, the assumption IEI <_ e. IDI implies that E is also diagonal.

Proof. By elimination as described above, we have the following formulas for y
and " ATD-1Ay _ATD-lb

and

ATD-1A + ATFA, -ATD-I(b + e) ATF(b + e).

Here F denotes (D+E) D-1, i.e., ED- (D+E) 1. Subtracting these equations
yields

ATD-1A(’ y) + ATFA’ -ATD-le ATF(b + e).

We can add and subtract ATFAy on the left to obtain

ATD-1A(p y) + ATFA(:9 y) + ATFAy -ATD-le ATF(b + e),

which can be written

AT(D-1 + F)A( y) -ATFAy ATD-le ATF(b + e).

Define G D-1 + F (D + E) -1, another diagonal matrix. Introduce new vectors
el G-IFAy, e2 G-D-e, and e3 G-1F(b + e). Then we can rewrite the
preceding equation as

ATGA( y) -ATG(e + e2 + e3).

Now we can conclude from Theorem 2.1 that

Thus, the theorem is proved once we analyze the three terms on the right-hand side.
First, we have

]]ell--II(D / E)FAy[[
[[ED-I[

<e. A"

Next, we have

II(D + E)D-ell
<_ [[(D + E)D-I[I I[ell
_< (1 + e).e. Ilbll.
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Note that 1 + e <_ 4/3. Finally,

_<e. (1 + e). ]]b]].

As above, 1 + e _< 4/3. This proves the theorem.
For the rest of the paper, we regard (5) as the "ideal" bound that could be satisfied

by a finite-precision algorithm. The stability result of this theorem is somewhat
different from well-known perturbation results. Usually a bound on the relative error
in y is obtained in terms of e and the other parameters. A relative error bound on
y is not possible for the equation at hand. Such a bound would mean that it is not
possible for IlY- :11 to be large when IlYll is small. However, one can select a nonzero
b to make y arbitrarily small--zero in fact--because b generally has more dimensions
than y. Thus, the bound in the theorem seems to be the best form we could hope for.

We say that an algorithm for (1) is stable if, in the presence of finite-precision
arithmetic, an error bound of the same form as (5) is satisfied, where e is on the order
of the machine roundoff. In particular, the error bound should have the form

Ily- 11 . f(A). Ilbll,

where f(A) is some function of A not depending on D.
If we could show that a finite-precision algorithm satisfied the hypothesis of the

theorem (i.e., the computed solution satisfied (4)), then it would automatically be
stable. Unfortunately, we do not know of any finite-precision algorithm to solve (1)
that achieves the conditions of this theorem. In particular, it seems that the error
bound for any obvious algorithm would involve a backward error term affecting not
only D but also A. Since XA is not continuous with respect to changes in A, the
theorem cannot be extended to the case when A is also perturbed. In 6 we derive a

stable algorithm by other means.

3. Further development of the theory. In this section, we develop the theory
further before turning to algorithms in the next section. First, we make a few remarks
about the difference between XA and :A. Then we look at the relationship between
XA, A and the corresponding variables for the dual problem.

The two parameters XA, A have different properties with respect to changes in
A. If A is multiplied by a constant, then XA scales in a reciprocal manner. Parameter
)A is unchanged when A is scaled. It should be apparent from (5) that the ideal
situation is when both constants are small. Thus, we think of A as "well conditioned"
if :A is on the order of unity and XA is on the order of 1/IIAII. Note that )A is at least
one in any norm; this is seen by taking D to be the identity matrix in Theorem 2.1(b),
in which case A(ATA)-IAT is an orthogonal projection matrix with spectral radius
of one.

In the preceding paragraph we observed that A is unchanged by scaling. More
generally, ,one sees by inspection that )A remains unchanged if A is replaced by AR
where R is any nonsingular n n matrix. This is the same as saying that A depends
only on the span of the columns of A and not the particular basis selected for that
span. The parameter XA, on the other hand, depends also on the degree of linear
independence of the columns of A.

In the proof in 2, we bounded A in terms of lip. We now extend that result
to show that this bound is an equation: the supremum of
taken over D E :D is exactly 1/p. We already proved that this supremum is at most
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lip. The argument for the other direction is from O’Leary [14]. Observe that if
x E X and y E Y, where X, Y are as in Lemma 2.2, then the following argument puts
a lower bound on x- y. Let D be chosen so that ATD-ly 0, and let w be chosen
so that x-- Aw. Then

ATD-I(x_ y) ATD-Ix ATD-Aw,
so

This yields

w (ATD-A)-ATD-(x y).

x Aw A(ATD-IA)-ATD-(x-y),

so

Ilxll <_ A" IIx- yll.

But Ilxll- by the assumption that x X, so we see that 1/:A is a lower bound on

IIx-
We now look into the relationship between (1) and its dual problem. Let Z be

a nullspace basis for AT; that is, an m (m n) matrix Z of full column rank such
that ATz 0. We want to know the relationship between :A and ?z. Note that A
is a nullspace basis for ZT, so any relationship between 2A, :z also holds if A, Z are
interchanged. Note also that 2z depends only on the span of the columns of Z: in
other words, it does not matter which nullspace basis Z is selected.

To obtain a bound for :z, we consider two algorithms for solving the following
version of (1), where x0 is some rbitrry m-vector.

(o ( o )(6) AT 0 y ATxo
First, observe that the second equation of (6) is ATx ATxo, i.e., AT(x- Xo) 0.
This is the same as saying that x- xo is in the nullspace of A, i.e., there is an
m- n-vector q such that x xo + Zq. Substituting this into the first equation
yields D(xo + Zq) Ay 0. Multiply by ZT using the fact that ZTA 0 to obtain
ZTDZq --ZTDxo. Solving for q yields q --(ZTDZ)-IZTDxo. Substituting
this formula for q into x x0 + Zq yields

x -Z(ZTDZ)-ZTDxO + Xo.

Since Xo is arbitrary, we see that

IIZ(ZTDZ)-ZTDII sup { IlXllx011-x011 x0 # 0; x solves (6)}.
This means that

)Z sup { ]]Xllx011-x0]]. D 2); xo : 0; x solves (6)}.
By applying the triangle inequality, we obtain the bound

() z < sup
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Now we compute this supremum by solving (6) in a different way. The first
equation of (6) is Dx- Ay 0. Multiplying by ATD-1 yields ATx- ATD-1Ay
0. Substituting the second equation yields ATxo- ATD-1Ay 0. Solving for
y yields y (ATD-1A)-IATxo. Use the fact that x D-IAy to obtain x
D-1A(ATD-1A)-ATxo Thus,

(8) Ilxll < IID_IA(ATD-A)_AT][.
Ilxoll

Observe that the matrix whose norm we are taking on the right-hand side of (8) is
precisely the transpose of the matrix used to define A in Theorem 2.1(b). Thus,
we see that the norm on the right-hand side is bounded by ")/mA, where , is the
multiplicative factor that makes the following inequality a true statement for all m x rn
matrices B:

lIBT lIB II.
For example, "m 1 if we use the matrix 2-norm and -y, m if we use the 1-norm
or cx-norm.

If we substitute (8) into (7) we arrive at the following result.
THEOREM 3.1. Let A be an m n matrix of rank n, and let Z be an m (m- n)

matrix of rank m- n such that ATz O. Then

Y(z <_ 1 + "YmA,

where "y, is defined in the last paragraph.
This gives a relationship between X:z and )A. A relationship between Xz and A

or XA is not possible without making further assumptions (for example, that zTz is
well-conditioned).

4. The standard algorithms. In this section we describe four standard algo-
rithms for (1). All four of these algorithms are shown to be unstable in the sense of
stability given in 2. By "standard" we mean that these algorithms are described in
optimization textbooks such as those by Coleman [5], Gill, Murray, and Wright [9],
and Fletcher [7], electrical engineering textbooks such as that by Chua, Desoer, and
Kuh [4]; and civil engineering textbooks such as that by Timoshenko and Young [22].
In all four cases we have used simple implementations of the algorithms. In the next
section we consider stabilizations proposed in the recent literature.

4.1. Symmetric indefinite factorization. Observe in (1) that if we replace y
by -y, the coefficient matrix becomes the symmetric matrix

AT 0

Therefore, we could think about solving this equation with a standard "stable" algo-
rithm for symmetric indefinite linear systems. (See [11] for some algorithms for this
purpose.) Symmetric factorization has the disadvantage that it does not respect the
block of zeros and therefore requires more operations than necessary. In the electri-
cal engineering context, solving (1) directly is known as sparse tableau analysis. In
optimization, this algorithm is called the augmented system method.

This algorithm should be rejected for the following numerical reason. The algo-
rithm "mixes" b, c on the right and x, y on the left during the forward substitution



STABLE ALGORITHMS FOR EQUILIBRIUM SYSTEMS 1117

0 1 0 10-15

0 0 1 1

A- 1 0 0 D- 1
-1 1 0 10_15 ,b

1 0 -1 1
0 1 -1 1

1
0
0
0
0
0

(b)

FIG. 1. The circuit depicted iN (a) yields an equilibrium system of the form (1) with D,A,b,
as in (b). Here all the resistors have size 1 and wires without an indicated resistor have resistance
10-15 The correct values of the voltages of the three nodes are (1.00, 1.00, 0.67) accurate to two
digits. The Parlett-Reid algorithm, however, yields (1.31, 1.31,0.88) when D is replaced by 102D
and yields (0.86, 0.98, 0.58) when D is replaced by 1025D.

and back substitution process. This does not make sense physically, because b, c and
x, y have different physical units and could be on vastly different scales numerically.

To put it another way, this algorithm is sensitive to scaling matrix D by a constant
multiple. On the other hand, y is mathematically unchanged by such a scaling.
Indeed, for a simple electrical circuit depicted in Fig. 1, we scaled D by varying
amounts and applied the Parlett’Reid [17] symmetric factorization. Substantially
different values of y (the voltages) were recovered, some accurate to less than one
decimal place.

These tests, as well as the others in this paper, were conducted in MATLABTM.
MATLAB, a software package for interactive numerical computation, is a trademark
of The Mathworks, Inc. All the computations were done in IEEE double-precision
arithmetic, with about 15 decimal digits of accuracy.

Standard stability results for algorithms like the Parlett-Reid algorithm do not
apply because of our stated interest to recover y accurately, which is only a part of the
solution vector. Moreover, the accuracy of these algorithms depends on the condition
number of the equilibrium system (1), which depends on the condition number of D
(another reason for rejecting this approach).

For the problem in this example, XA, A are both small because A is a reduced
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0 1 0 1 0
0 0 1 1 0

A-- 1 0 0 D-- 1 1
-1 1 0 10_15 ,b 0
1 0 -1 10-15 0
0 1 -1 1 0

(b)

FIG. 2. The circuit depicted in (a) yields an equilibrium system of the form (1) with D,A,b,
as in (b). Here all the resistors have size 1 and wires without an indicated resistor have resistance
10-15 The correct values of the voltages of the three nodes are (0.33, 0.33, 0.33) accurate to two
digits. The range-space algorithm, however, yields (0.28, 0.28, 0.28).

node-arc incidence matrix (see 8). Thus, the failure of this algorithm to satisfy
something like (5) indicates that the algorithm is unstable, not that the problem is
poorly posed.

4.2. The range-space method. This method obtains y by solving (2) explic-
itly. Since ATD-1A is positive definite, (2) can be solved with Cholesky factorization.
Note that this method, as well as the nullspace method described below, is insensitive
to scaling of D by a constant multiple.

This method is called the range-space method in optimization. In structurM
analysis it is known as the displacement method. In electrical engineering it is called
the nodal analysis method. In finite elements, the matrix ATD-1A is known as
the assembled stiffness matrix. This matrix is known as the Schur complement in
optimization.

It should be apparent that if D is severely ill-conditioned, then ATD-1A can
also be severely ill-conditioned. (Indeed, in finite precision arithmetic, ATD-1A may
not even be positive definite.) This means that inaccurate answers (i.e., answers not
respecting (5)) may be obtained. An example of a circuit solution obtained with
the range-space method is indicated in Fig. 2. Observe that not even one significant
decimal place is obtained in the answer.
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4.3. The nullspace method. This method obtains x first and then y. The
essential ingredients of the nullspace method were described in 3. Following Fletcher
[7], we can describe this method as follows. First, a pair of matrices Y, Z is obtained,
where Y is an rn n matrix such that ATy I, the identity, and Z is a nullspace
basis; that is, an rn (m n) of full column rank such that ATz 0. Matrix Y is
called a right-inverse of AT.

The most stable way to obtain Y, Z is via a QR factorization of A, say A QR.
Then Z is set to the last rn- n columns of Q and Y is set to the product Q1RT,
where Q1 is the first n columns of Q and R1 is the first n rows of R.

Once Y, Z are obtained, we observe that the equation ATx 0 means x Zq
for some (m- n)-vector q. This is because Z spans the nullspace of A. Substituting
x Zq into the equation Dx- Ay b yields DZq- Ay b. Now multiply by
ZT, using the fact that ZTA O, to obtain ZTDZq ZTb. The matrix ZTDZ is
known as the reduced Hessian in the optimization literature.

The linear system ZTDZq ZTb is symmetric and positive definite, and hence
may be solved with Cholesky factorization to obtain q. Once q is obtained, x can
be obtained with the formula x Zq. Finally, y is obtained from the equation
Dx- Ay b by multiplying through by yT, yielding y yT(Dx- b).

This method is known as the nullspace method in optimization. It is called the
force method in civil engineering, and loop analysis in electrical engineering.

It should be apparent that this method suffers from the same flaw as the range-
space method. The matrix ZTDZ could be arbitrarily ill-conditioned, and hence
solving a linear system with this matrix could give a highly inaccurate answer. Indeed,
for the example in Fig. 3, the nullspace method returned an answer for y without any
digits of accuracy.

4.4. Gaussian elimination with partial pivoting. Gaussian elimination with
partial pivoting is generally not recommended for equilibrium systems because it ig-
nores the special structure. Furthermore, it suffers from the same disadvantages as
symmetric indefinite factorization as far as stably solving (1) is concerned. Nonethe-
less, one might be tempted to apply it directly to (1) since it is widely and easily
accessible in many software packages.

As the reader might expect by now, Gaussian elimination with partial pivoting (as
implemented by the ’\’ operation in MATLAB) also failed to give an accurate answer
as depicted in Fig. 4.

5. Stabilizing the standard algorithms. The implementations in the last sec-
tion of the standard algorithms.were straightforward, without any special techniques
applied. In this section we describe some techniques known from recent literature
that may stabilize these algorithms. Additional algorithms known in the literature
are described below. As far as we know, none of these stabilizations, nor any of the
other algorithms known in the literature, are provably stable. (The only provably
stable algorithm of which we are aware is the NSH algorithm described in the upcom-
ing sections.) On the other hand, we do not have any counterexamples showing that
these algorithms are unstable. Therefore, it remains an interesting open question to
determine the stability of these algorithms.

As for the augmented system method, one might hypothesize the existence of a
special value of the scaling parameter that will give an accurate solution for y in (1)
and therefore constitute a stable algorithm. It should be noted that there are simple
examples of (1) such that, no matter how D is scaled, the augmented system matrix
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0 1 0 10-1 0
0 0 1 1 0

A 1 0 0 ,D 10-16 1
-1 1 0 10_6 ,b-- 0
1 0 -1 10-1 0
0 1 -1 1 0

FIG. 3. The circuit depicted in (a) yields an equilibrium system of the form (1) with D, A, b,
as in (b). Here, all the resistors have size 1, and wires without an indicated resistor have resistance
10-16 The correct values of the voltages of the three nodes are (0.67, 0.33, 0.67) accurate to two
digits. The nullspace algorithm, however, yields (0.89, 0.52, 1.16).

is ill-conditioned (e.g., A [1, 1, 0]T and D diag(1, 1, e)). The possibility remains
that in spite of the ill-conditioning, the system could still be accurately solved for y.

In particular, Bjbrck [1] has analyzed symmetric factorization of (1); his work
attempts to identify the proper selection of the scaling factor to be applied to D to
obtain x or y accurately. Even with Bjbrck’s choice of scaling factor, however, it is
not clear that the resulting algorithm is stable.

As for the range-space method, it is possible that reordering of the variables
might help. In our testing of the range-space method, we observed that the choice of
numbering for edges and nodes affected the resulting answer and some numberings
for the example in Fig. 2 gave better answers than the numbering depicted. It is
known in the optimization community (Y. Li, private communication) that a good
ordering can be obtained with diagonal pivoting. This may be related to orderings for
least-squares problems. See Van Loan [24] and the analysis of Golub’s [10] algorithm
by Powell and Reid [18]. Nonetheless, even with a different ordering, we do not see
any evidence that the resulting algorithm will be stable in the sense of 2, because
ATD-1A is ill-conditioned regardless of the ordering.

We do not know of any stabilization proposed in the literature for the nullspace
method.
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0 1 0 0.3 0
0 0 1 0.8 0

A= 1 0 0 D= 0.3 0
-1 1 0 10_17 ,b 1
1 0 -1 10-17 0
0 1 --I 10-17 0

(b)

FIG. 4. The circuit depicted in () yields an equilibrium system of the form (1) with D, A, b,
as in (b). Here two resistors have resistance 0.3 and the third (on the right in the figure) has
resistance 0.8. The wires without an indicated resistor have resistance 10-17. The correct values of
the voltages of the three nodes are (-0.33, 0.33, 0) accurate to two digits. Gaussian elimination with
partial pivoting, however, yields (0.45, 1.11,0.78).

There are other algorithms for (1) in the recent literature; we do not know whether
they are stable. Here is a partial list.

1. BjSrck and Duff [2] propose an elimination-based approach with a special
kind of pivoting.

2. Gulliksson and Wedin [12] propose to factor ATD-1A using scaled House-
holder transformations; that is, transformations that are orthogonal in a scaled inner
product.

3. Paige [15] applies orthogonal factorization to an augmented system (not the
same augmented system as (1)).

6. A stable hybrid algorithm. We now describe a stable algorithm for (1).
We call this algorithm "hybrid" because it works with both the range-space of A and
nullspace of AT. The scaling matrix D is applied to the nullspace. Thus, the particular
method described in this section is referred to as the "nullspace-scaled hybrid" (NSH)
method, to distinguish it from other hybrid methods that we introduce later.

The first step of the NSH method is to compute a nullspace basis V for ATD-1.
Thus, V is an m x (m- n) matrix of rank m- n such that ATD-1V 0. The matrix
V must have a number of special properties, as will become apparent from the lemma
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and theorem that follow. Our algorithm for V is described in 7.
Once V is obtained, the linear system

(9) [A,v] ( Y

is solved for y and q. We claim that y is indeed a solution for the original problem.
This linear system can be rewritten as Ay+ Vq -b. Multiplying by ATD- causes
the second term on the left to drop out, yielding ATD-1Ay -ATD-lb. Thus,
this method solves (2) without explicitly forming ATD-1A. Notice that D does not
appear at all in the linear system (9).

The NSH method does not appear in standard textbooks, but it has appeared in
the literature. For example, Coleman and Li [6] suggest a similar approach (called
the "full-space" method) for optimization, but with the scaling done in a different
manner.

We now investigate the numerical stability of this method. We start with a
preliminary lemma. For the rest of this section [[. is some p-norm.

LEMMA 6.1. Assume the null basis V computed above is normalized so that
I]Yll ]IA[I. Suppose also that Y is well-conditioned, in the sense that there is a
constant 0 > 0 such that

(10)

for all x. Let M [A, V]. Then

(11)

IlVxll (llVll. Ilxll)/8

n(M) <_ 2XA" IIAII + 20. ( + A),

where (M) denotes the condition number of M, that is, IIMll IIM-II
Proof. The basic idea of this proof is that the condition number of M [A, V]

depends on three things: the condition of A, the condition of V (i.e., the value of 0),
and the angle between the span of A and the span of V. But this angle cannot be too
small because of Stewart’s lemma in 2.

Suppose that Mz c for an arbitrary c. Split z into two components, say y and
q. Then Ay + Vq c. Multiply by ATD- to obtain ATD-lAy ATD-1C. Thus,
IlYll <-XAIICll and IIAyll <_ :AIIC]l by Stewart’s theorem. Next, Vq c- Ay, so

Finally,

Thus, we have

IlVqll _< I111 + ,AIIcll.

Ilqll--< I-
< ,--" ( / A)"

i1.,-111

Ilzll _< Ilyll + Ilqll

( o
_< Ilcll" XA + I-l" (1+ A)

Since IIM-ll is the supremum of Ilzll in the cae that IIcll , the parenthesized
factor on the right-hand side is an upper bound on
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Now finally, observe that IIMII _< 211All. Thus, multiplying through by 211All gives
the result. [:1

Note that the condition that IIAII IlYll does not have to be satisfied exactly; it
suffices in the above argument to have A and V on the same order.

Let us denote with tA the expression on the right-hand side of (11). This expres-
sion has a complicated form, but one sees that it is independent of D except insofar
as it depends on V, and is invariant if A is multiplied by a constant. We now can
state the main theorem about the stability of the NSH method.

THEOREM 6.2. Assume V satisfies the conditions of Lemma 6.1. Suppose that
the algorithm to solve the linear system Ay + Vq -b in floating point arithmetic
returns approximate solution (, (?t) such that

(12) (A + E): + (V + F)(?t -b + e,

where II[E,F]II II[A, W]ll and Ilell llbll. Assume that < 1/(3A). Then we have
the following error bound:

(3) I-"
where y is the true solution.

Remark 1. Note that (13) indicates that the NSH algorithm is stable, because D
does not enter the bound.

Remark 2. The theorem seemingly requires that an exact nullspace basis V of
ATD-1 be computed. We remark further on this in 7.

Remark 3. The condition that the floating-point algorithm satisfies an error bound
like (12) is very natural, and any well-known stable algorithm, say Gaussian elimina-
tion with partial pivoting, satisfies such a bound.

Proof. Let z (yT, qT)T and i (T, tT)T. Following the standard analysis of
[11, Thm. 2.7.2] and using the previous lemma, we obtain the bound

z --11 -- 3tA" IIzlI.
But

Thus,

Finally, IlY- 11 is at most II -11.
7. Obtaining V for Theorem 6.2. As mentioned in 6, Theorem 6.2 seemingly

’requires V to be computed exactly. In fact, it is implicit in the theorem that it suffices
to compute a matrix such that + F is a nullspace basis for ATD-, where F
is a small error matrix. This is because using V instead of V in (9) is equivalent to
compounding the error F in (12) with the further small error F, so the same bound
holds with a larger constant.
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The standard general-purpose algorithms for nullspace bases do not guarantee
that the computed nullspace basis is only a small distance from a true nullspace basis
(i.e., a forward-error bound). Instead, these algorithms guarantee that each column
of the computed nullspace basis is an exact nullspace vector for a perturbed matrix
ATD-I + E (i.e., a backward-error bound). This is not useful in the present context
because adding E to ATD-1 spoils the special structure that allows Stewart’s theorem
to be applied.

We now describe a technique to obtain a V with a forward-error bound. First,
we obtain a nullspace basis Z for AT. Then we obtain a nullspace basis V for ATD
with the formula V DZR, where R is another diagonal matrix described below.

To compute Z, find a subset of rows of n rows of A that form a basis, that is, an
n n nonsingular submatrix of A. Now, for each of the remaining m n "nonbasic"
rows, solve for the nonbasic row in terms of the basis rows. The coefficients of this
dependence form a column vector with m entries, of which at most n H- 1 are nonzero.
This yields a fundamental nullspace basis Z; that is, a nullspace basis for AT with an

If we assume that ;A is reasonably small, then it turns out that this nullspace
basis has a special property, namely, all of the nonzero entries have roughly the same
magnitude. If we think of a vector x as being one column of Z, we can state this as a
lemma. In this lemma, we assume that the oe-norm is used throughout. The constant

z arises in this lemma; recall that z is bounded in terms of A, as demonstrated
in Theorem 3.1.

LEMMA 7.1. Let x be a nonzero vector such that ATx O. Assume that x has
nonzero entries in positions {il,...,ip}, where {il,...,ip} c {1,...,m}. Suppose
also that for every subset I of size p- 1 of {i1,..., ip}, the rows of A indexed by I
are linearly independent. Then the magnitude of the smallest nonzero entry in x is
no smaller than

Proof. Without loss of generality, we can take Ilxll- 1. Let 5 be the magnitude
of the entry in x with the smallest nonzero magnitude and suppose this entry is in
position ip. Since rows l,..., ip-1 of A are linearly independent, there is a vector w
such that Aw attains arbitrarily specified entries in these p-1 positions. In particular,
there is a vector w such that Aw agrees with x in positions l,..., ip-1.

Now let C be a diagonal matrix with entry "1" in positions il,..., ip_ 1, and very
small entries in the other diagonal positions. Observe that CAw agrees with x in
positions il,..., ip_l, and has nearly zeros in all the other positions, including ip. Let
y CAw. Then we observe that if we define X, Y as in Lemma 2.2 for Z, i.e.,

X {z’z Zw for some w, and Ilzll 1}

and

Y {z" zTC-Iz 0 for some C E T},

then x e X and y e Y. This means that IIx-Yll is at least 1/(z. But IIx-Yll is

arbitrarily close to 5 (depending on how close to zero the diagonal entries of C other
than il,...,ip-1 are). Thus, 5 >_ 1/(z. This proves the lemma, since we assumed

This lemma has two important consequences. First, the lemma implies that the
nullspace basis Z is well conditioned in the sense of (10). In particular, with suitable
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ordering of the rows and columns of Z, we can write it in the form

(I)(14) Z W

where W is a matrix whose entries are at most :z in magnitude.
Second, the lemma has the following more subtle consequence: if the columns

of Z are calculated with a small forward error, this means in fact that these entries
have a small cornponentwise forward error. We can express this formally as follows.
Let Z be the nullspace basis of A computed with the above algorithm using exact
arithmetic, and let , be the nullspace basis computed in the presence of floating point
errors. If we assume that the columns of Z are computed with a small forward error,
that is,

where x is a column of Z and is a column of ,, then we immediately obtain the
result

The componentwise error bound is important for the following reason: to obtain
V, recall that we form the product DZR, where D is the diagonal matrix from (1),
and R is a diagonal matrix not yet specified. Because D, R are both diagonal and
Z has a small componentwise error, then DZR also will have a small componentwise
forward error, and therefore, a small norm forward error, no matter how D, R are
chosen.

The argument in the last two paragraphs presupposed that the columns of Z
would have a small normwise forward error. A small normwise forward error is ob-
tained if the basis rows of A are well-conditioned, because the columns of Z are
solutions to linear systems involving the basis rows. Now we ask whether the basis
rows of A are well-conditioned. In fact, there is a bound on the condition number of
the basis rows; we state another lemma in this regard. This lemma is based on similar
results in [14] and [20].

LEMMA 7.2. Let A be an m n matrix. Let B be a nonsingular n n submatrix

of A. Then IIB-111 <_ XA.
Proof. Let b be an arbitrary n-vector and suppose x is the solution to Bx b.

We require an upper bound on Ilxl[ in terms of Ilbl[. Let l be the extension of b to
]Rm obtained by inserting zeros in the m- n positions corresponding to rows of A not
in B.

Let C be the diagonal matrix with ones in the n diagonal positions corresponding
to rows of B and very small entries in other positions. Then ATCA BTB and
ATC BTb, where the approximations can be arbitrarily close as we make diagonal
entries of C close to zero.

Thus, if vector x is the solution to ATCAX ATC), then BTBx BTb. Since
B is square and invertible, this last equation means that Bx b. But we also know
that Ilxll _< XAII)II by definition of XA. This proves the lemma.

Recall that for A "well-conditioned," we should have XA /IIAII, where is a
small constant; thus lIB-111 <_ /IIAII. Finally, IIAII >_ IIBII so

lIB- 111. lIB ,
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thus obtaining a condition number bound on B.
Thus, we conclude that we can compute Z using the above algorithm such that

Z is simultaneously well conditioned and has a small forward componentwise error.
Now, we apply D on the left. As we see from (14), the upper (m- n) (m- n)
block of DZ is some diagonal matrix. Finally, choose a diagonal matrix R so that the
upper (m- n) (m n) block of V DZR is once again the identity matrix. (This
uniquely determines R.)

This algorithm gives a nullspace basis V for ATD-1 with a small forward error.
Moreover, V has the form

v w’
There is no reason to believe, however, that V is well-conditioned. In fact, W’ can
have arbitrarily large entries if the basic rows of A have large corresponding entries
in D.

We now show how to maintain control over the size of W’ by correctly choosing the
basis rows in A. (Until now, we have not made any assumptions about the basis rows
except that they are independent.) The algorithm for obtaining B is the following
"greedy" approach. Assign weights to the rows, where the weight of the ith row is
the (i, i) entry of D. Now, select the row with the lowest weight and insert it in B.
Continue appending the lowest-weighted remaining row of A to B. Before appending
a row to B, check that the row is linearly independent from the rows already in B. If
a dependence is found, then the row is discarded. Continue this process until B has
n rows.

Note that this algorithm requires a "yes/no" test concerning linear dependence
among rows of A. In general, such tests are considered to be numerically hazardous.
In our application, however, this is a safe procedure; a consequence of the preceding
lemmas and arguments is that if XA, A are well bounded, then there can be no "near"
dependence among subsets of rows of A.

Since A is sparse for many applications, this process of testing rows for inde-
pendence from previous rows should involve both combinatorial and numerical tests
for dependence, such as the inner loop of the Gilbert and Heath [8] algorithm for
nullspace bases. Briefly, the Gilbert-Heath Mgorithm maintains a bipartite graph
indicating the nonzero structure of the current basis and a complete matching of that
bipartite graph. There is a simple combinatorial technique to detect many cases of
dependency among rows. Indeed, for RNAI matrices (described in 8), the process of
selecting B is purely combinatorial and very efficient.

We now claim that if B is selected with this greedy approach, then W’ in (15) has
a smM1 bound. Consider the (i, j) entry of V. Assume > m- n, so that the entry
in question falls in the W’ portion in (15). Assume that this entry is nonzero. This
means that the jth row of A is expressed in terms of rows m n / 1,..., m with a
nonzero coefficient for the ith row. We claim that this implies that di <_ djj. Suppose
not; suppose that djj < di. Observe that, by the positions of the rows, is basic and
j is nonbasic. This means that j was passed over by the greedy algorithm for forming
the basis, since row i was added to B even though it has a higher weight than row j.
This in turn means that row j must have been linearly dependent on rows already in
B when it was encountered by the greedy algorithm. But this is impossible, because
we already know that row j can be expressed in terms of the basis rows with a nonzero
coefficient for row i, so row j cannot be dependent on B until after row is added to
B. Thus, this contradiction shows that d _< djj.
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Finally, when we scale Z on the left by D and on the right by R, it is easy to see
that the (i, j) entry of Y is equal to the (i,j) entry of Z multiplied by dii/djj, which
we now have shown to be a positive scalar no larger than one. This shows that the
entries of W’ in (15) are no larger than the corresponding entries of W in (14), and
we already have argued that W has a small bound.

If V has the form (15) with a bound on Wp, then it is well conditioned in the
sense of Theorem 6.2. Let x be an arbitrary vector, and consider y Vx. Observe
that y agrees with x in its first m- n positions. Thus, IlYll -> Ilxll On the other
hand, IlYll <_ 1 + IIW’II. Hence if we take 0 1 + IIW’II then we have the bound

IIVxll (llVII. Ilxll)/8

needed for Theorem 6.2.
The only property remaining that Y must have is the equation IlYll--IIAII. This

is easily obtained by scaling V uniformly.

8. Reduced node-arc incidence (RNAI) matrices. A special class of ma-
trices A arising in many applications are RNAI matrices. Let G be an directed graph,
weakly connected, with no parallel edges and no self-loops. (The assumptions about
connectivity and parallel edges could be easily removed at the expense of a more
complicated exposition.) Assume G has m arcs and n + 1 nodes.

The node-arc incidence matrix for G is a matrix A0 with one row for each edge
of G and one column for each node. Each row contains two nonzero entries, a 1 and
a -1. The -1 entry occurs in the column corresponding to the tail of the arc, and
the 1 entry occurs in the column corresponding to its head.

The RNAI matrix A for G is obtained by deleting a column of A0 corresponding
to an arbitrary node. The deleted node is called "ground" in an electrical engineering
context. In an RNAI matrix, each row has either a 1/-1 pair of entries, or a lone 1
or lone -1 in rows corresponding to arcs with one end grounded.

Electrical networks are the main application in which A of (1) turns out to be
an RNAI matrix. Indeed, the matrix A occurring in Figs. 1- 4 is an RNAI matrix.
Optimization problems with flow constraints can give rise to RNAI or related matrices.
Structural analysis in civil engineering can give rise to matrices A that have a block-
RNAI structure.

It is a well-known fact of algebraic graph theory (see, for example, Welsh [25]) that
an RNAI matrix A has full column rank. Furthermore, the process of finding a basis
among the rows of A corresponds to identifying a spanning tree of Go, where Go is
the undirected graph that results when the arcs of G are stripped of their orientation.
A spanning tree is a subgraph T of Go that is incident upon every vertex of Go, is

connected, and has no cycles. The resulting nullspace basis Z has the form (14), with
the additional property that every entry in W is either 0, 1, or -1. Thus, there is a

very good upper bound on IIWII.
The greedy algorithm described in the previous section corresponds to finding a

minimum-weight spanning tree. The minimum-weight spanning tree can be computed
very efficiently; see, for example, Papadimitriou and Steiglitz [16]. From this spanning
’tree we construct Z as described above, and then V by multiplying DZR. The process
of obtaining Z and the basis is completely combinatorial for an RNAI matrix.

We have tried this version of the NSH algorithm in MATLAB on all the problems
in 4. We used an O(m log n) algorithm for constructing minimum-weight spanning
trees. We obtained answers with approximately 15 digits of accuracy in all cases.
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These results show that we can easily construct a V with the right properties
for Theorem 6.2 for RNAI matrices. A natural follow-up question is whether the
constants in the theorem, namely XA and 2A, have reasonable bounds for RNAI
matrices. Such bounds are also important because we want to argue that the incorrect
answers obtained with the standard methods in 4 are due to numerical problems with
the algorithms and not ill-conditioning in A.

In fact, both constants XA,A have small bounds for RNAI matrices, as stated
in the following theorem.

THEOREM 8.1. Let A be an RNAI matrix of size m x n. Then XA <-- n and
A n if the cx-norm is used.

Proof. Suppose the equilibrium equations hold, i.e.,

for an arbitrarily chosen b such that I]bll _< 1. Parameter XA is defined to be the
maximum possible value of ]]Yl]. Label each node in the underlying graph with its
y value and label the ground node with 0. In analogy with electrical engineering, we
call these labels the "voltages."

Let Pl,... ,pn+l be the voltages written in descending order, i.e., pl,... ,pn+l is a
sorted version of {y,..., Yn, 0}. A simple averaging argument shows that there must
be a # such that

P, P,+ >_ (P Pn+)In.
Here, Pl is the maximum voltage and Pn+l the minimum. Because ground is labeled,
pl >_ 0 >_ Pn+l.

Let S be the nodes that were numbered 1 to it in this sorted list, and let T be
nodes numbered # + 1 to n + 1 in the sorted list. Then (S, T) is the partition of the
nodes such that each node in S has a voltage at least g higher than every node in T,
where g (p pn+)In.

Assume from now on that ground is in S (an interchanging of S and T in the
following argument would handle the opposite case). Let v be an n-vector that, for
each i, has 1 in position if node lies in T, and a 0 otherwise. (From now on "node i"
refers to the original numbering of the nodes corresponding to the ordering of columns
in A.) Consider the product w Av; w has one entry for each edge in the graph. It
follows from the definition of an RNAI matrix that w is 1 if edge is a forward edge
from S to T, it is -1 if the edge is backward, and 0 if the edge is internal to either S
or T. Since the graph is connected, w - 0.

We have the equation ATx 0; multiplying by vT shows that wTx 0. This
means that there must exist an such that wi is nonzero and wix >_ O.

Now examine the ith equation from the block Dx- Ay b. Since w is nonzero,
one endpoint of edge is in S and the other endpoint in T. Let the endpoint in T be
numbered j. (Since ground is not in T, j corresponds to a true column of A.) Thus,
the (i, j) entry of A is +1.

There are two cases" either w is positive or w is negative. If w. is positive, then
by definition of w, we must have that the (i, j) entry of A is +1. By choice of i,
x >_ 0, so dxi >_ O. There are two subcases: either the other endpoint of edge is
ground, or it is some other node k of the graph, which lies in S. If it is ground, then
the ith equation must be dx,-yj b, i.e., -yj <_ b, i.e., yj >_ -b. If the other
endpoint is node k, then dx yy + Yk bi, i.e., yj Yk

_
-bi
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If wi is negative, then by definition of w, we must have that the (i,j) entry of A
is -1. By choice of i, xi _< 0, so dx <_ O. There are two subcases: either the other
endpoint of edge is ground, or it is some other node k of the graph, which lies in S.
If it is ground, then the ith equation must be dix + yj b, i.e., yj >_ b. If the other
endpoint is node k, then dux + yj Yk b, i.e., yj yk >_ b.

Thus, in all four subcases, we have obtained an inequality of the form yj y
-Ibl, where yj is the voltage of a node in T and y is the voltage of a node in S (possibly
ground). Since we already know by construction of S and T that yj -y _< -g, we
have -g >_ -Ibil, i.e., g <_ Ibl. By assumption on b, we have Ibl _< . Thus
(pl Pn+)/n <_ 1, i.e.,

(17) pl Pn+l

_
n.

Since 0 lies between p and Pn+l, and the values of the y are contained in p’s,
we conclude from (17) that lYI <- n for all i. This shows that XA <-- n.

Next, let us obtain a bound on )A. Recall that A is the maximum value of
IIAyll, where y is the solution to (16) and where Ilbll 1. But for an RNAI
matrix, each entry of Ay is the difference between two entries in y, or is simply an
entry in y (for edges with one endpoint grounded). But we have shown that the
maximum difference between any of the y’s is nmthis is (17).

9. Generalizing the problem. In this section we comment on the possibility
of lifting some of the assumptions made in 1. One assumption made throughout the
paper is that we are interested in recovering y in (1) rather than x. Assuming we
have y, x can be recovered from the equation Dx- Ay b. It is easy to see that
we can compute Dx stably (i.e., with only small normwise error). Then x is obtained
by scaling the computed Dx with D-1. The recovered x would have a relative error
that could be on the order of the condition number of D. This is inherent in the
problem--(1) is ill-conditioned with respect to x when D is ill-conditioned, and there
is no theorem like Theorem 2.1 that holds for x. Thus, we see that recovering Dx
accurately is the best that could be hoped for in the case that b 0, c 0.

This instability is not merely a numerical artifactmthere is a corresponding phys-
ical instability. For example, in the context of electrical networks with batteries, it is
possible to construct a circuit as follows. One arc of the circuit has very low resistance,
but also very small current because the battery voltages are balanced so that the po-
tential across the arc is small. Then a small perturbation to the battery voltages (i.e.,
b) could cause a great multiplication of the current (i.e., x). On the other hand, Dx,
the voltage drops across the resistors, would suffer only a small perturbation.

Another assumption was that c 0. Can we drop this assumption? One special
case, which is dual to the case considered for most of this paper, is when c - 0,
b 0, and we are interested in recovering x instead of y. In this case, let Z be
nullspace basis for AT, and let x0 be an arbitrary solution to the underdetermined
system ATx c. Then the formula for x is obtained by solving ZTDZq- ZTDxo,
and then setting x Zq+x0. The equation ZTDZq ZTDxo is of the exact format
of (2). Thus, we can apply the machinery developed in this paper, except with Z in
place of A, x0 in place of b, and D in place of D-. Notice that the nullspace of
ZT is the same as the range of A. Thus, the version of the hybrid algorithm for this
problem would be the range-space scaled hybrid algorithm, or RSH algorithm. Note
also that we have derived relationships between A and z in 3.

In the most general case that b :/: 0, c : 0, it seems unlikely that we could obtain
an algorithm that computes either x or y accurately when D is ill-conditioned because
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both variables become ill-conditioned. A compromise algorithm might be as follows.
Let Z be a basis for the nullspace of AT. Then solve the linear system

D-1/2Ay + D1/2Zq _D-1/2b + D1/2xo,

where xo is as in the previous paragraph. Multiplying through by ATD-1/2 shows
that this solves the general case of (1) for y. This method has the advantage that it
"splits" the ill-conditioning between the nullspace and the range-space. We could call
this the biscaled hybrid algorithm, or BSH algorithm.

The last restrictive assumption made in 1 is that D is diagonal. As mentioned
earlier, in some finite element and structural problems in two and three dimensions,
we can generally only assume that D is block diagonal. Stewart’s theorem does not
generalize to nondiagonal matrices, as shown in his paper. In the applications of finite
elements and structures, however, A has a certain sparsity pattern that is correlated to
the blocks of D. Perhaps a result could be established for special structured matrices
A.

10. Open questions and future directions. Perhaps the number of open
questions raised by this work exceeds the number of results we have obtained. Here
are some examples of open questions.

1. Is there a good algorithm to obtain XA, A? Here "good" means either that
the algorithm is polynomial time, or that it gives an approximate answer in finite
precision arithmetic, or both.

2. What are useful bounds for XA, A in the case that A has the special structure
arising in applications more general than RNAI matrices?

3. Can Stewart’s theorem be generalized to a block-diagonal D in the case that
the structure of A is correlated to the structure of D, as in structural analysis?

4. As mentioned in 5, there are techniques known in the literature that can
be applied to the standard algorithms. Could it be proved that one of the standard
algorithms is stable if one of these techniques is used? The standard algorithms are
much simpler than the NSH method.

5. This paper has not dealt at all with issues of algorithmic efficiency, but there
are many. For instance, in the NSH method, must we explicitly solve the m m system
(9) or can we approach it implicitly? The algorithm for computing Z described in

7 was geared solely towards numerical stability. Recently, Stern and Vavasis [19]
proposed a way to compute Z for an RNAI matrix based on separators of Go. The
Stern-Vavasis algorithm aims for sparsity of Z rather than stability. Is there some
combination of the algorithm here with the ideas from the other paper that attains
both numerical stability and a sparse nullspace basis Z?

6. For the general case of recovering both x and y, is the BSH method described
in 9 any better than the range-space or nullspace methods? We tried the BSH
algorithm using a nullspace basis Z generated by QR factorization described in 4 (in
particular, not any special spanning-tree basis). We obtained very accurate answers
for all the problems in which the standard methods failed. Is there an explanation
for the success of the BSH method?

7. Are there good iterative methods for (1)? For instance, is there an iterative
method whose convergence rate depends only on A and gives a good solution for y in
the sense of a bound like (5)?
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SOME CONVERGENCE PROPERTIES OF MATRIX SETS *
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Abstract. A set .4 {Aj j E J} of n x n matrices is pointwise convergent provided each n-
vector x can be steered to zero by iterated multiplication by matrices in .4. The convergence is uniform
if the sequence of multipliers may be chosen independently of x. This paper discusses conditions
related to convergence for sets of diagonal, triangular, and general matrices, real and complex. It
generalizes known conditions for convergence of a single matrix and characterizes convergence of a

set of diagonal matrices in terms of semipositivity of a matrix derived from the set.

Key words, convergence, matrix norm, precontractive, eigenvalue, singular value, semipositive
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1. Introduction. The convergence properties of an n x n complex matrix A are
well known. Among thein is the equivalence of the following three statements.
(i) limk-+o Ak 0,
(ii) If x is a complex n-vector, then

lim Akx 0,

(iii) p(A) < 1, where p denotes spectral radius.
The notion of convergence of a matrix can be extended to that of convergence

of a set of matrices in a variety of ways. In this paper we study a definition of
convergence of a set of matrices that is motivated by the theory of multirate sampled-
data control systems and the multimodal linear control systems to which they give rise

[6]. Intuitively, the set 4 {Aj j E J} of n x n matrices is "pointwise" convergent if
each n-vector x can be steered to zero by repeated multiplication by matrices selected
from .4. The convergence is "uniform" if the sequence of multipliers can be chosen
independently of x. Hence, a set is uniformly convergent if and only if there is an
infinite product of matrices in the set that left converges to the zero matrix. Although
the sets arising from the control systems in [6] are finite, we also consider here infinite
sets. We see, however, that the convergence of an infinite set of matrices is equivalent
to that of some finite subset.

Our definition of convergence is substantially different from other generalizations
of the convergence of a matrix. For example, in [3] Daubechies and Lagarias consider
a definition that requires all (left or right) infinite products of matrices in the set to
converge (but not necessarily to zero). This work is continued in [1]. The fact that
neither definition of convergence contains the other can be seen by the examples

3 1 2
$ {diag { , } diag { , - } } and "Y- {I}.
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S is uniformly, and hence pointwise, convergent (it is a slight modification of the
example before Theorem 5.3) but is neither right nor left convergent in the sense of
[3]. On the other hand, the set T whose only member is the identity matrix is both
right and left convergent in the sense of [3] but is neither pointwise nor uniformly
convergent in our sense.

Section 2 lists the necessary definitions. In 3 we present necessary and suffi-
cient conditions for pointwise and uniform convergence of a matrix set and relate
convergence of a set to that of some finite subset. We then present further necessary
conditions for each type of convergence. In 4 we show the equivalence of pointwise
and uniform convergence for sets of diagonal matrices and relate the convergence of a
finite set of diagonal matrices to the semipositivity of a matrix constructed from the
set. Finally, in 5 we discuss convergence of sets of triangular matrices.

2. Definitions. Throughout the paper F denotes either the field C of complex
numbers or the field of real numbers. The set of m n matrices over F are denoted
by ]mn, and ]n denotes Fn 1. General vector norms and matrix norms are discussed
and denoted by I1" IIy and I1" IIM, respectively. We reserve the symbol I1" 112 for the
euclidean vector norm on IF’. Throughout the paper, J denotes a nonempty index set.

DEFINITION 2.1. A set A {Aj j E J} c nn i8 convergent at a point x E IF
provided there is a sequence {p(x)}=l such that p(x) e J for all i, and the sequence

x, Ap(x)lx, Ap(x).Ap(x)lx,...

converges to the zero vector. We assert this convergence by writing

A is pointwise convergent provided that it is convergent at each point in F". 4 is
uniformly convergent provided the sequence (p(x)}=l may be chosen independently
of x; that is, there is a sequence {Pi}=I with pi J for all and

=0

for all x Fn.
Clearly our definition of uniform convergence is unchanged if we require the stated

limit to be zero only for x in the unit sphere of Fn. Furthermore, the limit is zero for
all such x if and only if

i=k

These observations imply that our use of the term "uniform convergence" is consistent
with its usual meaning of "convergence at the same rate for all x."

Of course, for a single matrix pointwise and uniform convergence are the same.
We shall see, however, that the set

2 2
2 , c

2 2
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is pointwise convergent but is not uniformly convergent.
The notion of precontractiveness introduced in [6] is useful.
DEFINITION 2.2. Let I1" IIy be any norm on Fn, and let ,4 {Aj j E J} c nn.

4 is precontractive relative to I1" IIy provided that if x Fn/{0}, then there is a finite
n(x)sequence {q(x)iji=l with q(x)i e g for i= 1,2,... ,n(x), and

Aq(x), x

3. Conditions for convergence.
LEMMA 3.1. 4 is precontractive relative to I1" IIY if and only if some finite subset

B of ,4 is precontractive relative to
Proof. Suppose that A is precontractive relative to I1" IIy, and let P denote the

set of all finite sequences p {pik(p) of members of J. For p in P, letJi=l

<1

Then each Sp is an open subset of the unit V-sphere in F and, by precontractive-
ness, the sphere is covered by {Sp p P}. By compactness, there is a finite set
{p(1),p(2),...,p(m)} C_ P such that the set {Sp() i 1,2,... ,m} covers the sphere.

m ilk(p()) A_(,) of A is precontractive. TheIt follows that the finite subset B U=l j=l j
reverse implication is obvious. E]

THEOREM 3.2. Let I1" IIY be a norm on n and let 4 {Aj j J} C nn.
Then ,4 is pointwise convergent if and only if A is precontractive relative to I1" IIv.

Proof. A proof for the case F and 4 finite appears in [6, Thm. 1]. The proof
remains valid when is replaced by F, leaving only the case that ,4 is infinite. If ,4 is
precontractive, then by Lemma 3.1 there is a finite subset B of 4 that is precontractive
and so is pointwise convergent. Clearly then, 4 is pointwise convergent. Conversely,
if 4 is pointwise convergent, then for each x in Fn we have

i-k

so for some k,

X

V

and .A is precontractive relative to II-IIv.
COROLLARY 3.3. Precontractiveness is norm independent.
Lemma 3.1 and Theorem 3.2 yield the following corollary.
COROLLARY 3.4. 4 is pointwise convergent if and only if some finite subset of A

is pointwise convergent.
The condition p(A) < 1, necessary and sufficient for convergence of the single

matrix A, generalizes to the following necessary and sufficient condition for uniform
convergence of a matrix set.
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THEOREM 3.5. The set .4 {Aj j E J} c Inn is uniformly convergent if and
only if there is a finite sequence {pi}n_l with pi J for i- 1, 2,..., m, such that

Proof. If the sequence {Pi}i=l exists as described, let {t}i=l be the periodic
sequence {pl,..., Pm, Pl,-.., Pm,..., }, let I1" IIM be a (submultiplicative) matrix norm
on Fnn such that

III Ap <1,
i--m M

let I1" IIv be a norm on n consistent with I1" IIM, and let

C- max{1, max {IIAp, IIM 1 <_ <_ rn}}.

It follows that for any positive integer k- mq + r, with 0 _< r < rn, and any x ]n,
we have

Ap, x <_ Ap, Cm llxlly,
i--k V i--m M

and hence .4 is uniformly convergent.
Conversely, if ,4 is uniformly convergent with

for each x G F then limk--. 1-Ii=k Ap O, so for some sufficiently large m,
p(rIi=m Ap) < 1.

COROLLARY 3.6. 4 is uniformly convergent if and only if there is a finite subset
B of 4 that is uniformly convergent.

COROLLARY 3.7. If the set A {Aj j J} c ]nn i8 uniformly convergent,
then there is a j in J such that Idet Aj < 1.

Proof. Suppose that Idet Ajl >_ 1 for j G J. Then, for any sequence {Pi}i=k with
pJ,

det Ap II Idet Ap I_> 1.
i=k i=k

Hence

so by the theorem, 4 is not uniformly convergent.
For A {nj j J} c Fnn, the condition Idet Ajl < 1 for some j is not

necessary for pointwise convergence. For example, if

AI-- 2
2
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then det A1 det A2 1. However, as shown in [6], the set 4 {A1, A2} is pointwise
convergent. Intuitively, the matrix A1 shrinks vectors in a cone centered on the x-
axis (relative to the euclidean norm), whereas A2 is a rotation that can be applied to
vectors not in that cone to bring them into the cone without changing their length
in the process. Hence, the set is precontractive and so pointwise convergent. In fact,
small perturbations of A1 and A2 produce a set in which each matrix has determinant
strictly greater than one, but which is still pointwise convergent.

A necessary condition for pointwise convergence is provided by the singular values
of the Ai. We need the following lemma, which follows easily from the singular value
decomposition of A.

LEMMA 3.8. Let A E Fnn. A has a singular value less than one if and only if
there is an x Fn such that [IAxll2 < Ilxl12.

THEOREM 3.9. Let .4 {Aj j J} c Fnn. If each singular value of each Aj
{pi}= withis greater than or equal to 1, then for each x F and each sequence k

p J, we have

i=k 2

Proof. Using the lemma,

X

2

Z
2

COROLLARY 3.10. Let A {Aj j J} C Fnn. If 4 i8 pointwise convergent,
then some Aj has a singular value less than one.

Proof. The corollary follows from Theorems 3.2 and 3.9. [

The existence of an eigenvalue of an Aj with modulus less than one is not necessary
for pointwise convergence in the real case. Consider the example

4- {A1,A2} C N2x2,

with

-.0027 -1.7896 -sin0 cos0

and with 0 selected as follows. The singular values of A1 are .9 and 2, so by Lemma
3.8 there is an x E R2 such that IIAxll2 < Ilxl12. It follows that there is a cone of
vectors in R2 that contains x, each vector of which is shrunk by A1 relative to I1 112.
We choose 0 so that each nonzero x R2 can be rotated into that cone, and we
have 4 pointwise convergent. However, the eigenvalues of A are 1.0054 and -1.7903,
whereas those of A2 both have modulus 1. Again, by applying a small perturbation,
one can construct a pointwise convergent set in which each eigenvalue of each matrix
exceeds one in absolute value.

Finally, in this section we observe that convergence is invariant under simultane-
ous similarity.

LEMMA 3.11. Let A {Aj j J} c Fnn, and let S Fxn be nonsingular.
Then A is pointwise (uniformly) convergent if and only if As {SAjS-1 j J} is

pointwise (uniformly) convergent.
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Proof. The proof for either pointwise or uniform convergence follows from the
fact that if y S-ix and {pi}il is any index sequence, then

k--
i=k i=k

4. Sets of diagonal matrices. We first establish the equivalence of pointwise
and uniform convergence for sets of diagonal matrices.

THEOREM 4.1. Let 79 {Dj j E J} c Fnxn with each Dj a diagonal matrix.

If 79 is convergent at x Ix1 x2...xn]T with xi O for i 1, 2,...,n, then 79 is
uniformly convergent.

Proof. We first consider the case x e [1 1-.. 1] T. If 79 is convergent at
e, there is a finite product D of matrices in 79 such that IIDell < Ilell, where

Ilxll max {Ixil 1 < < n} is the infinity norm of x. Since D is diagonal, the
entries of De are the eigenvalues of D. Thus, the inequality IIDell < Ilell may be
written p(D) < 1, and so 79 is uniformly convergent by Theorem 3.5.

Now consider ageneralx- [Xl x2...xn]T withxi 0 fori- 1,2,...,n and
suppose 79 converges at x; that is,

Let Dx diag {xl, x2,..., Xn }, SO that Dxe x.
Then

so 79 converges at e and hence converges uniformly. [?

COROLLARY 4.2. A set of diagonal matrices is pointwise convergent if and only
if it is uniformly convergent.

Accordingly, we do not modify the word convergence when referring to a set of
diagonal matrices.

We now develop a test for convergence of a finite set of diagonal matrices. We
remark that, because of Corollary 3.6, the test is also relevant to infinite sets of
diagonal matrices. Through the remainder of this section, we assume that 79 is finite.

DEFINITION 4.3. The matrix A ]Rmx is semipositive provided there is an x in
I with x > 0 such that Ax > O, the inequalities denoting entrywise inequality.

A more general semipositivity is discussed in [2] and semipositivity as defined
here is discussed in [5]. In the following discussion, N denotes the set of n-tuples of
nonnegative integers and IR denotes the nonnegative orthant in R.

LEMMA 4.4. Suppose that A Rm. Then A is semipositive if and only if there
is a k N_ such that Ak > O.

Proof. Clearly the existence of k implies A semipositive.
Suppose A is semipositive; choose x R_ such that Ax > 0. Since the map

y Ay is continuous, there is an open set U C R containing x such that y U
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implies Ay > 0. We may choose a member q of U C ]R_, all of whose entries are
rational, and for an appropriately chosen positive integer c, k cq is in N_, and we
have Ak cAq > O.

THEOREM 4.5. Let 79 {D1,D2,... ,D,} C nn with Dj diag {dlj,d2j,...,
dnj},j 1, 2,..., m, and suppose dij 7 0 for 1 <_ <_ n, 1 <_ j <_ m. Let L(79)- [lij] E
In m be defined by

Then 79 is convergent if and only if L(79) is semipositive. Furthermore, if this is the
case and if k N_ satisfies L(79)k > 0, then p(Dk 1D2k,..., Dkmr) < 1.

Proof. It holds that 79 is convergent if and only if there is a sequence {Pi }i=1 such
that 1 < pi < rn and

Since 79 is a commutative set {pi} exists if and only if there is a k [kl k2i=1

km]T N, with =1 k t, such that

p(DkllDk22 o’,Dkm ) 1.

This inequality is equivalent to

m

j=l

for i- 1,2,...,n.

Taking logarithms, we obtain the equivalent linear system

E kj In dyl < O,
j=l

1,2,...,n

or, equivalently, L(79)k > 0. Thus, by Lemma 4.4, 79 is convergent if and only if L(79)
is semipositive, and in this case the stated inequality holds.

It is easily seen that a set 7? {D1, D2,..., Dm} of diagonal matrices, in which
there are some zero entries on diagonals, is convergent if and only if the set 7} is
convergent. Here 7} is obtained from 79 by deleting from each D the ith row and ith
column provided there is a k such that dik 0. This observation leads to the following
corollary in which L(79) is defined consistently with its definition in Theorem 4.5.

COROLLARY 4.6. Let 79 {D1,D2, ,D,} CFnxn with Dj diag {dlj,d2j,.
dnj}, 1 < j <_ m. Let L(79)= [lij] Inxm be defined by

-ln Idijl
lij 1

if dik O for k- l,2,...,m,
if there is a k such that dik O.

Then 7) is convergent if and only if L(79) is semipositive and the final sentence of
Theorem 4.5 remains valid.

Proof. T) is convergent if and only if 7}, described above, is convergent. 7} is
convergent if and only if L(7}) is semipositive. Now L(79) may be obtained from
by adjoining rows all of whose entries are one. Hence, for x ]R, L(7))x > 0 if and

only if L()x > 0, and the corollary follows.
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We note here that, in view of Lemma 3.11, sets A {A1,A2,... ,Am} C ]nxn,
which are simultaneously diagonalizable, can be tested for convergence using Corol-
lary 4.6.

5. Sets of triangular matrices. In this section we may interpret "triangular"
as "upper triangular" throughout or as "lower triangular" throughout.

DEFINITION 5.1. If A Fnn, then diag (A) is the matrix obtained from A by
replacing all off-diagonal entries with zeros.

THEOREM 5.2. The set T {Tj j J} of triangular matrices is uniformly
convergent if and only if the set

diag (T)= {diag (Tj): j e J}

is convergent.
Proof. The result follows from Theorem 3.5 and the fact that for any sequence
k{Pi}i=l, the eigenvalues of 1-I=k Tp are the same as those of Yii=k diag (Tp). [:]

We remark, however, that for sets of triangular matrices, pointwise and uniform
convergence are not the same. Let T {T1, T2} C 22, where

T1- 0 5

We show that T is precontractive relative to I1" 112 and hence pointwise convergent. In
fact, we claim that for x R2 and x : O, one of the following is true:

() IIT:xlI: <
() IITTITxlI: <
() IIT:TTxlI < x.

It is sufficient to show that one of (1)-(4) holds when x [] or x [] for some
y e . Clearly, (1) holds when x []. For i- 1, 2, 3, 4, let Si {y e R’(i) holds for
x []}. Computation shows that

{ { 1 }S-- ’5 1 <<g+ i5 D ’<<2

s- .<-
4Hence, i= Si R and T is pointwise convergent.

However, T is not uniformly convergent, as we see by use of Theorems 5.2 and
4.5. Let Di diag (Ti) for i= 1,2, so that diag (T)= {D,D}. Then

In 5C(diag (T))-
lna ln5

is not semipositive, since it has sign pattern [; ] and its determinant is ero
Hence, diag (T) is not convergent, so T is not uniformly convergent.
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We obtain a necessary condition for pointwise convergence of a set of triangular
matrices.

THEOREM 5.3. Suppose T- {Tj j E J} C ]nXn with each Tj triangular. If 7"
is pointwise convergent, then for 1 <_ <_ n, there is a j in J such that lenti (Tj) < 1.

Proof. Suppose there exists an such that

lenti(Tj)]_>l forjEJ.

Then no finite product P of the Tj’s would satisfy IIPeill2 < ][eill2 where ei is the ith
canonical basis vector in Fn, so 7- is not precontractive relative to I1" 112 and hence is
not pointwise convergent.

Finally, we note that results obtained for sets of triangular matrices can be used
for any commuting set of matrices via simultaneous triangularization and Lemma 3.11
(see [4, Whm. 2.3.3].)
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A HYBRID ALGORITHM FOR OPTIMIZING EIGENVALUES OF
SYMMETRIC DEFINITE PENCILS*

JEAN-PIERRE A. HAEBERLYt AND MICHAEL L. OVERTON$

Abstract. An algorithm is presented for the optimization of the maximum eigenvalue of a
symmetric definite pencil depending affinely on a vector of parameters. The algorithm uses a hybrid
approach, combining a scheme based on the method of centers, developed by Boyd and E1 Ghaoui
[Linear Algebra Appl., 188 (1993), pp. 63-112], with a new quadratically convergent local scheme.
A convenient expression for the generalized gradient of the maximum eigenvalue of the pencil is also
given, expressed in terms of a dual matrix. The algorithm computes the dual matrix that establishes
the optimality of the computed solution.

Key words, nonsmooth optimization, generalized eigenvalue problem, matrix pencil, Lyapunov
equations

AMS subject classifications. 15A22, 15A42, 49A52, 65F15, 90C26

1. Introduction. In this paper we consider the problem of minimizing the max-
imum eigenvalue of a symmetric definite pencil (A(x),B(x)) depending on a vector
parameter x E m. Many problems arising in control theory can be formulated in
these terms. Most notable among these are the computation of bounds for struc-
tured singular values and the computation of structured Lyapunov functions [3]. The
salient feature of this problem is the lack of smoothness. Indeed, it is well known
that the eigenvalues of a matrix are not differentiable as functions of the entries of
the matrix when their multiplicity exceeds one. Furthermore, at an optimum point,
the multiplicity of the maximum eigenvalue is often greater than one. Thus standard
optimization techniques cannot be applied.

The special case B I, which is the problem of minimizing the maximum eigen-
value of a symmetric matrix A(x), has been studied extensively (see [14] and the
references therein, as well as [1], [5], [9]). The case where B(x) is constant is entirely
similar and is briefly discussed in [14]. Algorithms have been developed in [2], [11]
and [12] to solve the problem when the pencil depends affinely on the parameter vec-
tor and in [8] for the general case. The algorithm of Boyd and E1 Ghaoui in [2] is
based on the method of centers and exhibits very good global behavior but slow local
convergence.

We propose a hybrid algorithm, combining the robustness of the method of centers
with rapid local convergence, to efficiently solve the affine case. More precisely, we
propose to follow the path of centers to the vicinity of a solution and then to switch
to a quadratically convergent local scheme. Such an approach was suggested in [2]. It
should be noted that any algorithm exhibiting good global behavior could be used in
place of the method of centers, e.g., any algorithm based on interior point methods.
The local algorithm results from an extension of the work presented in [13], [14], and
[16] to a pencil-valued function (A(x),B(x)). The algorithm is implemented to take
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full advantage of a block diagonal structure, if present. Block diagonal pencils occur
frequently in applications from control theory [3].

The paper is organized as follows. Some notation and conventions are introduced
in 2. The generalized gradient and directional derivatives of the maximum eigenvalue
are derived in 3 and optimality conditions are stated. The local algorithm is described
in 4 and the global algorithm in 5. Two numerical examples are presented in 6.

2. Preliminaries. Let qnn denote the set of n n real symmetric matrices.
For B E nn, the notation B _> 0 means that B is nonnegative definite, and B > 0
means that B is positive definite. A symmetric definite pencil (A, B) consists of a

pair of matrices A, B in snn with B > 0. An eigenvalue A of (A, B) satisfies
det(A- AB) 0, i.e., there is a nonzero eigenvector q satisfying Aq ABq.

We write (,) for the Frobenius inner product on the space of n n matrices.
Thus

(M, N tr MTN.

Let "vec" denote the operator mapping ,Sn n into ,(n+1)/2 defined by

vecA (a11, x/a2,..., x/aln, a22, v/a23,..., x/a2n, a33, v/a34,..., ann)

for A (aij) E $nxn. Observe that for two symmetric matrices M and N, we have

Also, let

(vecM)T(vecN) (M, N/.

C1 @ ( Ck

denote the block diagonal matrix with blocks C,..., Ck.
Given a symmetric definite pencil (A, B), let G denote the Choleski factor of

B. Hence G is a lower triangular matrix with positive diagonal entries such that
GGT B. Then the symmetric matrix G-AG-T has the same eigenvalues as the
pencil. Let us write Ama A >_ _> An for these eigenvalues and A for the diagonal
matrix

A Diag(A1,..., An).

Let Pl,P2,...,Pn denote a set of orthonormal eigenvectors for G-AG-T, and let
P [p...p] denote the orthogonal matrix with columns pi, 1 <_ i <_ n. Then the
columns of the matrix Q G-Tp [G-Tp,..., G-Tpn] are eigenvectors for the
pencil. Hence we have

pTG-AG-Tp A, pTp I
and

AQ- BQA, QTBQ- I.

We have the following characterization of/max [14]"

(1) Ama max{(U, G-1AG-T}Iu ,Snn, tr U 1, U >_ 0}.

In particular, we see that Amax is a convex function of A; however, it is only quasi-
convex as a function of B [2].
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3. Optimality conditions. Consider a symmetric definite pencil-valued func-
tion (A(x),B(x)) of a vector of real parameters x E m. We assume that A(x) and
B(x) are twice continuously differentiable in x and we write Aj(x), Bj(x) for the
partial derivatives of A(x) and B(x) with respect to xy. Note that a vector subscript
(e.g., xy) denotes a component, while a matrix subscript indicates differentiation.
Later, we shall use matrix superscripts to denote diagonal blocks.

Let G(x) denote the Choleski factor of B(x) and let Ly(x) denote the partial
derivative of G(x) with respect to xj. Thus Ly(x) is the unique lower triangular
matrix that solves the equation

TLy (x)GT (x) + G(x)Lj (x) By (x).

Note that this is a particularly simple Lyapunov equation since the matrix G(x) is
lower triangular. Since

we have

--G-1 (x) -G-1 (x)Ly (x)G-1 (x),

Ox--. (G-(x)A(x)G-T(x)) G-(x)Zy(x)G-T(x),

where the matrix Zy(x) is given by

(3) Zy(x) Ay(x) Lj(x)G-(x)A(x) A(x)G-T(x)Ly(x).
For future reference, we also define

0
(nj(x)).(4) Liy(x)

Thus Liy(x) is that lower triangular matrix that solves the following equation:

Liy(x)GT(x) + G(x)LTij(x) Bij(x) -[Li(x)L(x) + Ly(x)LT (x)].

Clearly, Lij(x) Lyi(x).
Finally, write

/max(X) /l(X)

_ _
An(X)

for the eigenvalues of (A(x),B(x)), let P(x) be an orthogonal matrix of eigenvectors
for G-(x)A(x)G-T(x), so that

pT(x)G- (x)A(x)G-T(x)P(x) A(x)

and define Q(x) G-(x)P(x).
We are now ready to derive the generalized gradient of Ama(x). (See Gollan [18,

Thm. 6.1] for a related result.)
THEOREM 3.1. Assume that the multiplicity of Amax(X) is t and let Qmax(X) be

the submatrix of Q(x) whose columns form a complete set of eigenvectors for Amax(X).
Then the generalized gradient of )max(X) is the set

0 m x(X) e (U, Qmax(X) (Aj(x) ,max(x)Bj(x)) Qmax(X))},
where U runs over all nonnegative definite symmetric t t matrices with tr U 1.
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Proof. Let C denote an n n symmetric matrix. The generalized gradient of the
maximum eigenvalue Amax Amax(C) viewed as a function of C was given in [14]. If
the multiplicity of Amx(C) is t and if Pmx is an n t matrix whose columns form a
complete set of orthonormal eigenvectors for Amx(C), then

{V e V= rPm xUP , x},

where U runs over the t t symmetric matrices with U >_ 0 and tr U 1. We call U
a dual matrix. The generalized gradient of the maximum eigenvalue Amx(X) of the
symmetric matrix G-I(x)A(x)G-T(x) now follows from the chain rule [4]. We get

(6) C,max(X) {V e ,m IVj <Y G-I(x)Zj(x)G-T(x)I},

where V e OAmax(A(x)). We have an equality in (6) instead of a mere inclusion be-
cause Amax(x) is a regular function [4]. Indeed, (1) expresses Amx(X) as the maximum
over the matrices V of (V, G-I(x)A(x)G-T(x)}, and, for a fixed V, the function

x (V,G-(x)A(x)G-T(x)}

is differentiable, hence regular [4, Thms. 2.8.2 and 2.8.6.]. We write Pmx Pmax(X)
and Qmx Qmax(X) G-T(x)Pmax(x). Observe that

(Pmax T G-1UP,x (x)Zj(x)a-T(x)) (U, T G-TPnaxG- (x)Zj(x) (x)Pmax).

Now the columns of Qmax are generalized eigenvectors for ,max ,max(X) and we
hve

The result follows.
A necessary condition for x to minimize Amx is that 0 E 0Amax(X) [4]. By

Theorem 3.1 this can be rewritten as follows. Let t denote the multiplicity of Amx(X).
Then a necessary condition for x to minimize Amax is that there exists a dual matrix
U E tt such that

(7) tr U 1,

(s) u > 0,

and, for 1 <_ j _< rn,

(9) (U, TQmax(X) (Aj(x) ,kmax(X)Bj(x)) Qmax(X)} 0,

where Qmax(X) is as in Theorem 3.1.
As a corollary of Theorem 3.1, we can evaluate the directional derivative of

,max (X).
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COROLLARY 3.2. Let Amax(X; d) denote the directional derivative of ,max in the
direction d, i.e.,

,kmx(X; d) lim
e$o

,’max(X - ed) ,max(X)

Then max(X, d) is equal to the largest eigenvalue of the matrix

m

Qmax(X) (Aj(x) Amax(X)Bj(x)) Qmax(X).
j=l

Proof. Since "max is regular at x the directional derivative max! (X; d) exists and
is given by [4, Prop. 2.1.2]

Amax(X; d)- max{ (v, d} v e 0Amax(X)}.

Now for v E 0Amx(X) we have, from (5),
m

j=l

m

Qmx(X) (A(x) am(x)B(x))Qmx(X))
j=l

m

dQmx(Z) (A(z) Xm(z)B(z)) Qm(z)).
j=l

The result follows from (1). S
Now consider the three optimality conditions (7)-(9). Suppose that x and U are

known to satisfy the first and third condition, but not necessarily the second condi-
tion U 0. The following result shows the relationship between certain directional
derivatives of mx(X) and the eigenvalues of the dual matrix U.

a.a. Let x and U satisfy (7) and (9), and let 0 be an eigenvalue 4
U with normalized eigenvector v. Suppose d and form a solution of the
following equation:

d Qm x(X) -w
j=l

Then the directional derivative Amx x d) is given by

max(X, d) 0.

Proof. Let us write

m

M(d)- E dj TQmax(X) (Aj(x) ,max(x)Bj(x)) Qmax(X).
j=l

Then (10) gives

M(d) 51- vvT,
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so that all the eigenvalues of M(d) are equal to 5 except one that equals 5- 1. Thus
A (x; d) 5 by Corollary 3.2. Now, taking the inner product of both sides of (10)
with the matrix U yields

m

(max(X) (Aj(x) max(x)Bj(x)) Qmax(X)} 5 tr U -0.
j=l

Since optimality conditions (7) and (9) are satisfied, this equation reduces to

which completes the proof.
The essential idea here is that the direction d splits the multiple eigenvalue max,

but, to first order, the multiplicity is reduced only by one. Among other things,
this result shows how to generate a descent direction for Amax(X) if all optimality
conditions are satisfied except U >_ 0" set 0 equal to a negative eigenvalue of U. For
further results of this kind, together with a discussion of solvability conditions for
systems of the form (10), see [15].

4. The local algorithm. In this section we develop a quadratically convergent
local algorithm to minimize the maximum eigenvalue of the pencil (A(x), B(x)), under
the assumption that A(x) and B(x) are affine functions of x. Thus

A(x) Ao + xlA1 +... +
and

B(x) Bo + xlB1 +’" + xmBm.

We discuss the nonlinear case briefly at the end of this section. We further assume, as
is the case in many applications, that the pencil (A(x),B(x)) is block diagonal, with
denoting the number of blocks. Thus

A(x) A (x) A (x), B(x) Bl(x) e Bl(x)

with Ai(x), Bi(x) in nixni, Bi(x) > 0, for 1 <_ l. Let n nl +.-. + nl be the
dimension of the pencil and let A,x(x) denote the largest eigenvalue of (A(x), B(x)).

Given an initial point x in a neighborhood of a local minimizer x* of Amax(X),
we show how to generate a sequence of iterates converging quadra^tically to x*. Let
: denote the current point. The new iterate is set to 2 + d where d is the solution of
a certain equality-constrained quadratic program. Let t (tl,... ,tl) be the vector
of multiplicities for Aa _-- Amax(X*), i.e., tj >_ 0 is the multiplicity of Anax in the
block (AJ(x*),BJ(x*)). Of course, t is not known and needs to be estimated. This
is done with the use of a multiplicity tolerance T, based on the eigenvalues at the
current iterate :. More precisely, we write mx Amx(?), i Ai(2), we order the
eigenvalues of each block in decreasing order,

and we define tj >_ 0 by

max- Xq-1 > Tmax(1,
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and, if tj ? 0,

max ,.q
__
Tmax(1, ]maxl).

We write

/Jmax Diag(,..., ,),
for the diagonal matrix consisting of the first tj eigenvalues of the jth block. If tj 0,
/max is an empty matrix. Let

blest Diag(,+1,. J{,
and

^J/J /Jmax Arest.
Let ( be a matrix whose columns form a complete set of eigenvectors for the pencil
at &. Clearly Q is also block diagonal,

0=01 0
We now write max for the matrix obtained from Q by discarding all but the first tj
eigenvectors of the jth block, for 1 <_ j <_ 1. It is also block diagonal, i.e.,

(max =Omax Qmax,

where (Jmx, of size nj x tj, corresponds to the jth block and is empty if tj O.
Finally let yQrest be such that

The quadratic program that is solved to compute the step d is given as follows:

i dT(11) min w + Wd

subject to

(12) K() :h,

where w E and W is a positive definite matrix that is described below. The matrix
K is given by

where Kj is the matrix
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with I the identity matrix of size tj x tj and { (2),/ =/) (2). Clearly, Kj is
empty if tj 0. The vector h is given by

where

hj vec(/Jmx- jmaxI)

if ty > 0 and hj is empty otherwise.
The formulation of the quadratic program can be motivated as follows.

constraints (12) consist of
The

(13) +
2

j=l

scalar constraints. The multipliers of these scalar constraints can be assembled into
a block diagonal dual matrix estimate

U=UI@...@U

with Uj empty if t 0. If (d,w) is a solution of (11), (12), then the optimality
conditions for quadratic programs give

(14) E (UY " T " (Wd) 0Qmax (z2" maxBi ) OJmax} q- i--

j=1

for l<i<mand

(15) trU=E trUj-1.
j=l

Now observe that if the multiplicity tolerance r 0, the vector h is zero, and the
constraint (12) can be rewritten as

m

E diQmax ]t-" "J)maxBi Jmax =COI, 1 _< j _< 1.
i=1

Since the matrices (J T (J "J
max,--i AmaxBi)(Jmax are the diagonal blocks of the matrix

TQmax(x)(Ai(2)- .Xmax(2)Bi(c))Qmax(2) of Corollary 3.2, we conclude that a solution

(d,w) of (12) satisfies

If, moreover, (d,w) is a solution of (11) then

1
w + 2dTWd < 0

2
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since (0, 0) is feasible. But W is positive definite so that

1
rnax(; d) < --dTWd < O.

Hence d is a descent direction for Amax unless d 0. But if d 0 then (14) and
(15) show that all optimality conditions for Amax are satisfied at & except possibly the
nonnegative definite condition on U. If U does have a negative eigenvalue, Theorem
3.3 shows how to obtain a descent direction by splitting Amx.

If the multiplicity vector t of ,kmax at the optimal value x* is known, the problem
of minimizing )kma over x can be rewritten as

subject to

min w

(16) A (x) AtJ (x) w, 1 _< j < 1.

The objective function is now a smooth function of x and w, but the constraints, of
course, are not. Following [16], we replace these nondifferentiable constraints with a
system of nonlinear equations to get the following nonlinear program:

(17) min w

subject to

(18) F(x, Y, w, O) O,

where F(x, Y, w, O) is a block diagonal symmetric n n matrix

The matrices FJ (x, Y, w, O) are defined as follows. The vector 0 is given by

We write

Let

0 (0 +,..., 0,..., t,+,...,

0j Diag(OtJ+l,..., 0).

y y1 ... yl,

where YJ is a skew symmetric njx nj matrix, and let

D=DI...@D

with DY wI Oy, where I is the ty x ty identity matrix. Then

Fj (x, Y, co, O) Dj e-Y" (jT(GJ)-I (x)Ay (x)(GY)-T(x)yeY,

where Gj (x) is the Choleski factor of BY (x) and (Y is the matrix of eigenvectors for
the pencil (Ay (if:), By (5:)). Observe that the definition of F depends on 2 through (.
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The matrix exponential eY is orthogonal since YJ is skew symmetric, and it follows
that (x,Y,w, t9)solves (18)if and only if the pencil (AJ(x),BJ(x)) has eigenvalues

ti+l,"" /n )"
t

In the case tj 0, the latter condition is an empty one, indicating that the block Fj

can be omitted from F in this case.
The idea of replacing the nondifferentiable constraints (16) by an equation of the

form (18) based on a matrix exponential formulation goes back to [7]. Indeed, consider
the case where the number of variables and constraints in the quadratic program (11),
(12) are the same, i.e., K is square, or equivalently, the number of constraints, as given
by (13), equals m + 1. Then, provided K is nonsingular, the solution of the quadratic
program is completely defined by the constraint (12). In the case that B(x) I, this
essentially reduces to the step defined by Modified Method I in [7], the only difference
being that in [7], the multiple eigenvalue Amax is prescribed. The method in [7] can
be viewed as a variation on Newton’s method for solving (18), but the analysis is
somewhat complicated because (a) the definition of F, which depends on (, changes
at every step of the iteration, and (b) it is necessary to remove the leading tj by ty
block of the variables YJ from the formulation of F to obtain a well-posed iteration,
leading to a sequence of nonlinear equations that are solvable only in the limit.

The matrix W in the quadratic objective (11) is derived from the Hessian of the
Lagrangian function associated with the nonlinear program (17), (18), evaluated at
x 2, w max, YY 0 and Oj ^JArest. A detailed discussion in the case B(x) I
is given in [16]. Specifically, W is an m x m symmetric matrix whose (p, q)-entry is
given by

(19) Wpq <UJ,HJpq>,
j--1

where HpJ, is a symmetric tj x tj matrix computed as follows. It is empty if t 0.

Otherwise let (J Gy (&) be the Choleski factor of BJ (&), let ,{ denote the matrix

defined by (2) for the block BY(&) and similarly L for the matrix defined by (4).
Finally write Zp Zp(&). Then

where:
1. J M1 + Mc with

T ^ ^jM1 _) T jj (j) QmaxAmax,max--pq

2. JHpq,2 M2 + M2T with

M2 =-J r j ((j)--lj (j)-T(Lq)j TQmax;"j
maxp

3. JHq,3 M3 +M with

M3 5 T )(j)- Zg#  x;



OPTIMIZING EIGENVALUES OF SYMMETRIC DEFINITE PENCILS 1151

4. JHpq,4 M4 + MT4 with M4 0 if tj nj, and otherwise

^j T ^JQrest )-l()J T’J()JM4 QmaxZp Sj
"rest’-’q’max

where

Sj Diag(max J 1maxtjq-l’’’’’

Observe that the computation of Ma seems to require explicit knowledge of al.
the eigenvalues and eigenvectors of (J,/J) rather than just the first tj. However, a

clever observation of Xianjian Ye [17] allows us to compute M4 using only/max and
(max" Let

Tj ,maxj J + [J lOJmaxOJmaTx./j

^j -1 ^j TThen the term Qrest (Sj) Qrest in M4 is given by

Oj {j)--i "j T -1 {F’f)j (j T
restk Qrest Tj

max- max

Arest can pq.Hence all references to Qrest and be eliminated from the equations for H
In the case B(x) I there is only one term contributing to the Hessian, namely,

Hpq,4 with 2p and Zq replaced by p and .q, respectively, [13], [16]. All other terms
vanish. When B(x) is not constant, even though the second derivatives of A(x) and
B(x) are zero since A(x), B(x) are affine, the second derivatives of the Choleski factor
G(x) are not. Indeed, they are the matrices Lii(x). This explains the presence of the
terms Hpq,1, Hpq,2, and Hpq,3.

We now summarize the local algorithm.

Step O. Initialize &.
Step 1. Compute A(), B(&), the Choleski factor G(2), the multiplicity estimate

t, the eigenvalues Amax(&), and the eigenvectors Qmax(k).
Step 2. Compute the matrix K and the vector h from (18).
Step 3. Obtain an estimate U U ... U of the dual matrix. This is done

by computing the least square solution v to the equation

where el (1, 0,..., 0) E m+l. Note that the estimate from a previous iterate is
useless because the basis of eigenvectors may have rotated an arbitrary amount. The
vector v has dimension

E tj(tj + 1)
2

j=l

and can be assembled into the matrix U. Compute the eigenvalues of U. If U has a

negative eigenvalue, split the maximum eigenvalue as explained in Theorem 3.3 and
go to Step 1.

Step 4. Use the dual matrix estimate U to define the matrix W using (19) and
solve the equality-constrained quadratic program (11), (12) to obtain a step . If

I111 < 1, a second order correction is computed to avoid the Maratos effect [6]. This
is unnecessary in most cases but the cost is negligible.
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Step 5. If I111 is less than a certain convergence tolerance, stop; otherwise, set
&=2+,andgotoStep 1.

The iteration just described is locally quadratically convergent to a minimizer of
Amax(X). This property is demonstrated by the numerical results in 6. The proof of
this assertion, given the appropriate nonsingularity condition, requires extension of
the results in [16] and is beyond the scope of this paper.

Observe that no line search is performed. If the new iterate fails to produce a
reduction of Amax, the step is rejected altogether, and a new step is computed using
the method of centers. This is discussed further in the next section.

We conclude this section with a brief discussion of the case that the pencil
(A(x),B(x)) depends nonlinearly on x. The linear approximations used in the con-
straints of the quadratic program remain valid, but the matrix W is not. The formula
for W is easily generalized to apply to the case where A is nonlinear and B is affine, by
including a second derivative term for A [16]. However, the formula for the case that
B is nonlinear is far more complicated. Rapidly convergent methods could instead be
constructed using quasi-Newton or limited memory quasi-Newton techniques [10] to
approximate W. Indeed, because of the complicated form of W and the fact that it is
a dense matrix, these may be preferable even for the affine case for moderately large
sized problems.

5. The global algorithm. The global algorithm is a two-stage process. In the
first stage, a sequence of iterates x is computed using the method of centers (Boyd
and E1 Ghaoui [2]) until the norm of the step x+1 x is reduced below a certain
threshold. In the second stage, we proceed as follows. First, we compute a step d by
solving the quadratic problem described in the previous section. If the point xv + dv

is feasible, i.e., B(x + d) > 0, and if d is such that mx(X + d) < mx(X), then
we set xv+ x" + d. Otherwise, x+ is computed via the method of centers.

The algorithm of Boyd and E1 Ghaoui is thoroughly discussed in [2], so we sketch
only the basic step. Consider the matrix inequality C(x) > 0 where C(x) is the block
diagonal matrix

C(x) (pB(x) A(x)) @ (B(x) #I) @ (XsupI- Diag(x)) (XsupI + Diag(x)).

Here # is a small constant used to ensure that B(x) remains in the interior of the
positive definite cone, while Xsup is a large constant used to ensure that x remains
bounded. The quantity p is an upper bound on the value of the maximum eigenvalue
of the pencil (A(x),B(x)). For a fixed p let x*(p) denote the analytic center of the
inequality C(x) > 0, i.e., x*(p) argmax det C(x) [2]. Now for p and x with
C(x) > 0 let

and

x x*

+
where 0 < a < 1 is a parameter kept fixed throughout the algorithm. The analytic
center is computed via Newton’s method applied to the logarithmic barrier function
log det C-(x), using an exact line search for the computation of the step length.

The algorithm [2] applies only to the case that (A(x), B(x) is affine. It should be
possible to generalize some of these ideas to the nonlinear case, but as yet this has
not been investigated.
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TABLE 1
Hybrid.

2
3
4
5
6
7

9
10

2.56696348918400 2.937e-01
1.65996563727620 1.597e-01
1.08305393696925 i:002e-01
0.75949i0i184420 8.061e-02
0.66424777849618 6.59ie-02
0.6610915i988020 3.149e-02
0.6063603170038 2.594e:03
0.6055966458506 1.785e-03
0.66055960982024 1.358e-06
0.66055960981957 5.684e-ll

MflP,s N
1.20 7
1.54 9
1.54 9
1.54 9
1.37 8
1.18 ’7
1.19 7
0:14 0
0.14 0
0.14 0

TABLE 2
Method of centers.

} 0.660636})3170038

2.5,6696348918400 2.937e-01

8 0.66057058873535
9 0.66056118766552
10 0.66055983654089

2.594e-03
4.167e-04
5.915ei05
1.960e-05

Mflps I,N
1,20 7

1.19 7
1.19 7
1.19 7
1’.36 8

6. Numerical results. We now present some numerical results. The algorithms
were implemented in MATLAB.

We first consider the example presented in [2]. The matrices A(x) and B(x) are
block diagonal with four blocks of dimension 4. There are nine variables. We set
# 0.0001, Xsup 50, a 0.001. The threshold value to, determining when to
attempt to switch to the local algorithm, is set to 0.01. The vector x is initialized to
(1, 1, 1, 0, 0, 0, 0, 0, 0). The results of the hybrid algorithm are given in Table 1 while
Table 2 contains the output from the method of centers alone. In both cases the
results use our implementation of the method of centers, as described in [2]. The
number N denotes the number of Newton steps required by the inner iteration that
computes the analytic center. This is zero once the hybrid algorithm has switched to
the local scheme. The expression Ildll refers to the norm of x+1 x. The hybrid
algorithm terminates when Ildll < 10-1. In the case of Table 2, the stopping criterion
is fi- Amax(2) < 10-1. The Mflops column displays the number of floating point
operations required in millions. The large number of operations reflects the fact that
the inner iteration required by the method of centers is being performed accurately;
this number could undoubtedly be reduced. The significant point, however, is the
following: the global algorithm finds the neighborhood of the solution very reliably,
while the use of the local algorithm, once in the neighborhood of the solution, rapidly
locates the solution to full precision. Note, specifically, the quadratic convergence
of Ildll to zero once the local scheme is in effect. The eigenvalue Amx has block
multiplicities 1, 0, 0, 1 at the computed solution x*. The hybrid algorithm reduces the
gap between Al(x*) and A2(x*) to 1.4 10-15, while the method of centers reduces it
only to 5.4 10-7. The dual matrix U has block dimensions (1, 0, 0, 1), corresponding
to the multiplicity of Amax, and is computed by the hybrid algorithm in Step 3 of the
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local scheme. Its final value is found to be Diag(.583, .417) (to three digits), verifying
that the optimality condition (8) is satisfied. Optimality conditions (7) and (9) hold
to machine precision.

0.7989467570479351
2 0.5279030947496347
3 0.4096247700327728
4 0.3564700009737637

0.3313368545063169

11
12
,,13
14
15
16

18

TABLE 3
Hybrid.

Ildll MflPs N
2.889803 41.0 9
1.161417 41.0 9

5.185782e-01 41.0 9
2.556177e-01
1.409038e-01

013190742531948093 8.384906e-02
0.3130620662624993 5.438315e-02
0.3101212297584327 3.939520e-02

"0:3086835410941962 2.939005e-02
0:307979136097306 2.094047e-02
0.3076340074134891 1.419033e-02
0.3074633984606852 9.392075e-03

0:3073787506822123
0.3073365132846426
0.3072932213520559
0.3072931684710006
0.3072931684689409
0.3072931684689404

41.0 9
40.9 9
40.9 9
40.9 9
40.9 9
40.9 9
40.9 9
40.9 9
40.9 9

6.222999e-03 46.3 9
4.171214e203 46.3 9
8.185445e-03 5.7 0
3.461869e-05 5.7 0
1.382263e’09 5.7 0
2.081514e-15 5.7 0

TABLE 4
Method of centers.

i 0.7989467570479351

13 0.3073787506822123
14 0.3073365132846426
15

17
18
19
20
21
22
23
24

2.889803

6.222999e-03
4.171214e-03
2.824038e-030.3073153048002088

0.3d73045769895835 1.916467e-03
0.3072991033588865 1.290257e-03
0.3072962829954534 8.516237e-04
0.3072948149058472 5.446555e-04
0.3072940435712944 3.348214e-04
0.3072936352938653 1.976833e-04
0.3072934180681651 1.127953e-04
0.3072933021081565 6.278650e-05
0.3072932400776711

41.0 9

40.9 9
40.9 9
40.9 9
40.9 9
40.9 9
40.9 9
40.9 9
40.9 9
40.9 9
40.9 9
40.9 9

3.439867e’05 40’9 9

The second example provides a better test of the new algorithm, since /max(X*)
has block multiplicities greater than one. There are fifteen variables and the matrices
A(x) and B(x) are block diagonal with three blocks, each of dimension 10. The matrix

B0 was set to the identity matrix and the matrices A0,..., A15 and B1,..., B5 were
generated using the MATLAB random number generator, and symmetrizing. The
matrices B,..., B5 were then scaled by a factor 0.05 to ensure the existence of a
reasonable-sized domain with B(x) > 0. All parameters have the same values as in the
previous example. The vector x is initialized with a random vector. The results are
given in Tables 3 and 4. The hybrid algorithm attempted to switch to the local scheme
at the thirteenth step since Ild1211 < t. The step was rejected, however, because it
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failed to achieve a reduction of max. The operation count for 13 is the sum
of the cost of one local step and one iteration of the method of centers. The same
phenomenon occurred at the fourteenth step. The algorithm switched permanently
to the local scheme at the fifteenth step and quadratic convergence was established.
The last line indicates the limits of double precision computation. The data for this
example is available from the authors.

The multiplicity of ,max at the computed solution x* is 6, with block multiplicities
1, 2, and 3. The hybrid algorithm reduces the gap between 1 and 6 to 3.3 10-16,
while the method of centers reduces the gap to 1.4 10-5. The final dual matrix U has
block dimensions (1, 2, 3), satisfies the optimality conditions (7) and (9) to machine
precision, and has eigenvalues 0.195 (first block), 0.074, 0.126 (second block), and
0.002, 0.244, and 0.359 (third block), demonstrating that (8) is also satisfied.

7. Conclusion. We have presented an algorithm for the optimization of the
maximum eigenvalue of a symmetric definite pencil depending Mfinely on a vector
of parameters. The algorithm combines a scheme based on the method of centers
developed by Boyd and E1 Ghaoui [2] and a new local scheme exhibiting quadratically
convergent behavior. The local scheme is an extension of the methods introduced in

[13], [14], and [16] to the case of matrix pencils.
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ROW SUMS AND INVERSE ROW SUMS
FOR NONNEGATIVE MATRICES *
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Abstract. For a nonnegative, irreducible matrix A, the grading of the row sums vector and the
grading of the Perron vector are used to predict the grading of the row sums vector of (I- A) -1
This has applications to Markov chains.

Key words, row sums, inverse row sums, Markov chain, nonnegative matrix
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0. Motivation. Let T be a row stochastic matrix. It is well known that the
matrix T is the transition matrix associated with an absorbing Markov chain if and
only if T is permutation similar to a matrix of the form

I 0

where A is a square matrix with p(A) < 1 [BP, Thm. 8.3.21]. Furthermore, if F is
the set of indices corresponding to the nonabsorbing, i.e., transient, states then the
expected number of steps until absorption when starting in the nonabsorbing state
is given by

[(I- A)-i]ij
jEF

[BP, Thm. 8.4.27]. This leads to the natural question of what can be said about
the row sums of the matrix (I- A)-1 given some knowledge about the matrix A.
In particular, what can we predict about the maximum and minimum row sums of
(I- A)-1 given the row sums of A and the Perron vector for A?

1. Notation. For an n n matrix A, let p p(A) denote the spectral radius of
A. The real matrix A will be called nonnegative, denoted A _> 0, if each entry of A is
nonnegative. If A is nonnegative and irreducible, let X XA denote the Perron vector
of euclidean norm one for A; that is, X is the unique strictly positive eigenvector of
norm one corresponding to the eigenvalue p(A). Unless otherwise specified, the matrix
A will always be an n n nonnegative matrix.
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Let v (Vl, v2,..., Vn) E In. There exists a permutation a such that Va(1)
vo(2) >_.-. >_ v(n). The integer vector (a-l(1), a-1(2),..., a-(n)) is called a grading
of v. If the entries of v are pairwise distinct, then v has a unique grading and v is
called a strictly graded vector. A set of vectors is said to share a common grading if
the intersection of their sets of gradings is nonempty.

For 1 _< _< n, let ei denote the ith standard basis vector for Rn. Let u un
denote the vector of ones. That is,

n

tn E ei-
i--1

Let D On denote the cone in ]1 generated by the vectors el, e + e2, el e2

e3,..., Un; that is, D- {v 1’" v >_ v2 >_... >_ Vn >_ 0}. Let II(D) denote the class
of D-preserving matrices: H(D) {A e 4n(R)" A(D) C_ D}.

Note that a nonnegative vector v ]1n has its entries in decreasing order if and
only if v D, and that v has its entries in strictly decreasing order if and only if
v int(D), where int(D) denotes the interior of D. Also note that if A E H(D), then
Ak H(D) for all positive integers k. Finally note that the row sums of the matrix A
are precisely the entries of the vector An.

LEMMA 1.1. If A is a nonnegative, primitive matrix with p(A) < 1, such that
An, (I A)-lu, and XA share a common (strict) grading, then there exists a permu-
tation matrix P such that pAptu, (I- PAPt)-u, and PXA are all in (int(D))D.
Furthermore, PXA XpAp,.

Proof. Let v An. Let the permutation matrix P correspond to the common
permutation a in the definition of grading. Then pAptu PAn D. Since p <
1, (I-A)- exists. Since P(I-A)-IP (I-PAPt) -1, and since Au and (I-A)-lu
share the common grading a, (I-PAPt)-Iu (I-PAPt)-Ptu P(I-A)-u D.
Finally, X is an eigenvector for p for A if and only if PX is an eigenvector for p for
PAPt. Since multiplication by P is norm preserving and since PAP is nonnegative
and primitive, XpAp, PXA. Note that a is a common grading for Au and XA, so

PXA D.
One immediate consequence of this lemma is that we can always assume that a

graded vector has its entries in decreasing order. Thus questions about graded vectors
are transformed to questions about vector membership in the cone D.

Finally, recall the Neumann expansion for the inverse of the matrix I- A.
THEOREM 1.2 [O]. Let A be an n n real matrix with p(A) < 1. Then (I-A)-1

exists, and

(I-A)-1 =In+E Ak"
k--1

2. Empirical evidence. If A is nonnegative and primitive, then by the power
method, Aku CkXA for large k. Furthermore, if p(A) < 1, then ck --+ 0 as k -- x.
Also, p(A) < 1 implies

(I A)- EAu--u+ u.
k=l

This suggests that the grading for (I- A)-u should be linked to the grading for
XA, and that the early terms in the summation should be the most important. Since
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(I- A)-lu and (I- A)-lu- u have the same grading, and since

(I A)-lu u Au + E Aku’
k=2

the importance of the grading of Au is immediately apparent. When Au and X share
a common grading, it remains to be seen how much of an effect the remaining low
order summands have on the grading of (I- A)-lu.

Motivated by numerical experiments conducted using MATLAB on an APOLLO
workstation, we were led to several conjectures. The first was that if Au, X, and
(I- A)-lu all share a common grading, then that grading is shared by Ak for all
positive k. The second and more interesting conjecture was that if Au and X share
a common grading, then (I- A)-u also shares that grading. Unfortunately, neither
conjecture holds.

If
0.2999 0.2421 0.0089

0.0305 0.0003 0.1814 0.2272
0.0013 0.1196 0.1426 0.1305
0.0008 0.0005 0.0009 0.0003

then

Au
0.3940 0.3131

u
1.5411

0.0025 0.0043 1.0041

Hence, Au, X, and (I- A)-u are all in D. However,

A2u
0.0914
0.1099
0.0011

which is not in D since its second and third entries are not in decreasing order.
Discovering a counterexample to the second conjecture proved to be very difficult.

The following matrix was one of only four counterexamples generated during a run of
25,000 randomly generated, rank four, strictly positive 4 4 matrices with spectral
radius less than one. In fact, for 67% of the matrices generated in that run, all three
vectors--Au, X, and (I- A)-lu--shared a common grading.

0.2837 0.0196 0.235610.1522 0.2149 0.0320 0.2848
0.1060 0.2072 0.1289 0.2415
0.2750 0.1958 0.0805 0.0187

then

At X and (I A) -10.6836 0.4987
u-

0.5700 0.4452 3"235613.0330
3.0338
2.7799
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Hence Au and X are in D, however, (I- A)-lu is not in D.
A run of 100,000 randomly generated, rank three, strictly positive 4 4 matrices

with spectral radius less than one yielded only one counterexample. Furthermore,
for this run, 91% of the matrices had all vectors sharing a common grading, and an
additional 3% had the Perron vector and the inverse row sums vector (but not the
row sums vector) sharing a common grading.

Extensive numerical experiments with matrices of sizes up to 50 50 lead to
the following observations. First, for low rank matrices, the grading of X is a good
predictor for the grading of (I- A)-lu. Second, even when the vectors do not share
a common grading, they share a roughly blocked common grading in the sense that
the grading vectors differ within blocks corresponding to closely sized entries of the
vectors. In particular, the set of indices for the smallest (largest) row sums of A
correspond roughly to the set of indices of the smallest (largest) entries of the Perron
vector and to the set of indices of the smallest (largest) row sums of (I- A) -1.

3. An analytic approach. In this section, we present several different types of
results including an examination of certain classes of matrices for which the grading
of the Perron vector and the row sums vector do determine the grading for the inverse
row sums vector.

PROPOSITION 3.1. Let A be an n n nonnegative, irreducible matrix with p-
p(A) < 1. Suppose that X XA E D. For 1 <_ <_ n,

(1 fl)-i x__/
_

[([_ A)_ u] _< (1 p)- x.
Xl Xn

Proof. Since A _> 0, and p < 1, I-A is an invertible M-matrix. Thus (I-A) -1

0 [BP, Thm. 6.2.3]. Since X E D and X is strictly positive, X >_ _> Xn > 0. Note
that (I- A)-IX (1 p)-lX. Thus for 1 <_ <_ n,

(1 p)-I xi E [(2 A)-]ijxj
J-- E [(I n)-l]ijXl [([ n)-I t]iXl.
J

Similarly, the other bound holds.
THEOREM 3.2. Let A be a nonnegative, irreducible matrix with p(A) < 1. If

A II(D), then Au, XA and (I- A)-lu are all in D.
Proof. Since u D, and since Ak II(D) for all positive k, Aku D for all

positive k. Since p(A) < 1, it follows from Theorem 1.2 that (I- A)-u u +- Aku D Finally since A is nonnegative and irreducible, XA exists and by thek--1
Krein-Rutman Theorem [BP, Thm. 1.3.2], A H(D) implies XA

COROLLARY 3.3. Let A be a nonnegative, irreducible n n matrix with p(A) < 1.

If aij

_
ai+l,j for 1

_ _
n- 1 and 1

_
j

_
n, then Au, XA, and (I- A)-lu are all

in D.
Proof. Pick z D. Note that z >_ 0 and A >_ 0. Thus for 1 _< _< n- 1,

(Az)i E aijzj

_
E ai+l,jZj -(Az)i+l O.

J J

Hence Az D.
THEOREM 3.4. Let A be a nonnegative, irreducible n n matrix with p p(A)

1. Suppose that the minimum polynomial of A is rnA(A) Ak()_ p). Then
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(I- A) -1 I + A +... + Ak-1 -- (1 p)-lAk. Suppose that An,... ,Ak-lu are
in D. If either of XA and Aku is in D, then all three of XA, Aku, and (I A)-lu are
in D. Finally, if at least one of XA,Au,... ,Aku is in int(D), then (I- A)-lu is in

int(D).
Proof. Let X XA. Then A pXY + N where yt is the strictly positive row

eigenvector for p such that YtX 1, and where N is the nilpotent matrix of index k
satisfying NX 0 and YtN 0t. For all nonnegative r,Ak+r pk+rXYt pAk.
Hence

EA EPAk (1 p)-lnk.
r=k r=0

Thus (I- A) -1 I + A +.-. + (1 p)-Ak. Since Aku pk(ytu)X,X is in D if and
only if Aku is in D. Since u E D, it follows that (I- A)-lu D when An,..., Aku are
in D. Furthermore, if one of the summands is in int(D), then it is clear that (I-A)-lu
is in int(D). [:]

COROLLARY 3.5. Let A be a nonnegative, irreducible n n matrix with p
p(A) < 1. /f rank(A) 1 and if Au e D, then XA and (I- A)-lu are in D.

THEOREM 3.6. Let A be a nonnegative, irreducible n n matrix with p p(A) <
1. Suppose that the minimum polynomial of A is either mA (A) A(A p)(A -/1) or
else mA (A) (A p)(A A), where )1 O. If XA and Au are in D, then (I A)-lu
is in D. Furthermore, if Au is in int(D), then (I- A)-lu is in int(D).

Proof. Let X XA. Then A pXY +)E, where yt is the strictly positive row
eigenvector for p satisfying ytX 1, and where E2 E, EX 0, and YtE 0t. For
each positive k,A pkXyt + AklE. Since p < 1, (I- A) -1 I + p(1 p)-XY +
/1(1 -/I)-IE. Then (I- A)-lu u + p(1 p)-l(ytu)X +/1(1 -/l)-lgt. Since
A1 < p < 1, 0 < (1 A)-I < (1 fl)-l. Clearly, Au >_ O. Now Au D if and only if
for l_<i_<n-1,

(Au) >_ (Au)i+
p (Ytu) Xi -- 1 (Eu)

_
P (Ytu) Xi+l t_ hi (Eu)i+l

" p (ytt)[Xi- Xi+l]

_
)1 [(gt)i_t_

:> p (1 p)-i (ytu) [Xi- Xi+l]

_
,1 (1 p)-i [(Eu)i+I (Eu)i]

Since X D, the left-hand side of the last inequality is nonnegative; hence the
inequality remains valid when (1 p)-I is replaced with (1 1)-1 on the right-hand
side. Thus it holds that

.That is, Au D and X E D together imply p(1-p)-(Ytu)X+A(1-Al)-lEu D.
That is, (I-A)-lu-u D. Since u D, (I-A)-lu D. Furthermore, if Au int(D),
then for all i, each inequality in the argument above can be replaced with a strict
inequality, hence (I- A)-lu int(D).

Remark. Let A be an n n, nonnegative, irreducible matrix with p(A) < 1. For
n _< 3, there are only two cases for A that are not covered in the results above" when
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A is 3 3, nonsingular, and either A is not diagonalizable or A has three distinct
eigenvalues. All cases for n 3 are contained in Theorem 4.6.

Let A be a nonnegative, irreducible matrix with p(A) < 1. In view of the preceding
results, several natural open questions arise. Suppose that the minimum polynomial
for A has degree k. If each of XA, An, AUu,..., Aa-lu are in D, does that imply that
(I- A)-lu is in D? Does it imply that Aru is in D for all positive r? If not, what
additional restrictions might be sucient on A or on the minimum polynomial?

4. A second analytic approach.
THEOREM 4.1. Let B be an n n complex matrix with p(B) 1. Then there

exists a unique positive integer k with k n, and there exist n n complex matrices
B1,...,Ba with Ba 0 such that adj(I- xB) I + xB + xUB. +... + xaBa.
Furthermore,

(i) k n- 1 /f and only if rank(B) _> n- 1;
(iN) if k < n- 1, then k re+t- 1, where m is the number of nonzero

eigenvalues of B (counting multiplicities), and where t is the size of the largest Jordan
block corresponding to the eigenvalue 0 for B.

Proof. Since each entry of adj(I- xB) is either zero or (+1) times an (n-
1) (n- 1) minor of (I- xB), it follows that k

_
n- 1. Thus adj(I- xB)

Bo + xB1 + xUB2 +... + xn-lBn-1. Setting x 0, B0 adj(I 0B) I. Note
that the coefficient matrix for xn- is generated only by terms from -xB. That is,
Bn- adj(-B). Note that adj(-B) 0 if and only if every (n- 1) (n- 1) minor
of B is zero. That is, if and only if rank(B) < n- 1. Thus (i) is proven.

If S is an invertible matrix, then S [det(S)]adj(S-). Thus S adj(I-xB)S-1
adj(S-i)adj(I- xB)adj(S) adj(S(I- xB)S-) adj(I- xSBS-I). Thus

adj (I xSB-1) I + xSBIS-1 -- x2SB2S-1 +’-" + xn-ISBn-IS-1

Choose S so that SBS-1 is the Jordan canonical form of B. That is, SBS-J1 (’" ( Jr (R) Jr+ (’’" ( Js, where the Ja for 1

_
a

_
r are the Jordan blocks

corresponding to nonzero eigenvalues, and the Ja for r < a

_
s are the Jordan blocks

corresponding to the eigenvalue zero. Then

adj (- xSBS-) adj (I xJa) I-I det (I xJ)]
Consider the adjoint for a single Jordan block: J AIh + Nh, where Nh is the h h
matrix whose only nonzero entries are ones down the superdiagonal. Adj(I- xJ)
has diagonal entries (1 xlk)h-l, and the nonzero off-diagonal terms are of the form
(-x)J(1- x/)h-J- for 1

_
j

_
h- 1. When / 0, the maximum degree of x in

adj(I- xJ) is h- 1. When A 0, (-x)h-1 is the only type of nonzero term. Thus
adj(I- xJ) is always of degree h- 1 in x. Note that det(I- xJ) (1 x)) h. When

0, det(I- xJ) is of degree h in x. When 0, det(I- xJ) is of degree zero in
x. Consequently, the maximum degree of x in II= det(I- xJa) is precisely the sum
of the sizes of J1, J2,..., Jr. That is, II= det(I- xJa) is of degree m in x. Hence
for 1 _< a _< r, adj(I- xJa) II#a det(I- xJ)is of degree
where ha is the size of Ja. For r < a <_ s, adj(I- xJa) HZa det(I- xJz) is of degree
(ha 1)+ (m- 0), where ha is the size of Ja. Thus the maximum degree of x in
adj(/- xSBS-1) and, hence, in adj(I- xB) is rn + t- 1, where t is the size of the
largest Jordan block for the eigenvalue zero.
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COROLLARY 4.2. Let A be a nonnegative, irreducible matrix. The following are
equivalent"

(i) adj(I- xA) I + xA1 + x2A2,
(ii) at least one of the following holds;

(a) n <_ 3,
(b) n > 3 and rank(A) <_ 2,
(c) n > 3 and rank(A2) 1.

Note that conditions (b) and (c) imply that the size of the largest possible Jordan block
for the eigenvalue zero is two.

Proof (i) (ii). If A2 0 then either 2 n- 1, hence n 3, or else 2 < n- 1
and 2 rn + t- 1. That is, n > 3 and m + t 3. Since A is irreducible, m >_ 1. Since
t 0 implies m n, t >_ 1. Thus either m 2 and t 1, implying rank(A) 2 or
m- 1 and t 2, implying rank(A2) 1.

If A2 0, but A1 0, then either 1 n- 1, hence n 2, or 1 < n- 1 and
1 m + t- 1. In the latter case, n > 2 and m + t 2, implying m t 1. That is,
rank(A) 1.

If A2 A1 0, then A 0, which contradicts the irreducibility of A.
Proof (ii) -- (i) If n _< 3, (i)is immediate. If n > 3 and rank(A) <_ 2, then

since m + (t- 1) _< rank(A) always, k rn + t- 1 <_ 2. Now apply Theorem 4.1.
Finally, if n > 3 and rank(A2) 1, then p(A) is the unique nonzero eigenvalue and
rn 1. Clearly, rank(A2) <_ I implies t <_ 2. Again, k m + t- 1 _< 2. Apply
Theorem 4.1.

LEMMA 4.3. Let B be a nonnegative, irreducible matrix with p(B) 1. If Bu
int(D), then there exists a maximal w w(B) such that 0 < w <_ 1, and such that
(I- xB)-lu e int(D) for 0 < x < w.

Proof. Since p(B) 1, 0 < IIBI]2 _< 1. Then IIBII2 _< 1 for all k _> 0. Assume that
0<x< 1. Then for l_<i_<n,

2 x IIBIIx2B2xB u x211BII2
k=0 2 k--0

2 xk 11112 2 (1 x) -1
k=O

Since 0 <_ x < 1, Lemma 1.2 yields

(I-xB) -1
Uo

For 1 <_j <n,

and

[(I xB)-1 u]j

_
1 + x [Bulj

[(/ xB) -1 t]j+l 1 + x [Bt]j+l -Jr- x2B2 xkBk t

k=0 j+l

2_< 1 + x [B*t]j+l q- X2 IIBII2 (1 x) -1

It follows that

[(I XJ ) -1  t]j [(1 xB) -1  tJj+l
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Since Bu E int(D), the difference [Bu]j -[Bu]j+l is strictly positive for 1 < j < n.
Thus for sufficiently small, positive x, the terms [(I-xB)-lu]j are strictly decreasing.
Since I-xB is a nonsingular M-matrix for 0 < x < 1,(I-xB)-lu > 0 [BP,
Thm. 6.2.3]. Thus (I- xB)-lu int(D) for sufficiently small positive x. Thus w
exists.

LEMMA 4.4. Let B be a nonnegative, irreducible matrix with p(B) 1. If XB
int(D), then there exists a minimal r(B) such that 0 <_ < 1, and such that
(I- xB)-u e int(D) for r < x < 1.

Proof. Let f(x) be the matrix valued function f(x) adj(I- xB). Note that
f(x) is continuous for all real x. For 0 < x < 1, I- xB is an irreducible, nonsingular
M-matrix, hence det(I-xB) > 0 and (I-xB)- is strictly positive [BP, Tam. 6.2.3].
Since (I- xB) -1 det(I- xB)adj(I- xB), it follows that f(x) is strictly positive
for 0 < x < 1. Note also, for each x in 0 < x < 1, f(x)u int(D) if and only if
(I- xB)-lu e int(D).

Since B is nonnegative and irreducible, p(B) 1 is a simple eigenvalue for B.
Thus rank(/- B) n- 1. Thus adj(I- B) 0. Since I- B has nullity one, its
column null space has basis {XB} and its row null space has basis {[XB]t}. Since
det(I- B) -0, for x- 1,

xB) dj( - xB) B)] B) 0.

Thus f(1) adj(I- B) cXB[XB,] for some nonzero scalar c. Since f(x) is
continuous at x 1, and since f(x) is strictly positive for 0 < x < 1, f(1) is non-"
negative. That is, c > 0. Then f(1)u [c[XB,]tu]XB is a positive multiple of XB,
hence f(1)u E int(D). Again using continuity at x 1, it follows that w exists such
that - < 1 and f(x)u int(D) for 7 < x < 1. Observe that - k 0 since f(O)u
Iu

_
int(D), r1

The following theorem is an immediate consequence of Lemmas 4.3 and 4.4.
THEOREM 4.5. Let B be a nonnegative, irreducible matrix with p(B) 1. Suppose

that Bu and XB are in int(D). Let co(B) be defined as in Lemma 4.3, and let -(B) be
defined as in Lemma 4.4. If -(B) < co(B), then: -(B) -O, co(B) 1, (I- xB) -1 e
int(D) for 0 < x < 1, and adj(I- xB)u int(D) for 0 < x < 1.

We currently have no useful general characterization of which matrices B satisfy
the condition -(B) < co(B). The numerical evidence presented in the second section,
however, suggests that a substantial portion of the matrices B, such that Bu and XB
share a common grading, do satisfy this condition.

THEOREM 4.6. Let A be a nonnegative, irreducible matrix with p(A) < 1. Suppose
that A satisfies either (i) or (ii) in Corollary 4.2. If both Au and XA are in int(D),
then (I- A)-lu is in int(D).

Proof. Let p- p(A). Let B p-lA. Then B is a nonnegative, irreducible matrix
with p(B) 1. Clearly, XB XA. Use (i)" adj(I-xB) I + xB1 + x2B2
I -x(B1 + xB2). For x > 0, adj(I-- xB)u and (B1 + xB2)u have the same gradings.
In particular, adj(I- xB)u e int(D) if and only if (B1 + xB2)u e int(D). Note that
for each i, [(B + xB2)u] is a linear function, in x. Pick with 1 _< < n. Let a

and/ be real numbers such that a < ft. If [(B + aB2)u]i ..>_ [(B1 + aB2)u]i+l and
if [(B + B2)u]i >_ [(B +/B2)u]i+l hold, then by linearity in x, [(B + xB)u]i k

[(B + xB)u]+l holds for a < x </. Furthermore, if the inequality is strict at either
endpoint, then it is strict for a < x </.

By hypothesis, Au int(D), hence Bu int(D). Applying LemIna 4.3, there
exists co with 0 < co < 1 such that (I--xB)-lu . int(D) for 0 < x < w. For
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0 < x < 1, I-xB is a nonsingular M-matrix, and as argued in the proof of Lemma 4.4,
(I-xB)-lu is a positive scalar multiple of adj(I-xB)u. Thus, adj(I-xB)u E int(D)
for 0 < x < w. Also by hypothesis, XB int(D), hence from Lemma 4.4 and its proof,
there exists a positive with T < 1 such that adj(I- xB)u int(D) for r < x _< 1.

The argument in the preceding paragraph implies that when c is chosen as an
arbitrarily small, positive number and when 1, the inequalities for successive
entries of (B1 + xB2)u are valid and strict for c < x < . Thus adj(I-xB)u int(D)
for 0 < x _< 1. Hence (I- xB)-lu int(D) for 0 < x < 1. Since 0 < p(A) < 1, and
since p(A)B A, (I- A)-lu

The following example shows that the conclusion of Theorem 4.6 can be false if the
condition that Au int(D) is dropped. Let X (3, 2, 1) t. Let B be the parameterized
matrix

B r r 2- 5r

6 6 6

A-xB1)t For0<x<land0<r<For all r, BX X and Bu (1 + r, 2- 3r,
is a nonnegative, irreducible matrix with p(A) x < 1. Since A is 3 x 3, A satisfies
condition (ii) of Corollary 4.2. Clearly XA int(D). Note, however, that Au

_
D

From Theorem 1.2, (I- xB)-u Iu + xBu for small, positive x.when0<r< .
Thus(I-A)-luCDwhen0<r< .

5. Exploiting permutation invariance. In the context of this paper, circu-
lant matrices have three important properties. If A is a circulant matrix, then u is
an eigenvector for both A and (I- A)-, p p(A) is the unique row sum of A, and
(1- p)- is the unique row sum of (I- A) -1. Noting that the circulant matrices
are precisely those matrices invariant under permutation similarity by the matrix for
the full cycle permutation, we now examine how any permutation invariance can be
exploited.

Let A be an n x n, nonnegative, irreducible matrix with spectral radius p(A).
Suppose that P is a permutation matrix such that PAP A. Clearly, Pu u.
Furthermore, P(Au) Au and P[(I-A)-lu] (I-A)-lu. Also, PAP A implies
PXA is a positive eigenvector for p(A) with norm one, hence PXA XA. Thus the
cycle structure of P is reflected in a pattern of constant blocks in the vectors XA, Au,
and (I- A)-lu.

Assume that the permutation corresponding to P decomposes into k disjoint
cycles. Let denote the eigenspace for P for the eigenvalue A 1. Then 12 is a
k-dimensional subspace of ]Rn with a natural basis consisting of certain {0, 1} vectors.
See [SW, 3]. Furthermore, Un l?. Since A and P commute, 12 is an A-invariant
space. Let M be the k x k matrix representing the restriction of A to 12 with respect
to the natural basis. The following can be proven:

(i) M is a nonnegative, irreducible matrix with p(M) p(A).
(ii) Each entry of Mut is the value of all of the entries in the corresponding

block of Aun.
(iii) Each entry of (It M)-lUk is the value of all of the entries in the corre-

.sponding block of (In- A)-lun.
(iv) There is a normalizing scalar c > 0 such that each entry of cXM is the value

of all of the entries in the corresponding block of XA.
It follows immediately that the gradings for XM, Mu, and (I- M)-lu lift naturally
to gradings for XA,Au, and (I- A)-lu. Finally, when P has the form given by (3.1)
of [SW], the matrix A naturally block partitions into blocks A(i,j) for 1 _< i,j < k,
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and M [mij] is determined uniquely by mij (hi)-l[Uh]tA(i,j)Uhj for 1 <_ i,j <_ k.
See [SW, 3 and 4.]

[BP]

[Ol

[SW]
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1. Introduction and preliminaries. The task of solving the overdetermined
set of linear equations

(1) Ax b, A E mn, (m >_ n)

arises in many disciplines. In many applications (1) does not have an exact solution
and the ordinary least squares (LS) approach or total least squares (TLS) approach is
commonly used. It is well known (e.g., [1], [4], [7], [10, p. 77], [12]) that collinearities

(i.e., near linear dependencies) in the columns of the matrix A can have damag-
ing effects on the ordinary LS estimator, as small changes in A or b may result in
disproportionately large changes in the solution. Better results are achieved when
stabilization techniques are employed, such as truncated LS, Tikhonov regularization,
or subset selection.

Let A have the dyadic singular value decomposition (SVD)

Let TOL > 0 be a problem-dependent parameter that identifies the n-k collinearities
in A:

a > TOL > ff+l -"" - fin"

Then the numerical rank of A is k (with respect to TOL). It is not unreasonable
to assume a well-defined gap in the singular value spectrum of A; otherwise, rank
determination is a difficult problem, even for the SVD. Here we consider truncated
LS: given TOL, one essentially solves

minimize lib bkll2
such that bk T(Ak),
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where Ak i=1 uiuivi is the rank-k matrix nearest in 2-norm to A Ak +- AAk,

AAk independentand the correction in A that is of b. Let x’ ik__ vi
denote the minimum 2-norm solution to

Akx bk

or equivalently, the minimum 2-norm LS solution to

(3) min

The minimum 2-norm LS solution x’ to (3) always exists and is unique. Also, rank(Ak)
rank([Ak bk]) k. See [8] and [9] for more on the properties of the solution.
As in the ordinary LS case, the classical TLS solution (see Golub and Van Loan

[5], Van Huffel and Vandewalle [18]) may be affected by collinearities in the matrix A.
For reasons of stability a "truncated" TLS solution should be deduced from the span
of the singular vectors corresponding to the collinearities in [A b], which amounts to
a rank reduction in [A b]. Let [A b] have the dyadic SVD

n+l

(4) [A b] E uiaiviT"
i--1

The (truncated) TLS approach chooses [/] as the minimizer of

minimize

subject to rank (C)= rank ([C d]) k.

The nearest rank-k matrix in 2-norm to [A b] is the best candidate for this problem. If
[ ] - Eik=l UiO’iVi

T satisfies (5)-(6), let 2 denote the minimum 2-norm TLS solution
to

(7) 8.

Also, 2 is the minimum 2-norm LS solution to

min IIAx bll ..

The main objective of this paper is to examine TLS when A is nearly rank deficient
by outlining its differences and similarities to the well-known truncated LS method.
In 2 we prove an existence condition for the TLS solution and show how it implies
that may be viewed as an acute perturbation of Ak. In 3 we use the modified
normal equations to elucidate some similarities and differences in the solutions. Then
we see how the acuteness condition is related to the differences and similarities in the
LS and TLS solutions and residuals. As the ratio O’k+l/O’k decreases, TLS may be
viewed as a regularization technique much like truncated LS, even though the rank
reduction depends on b. In 4 we show how a -r+l is related to the sensitivity of
LS and TLS subspaces to perturbations in the data. Then we explore the role of the
orientation of b with respect to the column space of A using subspace perturbation
theory and eigenequation relationships. We include some numerical simulations.

At this point we introduce the notation used throughout the paper. Scalars are
represented by lowercase Greek letters or English alphabet with double subscripts.
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Matrices are represented by the uppercase English alphabet. Superscripts T and the
symbol denote the transpose and the Moore-Penrose pseudoinverse of a matrix,
respectively. Let I1" I1" 112, the Euclidean norm. Let TO(D), Af(D), and (D)
IIDII IIDfll denote the range, nullspace, and the condition number of the matrix D,
respectively. PD DDf denotes the orthogonal projection matrix onto T(D). We
also denote the SVD of A by

(8) A U’E’V’T

with

Partition the matrix E’ as

so that E E .kk and E E .(n-k)(n-k)
We also denote the SVD of [A b] by

(9) [A b] UEVT

with

.ra u,Tu in

vtTvvi n, In.

U [U1 V2], U1 ---[ltl, irk], U2 --[ltk+l, ltn+l], lti e }m
E diag(a, ,o’n+l) e (n+l)x(n+l).... 0"1 >_""

_
O’n+l >_ O.

[ ], [, ,], y [+, ,+1], e +1

uTu I+,

vTv In+l.

Partition the matrices V and E as

V__ ( Vii V12 )V V. and
0 E2

with Vii E nxk, V12 E nx(n-k+l), V21 E lxk, V22 E )lx(n-k+l), Ei E kx, and
E2 E (n-k+l)x(n--k+l).

2. TLS existence and acuteness. In accordance with Golub and Van Loan
[5], we bring (1)into the form

ix](10) [Ab]-1 0.

To compute a stabilized TLS solution, we find a reduced-rank approximation of [A b].
Since A has numerical rank k, it makes sense to approximate [A b]
by its nearest rank k approximation: [ ] U1Ei V1T. /i. A- is the correction
in A that is dependent on b. Using a nullspace argument [5], [17], [23], the minimum
norm TLS solution 2 is given by
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Note that the solution E n exists provided V22 :/= 0. As in [5], let Q be an (n- k +
1) (n- k -t- 1) orthogonal matrix such that

(12) [ V12 ] Q=[vk+l,... Vn+]Q= I W z ]V 0

By this change of basis, an equivalent representation of the orthogonally invariant
minimum 2-norm TLS solution is

provided V22 - 0. The parameter I’1 should be viewed as the distance of the rank-k
approximation [/] from degeneracy, i.e., to incompatibility. That [ ] UEVT
indeed satisfies the compatibility requirement under a mild sufficiency condition is
the content of the following theorem.

THEOREM 2.1. Let A and [A b] have the usual SVD and "y as in (12). If ak+ <
a then / 0 and & z// exists.

Proof. Assume ak+ < ak and / 0. Then (12) implies Vn+,j 0 for j
for t(j) j or j- 1, and vj [v(j)T 0]Tk+ 1,..., n+ 1. By [17, Thm. 3.1], aj as(j)

nwhere v(j) is a right singular vector of A associated with the singular value at(j)
Once these singular values have been assigned for j k + 2,..., n + 1, with t(j) j
or j- 1, it implies ak+ k, a contradiction. Thus, /= 0.

This theorem was proven more generally for the multidimensional TLS problem
in [22] and extended to general orthogonal projection methods in [2]. The condition

ak+l < a implies that the nearest rank-k matrix approximation of [A b] is unique;
also, the condition is numerically mild since ak+l

_
a by the interlacing property of

singular values.
The formulas for the solutions x ACkb and & -V2V22 in themselves do not

provide much of a basis for comparing the two techniques. But as proven in [15], the
set TLS of solutions to (7) is the same as the set of LS solutions to .x b. Thus,

which is similar to the well-known set SLS of LS solutions

SLS (xlx Ab + (I- AAk)z Vz n }.

The minimum 2-norm solutions x and & can be expressed formally as x Atkb
and & tb. Both approaches search for solutions in k-dimensional subspaces; gener-
ally, a method that searches in a subspace of lower dimension utilizes less information
in A and b. Because we did not distinguish the collinearities in [A b] (deemed "pre-
dictive" if Ivn+,jl is moderate and "nonpredictive" if IVn+l,jl is small), it is very
possible to find solutions x and & in subspaces of higher dimension. However, this is
not recommended for reasons of stability.

At this point it seems natural to inquire about how the row and column spaces of. differ from Ak when is viewed as a perturbation of Aa, that is, E is defined so that
ft Ak + E. We consider the set of problems (1) where the row and column spaces
of and Ak do not differ drastically in the sense that the canonical angles between
the column spaces, as well as the row spaces, are less than r/2 (otherwise, we can

expect the pseudoinverses to differ significantly as the lower bound on I1 -Atkll
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may be arbitrarily large [21] and hence the two methods may generate vastly different
solutions). This is the essence of the following definition by Wedin [21].

DEFINITION. The matrix C is an acute perturbation of D if IIPc- PDII < 1 and
IIPcT PDT II < 1. We also say that C and D are acute.

To show that the matrices , and Ak are acute, we examine a reduced form of the
problem:

(14) U T "2-k z ( E 0I0
(15) u’TEv’--( EllE21 El2/E22
and

(16) u’Tv’---( E21l E22E12 /
where 1 E + Ell. Applying Theorem 3.3 [13, p. 139], Ak and , are acute if
and only if in the reduced form ]1 is nonsingular and E22 E21]-E2. From these
facts we have the following result.

THEOREM 2.2. Let A and [A b] have the SVD as in (8) and (9), and let Ak and
fi have the reduced form as in (14) and (16). If a}+ < a, then A and A} are acute
matrices.

Proof. As mentioned above, we need to show that E is nonsingular and E22
E21,,-lE2. To show that ,,1 is nonsingular, it suffices to show llEll < a;. Now, E
can be rewritten as

(17) E AA}

Transforming both sides of (17) as in (15) yields

(18) (Ell E12 ) ( 0 0 ) (/k211 /212 )E21 E22 0 E A21
where

Since Al is a submatrix of U’T/k,V’, we have

From (18) and the assumption O’k+ < O’, this implies IIElll < a, and hence E is

nonsingular. To show E22 E21 -1E12, define S E22 E21,- E2. Performing
a step of block Gaussian elimination on u’TfIv gives

[ 1--1 ’1u’Tzv’
E21E In-k+l
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where

Si -= S

If S 0, then rank(S1) >_ k + 1, implying k rank() rank(U’Tv’) rank(S1)
>_ k -t- 1, a contradiction. Therefore, S 0. This completes the proof of the theorem.

This shows that ak+l ( a implies Ak and . are acute; that is, the canonical an-
gles between their column spaces, as well as their row spaces, are less than r/2. This
agrees with the intuition that if the fitting of the data applied by the TLS approach
is "close" in the sense of acuteness to the fitting of the data applied by the truncated
LS approach, then the former approach should have a solution since the truncated
LS solution always exists. So the class of problems (1) that we consider in comparing
the TLS and LS solutions and residuals consists of the problems for which ak/l < a.
When this condition is satisfied, t is a continuous function of the perturbation of
the elements of Ak.

3. Bounds on the minimum norm LS and TLS solutions and residuals.
Since the minimum norm LS and TLS solutions can be expressed x Ab and
& .tb, they satisfy the modified normal equations

(19) (ATA- /kAkTA)x’- ATb -/kAkTb,
(20) (ATA- AzTA)-" dTb- ATb.
These alternative relationships are useful in deducing the equivalences and differences
between the two techniques. As E goes to zero and the LS problem becomes more
compatible, then 2 approaches xp. In fact, for E 0 and b E T4(A) then E2 0 and
2 equals x’ (also, see [16, Thm. 2.1] by Van Huffel and Vandewalle). To elucidate the
differences in the solutions, we will use a first order expansion of SVD components.
Let S ET, S1 ETE1, and $2 EE2. Equations (19) and (20) can be
rewritten as

(21) (VSvT)x, dTb lz,-,,2 -2T’Tv2b,

(22) (VISV)2 ATb V2S2V2T2
Substituting (22) into (21) yields

(vsv;)x (vsv) + vs.v vr. .
Define the difference matrices Es and Ev by Es S S and Ev VI V.
Substituting V V + Ev and S S / Es yields to the first order (ignore terms
involving the product of two or more difference matrices):

/T(v.(y;)( ) (V:SE + ,V: + VV )x +VV-’’..’.
Ui th ct llx’ II in(V’.’)llx’- :II -< ll(’’)(x’- :)II, we t

(e) llx’- II -< -- [(II-II + IIII)IIII ++ + +IIUII]

Equation (23) is not a tight bound for the norm IIx’- 211, but might suggest that we
can expect the solutions x and 2 to be very different when any of the following hold:
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a is small, implying Ak is ill conditioned.
ak+l is large because either Ax , b is highly incompatible or there is not a

good gap in the singular value distribution of A.
The largest singular values of A and [A b] differ greatly, so that [[Es[[ is .large.

As shown later this happens when b is oriented toward the larger left singular vectors
of A.

Next, we determine a bound on the difference Ak . relative to Ak as well as a
bound on the difference x- 2. relative to x. The acuteness condition appears in the
bounds.

LEMMA 3.1. Assume ak+l < ak and define Ck =-- ak+I/ak, # (1 +V/-)/2. Then
the difference Ak- tt relative to Ak is bounded above by

IIA ,itll < 2#.IIAII 1 --k

Proof. Since rank(Ak) rank(A), applying [15, Thm. 3.14], we have

(24) IIA i*11 _< IIAII I1i*11 IIA All.
Using A- A /kA and II/XAII k/l, it follows from the perturbation of singu-
lar values [6, p. 287] that Ilfi.t[I _< (a- ak+l) -1. Furthermore, using the triangle
inequality,

(25) IlAk 11 < IIAk All + IIA l[ < ’k+ + ak+l _< 2 ak+l

Thus

IIA A*II +x< 2#IIAil -+
which is equivalent to the desired result.

This lemma implies that the solutions x and 2 should be relatively close if Ck << 1.
In other words, if there is a well-defined gap in the singular value spectrum of A
(a+ << a) and Ax b is not too incompatible, then we expect the solutions to be
relatively close.

Defining Ck -= ak+I/ak as above and r’ =- b- Ax’, we have the following bound
for the relative difference in the solutions x and 2.

THEOREM 3.2. Let A and [A b] have the usual SVD. Let x be the minimum norm
LS solution to (3) and c the minimum norm TLS solution to (7). If ak+l < -ak then

-< 1--0k0k [3 -F (Ak)[--]
[[r’l[ ]

Proof. The result follows from [8, (27a)] by setting e 0, by viewing as an
acute perturbation of the rank-k matrix Ak, I1i. Akll < 2ak+, and by using the fact
2k _[_ (/)k < 3k- _.

Bounds on the norm [Ix’- 21[ for the two cases k n and ak+ crn+l are
derived in [18] and [22], respectively. While the bound in Theorem 3.2 holds for the
more general case, it is overly pessimistic. However, it still gives a correct indication
of the influence of Ck.
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The purpose of regularization techniques is to remove the potential instability in
the problem due to finite precision and data errors. The regularization technique of
Tikhonov [14] is widely known to be an effective method.for solving the ill-conditioned
LS problem. Hansen [8] has shown that when A has a well-defined gap in its singular
value spectrum, then truncated LS is similar to Tikhonov regularization. The trun-
cated LS method removes the potential instability by solving a nearby, alternative
LS problem Akx . b, where, roughly speaking, one strives to balance the condition
number of Ak and the size of IIA Akll. From this point of view and the fact that 2
solves the ordinary LS problem x b, where is an acute perturbation of Ak that
depends on b, the TLS approach to (1) is a regularization method similar to truncated
LS, but the condition number of is larger than that of Ak.

Next, we provide a bound on the residuals. Let r b-Ax b-Akx, b-Arc,
and b- A. Let ak+l/ak

THEOREM 3.3. Let A and [A b] have the usual SVD and assume ak+l < a. Let
x’ be the minimum norm LS solution to (3) and fc be the minimum norm solution to
(7), and let r’ and be defined as above. Then the following hold:

_<2 and

Proof. To bound the relative error, we use the triangle inequality Ilr’-/ll <_
r’ 11 + PlI. To bound IIr’ 11, rewriting the residuals as r’ (I, Pu )b and- (Ira Pu1)b means r’- (Put Pu)b, with

IIPu Pu; U1 VlT gUIT u;Tu II.
Using A UIIV1T1 nt- U22Vl and UT (EI+)v{TAT, it follows that

Thus,

and hence

(26)
r’- 11 < IIPg - Pg; < Ck.

To bound I1- /11, from /- (_- d), we get

But 2 tb implies Ilfcll <_ Ilftt]l ]]bll <_ Ilbll/(ak- a+). Thus,

The sum of the two inequalities in (26) and (27) is bounded by the desired result.
To bound the residual, P b- A2 -[A A][2T 1] T, and taking norms in the
obvious way yields the desired result. This completes the proof of the theorem.

The bound in Theorem 3.3 for the difference in the residuals is a monotonic
function of Ck. As Ck increases, so does the expected difference in the residuals. The
residuals approach each other as Ck decreases.
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4. Perturbation ofLS and TLS approximate nullspaces. In this section we
examine the sensitivity of the LS and TLS approximate nullspaces. This is important
because, as we see in Theorem 4.1, perturbations can affect the truncated LS and
TLS solutions. Let [A b] [A b] + [AA Ab] denote a perturbation of [A b] with the
dyadic SVD

n+l

(%)
i--1

Let [A ] r_epresent the nearest rank k matrix to [ ] and -k the nearest rank k
matrix to A, and let k denote the projection of onto 7(k). As usual, we assume
the data A is nearly rank-(n- k) deficient. In direct analogy with TLS in (12)-(13),
the minimum norm LS solutions to

min IIAkx b[[ and min

can be determined by solving the homogeneous equations

-1
=0 and [kk] --1

=0

using a nullspace argument. Thus it makes sense to compare the distance between
the LS approximate nullspaces A/’([A bk]) and N’([. ’1) and the distance between
the TLS approximate nullspaees N’([ ]) and N’([.i D]) (see [6, p. 76] for definition
of distance between subspaces).

When the size of the perturbation [[[AA Ab]ll satisfies

(30) [AA Ab] < a a+
then (A) and T(Ak) are acute subspaces. Since the LS solutions always exist and
can be deduced from the the basis vectors of JV’([Ak bk]) and Af([k k]), it makes
sense to compare the distance between these LS approximate nullspaces. Similarly,

(31) II[/A/b]ll < +
ensures that Af([. ]) and Af([ /1) are acute subspaces. Equations (30)-(31) are
tantamount to requiring that a singular value in the unperturbed cluster of small
singular values remains in the corresponding perturbed cluster. Note that these con-
ditions hold whenever

(32) II[AA Ab]ll < k+.

Hence the existence condition for TLS can be directly related to the sensitivity of the
subspaces to acute perturbations. When (32) is satisfied, the perturbed TLS problem
cannot be nongeneric (nongeneric implies #+1) in the sense of Van Huffel and
Vandewalle [17].

Now, let us assume we are given an orthonormal basis for the nullspace of [Ak bk]
([ /]) and an orthonormal basis for the nullspace of its perturbed version [fi.k k]
([. ]). Then we can perform a change of basis as in (12) and compute the LS (TLS)
solutions as in (13); partition the unit vectors

(33) v= and =
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where is considered the perturbed version of v. If II[/XA Ab]l < a -ak+l, then
min(/, ) 0. Define x =_ -z/y and -5/zy. Then it follows I/1-1 V/1 / Ilxll 2
and I’1- v/i + I1112. The effect of the perturbation [GA Gb] on v is measured by, the angle between v and . Next we show how this angle influences IIx 11.

THEOREM 4.1. Define the vectors v and as in (33), and define x -z/v and
5c -5/. Assume sign(-),) sign(). If II[AA /kb]l < ak ak+, then

2/ sin 0

where 0 is the angle between v and .
Proof. Since v and are unit vectors, we have IIv-ll V/2(1 cos 0) <_ x/ sin 0,

Ilzll _< 1, and

(34) v 112 z 5lle + (, )2.

Thus, we get IIz- 11 G s/ sin 0 and I’- 1 <- v/ sin 0. It follows that

<_ I1(’- z)’-ll / IIz(- -’-1)ll

sin l ,- l / I’1
2s/ sin 0

This concludes the proof of the theorem.
The following analysis is motivated by Theorem 4.1 and by the analysis in [19,

pp. 215-217] by Van Huffel and Vandewalle; however, it differs in that we now compare
the distance between corresponding approximate nullspaces (since the LS problems in
(29) are reformulated as TLS-like problems). However, as we see, we draw the same
conclusions as in [19, pp. 220-225].

THEOREM 4.2. Let [A b] [A b] / [AA Ab] with the above SVDs and assume
[AA Ab] < a ak+l. Then the following relations hold:

(i) dist (Af([Ak bk]),Af([.2.a k])) <_ II[/A/Xb]ll +

II [AA b] II(ii) dist (Af([ ]),Af([./])) _<
,:,- o-+. -II[ZXA ZXb]ll’

where

(dist(n(Ak), n(k))II[A b]ll + II[/A/b]ll II[/A ]11
LS ’ (’ --IIA]I)

(I--fiktfk), dist(S1, $2)= liPs,- Pz. II, and Ps, is the orthogonal projector onto
subspace Si.



COLLINEARITY AND TOTAL LEAST SQUARES 1177

Proof. Using the augmented matrices and some algebraic manipulation (see [3]
for details), part (i) follows from extending a result (see [3, Thm. 3]) of Van der Sluis
and Veltkamp [15, p. 269] to bound the LS nullspaces:

(35)

where

II[A bk]t[Ak bk]- [fik /]t[k ,;]11 <- II[A b]*ll II[/A Ab]ll + tLS,

S II[A b]tll I1[- ’]tll II[A b]- [A ’]11 II[A- ]11
(dit(n(A), T(A))IlIA bill + ll[A b]ll) II[A ]11

(a -IIAII)

Part (ii) follows from [19, pp. 220-225] using Wedin’s perturbation bounds in
connection with the SVD and the perturbation property of singular values.

The relation between these perturbation bounds and the solutions is addressed
in [3]. Usually,

aLS a
and we expect the bounds on the distance between the TLS approximate nullspaces
to be less than the LS approximate nullspaces whenever

(3) + + [A] < -.
If O(10-t) max(O(ak+), O(][AA Ab]])), then for inequality (36) to fail, ak and

a must agree in at least the first t decimal digits It is interesting to see how the
existence condition for the TLS solution resurfacesthis time in the inequality that
determines when the TLS bound is lower than the LS bound. Provided Ax b is not
too incompatible, A has a well-defined gap in its singular values and ][AA Ab] is
not too large, this inequality will almost always be satisfied.

Now, we argue that ak--a may increase as the component of b along u increases.
Premultiplying the eigenequations

(37)

by uT yields

Therefore, it follows

and hence

[A b] [A b]Tuk auk

u + (uTb)(bTuk) aku Uk.

(as) o : > ( o) ’I 1 I’Tbl IbTl
From the dyadic SVD form of [A b] in (4) we know ]bTukl alVn+,el, where Vn+l,k
is the last component of the vector v. If [u’kTb[ >_ IbTuk], then it follows

7k2 ff2
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Note that if Vn+l,k 0 then b is orthogonal to uk and moreover from [17, Thm. 3.1]
Vn+l,k 0 implies b _l_ u. Thus b ,f_ u implies Vn+,k # O. Now, let us assume

IbTukl >_ tukTbl. Then from (38) we have

From this we conclude that ak -a may increase as the component of b along u
increases (i.e., as luk’Tb increases), and verily so if }bTukl _> lukTbl. We note that this
conclusion, as well as the following numerical experiments, confirm the theoretical
analysis given in [19, pp. 215-217, 220-225]. Finally, a similar argument shows that
the larger singular values of A and [A b] may increasingly differ as b is oriented along
the larger left singular vectors of A, hence IIEsll in 3 may be large.

That the orientation of b and the bounds of the LS and TLS numerical nullspaces
are related are exemplified in the following numerical simulations using components
of the the mean squared error (MSE) (see [7]). The simulation is designed as follows.
We perturbed an exact system Ax b with an error matrix [AA Ab] whose entries
are Gaussian with 0 mean and 6 standard deviation. 2 ranged from 10-4 to 10-2.
The MSE of the estimator x, where x is either x’ or :, is defined by

(39) MSE(x) E[(x- E(x))T(x- E(x))] + (E(x) xo)T(E(x) Xo),

where E is the expected value operator, x0 is the exact solution, the first term is the
TOTAL VARIANCE ("wobbliness") and the second is the SQUARED BIAS ("bias").
In these simulations, given the vector x0 E N10, we set b =_ Axo. All simulations were
carried out using Pro-MATLAB [11] on a DECstation 3100.

We plotted the TOTAL VARIANCE versus the SQUARED BIAS in a log-log
diagram.

A E Nh0xl0 has singular values

a(A) { 10, 7, 7, 3, 2, 1, 0.1, 0.0005, 0.0001, 0.00001 }.

In 2-norm, A is within 0.0005 of a well-conditioned matrix of rank k 7.
For a fixed variance 2, the truncated LS and TLS solutions of 100 indepen-

dent sets of equations (A + AA)x . (b + Ab) were computed. The mean of the trials
was used to compute the expected values. The simulation procedure was repeated for
increasing values of

We examine three cases.
Case 1. The exact solution is x0 v + v, which means b is oriented along

the larger (left) singular vectors of A.
Case 2. The exact solution is x0 v + v, which means b is oriented along

the (k- 1)st and kth (left) singular vectors of A.
Case 3. The exact solution x0 is a random vector in N10.

In Fig. 1, b is oriented along the larger left singular vectors of A and neither
method is favored in the experiment (or theory). In Fig. 2, b is oriented along the
smaller left singular vectors, which increases a -a, and TLS performs much better
as expected. In Fig. 3, b is randomly oriented in 7(A) and the results show that
TLS can indeed be viewed as a regularization technique much like truncated LS. In
all these examples TLS tends to have a higher TOTAL VARIANCE than LS and
consequently the TLS curves extend further to the right.
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10-1

10-2

10-3

10.4

10-s
,,," TLS

10-6
10.4 10.3 10.2 10-1

TOTAL VARIANCE

FIG. 1. The squared bias versus total variance for truncated LS and TLS with the observation
vector b oriented along the larger singular vectors of A. The squared bias is nearly equal for both
methods under small perturbations of the exact system.

10-3

10.4

105
<

10-6

10-4 10-3 -2 -1

TOTAL VARIANCE

FIG. 2. The squared bias versus total variance for truncated LS and TLS with the observation
vector b oriented along the (k- 1)th and kth left singular vectors of A. In the same domain of total
variance, the squared bias for truncated LS is higher than TLS. The disparity increases as the total
variance increases.
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l00

LS

TLS

10-!
10-4 10-3 10-2 lO-1

TOTAL VARIANCI

FIG. 3. The squared bias versus total variance for truncated LS and TLS with the observation
vector b randomly oriented in the range of A. TLS performance is nearly the same as LS.

5. Conclusions. In this paper we examined TLS when A is nearly rank deficient
by outlining differences and similarities to the well-known truncated LS method. It
was shown how . may be viewed as an acute perturbation of Ak, how differences and
similarities depend on both a- ak-t-1 and ak+l/ak, and how a- grk_t_ is related
to the sensitivity of LS and TLS subspaces to perturbations in the data. Also, using
the modified normal equations, we elucidated some similarities and differences in
the solutions. Perturbation theory for the approximate nullspaces and eigenequation
relationships elucidated the role of the orientation of b with respect to the column
space of A.
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RANK ROBUSTNESS OF COMPLEX MATRICES WITH RESPECT
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Abstract. This paper examines the problem of computing a minimum norm real matrix pertur-
bation that causes a general complex (system) matrix to drop rank. Given the state model describing
a linear time-invariant system, the norm of this matrix perturbation helps to determine the robustness
of several system properties with respect to real parameter variations. The norm of this perturbation,
or the real-restricted singular value of the complex matrix, is known to be a discontinuous function
of the complex matrix. The paper presents a simple condition on the complex matrix that elimi-
nates this discontinuity. Specifically, the paper shows that the size of the smallest real rank-reducing
perturbation is a continuous function of the complex matrix as long as the imaginary part of the
complex matrix has full rank. The paper examines other aspects of the continuity of the problem. It
also presents an algorithm that converges to a point satisfying a necessary condition for obtaining the
smallest real rank-reducing matrix perturbation. A Lyapunov function approach is used to establish
convergence of the algorithm. Some numerical examples are included illustrating the accuracy of the
approach.

Key words, matrix perturbation theory, stability robustness, controllability robustness, rank,
rounding errors, singular value decomposition

AMS subject classifications. 15A03, 65F35, 65G05, 93B35, 93B20, 93D99

1. Introduction. The motivation for this paper arises from the study of the
robustness of certain properties of finite dimensional linear time-invariant systems with
respect to structured parameter variations. Many system properties are characterized
by the rank of a family of matrices derived from the property being investigated and
the system matrices identified with the state model. For example, let the system
matrices, A, B, C, and D determine a linear time-invariant state model,

(1.1)
(t) Ax(t) + Bu(t),
y(t) Cx(t) + Du(t),

where A E ]R"n, B R,r, C ]tPn, D ]Ipxr. A system is uncontrollable if
and only if for some C, rank[A- AI, B] < n. Similarly, a system fails to be
asymptotically stable if and only if for some A C having Re[A] k 0, rank[A- AI] <
n (see, for example, [11]). For convenience, "unstable" means "not asymptotically
stable."

As opposed to the problem of simply classifying whether a particular system prop-
erty holds or fails to hold for some nominal system, robustness problems attempt to
measure the magnitude of parameter variations which may result in some desirable
system property failing to hold. The motivation for such problems is twofold: first,
ensuring that a particular property will continue to hold in the face of anticipated
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parameter variations and, second, ensuring that some property holds for a system
for which only noisy or truncated parameter values are available (e.g., those obtained
from measurement or numerical calculation). As an example, consider the controlla-
bility robustness problem: the magnitude of the minimum norm matrix perturbation
[A, B], for which the perturbed pair [A- A, B- B] is uncontrollable, is
given by

(1.2) minas A AI B
AC

in [4]. This problem is equivalent to finding the minimum norm matrix perturbation
[SA, 5B which causes a system matrix [A 5A )I, B 5B to be rank deficient
for some C. The actual rank-reducing perturbation matrices 5A and 5B associated
with the minimum of (1.2) are contained in Cnn and Car, respectively, i.e., these
minimum norm perturbations may have nonzero imaginary parts. The problem of
performing the minimization of (1.2) is discussed in [3], [4], and [10]. Similarly the
magnitude of the matrix perturbation 5A having smallest norm for which the matrix
A- 5A is unstable (given that A is asymptotically stable) is given by

(1.3) min a,[A jwI]

in [9]. This problem is also equivalent to finding the minimum norm perturbation
matrix [bA] that causes a system matrix, in this case [A- 5A- jwI], to lose rank for
some w E . Again the destabilizing perturbation having smallest norm 5A will lie
in Cnn and may have a nonzero imaginary part. A bisection method for performing
the minimization of (1.3) was developed in [2]. A unified treatment of several similar
problems is presented in [6].

A criticism of the above measures is that they are pessimistic; see for example,
[3], [6], and [9]. The smallest rank-reducing perturbation obtained from the implied
minimizations may be complex, although the physical parameter variations can be
only real. More generally, arbitrary parameter variations may not be possible; param-
eter variations may be known to lie in an even more restrictive set due to physical
constraints. Performing minimizations over these more restrictive sets results in larger
measures of robustness [8].

Toward the goal of computing these "restricted" robustness measures, this pa-
per investigates the problem of determining real-restricted singular values of complex
matrices. This problem is distinct from the problem of finding a minimum norm real
perturbation that makes a system uncontrollable or unstable. The smallest singular
value of a matrix M provides the norm of the smallest matrix 5M for which M- 5M
fails to have full rank. In a similar fashion, one can define an S-restricted singular
value of M as the norm of the smallest matrix 5M E S (if there is one) for which
M- 5M fails to have full rank. In particular, when M Cn’, the real-restricted
singular value of M, amin(M; nm) is the size of the smallest real matrix 5M for
which M- 5M fails to have full rank, i.e., S nm. This paper considers the
computation of (:rmin (M; ]n m).

2. Problem formulation. The following notation proves to be useful through-
out this paper:

IIMII, the Frobenius norm of the matrix M;
Ilvll, the usual Euclidean norm of the vector v;, the complex conjugate of the scalar or vector a;
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MH, the conjugate of the transpose of the matrix M;
MT, the transpose of the matrix M (not conjugated);

an[M], the nth singular value of the matrix, M;
Re[x], the real part of x;
Im[x], the imaginary part of x;

ker[M], the kernel of the map from Cm Cn, determined by the matrix M;
range[M], the range of the map from Cm --. Cn, determined by the matrix M;

M+, the Moore-Penrose pseudoinverse of the matrix M.
Throughout this paper, M is always used to denote a matrix M E C.nm with m _>
n implied. The spaces nm and Cnm may be viewed as vector spaces with the
usual topology. Often it is helpful to view Cnm aS a 2rim dimensional linear space
over the field of real numbers. This is indicated where necessary.

The meaSure O’min (M; 1i(n m) is given by
DEFINITION 2.1. Let M Cnxm with n < m and let

$(M; Inm) {SM e Nnxm rank[M- 5M] < n},

i.e., if M has full rank, S(M; R,xm) is the set of rank-reducing perturbations for M.
Define

(2.2) ffmin(M; Nnm) min 115Mll.
6M,S(M; R

Some elementary properties of the set S(M; lnxm) demonstrate that the problem
of finding a minimum norm element of $(M; Rnxm) is well posed. The following
lemma characterizes the first of these properties.

LEMMA 2.2. Let u be a nonzero element of Cn, n >_ 2 such that and Rein] and
Im[u] are linearly independent. For each M Cnxm, there exists a perturbation matrix
5M e Nnxm such that uH(M- 5M) O, i.e., 5M is an element of S(M; Nnxm).
Moreover, the smallest such 5M is given by

(2.3) 5M [ Re[uH] + Re[uHM]
Im[uH] ] [ II[uHM] ]

Proof. With 5M aS in (2.3), we show that uHSM uHM. The pseudoinverse
on the right side of (2.3) is actually a right inverse since Rein] and Im[u] are linearly
independent. Consider then,

]uHSM (Re[uHl + j Im[uH]) Im[uH]

I Re[uHM] ] =uHMJ] Im[u/ M]

+IRe[sliM]]Im[uHM]

aS was to be shown. Being the solution to a least squares problem, this is the smallest
such 5M.

Equation (2.3) of Lemma 2.2 provides a partial parametrization of some elements
of S(M; Nnx,). These elements of S(M; 11n m) are parametrized by the complex
vector u. Proposition 3.3, which appears later in the paper, demonstrates that the
parameterization of (2.3) includes a minimum norm element of S(M; nxm) if the
imaginary part of M haS full rank. Hence, it is possible to compute a minimum
norm real element of S(M; Nnxm) by minimizing the norm of 5M given by (2.3)
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over u E Cn. However, a direct minimization of the Frobenius matrix norm using
a standard minimization program poses a numerical stability problem halving the
accuracy of the minimizing matrix. To see the difficulty, consider the minimization

The norm of the global minimum of this problem is numerically indistinguishable from
the norm of the vector [1, vf] since float I1[1, vf] float][ [1, 0][[, where e is
any positive number less than the machine constant. Numerically speaking, these two
vectors have the same norm. However, the two vectors are numerically distinguishable.
This difficulty is avoided by requiring a solution to satisfy an orthogonMity condition
rather than directly minimizing a norm. In the context of the previous example,
the minimizing vector must be numerically orthogonal (meaning that a numerical
evaluation of the inner product yields approximately zero) to the vector [0, 1 ]. The
vector [1, e ], which is a better solution than [1, v/], is numerically orthogonal to
[0, 1]o

LEMMA 2.3. For each M Cnxm, the set S(M; Nnxm) is closed.
Proof. Let 5Mk S(M; nxm) be a sequence converging to 5M,. The proof is

completed by showing that 5M, S(M; xm). For each 5M}, there exists a uk
satisfying [[u 1 and

(2.4) Huk (M 5Mk) O.

Because each uk has unit length, there is a convergent subsequence {uk, } u, with
the property that Ilu, 1 and u,H(M 5M,) 0, by the continuity of (2.4). Hence
5M, must lie in S(M; Nx’). Again, if M has full rank, then 5M, is a real rank-
reducing perturbation for M. rl

The quantity amin(M; ]nxm) is well defined as per the following.
PROPOSITION 2.4. For each M Cnm with n >_ 2, there exists a 5M,

S M nxm) such that
Crmin(M; ]nxm)-- I[SM,]I.

Proof. From Lemmas 2.2 and 2.3, the set S(M; nx,) is closed and nonempty.
It is nonempty because the assumption n >_ 2 allows an arbitrary choice for u having
real and imaginary parts as in Lemma 2.2. Let 5Mo S(M; nxm) and consider the
set

7" S(M; nxm) ["l {Sie Nnxm: IIMII _< I1/011}.

This set T is nonempty and compact. Hence, there is a 5M, e T such that IISM,
mineMe7-115MII. Also, 5M, T c S(M; Inxm). Clearly 5M, is a minimum norm
matrix of S(M; ]t{nxm). 1"1

Since the problem of finding a real minimum norm element of S(M; IR’x’) is
well posed for n >_ 2, it is possible to take up the question of computing M,.

Before developing an algorithm for computing the quantity crmin(M; Nnxm), it
is useful to study the continuity of this measure. The next section examines the
continuity of Crmin(M; Rnxm) with respect to M.

3. The question of continuity. The behavior of the measure crmin(M;Inxrn)
provides insight into its computation. For example, problems arise when examining
the continuity of amin(M; ]1n x m). While studying the real-restricted controllability
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robustness problem, Eising [3] encountered a discontinuity when performing a mini-
mization equivalent to

(3.1) minan([A AI, B]; nxm).

The root of this problem is indicated by the following proposition.
PROPOSITION 3.1. The function amin(M; Inxm) is not continuous on Cnxm.

The following example verifies this proposition.
Example 3.1. Let e > 0 and

1

The determinant of M(e) -5M is given by

det[M(e) 5M] (5mll 5m22 5m22 / 5m21 5m12) + je(1 5m).

Clearly, det[M(e)- 5M] 0 implies that 5mll 1 when e > 0. Any real rank-
reducing perturbation 5M satisfies 11gill >_ 1. Moreover, O’min(M(); ]1nxm) I for
every e > 0, but ffmin(/(0); nxm)- 0. Thus

lim O’min(M(); ]1n’m) # (:rmin(M(0); Illsm),
e--0+

which illustrates the discontinuity. This example is easily extended to larger dimen-
sions.

The discontinuity implies that the problem of determining (Tmin (M; ]ln m) is
potentially ill conditioned. More specifically, there is no guarantee that given any
e > 0, there is some 5 > 0 and a "small" K such that

IO-min(M--5M; Rnxm) -O’min(M; ]lnxm)[ < KIIaMI[

whenever [[tiM II < .
Remarkably, however, the minimization of (3.1) is continuous and well condi-

tioned for real matrices A and B even though the embedded problem of comput-
ing amin(M; ]1(nm) is neither continuous nor well conditioned. For example, the
minimization of (3.1) can be effectively computed without explicitly determining
ffmin (M; 11n m). See [10] for details.

The first goal of this section is to characterize the nature of these discontinuities.
Continuity depends on the rank of the perturbation matrix 5M, that minimizes (2.2),
or equivalently on the space spanned by the real and imaginary parts of the left null-
vector of M- 5M,. The next two propositions characterize properties needed before
studying continuity.

PROPOSITION 3.2. Let M E Cnxm. If 5M, is a minimum norm element of
’(/; nm), then rank[SU,] _< 2.

Proof. Clearly there exists a unit length u E Cn such that uH(M- 5M,) O.
Consider the minimization problem,

(3.2) min
MEnxm
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The minimum must be zero since letting 5M 5M, in (3.2) yields zero. This is a
linear least squares problem, having as its unique minimum norm solution the matrix

5Mo= Im[’] Im[HMI

The matrix 5M0 is an element of $(M; ]nxm) and must have norm greater than or
equal to that of 5M,. However, tiM0 is also the minimum norm solution to problem
(3.2) and must have norm less than or equal to that of iM,, since 5M, is also a
solution to (3.2). Thus, 115Moll 115M, ll. From the uniqueness of the minimum norm
solution to (3.2), 5Mo 5M,. The matrix 5M, clearly has rank zero, one, or two.

PROPOSITION 3.3. Let M E Cnx’ for which Im[M] has full rank and n >_ 2. Let
u be any nonzero vector such that uH(M- 5Mo) O, where 5Mo is any element of
G(M; ]nxm). The vectors, Re[u] and Im[u] are linearly independent.

Proof. Let 5Mo be any element of S(M; lnxm). Suppose there is a nonzero vector
u satisfying uH(i- 5Mo) 0, but for which Rein] and Im[u] are linearly dependent.
As such, there exists a constant, c E 12 of modulus one, such that Im[cu] 0. Let
t ca. The vector satisfies tU(M diM0) 0 implying

Im[H(M tiM0)] u Im[M] 0,

which would imply Im[M] does not have full rank. [:]

Upper and lower bounds for rmin(M; Rnxrn) are useful. Proposition 3.5 that
follows, provides these bounds. The development of this upper bound requires the
following lemma.

LEMMA 3.4. Let ul, u2 12n be linearly independent. There exists a nonzero
vector, x span{u1, u2}, such that Re[x]ll Im[x]ll and (Re[x])T(Im[x]) O.

Proof. Note that for x Cn, IIRe[x]ll IlIm[x]ll and (Re[x])T(Im[x]) 0 if
and only if xTx 0. Given linearly independent Ul, u2 12nxm, suppose uTul # 0;
otherwise the result follows trivially. For some as yet unspecified c E 12, consider the
quantity,

(CUl 2r- u2)T(CUl 4- U2) (UUl)C2 zr- 2(UlTt2)C - (t2Tu2).
This quadratic has a zero for some c C since uTlu is nonzero. Let x cu + U2.

This x has the stated properties, which completes the proof.
PROPOSITION 3.5. It holds that an[M] <_ amin(M; Nnm) <_ v/an-[M].
Proof. The lower bound given is obvious. To establish the upper bound, let

un_ be a unit length left singular vector associated with an-[M] and let Un be a
unit length left singular vector associated with an[M]. From Lemma 3.4 there exist
constants c, c2 e C for which x cun- + C2tn satisfies Re[x]ll Im[x] 1 and
(Re[x])T(Im[x]) 0. Consider the matrix,

Re[xHM] ]6M[ae[x] -Im[x]] im[xHM]

This matrix 5M is an element of S(M; Nnxm) since xHSM xHM. Also

HM] ]
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from the orthogonality of the real and imaginary parts of x. It follows that

iixHMilU [c112 2 [c212ff2n 2ff2nffn_l[M] + [M] _< [M]

since ICll 2 + Iv212 2. It follows that O’min(M; ][nm) V/an_l[M]. This completes
the proof of Proposition 3.5. [:]

The next two results, Lemma 3.6 and Proposition 3.7 establish that a nonzero
minimum norm element of S(M; ]nm), say 5M, satisfies rank[M 5M,] n 1,
i.e., the n- 1st singular value of M- 5M, is strictly positive, when Im[M] has full
rank.

LEMMA 3.6. Let M E Cnm for which Im[M] has full rank and n >_ 2. Let 5M
be any element of ’(M; nm). For any two nonzero vectors in the left kernel of
M- 5M, say ul and u2,

span IRe[nil, Im[ul]] A span IRe[u2], Im[u2]] # {0}

if and only if U cu2 for some c C.
Proof. Let 6M be an element of S(M; ]nxm) and let Ul and u2 be nonzero

vectors in the left kernel of M- 5M. Suppose there are nonzero real vectors x and y
such that

IRe[u1] Im[ul]] Xl IRe[u2] Im[u2]]
y2

i.e., Rein1 (xl- jx2)- u2(yl- jy2)] 0. Proposition 3.3 implies that ul (xl- jx2)-
u2(yl -jy2) must be zero since its real part is zero and it is obviously in the left
kernel of M- 5M. Hence Ul cu2 for some c, completing the lemma (the converse
is obvious).

PROPOSITION 3.7. Let M Cnm for which Im[M] has full rank and n >_ 2 and
let 5M, be a nonzero minimum norm element orS(M; lnm), then rank[M-hM,]
n-1.

Proof. Let ul and u2 be any two nonzero vectors in the left kernel of M- 5M,.
By the construction used in Lemma 2.2, specifically (2.3), it follows that

range[SM,] C span[Re[ul], m[u]l

and
range[hM,] C span[Re[u2], Im[u2]].

By Lemma 3.6, ul cu2. The vectors ul and u2 cannot be linearly indepen-
dent. These vectors were arbitrary in the kernel of M- 5M,; hence, the result
follows. [:]

The points of discontinuity of the restricted singular values have a special struc-
ture; given M e Cnm and any sequence, {Mk} -- M, the value of amin(M;lnm)
is always less than or equal to the limit of the sequence {amin(Mk; Inm)}. More
specifically, the nature of these points is characterized by the following lemma.

LEMMA 3.8. If {Mk} Cnm, n >_ 2 is any sequence converging to M, then

O’min M I[{n xm

_
lim inf{amin Mk Nnx rn }

Proof. For each Mk there is a unit length vector uk and minimum norm element
of S(Mk; nm), say 5Mk, satisfying

H (Mk 5Mk) 0(a.a)
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by Proposition 2.4. Also,

(3.4) O’min(Mk;]nxm)- 115Mkll.
Let lim inf{(:rmin (Mk; Nn m) }. The sequence, {O’min (Mk; Nnxm)} is bounded, by
Proposition 3.5 and the convergence of {Mk}. Therefore, the value is finite. The
sequence {uk } is bounded as is the sequence {hMk }. Thus a subsequence indexing kn
exists such that {amin(Mk; ]nxm)} ...+ l, {uk} -- u, and {hMk,} "-+ 5M for some u
and 5M. The limits u and 5M are assumed to have no special relationship yet. From
the continuity of (3.3), however,

uH(M 5M) O.

This shows that 5M is an element of G(M; Rnxm) implying

(7min(M; ]nxm)

_
[IMI[.

Taking the limit of (3.4) (with respect to the subsequence indexing), however, implies
115MII- l, as was to be shown. D

PROPOSITION 3.9. Let M E Cnm, n >_ 2 be such that Im[M] has full rank, then
(:rmin (M; ][nxm) is continuous at M in Cnxm.

Proof. Let {Mk } be any sequence that converges to M. There exist a nonzero
vector u and a minimum norm element of q(M; Inm) say tiM, that satisfy uH(M
5M,) 0. From Proposition 3.3, the vectors Re[u] and Im[u] are linearly independent.
The matrix

im[/-/] Im[HM]
is a continuous function of Mk and is an element of $(Mk; ]1(n xm) (Lemma 2.2). Also,
as per the proof of Proposition 3.2,

5M,=
Im[uH] Im[uHM

Hence it follows that
lim{hMk } 5M,

and
lim{l[SMkll} (:rmin(M; nxm).

Clearly, however,
IIMkll >_ rmin(Mk; nm),

since 5Mk is an element of S(Mk; nxm) but not necessarily having minimum norm.
Therefore,

lim{llhMll } >_ limsup{amin(Mk; Nnxm)}.
Combining the above yields

crmin(M; nxm) >_ limsup{rmin(Mk; nxm)}.

Combining this result with that of Lemma 3.8 yields

lim{(rmin(Mk; Inxm)} rmin(M; nxm).
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This establishes the continuity of amin(M; ]nxm) at M which was to be shown, i3
Proposition 3.9 implies that points of discontinuity of crmin(M;]nxm) will be

avoided if Im[M] is known to have full rank. This full rank condition is generally the
case for the minimizations of (1.2) and (1.3). As long as an[Im[M]] is greater than
the roundoff or measurement uncertainty of M, Proposition 3.9 ensures that M is a
safe distance from a point of discontinuity of amin(M; ]1nxm).

The next goal of this paper is to develop necessary conditions that a minimizer
of (2.2) must satisfy. The next section addresses this question.

4. Development of necessary condition. The following lemma provides a
necessary condition for a particular perturbation matrix to be a minimizer of (2.2),
when Im[M] has full rank.

LEMMA 4.1. Let M E Cnxm be a matrix for which Im[M] has full rank and
n >_ 2. Let Mo be any element of S(M; Inxm). If there is a real matrix 1o such
that (i) ll/oll < {{SMo{{ and (ii) some nontrivial uo e ker[(M- 5Mo)H] and every
v e ker[M- 5Mo] satisfy uoH(M 5ff/Io)v 0 (or equivalently uoH(hMo- 5ff4o)V 0),
then there exists a 5M1 in S(M; Rnm) such that IIhMlll < IlhMoll.

Proof. Let 5Mo e S(M; Inxm) and let /o be any matrix satisfying (i) and (ii)
above. Assume M 5/tT/o has full rank, otherwise 6/o is an element of S(M; Rnxm)
having norm smaller than the norm of 5Mo, in which case the result follows imme-
diately. Let uo e ker[(M- 5Mo)HI be arbitrary and let XoH u0H(hffI0- M) or
equivalently XoH u0H(5/tT/o- 5Mo). From condition (ii) xo is orthogonal to every
v ker(M- 5Mo). It follows that xo E range[(M- 5Mo)H]. Hence, there exists a
o e range[M- 5Mo] such that oH(M- 5Mo) XoH. The remainder of the proof
constructs a real rank-reducing perturbation smaller than 5Mo having a linear com-
bination of uo and o, as a left null vector.

Consider the sequence obtained from the product,

[uo + 3’oIH[(M 6Mo) 3’(5o 6Mo)] --3’2oH (6/o 6Mo).

For 3’ sufficiently small, a real matrix perturbation can be used to cancel this vector.
Consider the matrix,

(4.2) 5Mr 3’2 [Re[uoH + 3’fioH]]im[uoH + 3’5oHl
Re[oH (521/o 5Mo)]
Im[g(6/ro 5Mo)] ]

The pseudoinverse on the right side of (4.2) is actually a right-inverse for sufficiently
small 3’, say 3’ < 3’0, because Re[uo] and Im[uo] are linearly independent by Proposi-
tion 3.3. Hence, for 3’ < 3’0,

(4.3) [uo + 3"ftolH6Mr 3"2tHo (6ff/Io 6Mo).

Thus, adding (4.3) to (4.1) yields

[uo + 3’rio]H [M [3’52t7/o + (1 3")5Mo 5Mrl O,

i.e., [3,5/17/o + (1 -3’)5Mo -5Mr] is a rank-reducing real perturbation for M. Clearly
limr__,o(1/3"2)hMr < oc (examine (4.2)). For an appropriate constant b and 3’ < 3’0,
it follows that ]{6Mr{ <_ 3’2b. The norm of the matrix [3"6Mo + (1 3")6Mo 6%]
can be made less than ]]bMo]l by an appropriate choice for 3’, since the norm of 6Mo
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is less than the norm of M0 and the norm ofM vanishes quadratically. (One such
choice is 3’ < max{- [llM011- 1121/011], /0}.) This shows that for any k0 satisfying

the matrix

1
max N[IIMolI-Ill’oil]

M1 [7JI/0 + (1 -7)M0 -M]
is a real rank-reducing perturbation having norm less than [lM0[[. This completes
the proof.

The following necessary condition follows immediately from Lemma 4.1.
THEOREM 4.2. Let M E Cnxm be a matrix for which Im[M] has full rank and

n >_ 2; let M, be a minimum norm element of S(M; Nnxm); and let the matrix
be the unique real matrix having smallest norm that satisfies

(4.4) uH(l)v uHMv

for some nonzero u e ker[(M- M,)H] and every v e ker[(M- M,)]. The matrices
M, and 1/I must be equal.

Proof. Let M, be a minimum norm element of S(M; ]Rxm). It is apparent that
for some nonzero u e ker[(M- 6M,)HI and every v e ker[M- M,], the matrix
M, satisfies uH(M- M,)v 0. If it were not the smallest such matrix, then
Lemma 4.1 would proviae a smaller rank-reducing real perturbation matrix. But that
is impossible since M, is a minimum norm real rank-reducing perturbation.

Note that the dil lsion of the left kernel of M- M, in Theorem 4.2 is one due
to Proposition 3.7.

Theorem 4.2 provides a necessary condition for obtaining a candidate for a mini-
mizer of S(M; Nnxm). The next section proposes algorithms that converge to a matrix
satisfying this necessary condition.

5. Algorithm development. This section examines an algorithm for finding
an element tiM q(M; ]nxm) that satisfies the necessary condition of Theorem 4.2.
Given a rank-reducing perturbation M, Theorem 4.2 provides a test to check whether
M satisfies a necessary condition for being a minimum norm element of S(M; nxm).
Moreover, given an initial approximation for the minimum norm, real matrix pertur-
bation Mk the solution of a least squares problem similar to (4.4) in Theorem 4.2
yields a matrix 6/k, which can be used to find a better approximation to the de-
sired solution. Furthermore, it can be shown that an improved approximation lies on
the line connecting Mk and 62trk. The approximation is improved in the sense that
the successive approximation decreases the value of a certain Lyapunov function at
each iteration. Specifically, the Lyapunov function used to prove convergence of the
algorithm is Pk [an]k +

The Lyapunov function consists of two terms: the first term [an]k measures close-
ness to S(M; ]Rnx’) while the second measures the norm ]]Mkll. The constant
is an adaptive weight parameter that is adjusted based on the condition of the prob-
lem. Establishing convergence of the Lyapunov function values to a constant and
convergence of [rn]k to zero are the keys to proving convergence of the forthcoming
algorithm.

Two assumptions will simplify the description of the algorithm and the discussion
of its convergence. The assumptions are unnecessary for constructing a convergent
algorithm; however, the clarity gained in the discussion warrants their introduction.
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Assumption 1. The sequence {Jan-ilk} computed by the algorithm below is
bounded away from zero.

Assumption 2. The sequence {gk} computed by the algorithm below is bounded
away from zero, where 9k essentially measures the linear independence of the real and
imaginary parts of the nth left singular vector of M 5Mk.

Proposition 3.7 motivates Assumption 1 because it demonstrates that a solution
matrix 5M, satisfying the necessary condition cannot satisfy rank[M- 5M,] < n- 1.
The algorithm below generates a sequence of real matrices 5Mk having a subsequence
converging to a matrix 5M,. So long as the sequence of singular values [an-1]k of
M 5Mk is bounded away from zero the algorithm computes a matrix satisfying the
necessary condition for a matrix in a neighborhood of the original M. It is possible to
construct an algorithm that allows [(n-1]k to become zero at a finite number of points
and converges to a matrix satisfying the necessary condition. However, dealing with
this rare situation complicates the specification and discussion of the algorithm. For
simplicity the algorithm is presented and analyzed under the assumption that [an-1]k
is bounded away from zero.

Proposition 3.3 motivates Assumption 2. Lemma A.2 in Appendix A shows that
gk is bounded below by the inverse of the spectral condition number of the matrix

[Re[un]}, Im[Un]k]. Proposition 3.3 ensures that this condition number remains
bounded in a neighborhood of a solution point. Assumption 2 can be removed by
changing the initial value for go and the initial choice for 5M0 given in the algorithm.
Proposition A.3 of Appendix A discusses removal of Assumption 2.

The quantities to be computed by the algorithm are illustrated graphically in
Fig. 1. It is useful to consider the algorithm with reference to this figure.

ALGORITHM STATEMENT. Given a prespecified constant :
1. Let k 0, let 5M0 be any real matrix satisfying rank[M- 5Mo] n- 1

and let go 1.1
2. Compute a singular value decomposition of M 5Mk, i.e., find orthonormal

sets {[ui]k}, i= 1,...,n and {[vi]k}, i= 1,...,m so that

M 5Mk
n

3. Define Vk=[[vn]k [VnW1]k [Vm]k].
4. Compute 5Mk, a matrix direction designed to decrease the nth singular

value. Let 51/Ik be the unique real matrix having smallest norm for which

5. Compute 5//, a matrix direction designed to decrease the norm of the real
perturbation without changing the nth singular value. Let 5k be the unique real
matrix having smallest norm for which

1The less restrictive choice 5540 [0] will work provided Assumptions and 2 remain valid

and provided that a left singular vector associated with the nth left singular value of M has linearly
independent real and imaginary parts.
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FIG. 1. Geometric relationships among computed quantities and singular value level sets.

(Lemma 2.2 guarantees the consistency of the equations and the existence of a solution
in steps 4 and 5. The equation in step 5 comes from equating [Un]kH(M- 5k)Vk to

[Un]kH(M 6Mk)Vk.
6. If [an]k < e[[M 6Mk[[ and gk[[6ik Mkll < e[[M 6Mk[[ then stop;

otherwise continue.
7. Define

9k- min 9k-,

when [,] 0; define 9 9k-1 otherwise.
8. Define

H[fi]k [[Un](5//k 5Mk) [an]k[vnl](M 5M)+,

where k /l/k + k.
[[(]k 6Mk[[), 1), where9. Define - min(z([.] + gbe

and

bk IIMII
0

if 116MII o,
otherwise.
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10. Set Mk+l 7kMk + (1
11. Let k k + l and go to step 2.

A graphical illustration of the basic geometry involved in the algorithm appears in
Fig. 1. In this figure, M is the given complex matrix. The dashed lines represent level
sets of an(M- 5M) in the space of real matrices 5M. The solid curved line represents
the level set corresponding to rank[M- 5M] 0. The matrix M- 5M. is the desired
solution point. The current approximation to M- M,, i.e., M- Mk, appears at
the lower right corner of the rectangle in the figure. Traveling along the right edge of
the rectangle toward M- 5Mk --5Mk decreases an. This direction is normal to the
level set at M- 5Mk. The upper right corner lies near the zero level set. On the other
hand, traveling from M- 5Mk toward the lower left corner decreases the norm of the
perturbation with a small change in an. This side of the rectangle is (i) tangent to the
level set at M- Mk, (ii) orthogonal to the line connecting M and M-Mk, and (iii)
orthogonal to the line connecting M-Mk and M-Mk --llk. Traveling along the
diagonal of the rectangle, the approach taken here attempts to meet both objectives.
Some point along the diagonal decreases the value of the Lyapunov function that
represents a weighted combination of both objectives. This geometry proves useful in
interpreting the theorems and proofs below.

The proof of the convergence of this algorithm requires four lemmas. It is helpful
to view ]nxm as a vector space equipped with the inner product, < .,. >, defined as
follows for M, N E IRn xm:

n m

< M, N >= EEmijnij.
=1 j=l

The norm induced by this inner product is the Frobenius norm.
In the algorithm, the matrix 5Mk is the sum of two matrix components, 5Mk and

5Mk. Given 5Mk, traveling in the matrix direction 5Mk serves to decrease the size
of [an]k while the direction 5Mk 5Mk decreases the norm of 5Mk. Traveling along
the diagonal of the rectangle shown in Fig. 1 decreases the value of the Lyapunov
function. Recall that 5_hT/k and 5/k are obtained from steps 4 and 5 of the algorithm
as follows: 5/l:/k is a minimum norm real matrix satisfying

[lln]kHkYk [ltn]kHMkVk,

while 5Mk is a minimum norm real matrix satisfying

[lZn]kH]kyk [[(Tn]k 0 0].

Moreover, 5/Ik
Lemma 5.1, which follows, demonstrates the orthogonality of 51k --5Mk and

5Mk with respect to the inner product defined above.
LEMMA 5.1. For any , I the matrices 51ik and 51/Ik --5Mk are orthogonal.

Hence, 5k and 5M satisfy

Proof. The matrix 51I- 5Mk satisfies

5M )V o.
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Since Mk is chosen to be a minimum norm solution in step 5 and since

[unlkH [hY/Ik + c(5/I} 5M})]V} [unl}HhMkVk
for all real c, it follows that II5lk + C(5k 5Mk)[[ > [[5k for all c # 0. This can
only occur if 6k and 5 -5Mk are orthogonal with respect to the inner product
on nxm. The result follows from the stated orthogonMity.

Lemma 5.2, which follows, provides an upper bound for the size of the solution
of a particular matrix equation.

LEMMA 5.2. Given [v]k for 1,...,m, and M- Mk as defined in the algo-
thm, for any integer r < n and any matrix, X, if XH[V]k 0 for r + 1,..., m
and [ar]k 0, then there exists a matxY for which yH(M 5Mk) Xg. Moreover,

Poof. The result follows immediately from some elementary properties of singu-
lar spaces.

Lemma 5.3 below provides a bound for the decrease in the norm of 5M} when
moving along the path from 5M} toward }, which is the diagonal of the rectangle
shown in Fig. 1.

LEMMA 5.3. At each iteration,

(1 7)Mk +k-Mk ([-b M)

forte (0, 1).
Proof. Assume IIM # 0 otherwise the result follows trivially, since

and Mk 0 in this ce. Notice that

II(1 )Mk + 75k112 II( 1)(5k Mk) +2
( 1)215k 5MkII

2
+ 5k]2

()( 2)[[k 5Mk[
2 2

2)lla  MkII
2
+ ]]Mk] 2

follows from two applications of Lemma 5.1. In consequence,

implying that

(5.2) (1 7)SMk + 75M 115Mk <--

for 7 E (0, 1_). The previous inequality was obtained by dividing both sides by [[(1
7)hMk +75Mkll + 115Mkll and restricting 7 E (0, 1). A simple application of the triangle
inequality results in

+  ]]aMkll.

This differs from (5.2) since the tilde (-) has been chang_ed to a hat (^) on the left
side. (Recall from step 8 of the algorithm that 5]lk 5Mk + 5l/lk.) This completes
the proof of the lemma. Cl
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The fourth lemma provides a bound for the change in the nth singular value of
M- 5M when moving along the path from 5Mk toward

LEMMA 5.4. At each iteration the nth singular value of the matrix M- [(1
/)hMk + /5/Ik] is less than or equal to

(1 ") [O’nlk -- 72qk,where
qk H(5lk 5Mk ll.Uk

Proof. From Lemma 5.2 there exists [t]k orthogonal to [Uk] such that

H H[]k (M 5Mk) [Un](5-/k 5Mk) [O’n]k[Vn]k

To complete the proof of the lemma, consider that the norm of the product,

is less than or equal to the stated bound,

(1 /)[an]k + /2qk,

implying that the nth singular value is less than the stated bound. This completes
the proof of the lemma. [:]

Proof of convergence of the algorithm is achieved by appealing to a Lyapunov
function approach: The function

Pk [ffn]k -- gk IlhMkdecreases at each iteration by a positive definite function of [an]k and 115k -5Mkll.
Proof of convergence involves two steps. The first step is to show that the choice

and the choicegk=min([an]k][hMkl]
imply that

g_l) (when [O’n]k O; gk gk-1 otherwise)

1 --1Pk+l Pk <_ max -qk ([an]k + gkbkllSMk 5Mkll)2

1 ]
which is less than zero unless 5Mr: satisfies the necessary condition. The second step
is to show that the quantities q- and gk are both bounded away from zero. It
follows that (i) {Jan]k} --* O, (ii) {llSMk 5Mkll} O, (iii) the sequence {SMk} has a
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subsequence converging to a matrix 5M,, and (iv) for k sufficiently large 5Mk satisfies
the necessary condition for being a minimum norm rank-reducing perturbation for
some M in a neighborhood of M. The first step is achieved in the following proposition.

PROPOSITION 5.5. The quantities computed by the algorithm satisfy

Pk+l Pk

_
max [---6q-l([an]k + gkbkllhlk --5Mkll)2

4
([O’n]k -" gkbk Ilb-ik 5Mk II)

where
Proof. Since k E (0, 1) it follows from Lemmas 5.3 and 5.4, that

The two inequalities above come from the definition of gk, which implies that gk is
nonincreasing and that gkl[5l/Ik]l <_ 1/2[an]k. The choice for /k given in step 9 of the
algorithm minimizes the quadratic bound given above over 7k E [0, 1]. Substituting
this value for "Yk into the above bound and using the fact that 7k 1 only if qk

_
-1 ([O’n]k -- gkbk]lh/Ik 5Mk[I) one obtains4

4
([an]k + gkbk II)

To complete the proof of convergence, it remains to establish that the sequence
{qk} is bounded. If {qk} is bounded and if {gk} does not have zero as a limit point,
it follows from Proposition 5.5 that {Jan]k} --* 0 and {llh//k- 5Mkll} --* O. The
following lemma demonstrates that {qk } is bounded.

LEMMA 5.6. Given the earlier assumptions and the algorithm as stated above,
the sequence {qk } is bounded.

Proof. From the definition of qk, Lemma 5.2 implies that

Since {Pk} is decreasing, it follows that II,M- 5MII <_ 115Mkll <_ (Po/gk) and
[Crn]k <_ P0, implying that 115f/Ik 5Mkll <_ (3/2)(Po/gk). Boundedness of [Crn-1]k
and {gk} away from zero in Assumptions 1 and 2 imply that the sequence {qk} is
bounded.

It is now possible to establish convergence of the algorithm.
THEOREM 5.7. Given the algorithm as stated above and Assumptions 1 and 2 it

follows that the algorithm terminates.

Proof. Using the boundedness of qk and Assumption 2, Proposition 5.5 implies
that ]]hMk- 5Mk]] and [an]k become arbitrarily small since the sequence {Pk} re-
mains positive. Since gk is bounded below by a positive number the algorithm must
terminate.
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Some additional properties of the matrix 5Mk are useful. At each iteration, the
matrix 5Mk satisfies several properties.

(i) It is an element of $(Mk; Inm), where

Hff/lk a M (6Mk 5ff/Ik) [Un]k[an]k[Vn]k

since/17/k 5ff’lk is equal to the rank deficient matrix, M- 5Mk -[ltn]k[O’n]k[Vn]H
(ii) The vector [u,]k is contained in the left null-space of the rank deficient

matrix/l:/k 5/7/k and the columns of Vk span the right null-space.
(iii) 5Mk is the real matrix having minimum norm over all 5M E nxm satisfying

Un thMyk -[Unltl(/IkVk.

The previous equation is equivalent to the constraint in step 5 of the algorithm, since

[Un]/kYk "--[Un]kYk--" [Un]MkYk.
(iv) The sequence {Mk} --* M.
The previous properties show that 5ff/ik S(lk; lm). Moreover, 51k satisfies

the necessary condition of Theorem 4.2 for being a minimum norm element of the
set S(Mk; lxm). For k sufficiently large, {Mk} approaches M, i.e., 5Mk satisfies
the necessary condition for the neighboring matrix Mk. Hence I[hMk --5Mk[I +
provides an estimate of the accuracy of the solution in the sense that it measures
the distance from a nearby problem for which 5Mk satisfies the necessary condition
exactly. This discussion is summarized in the following theorem.

THEOREM 5.8. When the algorithm terminates, Mk satisfies the necessary con-
dition for being a minimum norm element ofq(k; Inxm), where ff/Ik M-(hMk-
]k) [tn]k[O’n]k[Vn]I and IIM- ff/Ikll <_ [[51k --5Mk[[-}-[an]k

_
e(1 + 1/gk)[[M-

Proof. Matrix 5Mk satisfies the necessary condition for being a minimum norm
real matrix that satisfies rank[dl/k --5/k] n- 1. See the previous discussion.

Theorem 5.7 demonstrates only that the algorithm would terminate if the algo-
rithm were carried out with infinite precision. However, the stopping criterion given
in the algorithm statement is designed to be achievable in the presence of numerical
roundoff. The reasons for the criterion given in the algorithm are discussed in the
next section.

6. Implementation and numerical results. A listing of a MATLAB [7] im-
plementation of the algorithm is included in Appendix B. This implementation has
been tested on a SPARC workstation which has a 53-bit effective floating point mantissa
and a machine epsilon of 2.22 10-16 as reported by MATLAB.

Steps 4 and 5 of the implementation require some explanation. The least squares
solutions in steps 4 and 5 are formulated using Kronecker products [1] by applying
the "vec" operator to the equation. The relevant equation in step 4 becomes

(6.1) V (R) [Un] vec[5_] vec [(7n]k 0 0].

The real minimum norm solution is obtained from the equation

(6.2) vec[5/17/] IRe[V/(R) [u]kH]] +im[VkT (R) [tn]kH] vec [[anlk 0 01.
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A sufficient number of zeros are added to the row vector in (6.2) to make the dimen-
sions conform. The pseudoinverse required in (6.2) is obtained from a singular value
decomposition (SVD).

A similar formulation yields 5Mk. Step 5 requires solution of the equation

Re[VkT (R) [Un]kH] ]Im[VkT (R) [Un]/] vec Re[V/(R) [tn]kH] 1 vec[SMk]Im[Y/(R) ]
The MATLAB implementation obtains the solution in step 5 by projecting vec[SMk]
along the kernel of the matrix

Im[VkT (R) [unlkHI
The kernel of the matrix is obtained from the result of the SVD computed in step 4.

Step 8 also requires some explanation. The norm of the pseudoinverse in step
8 increases as [O’n]k decreases. However, by construction, the vector on the left of
(M- 6Mk)+ is orthogonal to the singular space associated with [an]k. Hence, only
the first n- 1 singular values and vectors are used for the inversion.

The stopping criterion in step 6 has been selected to account for the conditioning
of the problem. It is well known that [O’n]k can only be computed within a few multiples
of e[al]k, where e is the machine constant. As discussed earlier, the quantity gk is an
indirect measure of the conditioning of the inversion required to find 5Mk. Hence,
roundoff errors are magnified by 1/gk in the computation of 5Mk. Moreover, it can be
shown that the projector used to compute 6Mk has a relative accuracy proportional
to 1/gk. Because gk is a decreasing sequence, it represents the worst conditioning
encountered during execution of the algorithm. This discussion suggests that the
relative error associated with the product gk[[6Mk --Mk[[ is approximately equal to
the machine constant epsilon, and motivates the stated stopping criterion. While this
is not a rigorous justification of the stopping criterion, this stopping criterion has
been successful in numerous numerical experiments. Moreover, it is suspected that
1/gk measures the sensitivity of the problem to changes in M.

The implementation given in Appendix B has been written to expose the main
steps in the algorithm to guarantee convergence and to compute an accurate solution.
A few comments on the storage requirements and the time requirements are in order.
Estimating time requirements for SVD algorithms is difficult because the time required
per iteration is a complex function of the number of rows and columns of the matrix.
The time also depends on which portions of the decomposition are required. See, for
example, [5]. Moreover, the number of iterations required depends upon the given
matrix. Hence, estimates for SVD computation time must be partly theoretical and
partly experimental.

For the following discussion, assume that the row and column dimensions are
approximately equal m n, and that the number of columns exceeds the number of
rows by a small number, say rn n + 1 << hi2. The SVD of M 5Mk computed
in step 2 is the primary contributor to execution time in the implementation given
in Appendix B. Step 2 requires a complete SVD of the complex matrix M- 6Mk.
The time required for this operation is proportional to n3 and numerical experiments
estimate that MATLAB requires approximately 50n3 floating point operations (flops)
to compute this SVD. Step 4 requires a real SVD of a matrix whose dimensions are

2(m- n + 1) by nm. However, the full decomposition is not required. Omitting
computation of the null vectors saves computation time. The time required by the



1200 M. A. WICKS AND R. A. DECARLO

economy version of the SVD in MATLAB, which omits the null vector computation,
is proportional to 4(m- n + 1)2nm and experiments estimate that MATLAB requires
approximately 20(m n + 1)2n2 flops to compute this decomposition. Hence, the sec-
ond SVD in step 4 requires comparatively little time due to its small number of rows
provided p is small. The remaining operations are mostly matrix by vector multipli-
cations, diagonal matrix inversions, matrix additions, and norm computations. The
additional operations require approximately 18n2p + 37n2 + 6n + 8p2 6p flops per
iteration where p (m- n + 1).

Storing the matrices, M, Mk, ]k, /Ik, and h/k requires 6nm real storage
locations, although this could be economized by using the same locations for several
of these quantities. Storing the SVD of M 5Mk requires 2n2 + 2m2 + n real storage
locations. The matrix whose pseudoinverse is required in step 4 requires 2nmp storage
locations. Storing the SVD of this matrix requires 4p2 +2nmp+2p locations. Together
this is about the same as 4p real n m complex matrices. Assuming n m storage
of all matrices requires approximately (10 + 4p)n2 real storage locations. Additional
storage is required for intermediate quantities. The additional storage amounts to
approximately 4n additional locations, assuming rn n.

Some simple numerical examples illustrate the accuracy of the technique. The
first example has a known matrix that satisfies the necessary condition exactly.

Example 6.1. Consider the matrix,

-122- 128j -256+ 128j -511- 128j -515- 128j -641-384j
-130- 128j -256- 128j -511+ 128j -511- 384j -385- 128j
142- 128j 256- 128j 511- 128j 505- 384j 641 + 128j
118- 128j 256 + 128j 511 + 128j 517- 128j 385 + 384j

The matrix

M,

6 0 1 -3 -11-2 0 1 1 -1
14 0 -1 -7 1
10 0 -1 5 1

exactly satisfies the necessary condition. The algorithm given in Appendix B converges
to a solution after 17 iterations requiring approximately 11,000 flops per iteration. The
Frobenius norm of the error matrix obtained by subtracting the numerical solution
from 5M, as given above is 3.9 10-13. Note that the relative error obtained by
dividing the absolute error by the Frobenius norm of M- 5M, is approximately 0.5.
The algorithm returned an error estimate of 3.4 10-13 where this is the distance
away from the problem whose solution is obtained exactly. The final value for g was
0.199.

To further evaluate the accuracy of the approach, the algorithm was tested on

several matrices where the solution was known approximately. By a solution, we mean
a matrix satisfying the necessary condition given in Theorem 4.2. Several steps are
taken to generate such matrices. First, a random complex matrix is generated whose
real and imaginary parts have a specified size. The real portion of the matrix is gener-
ated by selecting entries randomly between zero and one from a uniform distribution.
A normalization provides the real part with the specified size. The same procedure
yields an imaginary part for the matrix having a specified size. An SVD of the complex
matrix, call it R, yields an approximate left singular vector un and an approximate
orthonormal basis for the direct sum of the right singular space associated with an
and the right null-space V. The quantities un and V are considered to be exact spec-
ifications for the desired null-space bases at the solution point. The subsequent steps
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TABLE 1
Numerical results obtained by varying dimension.

Iterations k-flops Estimated Actual Relative
Size required count an- error error error

5 8 10 0.1258 5.8 10-15 1.1 10-16 0.16
15 9 205 0.0306 1.3 10-15 4.3 10-17 0.14
30 12 1463 0.0094 1.8 10-15 1.5 10-16 0.46
50 19 6160 0.0031 4.6 10-15 9.2 10-16 2.92
100 21 47300 0.0027 4.8 10-15 1.5 10-16 4.71

attempt to generate a problem whose solution has u as a left null-vector and has V
as a basis for the right null-space of M- M,. To generate M, in the appropriate
space, a random vector in 2 is selected having entries uniformly distributed between
zero and one and normalized to have a specified size. The transpose of the matrix
given by (6.3) is multiplied by this random vector to generate vec[SM,]. The ma-
trix M is made rank-deficient via M R- UnanVs to produce a matrix M having
approximately the desired left and right null-spaces. This approach yields a complex
matrix that is a perturbed version of a complex matrix having the specified null-space,
since Un, an, and vH exactly specify the singular space of a matrix near R. The real
matrix 5M, will be a perturbed version of a matrix that is contained in the row space
of (6.3). Both matrices will have a relative error approximately equal to the machine
epsilon. Thus, the real matrix is a perturbed solution to a perturbed problem, both
perturbations having a relative size approximately equal to the machine epsilon.

The technique described above was used to study the accuracy of the algorithm.
Table 1 compiles results obtained by varying the size of the problem. The algorithm
was tested on square matrices for which the norm of the real and imaginary parts
were both approximately one. The norm of the solution was selected to be 0.001. The
estimated error displayed in the table was computed by the algorithm. The actual
error was obtained by computing the norm of the difference of the computed solution
from the approximately known solution. The relative error is normalized to the size of
M- M,, where M, is the approximately known solution and specified in multiples
of the machine epsilon. The flop counts are average counts per iteration and are given
in thousands of flops per iteration.

Similarly, Table 2 displays results obtained by varying the size of the imaginary
part of M while holding the size of the real part at one and holding the size of the
solution fixed at 0.001. The size of M was 10 12. The final value of g, has been
included in Table 2 as it provides some measure of the independence of the real and
imaginary parts of the left singular vector at the solution point. The flop count has
been omitted since each case had the same flop count of 135,000 flops per iteration.

7. Conclusions. This paper addresses two issues concerning the computation
of the real-restricted singular value of a complex general matrix: the continuity of the
singular value over the space of complex matrices and a necessary condition that a
minimum norm rank-reducing real perturbation must satisfy. It presents an algorithm
that computes a matrix satisfying a necessary condition for being a real, minimum
norm rank-reducing perturbation for a problem in a neighborhood of the original prob-
lem. Upon termination the algorithm provides an estimate for the distance from the
original problem. Results demonstrating the accuracy of the algorithm are included.
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TABLE 2
Results obtained from varying size of imaginary part.

Iterations Estimated Actual Relative
Im MII required g, an- error error error

10o 9 0.3129 0.0748 1.7 x 10-15 1.7 10-16 0.5
10-1 19 0.1479 0.0559 2.6 10-16 1.5 10-16 0.7
10-2 26 0.0103 0.0556 5.7 10-15 9.8 x 10-16 4.4
10-3 49 0.00194 0.0556 I.I 10-13 2.8 X 10-15 12.5
10-4 173 4.6 10-4 0.0556 2.4 X 10-13 4.2 10-15 18.8
10-5 1339 5.2 X 10-5 0.0556 3.9 10-12 5.3 X 10-14 238

The algorithm is accurate when the real and imaginary parts of the left singu-
lar vector associated with the solution point are far from dependence. The rate of
convergence is linear, and the algorithm performs well on many problems. However,
convergence can be slow for some problems, particularly when the size of the imag-
inary part of the matrix is small compared to the real part or when the imaginary
part is nearly singular. These conditions can cause the real and imaginary parts of
the left singular vector at the solution point to be nearly dependent. Methods for
accelerating convergence need further study. The number and nature of points that
may satisfy the necessary condition given in Theorem 4.2 and techniques for selecting
initial starting points also need further study.

Appendix A. The goal of this appendix is to provide supplemental proofs that
allow removal of Assumption 2 given in 5 of the paper. Two preliminary lemmas are
presented before the main result.

LEMMA A.1. Let M E Cnxm, m >_ n >_ 2. Suppose rank[M] < n and
rank[Im[M]] n. Let u be any nonzero vector satisfying uHM O. The
spectral condition number of the matrix IRe[u], Im[u]] is less than or equal to
al [Re[M]]/an [Im[M]].

Proof. Without loss of generality, assume Rein]Tim[u] 0 and
111m[u]ll. Clearly,

a, [Re[M]] Re[u]ll >- Rein]T Re[MIll Im[u]T Im[M][I >- an [Im[M]] Im[u]ll,

implying that n[Re[u], Im[u]]
LEMMA A.2. The quantities computed by the algorithm described in the paper

satisfy

Proof. There exists a minimum norm real matrix 6Mo satisfying

[UnIkHhM0 [unl ([U,]k[an]k[Vn]

as per Lemma 2.2. Hence 5M0 satisfies

[u,]Hk 6MoVk [Unlk6]kVk

implying that 116Moll >_ 116M}II. It can be shown that
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implying the statement of the lemma. Cl

PROPOSITION A.3. If the algorithm stated in 5 is modified so that go

!4 a [Im[M]/llSMoll where the matrix 5Mo satisfies rank[M 5Mo] n 1 then
lim{g } > 0.

Proof. Since [Un]Hk[M- 5Mk --[Un]k[an]k[Vn]]- 0, it follows from Lemma A.1
that

al IRe[M]] + a[Mk] + [an]k
t IRe[an]k, Im[Un]k <

so long as [an]k < an[Im[M]] (the initial choice for P0 guarantees that Jan]k, <
aan[Im[M]] since P0 go[[SMoll 1/4a[Im[M]] and [O’n]k

_
Pt: <_ Po.) Suppose

that gk is strictly less than gk-1. From Lemma A.2 and the definition of gk,

1 O’n [Im[M]]-- 2f O’l [Re[M]] + 115Mkll + [an]k

Since Pk <_ 1/4aN [Im[M]] for all k, it follows that

[an]k

_
1/4an[Im[M]]

and 115Mkll <_ 1/(4g)a[Im[M]]. Hence

3 an[Im[M]]
8 0"1 [Re[M]] + (4- + )a [Im[M]]

from which it follows that there is a constant C for which g >_ C > 0 for all k. We
have shown that gk < gk- for any k implies that gk >_ C > 0 and gk cannot converge
to zero. V1

Appendix B. This appendix provides a listing of a MATLAB implementation
the algorithm described in the paper.
function rrp realrrp(M)
M is an complex matrix (n by m) with n <= m

Name: realrrp
Purpose: This algorithm finds a matrix satisfying a necessary

condition for being a minimum norm, real, rank-reducing
perturbation for a given complex matrix

Description: This algorithm uses a Lyapunov function to guarantee
convergence to a solution point.

Remarks: This function must be called with the number of rows
smaller than the number of columns

Variable descriptions:
% M: User supplied n by m complex matrix
% n: Row dimension of M

m: Column dimension of M
dm: Current approximation of solution
MO: Current value of M dm

Z u,s,v: SVD of MO
Luv: Large operator formed from u and v.
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U,S,V: SVD of Luv.
dmhat: See algorithm description
dmtilde: See algorithm description

function rrp realrrp (M)
tol 8.0*eps;
limit 10000;
printint 10;
flops (0)

% PRELIMINARY CHECKS
Z
% Check for obvious problems...
Z
% First check dimensions
Z

sz=size (M)
n sz(1); m=sz(2);
if (m < n)
disp ( Error in minrealrrp, m:
error (’ Row dimension exceeds column dimension’);

end;

% Check size of imaginary part of M

s svd (imag (M))
if (s(n) < tol,normm)

disp ’Error in Algorithm.m:
error (’ Size of imaginary part of M is too small’);

end;

% INITIALIZATION SECTION

% Set up some useful quantities...

normm norm (M, fro
done 0; % Initialize flag for program termination.
count 0
g= 1;

% Step 1. Get an initial real, rank-reducing perturbation matrix.

dm initrealrrp(M);
normdm norm (dm, fro’

% ITERATION SECTION

while (count < limit done O)
count count + 1;
if (round(count/printint)*printint count)
printthis 1;

else
printthis O;

end;
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Step 2. Compute SVD of M- dm to get U, V, sigma_n and sigma_n_l

MO M-din;
[u, s, v] =svd (M0)
sigma_n s(n,n);
sigma_n_l s(n-l,n-l); Y. second from last

Step 3. Define Vk, and some other useful names

V v(:,n:m);
U u(:,n);
S [s(n,n:m)’; zeros(m-n+l,1)];
Luv kron (conj(V’), U’);
Luv [real (Luv) imag(Luv)

Step 4. Compute dmbar, which satisfies U’*dmbark,V S, via a
least squares solution;

[vl,sl,ul]=svd(Luv’ ,0) Y, Economy style SVD
vecdmbar (vl*(diagpinv(sl, tol),(ul’*S)))
dmbar unvec (vecdmbar, n, m);
normdmbar norm (dmbar, ’fro’)

Step 5. Compute dmtilde (with a projector), which satisfies
U’*dmtilde*V U’*dm*V

rnk diagrank (sl, tol);

Project ’dmk’ along kernel of Luv

vecdmtilde vl(: ,l:rnk)*(vl(: ,l:rnk)’*dm(:));
dmtilde unvec (vecdmtilde, n, m);
normtilde norm (dmtilde-dm, ’fro’)

Step 6. Test for exit

if (sigma_n + g*normtilde <= tol.s(1,1))
done 1;

end;

Step 7. Adjust g if necessary

if (sigma_n ~= O)
g min ([g, 0.5.sigma_n/normdmbar])

end;

Step 8. Determine uhat

dmhat dmtilde+dmbar;
deldm dmhat-dm;
x U’.(deldm) s(n,n).v(:,n)’;.
uhat ((x*v(:,l:n-l))*diagpinv(s(l:n-l,l:n-1),tol))*u(:,l:n-1)’;

Step 9. Determine b, q, and finally gamma
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First q

q norm(uhat,(deldm))

Now b

if (normdm O)
b=O;

else
b normtilde / normdm;

end;

And gamma

d 0.25,(sigma_n + g b * normtilde);
if (d > q)

gamma 1
else

gamma (d / q);
end;

Step I0. Compute the new delta M

dm (1-gamma) ,dm + gamma, (dmhat)
normdm norm(dm, fro’ )
if (printthis 1)

count, normdmbar, normtilde, gamma, g, q, sigma_n
end;

end;
disp (’Solution is ’); disp (dm);
disp (’Final g value is ’); disp(g);
disp (’Distance from desired problem is’); normtilde+sigma_n
disp (’Number of iterations is ’); disp (count);
disp (’Flop count is ’) flops
rrp dm;
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ROW ORDERING FOR A SPARSE QR DECOMPOSITION *

THOMAS H. ROBEY AND DEBORAH L. SULSKY:

Abstract. A new row ordering strategy based on pairing rows to minimize local fill-in is pre-
sented. The row ordering can be combined with most column ordering strategies to reduce com-
putation, maintain sparsity, and solve rank deficient problems. Comparison of the new row pairing
algorithm with Duff’s fixed pivot row ordering on a collection of sparse matrix test problems shows
a median 47-71% reduction, depending on the column ordering, in floating point operations (flops)
required for the QR decomposition. On a finite element application using nested domain decomposi-
tion for the column ordering, the new row ordering is competitive with the row ordering from nested
domain decomposition.

Key words. QR decomposition, sparse matrices, Givens rotations

AMS subject classification. 65

1. Introduction. The QR decomposition is a relatively robust means for solv-
ing a variety of problems. The decomposition of an rn n matrix A (m _> n) is usually
written QAP [oR], where Q is an m m orthogonal matrix composed of orthogonal
transformations, P is a permutation matrix, and R is an upper triangular matrix. The
column permutations are usually required when A does not have full rank and then
R is upper trapezoidal. The use of orthogonal transformations is numerically stable
and, in practice, the rank of the matrix can be determined accurately when column
permutations are performed during factorization. The matrix Q can be determined in
factored form using several methods; Givens rotations are used here. While the LU
decomposition (Gaussian elimination) is widely used and researched, the QR decom-
position is used less frequently in applications because it is generally more expensive
to compute than the LU decomposition. However, there are many applications that
produce rank deficient matrices [1], or that require least squares solutions, for which
Gaussian elimination is unsuitable. Furthermore, many of these applications produce
sparse matrices, a property that can be exploited to reduce the cost of computation.

To design a sparse QR decomposition, the overall goals must first be identified.
The primary goal is to minimize the execution time for computing the decomposi-
tion. Since execution times are highly dependent on computer architecture and the
algorithm’s implementation, it is desirable to have other less variable measures of
computational cost. Flops are the primary measure of computational work. Indeed,
for sparse matrices, column and row permutations are motivated by an attempt to
preserve sparsity and thereby reduce flops. Execution time can also be impacted by
the overhead associated with choosing appropriate reorderings of rows and columns.
It is important that this overhead does not offset gains achieved by reducing flops.
Other measures of performance are the amount of intermediate fill-in, the number of

* Received by the editors August 6, 1990; accepted for publication (in revised form) June 10,
1993.
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nonzeros in R, and the number of Givens rotations. The amount of intermediate fill-
in and the number of nonzeros in R are measures of how well sparsity is maintained.
It is desirable to keep R as sparse as possible since most applications use R. Some
applications use Q, and thus the storage for Q can be an issue. Since Q is stored in
factored form, the number of Givens rotations performed during the decomposition is
a measure of the requisite storage. These measures will be used to gauge the relative
success of sparse QR decomposition algorithms.

When A is sparse, both row and column permutations may be performed as
a means of reducing computational expense and maintaining sparsity. While both
row and column orderings impact the computational work, only the column ordering
influences the final sparsity in R [2]. This observation follows from the fact that the
Cholesky factor of the normal equations matrix ATA mathematically has the same
structure as R, and the structure of the Cholesky factor is determined solely by the
column ordering. Column ordering strategies can be divided by whether the orderings
are done a priori or at each step of the process (local orderings).

An a priori scheme for column ordering suggested by George and Heath [2] utilizes
the relationship between R and the Cholesky factor of the normal equations matrix.
Symbolically, the normal equations matrix is formed and then a minimum degree
algorithm is performed on (ATA) to determine a column ordering. The nonzero pat-
tern of R can also be determined a priori, which facilitates memory allocation. This
column ordering attempts to minimize the number of nonzeros in R. The amount of
flops required to compute the decomposition is not necessarily reduced by this scheme,
because different row orderings produce varying amounts of intermediate fill-in. To
avoid forming ATA, Ostrouchov [3] develops a symbolic minimum degree algorithm
that operates on the structure of A that can apply local row and column orderings a
priori. The local nature allows local tie-breaking criteria to be used during column
ordering.

Duff [4] suggests a local column ordering that selects the column with the min-
imum number of nonzeros. This strategy seeks to locally minimize the number of
Givens rotations and thus attempts to indirectly minimize other quantities.

Nested dissection is an a priori method that produces both column and row
orderings [5] and is based on the underlying graph of the matrix. For problems where
the underlying graph is a grid of nodes, these orderings have the advantage of bounds
on both the number of flops and the number of nonzeros in R. An element-based
variation is nested domain decomposition [1]. Both of these techniques successively
split the problem into smaller problems. Then the decomposition proceeds in the
reverse direction beginning with the small problems. The orderings produced are
coarse, i.e., the rows and/or columns are ordered in groups with no ordering within
each group. A disadvantage of nested dissection is that the quality of the ordering
depends on the topology of the graph, and no reasonable bounds on flops or the
number of nonzeros in R exist if an underlying grid does not exist.

Row ordering schemes can be divided into either fixed pivot row strategies or
variable pivot row strategies. In each column, fixed pivot row strategies always use the
same element, the pivot, to zero out all the other nonzeros in that column. Therefore
the pivot eventually becomes the diagonal entry in R. Variable pivot row strategies
allow the use of more than one element as a pivot in each column and the final pivot
for the column becomes the diagonal entry in R. Note that fixed pivot row orderings
are a subset of the variable pivot row orderings. Thus, in theory, there always exists a
variable pivot row ordering that performs as well as the best fixed pivot row ordering
although, in practice, fixed pivot strategies may outperform variable pivot strategies
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[3]. Note that although the terminology row ordering strategy is used, these strategies
are not necessarily equivalent to an a priori permutation of the rows [3].

The strategy of George and Heath [2] orders the rows in increasing order with
respect to the column containing the last nonzero (after column permutations), an a
priori fixed pivot scheme. George and Heath are mainly concerned with developing a
column ordering that keeps R sparse, and their row ordering strategy outlined above
makes only a minimal attempt to reduce intermediate fill-in and flops although they
demonstrate a significant reduction in the cost of computation over the natural row
ordering and the reverse ordering. Liu [6] introduces submatrix rotations to reduce the
computational cost for the George and Heath strategy by imposing a coarse-grained
row ordering. Liu’s submatrix rotations can be interpreted as a variable pivot row
strategy.

Duff [4] examines several local row ordering strategies and recommends a fixed
pivot row strategy. The sparsest row is chosen as the pivot row and succeeding rows
are processed based on minimizing fill-in of the pivot row. Gentleman [7] suggests a
variable pivot row ordering based on processing the sparsest pair of rows first.

None of the row ordering schemes is completely satisfactory, since they often do
not come close to minimizing intermediate fill-in. It seems impossible, short of an
extensive search, to design an algorithm that minimizes intermediate fill-in in general.
Our goal is a heuristic row ordering strategy that is easily implemented, efficient, and
performs well on a large class of problems compared to other strategies.

The scheme presented in 2 introduces a row ordering strategy based on a variable
pivot row. In 3, the strategy is compared on test matrices with Duff’s fixed pivot
row strategy and Gentleman’s variable pivot row strategy using both Duff’s column
ordering strategy and a minimum degree column ordering. Section 4 considers a finite
element application and compares the new row ordering strategy with Duff’s fixed
pivot row ordering strategy, Gentleman’s scheme, and a row ordering from nested
domain decomposition. Nested domain decomposition is used to obtain the column
ordering.

On common test problems, the variable pivot row strategy performs at least
as well as, and usuallyoutperforms, the row ordering strategies cited above. The
reduction in flops is as much as 90% for some test cases; furthermore, the improvement
roughly appears to increase with the size of the matrix.

2. Implementation. For the present assume that A has full rank. The overall
decomposition procedure involves successively applying Givens rotations to zero out
elements below the diagonal in each column. At the start of the kth step, zeros have
been placed below the diagonal in the first k-1 columns. Let the active submatrix
be the lower right block of the matrix under current consideration. The general
procedure involves two stages within each step. The first stage applies the column
ordering strategy and the second stage applies the row ordering strategy and numeric
operations. Begin with the active submatrix as the whole A matrix. Search for a
column in the active submatrix using some local column ordering strategy or choose
the next column if an a priori column ordering is being used. This column is called
the selected column and is pivoted (if necessary) to the first column in the active
submatrix. The first stage is then complete. The rows of the active submatrix with
nonzeros in the selected column form the selected set of rows. In the second stage, the
selected set of rows is operated on with Givens rotations to zero out all but one nonzero
in the selected column. The remaining row with a nonzero is-pivoted to the top of
the active submatrix, and this row is then deleted along with the selected column to
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form the next active submatrix. The process is repeated at the next step with the
new active submatrix which now has one less column and row than the previous active
submatrix.

If A does not have full rank, then the final pivot in each column must be mon-
itored. If a zero (or small) final pivot is encountered, then the column is pivoted to
the right and eliminated from the active submatrix. Note that the active submatrix
is no longer in the lower right corner.

The algorithm presented above is a column oriented algorithm since each step
completely processes one column. For the column ordering strategies cited above, a
column oriented algorithm can handle large problems that do not fit into core memory
by using an algorithm that reads in the selected set of rows at the beginning of the
second stage. Note that it is not necessary to keep R in core, but it is necessary
to access rows more than once. The number of times a row is accessed is small if
sparsity is maintained. The application in 4 has been implemented using this out-
of-core algorithm. As a comparison, the row oriented algorithm of George and Heath
[2] reads each row exactly once and requires only a single working row in core, but
also requires storage for R in core memory. The advantage of the George and Heath
algorithm is not necessarily in handling large problems out of core, but in its use of
a static storage structure that lends itself to programming languages lacking dynamic
memory allocation. A detailed analysis of execution times and storage efficiency of
the two out-of-core approaches is beyond the scope of this paper.

The way in which rows are processed in the second stage has a great effect on
the amount of intermediate fill-in. Intermediate fill-in causes the sparsity to be lost
and can result in more Givens rotations being required later in the decomposition.
If it is assumed there is no chance cancellation, the following formula describes the
relationship between the variables

(1) Nonzeros in A + intermediate fill-in- Givens nonzeros in R.

If the nonzeros in R are fixed by a given column ordering, then reducing intermediate
fill-in must reduce the number of Givens rotations, thus making the scheme more
efficient. For local column ordering strategies, intermediate fill-in can affect the column
choice and therefore intermediate fill-in can indirectly affect the number of nonzeros
in R. If the effect of intermediate fill-in on the number of nonzeros in R is small, then
reducing intermediate fill-in still gives a comparable reduction in the number of Givens
rotations.

Note that the process of applying a Givens rotation results in a pair of rows
assuming the same zero-nonzero pattern except in the selected column (assuming no
chance cancellation). Thus, it does not matter which row is considered to be the
pivot row as far as the sparsity pattern is concerned; the resulting sparsity pattern
is identical after the appropriate row permutation. These observations lead to the
following strategy, which is called a variable pair strategy.

The variable pair strategy is based on minimizing local fill-in. If any rows are
encountered that have the same zero-nonzero pattern, then the search for a pair of
rows is hMted and a Givens rotation is applied to the pair. Note that there is no
resulting fill-in, and therefore such a strategy is both locally and globally optimal
with respect to intermediate fill-in. If there are no pairs with the same zero-nonzero
pattern, then the strategy is to choose the pair of rows that results in the least amount
of local fill-in. Often two pairs of rows produce the same amount of fill-in. In this
case, a tie-breaking strategy is based on a strategy of preserving the sparsity of future
active submatrices by choosing the sparsest pair of rows (Gentleman’s scheme [7]).
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It is instructive to demonstrate the various row ordering strategies on some simple
examples. Duff [4] suggests an example where the selected column has already been
found and the Givens reduction stage is to begin. The active submatrix is

X O O O

x X X x
x x x x
X O O O

O

O

O O

O O

O O

x x

Processing the pairs in their natural order, i.e., (1, 2), (1, 3), and (1, 4) results in a
fill-in of eight. Using Duff’s fixed pivot scheme results in the pairings (1, 4), (1, 2),
(1, 3), and a fill-in of nine. Gentleman’s variable pivot scheme results in the same pair-
ing as the fixed pivot scheme. The variable pair strategy results in the pairing (2, 3),
(1, 4), and (1, 2) with a fill-in of seven.

Duff suggests an example for which Gentleman’s variable pivot method fails to
be optimal with respect to intermediate fill-in:

X

X

X

X

0

0

X X O O

O O X X

X X X O

O O O X

O O

O O

O O

X X

Using the natural order, the fill-in is ten. The fixed pivot strategy produces a fill-in
of nine. The variable pivot scheme results in the pairings (1, 2), (3, 4), and (1, 3)
for a fill-in of twelve. The variable pair strategy results in the pairings (1, 3), (1, 2),
(1, 4), and a fill-in of nine.

The variable pair strategy seems to produce an optimal ordering in the cases
examined so far, but this is not always true. Consider the active submatrix

X X X X X

X X O O X

O O O X X

X

x
X

0

0

Using the variable pair strategy the rows are processed in the order (1, 2) and (1, 3)
with a fill-in of five However, the order (2, 3) and (1, 2) produces a fill-in of four
Thus the variable pair strategy for minimizing fill-in at each step does not assure
global minimization of intermediate fill-in.

The discussion above motivates the row ordering strategy by the desire to reduce
flops; but, overhead associated with choosing a row ordering can also impact overall
performance of the algorithm. Overhead is measured by the amount of integer arith-
metic performed during the decomposition. To estimate the complexity of our row
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ordering algorithm, consider one step of the decomposition. Let r be the number of
rows in the selected set of rows at the beginning of the second stage. Let M be the
number of nonzeros in the final pivot row at the end of the second stage. With no
chance cancellations, the number of nonzeros in any row in the selected set at anytime
during the second stage is bounded by M. Processing the active submatrix using the
variable pair method involves the following setup.

1. Check for sparsity patterns that are exact matches and process those pairs of
rows immediately. There are O(r2) pairs each requiring at most O(M) comparisons;
so this step has a bound on the number of comparisons that is O(Mr2).

2. Calculate fill-in for all pairs of rows and set up a list storing the members of
the pairs and the corresponding fill-in. This step has a bound on the amount of integer
arithmetic that is O(Mr2), but note that the number of rows might be less than r
after step 1.

3. Sort the pairs in the list in order of the increasing amount of fill-in using
Gentleman’s scheme as a tie breaker (O(r2 log r).

4. Perform a Givens rotation on the first pair in the list; the flops have an O(M)
bound.

If the above steps are repeated (at most r-1 times) to complete the second stage,
the overhead is at worst O(Mr3) and the flops are bounded by O(Mr). However, the
overhead can be reduced by noting that after step 4 the list of pairs constructed in
step 2 does not have to be entirely redone. A pair in the list that has the discarded
row or the current pivot row as one of its members is no longer valid and is deleted
from the list. Since the sparsity pattern in the current pivot row may have changed,
fill-in must be recomputed for a pair that has the pivot row as a member. A temporary
list is created, with at most r-2 entries, containing all pairs that involve the pivot row
and its corresponding fill-in (O(Mr)). The temporary list is then sorted according to
fill-in and merged with the original list (O(r2)). This updating is done at most r-2
times. The overhead for the variable pair method is thus bounded by O(Mr2) +O(r3)
work. At any given step of the decomposition, the values of M and r depend on the
row and column orderings. Of course, M is at most n and r is at most m. For a
sparse matrix, r should generally be much less than m and M much less than n. If
M and r are the same order, then both terms in the overhead bound are the same

size, O(Mr2). In a sparse matrix with nonzero elements that in some sense are evenly
distributed throughout the matrix so that the number of nonzeros in any column is
roughly the same as the number of nonzeros in each row, it might be possible to keep
M O(r) if the amount of intermediate fill-in is kept small.

In 3, the variable pair method is compared with Duff’s fixed pivot method [4]
and with Gentleman’s scheme [7]. Given the same active submatrix as above, the fixed
pivot method compares the sparsity structure of the pivot row to each remaining row
in the selected set of rows to determine the order in which Givens rotations are applied.
Overhead for this method is bounded by O(Mr2). On the other hand, Gentleman’s
variable pivot scheme does not use the sparsity structure. For the remaining rows in
the selected set of rows, the total number of nonzeros for each pair of rows is used to
pick the order in which rows are processed, making the overhead O(r2).

It is also important to remember that this analysis is for one active submatrix.
The hope is that by using more information about the sparsity structure, the variable
pair method and Duff’s fixed pivot scheme will do better than Gentleman’s scheme in
the long run because the active submatrices will be sparser, i.e., the values of M and
r will be kept small. This hope is not always realized, as shown in the examples in 3.
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TABLE
Characteristics of the test matrices.

Number of Sparsity
Rows Columns Nonzeros (%)

CURTIS551 55 54 292 9.8
WILL58 58 57 282 8.5
WILL200 200 199 702 1.8
ASH219 219 85 438 2.4
ABB313 313 176 1557 2.8
ASH331 331 104 662 1.9
ASH608 608 188 1216 1.1
LSQUAR15 784 225 3136 1.8
ASH958 958 292 1916 0.7
WELL1033 1033 320 4732 1.4
LSQUAR20 1444 400 5776 1.0
NETWORK4 1488 784 7040 0.6
NETWORK3 1512 402 7152 1.2
WELL18502 1850 712 8758 0.7

The matrix given in Curtis [9] is the transpose of that
supplied in the Harwell-Boeing sparse matrix collection

[8]. The matrix from the Harwell-Boeing sparse matrix
collection is used here.

The version used by Liu [6] has three fewer nonzero
entries.

3. Examples. Ten test matrices from the Harwell-Boeing sparse matrix collec-
tion [8] as well as four matrices from George, Heath and Ng [9] (also used by Liu [6]),
are used to compare the row ordering strategies. Three square matrices are altered
by adding a row with a nonzero in the first column. These matrices, used by Duff [4],
were developed by Curtis [10] and Willoughby [11]. WELL1033 and WELL1850 are
surveying problems supplied by Michael Saunders. ASH219, ASH331, ASH608, and
ASH958 are surveys of the United Kingdom and Holland supplied by V. Ashkenazi.
ABB313 is a survey of Sudan supplied by M. Abbas. NETWORK3 and NETWORK4
are geodetic adjustment problems. LSQUAR15 and LSQUAR20 arise in the natural
factor formulation of the finite element method. CURTIS55 and WILL58 both exhibit
a dominant principal band with very sparse outliers. WILL200 has about thirty small
bands scattered throughout the matrix. ASH219, ASH331, ASH608, and ASH958 all
are banded about the principal diagonal. ABB313, LSQUAR15, and LSQUAR20 have
two diagonal bands. WELL1033 and WELL1850 have several bands along with less
structured patterns. NETWORK3 and NETWORK4 have one diagonal band extend-
ing to the right edge and scattered entries to the left of the other end of the diagonal
band. Other characteristics of these test matrices are listed in Table 1.

First, a comparison is made of Duff’s fixed pivot row strategy (DUFF) and Gen-
tleman’s variable pivot row strategy (GENT) with the variable pair strategy (VPAIR)
using Duff’s column ordering. Since Duff’s algorithm does not uniquely specify the
order of rows and columns (ties are broken arbitrarily), different implementations may
give varying results. Duff [4] and Duff and Reid [12] report slightly different results
and the implementation used here shows a similar variation in results. Our imple-
mentation breaks all ties by using the original or natural ordering (smallest original
column or row number).



SPARSE QR DECOMPOSITION 1215

The results on the fourteen test matrices are shown in Table 2. Intermediate
fill-in is the total number of nonzeros created at any time during the decomposition.
QR flops is the number of multiplications performed during the decomposition using
standard Givens rotations. Next, a comparison is made between DUFF, GENT, and
VPAIR using the minimum degree strategy for the column ordering. The results are
shown in Table 3.

The test matrices can be divided into categories of small, nearly square (m n)
matrices, and larger rectangular (m >> n) matrices. The first three test matrices
are small, nearly square matrices, and tend to have fewer choices for ordering simply
because there are fewer rows. Larger rectangular matrices should demonstrate the
differences between the methods to a greater degree since there is a greater chance of
operating on previous intermediate fill-in and many more choices for row orderings.

The results demonstrate the differences between the two categories of test ma-
trices. Nearly square matrices show little difference between the various row ordering
strategies. Because of their shape, these matrices have the characteristic that the num-
ber of rows in each selected set must decrease in the last few stages of the algorithm
(see Fig. 1). Typical behavior of the larger rectangular test matrices is for a rapid
growth in the number of rows in the selected sets in the last few stages. Such behavior
is indicative of operations on intermediate fill-in. The exception to this type of behav-
ior is ABB313, which displays uneven growth in the number of rows in the selected
sets. Of all the larger rectangular matrices, VPAIR shows the least improvement for
ABB313.

Using Duff’s column ordering strategy, VPAIR shows a 33% median improvement
in intermediate fill-in over DUFF for the eleven larger rectangular test matrices. The
number of Givens rotations has a median improvement of 35%, while a median im-
provement of 47% is observed in QR flops. The number of nonzeros in R is about the
same for VPAIR and DUFF, except for ASH608 and ASH958 where a significant im-
provement is seen using VPAIR, and for LSQUAR15, LSQUAR20, and NETWORK3
where DUFF yields a sparser R than VPAIR. Since row ordering does not determine
the sparsity of R, the different row ordering strategies reduce the number of nonzeros in
R by allowing the local column ordering strategies to perform better. (Recall the dis-
cussion following (1).) Although, the results for WELL1033, WELL1850, LSQUAR15,
LSQUAR20, NETWORK3, and NETWORK4 are a reminder that reducing interme-
diate fill-in does not necessarily reduce fill-in in R. For the small nearly square test
matrices, mixed results with few differences were obtained. GENT performed worse
than DUFF on ABB313, ASH331, LSQUAR15, LSQUAR20, NETWORK3, and NET-
WORK4, while slightly outperforming DUFF on the other five larger rectangular test
matrices.

Using the minimum degree column ordering strategy on the matrix A (as opposed
to ATA), VPAIR shows even greater improvement over DUFF. The median improve-
ment on the larger rectangular test matrices is 57% for intermediate fill-in, 53% for
the Givens rotations, and 71% for the flops required for the QR decomposition. Again
there is not much distinction between the methods for the nearly square matrices.
Gentleman’s row ordering strategy performs much better than DUFF on seven of the
largest test matrices, but not nearly as well as VPAIR. On the other four test matri-
ces, LSQUAR15, LSQUAR20, NETWORK3, and LSQUAR4, DUFF does better than
GENT, but still not as well as VPAIR.

In these examples, the minimum degree column ordering strategy produces a
sparser R r,atrix than Duff’s column strategy; using VPAIR, the median improvement
is 27% tbr the larger rectangular test matrices. VPAIR coupled with the minimum
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TABLE 2

Duff s column strategy.

Matrix
Row Intermed. Givens QR

strategy Fill-in rotations flops
Nonzeros

in R

CURTIS55
DUFF 471 178 5,446
GENT 528 194 6,584
VPAIR 529 189 5,976

585
626
632

WILL58
DUFF 326 137 3,678
GENT 383 149 4,364
VPAIR 321 140 3,518

471
516
463

WILL200
DUFF 3,373 755 46,972
GENT 2,881 735 41,660
VPAIR 2,954 777 47,566

3,320
2,848
2,879

ASH219
DUFF 1,552 1,290 26,968 700
GENT 1,528 1,292 26,908 674
VPAIR 1,045 838 13,974 645

ABB313
DUFF 3,784 2,797 96,682 2,544
GENT 4,292 3,305 128,958 2,544
VPAIR 3,534 2,665 86,866 2,426

ASH331
DUFF 2,837 2,364 61,482 1,135
GENT 3,277 2,722 80,098 1,217
VPAIR 2,046 1,630 36,596 1,078

ASH608
DUFF 8,406 6,557 267,766 3,065
GENT 7,590 6,197 197,942 2,609
VPAIR 4,436 3,350 94,760 2,302

LSQUAR15
DUFF 13,582 11,976 584,256 4,742
GENT 21,909 19,336 1,279,130 5,709
VPAIR 9,575 7,114 409,046 5,597

ASH958
DUFF 15,023 11,754 481,258 5,185
GENT 13,560 10,967 434,710 4,509
VPAIR 7,694 5,379 159,394 4,231

WELL1033
DUFF 5,135 7,194 192,254 2,673
GENT 4,368 6,339 164,794 2,761
VPAIR 3,052 5,015 102,654 2,769

LSQUAR20
DUFF 35,591 30,513 2,363,760 10,854
GENT 61,505 53,860 5,224,686 13,421
VPAIR 26,473 14,537 1,329,440 17,712

NETWORK4
DUFF 16,120 13,628 474,032 9,532
GENT 20,682 18,566 738,356 9,156
VPAIR 13,364 11,076 298,160 9,328

NETWORK3
DUFF 12,716 15,357 449,162 4,511
GENT 14,244 17,033 476,426 4,363
VPAIR 8,458 10,303 219,222 5,307

WELL1850
DUFF 22,878 22,718 1,079,980 8,918
GENT 19,549 19,977 876,876 8,330
VPAIR 13,435 13,480 463,734 8,713



SPARSE QR DECOMPOSITION 1217

degree column strategy generally performs better than VPAIR with Duff’s column
strategy with respect to flops, Givens, and intermediate fill-in. On the other hand,
DUFF with Duff’s column strategy generally performs better with respect to flops,
Givens, and intermediate fill-in than DUFF coupled with the minimum degree column
ordering strategy.

Increased time spent on row and column ordering can, in principle, offset savings
in time gained by reducing flops. The amount of overhead for ordering rows and
columns required by the various strategies is highly dependent on the implementation
and the machine architecture. An indication of overhead costs can be obtained from
the number of seconds required to perform the QR decomposition without computing
statistics or performing flops. The overhead times are reported in Table 4 for the larger
rectangular matrices; the smaller test matrices do not show significant differences
among the various strategies. Also reported is the total execution time, except in
cases where only the sparsity pattern was available and not the actual floating-point
entries in the matrix.

Column and row ordering strategies can be divided into those that use information
on the structure of the matrix as opposed to those that merely use the number of entries
in the columns or rows. Methods that use more information about the structure
typically require more overhead if the structure is fixed, but can have an overall
advantage if they lead to sparser active submatrices during the decomposition process.
Duff’s column ordering strategy does not use information about the structure, while
the minimum degree column ordering strategy does. For the row ordering strategies,
DUFF and VPAIR use information on the structure while GENT does not.

The results in Table 4 show that, in these examples, the overhead for the minimum
degree algorithm exceeds the overhead for Duff’s column ordering except in a few cases.
However, the results in Tables 2 and 3 show that R is sparser using the minimum
degree column ordering that, in applications, might lead to savings elsewhere in the
code. Also, a more efficient implementation of the minimum degree column ordering
heuristic might be possible, which would reduce the overhead.

In examining overhead among the row ordering strategies, the results are mixed
for ASH219, ABB313, and ASH331. For the larger test matrices, VPAIR generally
performs better than GENT which, in turn, performs better than DUFF. There are,
however, some exceptions to this pattern. The discussion at the end of the last section
indicates that GENT could potentially be more efficient than DUFF or VPAIR. DUFF
does tend to require more overhead than GENT on these examples. On the other hand,
VPAIR generally has less total overhead than GENT because of its ability to reduce
intermediate fill-in, as indicated by the values in Tables 2 and 3. The total execution
times, including flops, follow the same pattern as the overhead times in Table 4. For
all methods, the percentage of the total execution time devoted to overhead is about
85%. Note that timings could vary considerably for different implementations and
architectures and may reflect some inefficiencies in coding. These computations were
performed on a 486-33 in an 8-MHz mode.

Results in the literature using the same test matrices can also be used to judge
the performance of VPAIR. Liu [6] uses a variable pivot row strategy with a minimum
degree (MD) column ordering strategy on ATA. Table 5 shows Liu’s results on seven
test matrices. For each Givens rotation, opcount is incremented by the number of
nonzeros in the transformed pivot row and is roughly one-fourth of the QR flops using
standard Givens. VPAIR shows a reduction ranging from 74-90% in the opcount
compared to Liu’s method.

Ostrouchov [3] uses a sophisticated implementation of Duff’s fixed pivot row strat-
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TABLE 3
Minimum degree column strategy.

Matrix
Row Intermed. Givens QR

strategy Fill-in rotations flops
Nonzeros

in R

CURTIS55

WILL58

WILL200

ASH219

ABB313

ASH331

ASH608

LSQUAR15

ASH958

WELL1033

LSQUAR20

NETWORK4

NETWORK3

WELL1850

DUFF 423 220 6,842
GENT 430 227 7,590
VPAIR 415 212 6,426

DUFF 288 166 3,960
GENT 288 166 4,044
VPAIR 288 166 3,992

495
495
495

404
404
404

DUFF 2,726 2,692 69,892 1591
GENT 2,403 2,369 56,124 1591
VPAIR 2,171 2,137 46,948 1591

DUFF 3,620 3,492 88,804 790
GENT 2,654 2,526 54,332 790
VPAIR 1,497 1,369 21,832 790

DUFF 8,496 8,050 271,204 1662
GENT 7,348 6,902 200,740 1662
VPAIR 3,356 2,910 54,140 1662

DUFF 11,484 11,637 524,814 2983
GENT 14,959 15,112 642,814 2983
VPAIR 5,368 5,521 154,418 2983

DUFF 17,923 17,196 664,390 2643
GENT 11,470 10,743 305,518 2643
VPAIR 5,384 4,657 88,754 2643

DUFF 6,681 8,842 283,602 2571
GENT 4,673 6,834 174,630 2571
VPAIR 2,893 5,054 98,790 2571

DUFF 31,568 30,795 2,066,794 6549
GENT 42,318 41,545 2,582,878 6549
VPAIR 12,928 12,155 454,046 6549

DUFF 15,000 13,616 407,632 8424
GENT 20,068 18,684 62q,088 8424
VPAIR 12,436 11,052 267,680 8424

DUFF 12,256 15,261 418,786 4147
GENT 14,722 17,727 480,446 4147
VPAIR 7,000 10,005 193,378 4147

DUFF 32,190 33,539 1,830,114 7409
GENT 21,247 22,596 954,842 7409
VPAIR 11,876 13,225 385,782 7409

DUFF 1,583 1,508 29,554 513
GENT 1,451 1,376 24,090 513
VPAIR 861 786 10,790 513

DUFF 2,768 1,033 60,186 2437
GENT 2,806 1,071 66,074 2437
VPAIR 2,755 1,020 55,222 2437
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FIG. 1. Types of test matrices.

egy coupled with the MD column ordering with Duff’s column ordering as a tie breaker
(MD + Duff). Ostrouchov applies his method to ABB313 [13], WELL1033, and
WELL1850 [14] and the results are summarized in Table 5. The number of Givens ro-
tations and the opcount show improvements of 21-51% and 32-70%, respectively, for
VPAIR over Ostrouchov’s results. Ostrouchov recommends using the Duff tie breaker
with the minimum degree column ordering. The results in Table 3 are obtained using
the natural column ordering as the tie breaker and do not vary substantially if Duff’s
algorithm is used instead as the tie breaker. Only a small improvement in opcount
using the Duff tie breaker is obtained for most of the larger rectangular test matrices;
the test matrices that did not show improvement were the four supplied by Ashkenazi
that all have the nonzeros banded about the principal diagonal.

4. Finite element application. A mixed finite element application for a dif-
fusion problem is presented here [1]. For these applications the matrices do not neces-
sarily have full rank and chance cancellation occurs frequently. The diffusion problem
is a four-square unit square centered at the origin and subjected to uniform boundary
flux in the positive y direction. There is no lateral boundary flux. The domain is split
into elements equally in both directions. The number of elements ne varies from 16
to 900. The major part of the solution involves a QR decomposition of the gradient
matrix. The problem is rank deficient due to the presence of a constant mode. Table
6 shows the characteristics of some of the gradient matrices.

Determination of rank using the QR decomposition is achieved by counting the
number of nonzero diagonal entries in R. However, roundoff may cause zero entries
to be nonzero. In practice, the diagonal elements are assumed to be zero if they are
less than a prescribed tolerance times the norm of the column. A more sophisticated
rank determination algorithm using the QR decomposition is reported by Bischof and
Hansen [15].

It is also important to determine if individual entries are zero or nonzero. A
simple tolerance test will not suffice since the entries tend to become smaller as the
decomposition proceeds and more nonzero entries occur in each column. This is be-
cause the orthogonal transformation does not change the norm of the column and
thus intermediate fill-in requires that the magnitude of other entries be reduced. In
performing the Givens rotation on a pair of nonzero entries, the resulting entries are
compared. If the magnitude of the smaller entry is less than a tolerance times the
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TABLE 4
Execution times (seconds).

Matrix

Column strategy
Row Duff Minimum degree

strategy Overhead Total Overhead Total

ASH219
DUFF 0.33 0.49
GENT 0.28 0.32
VPAIR 0.39 0.44

ABB313
DUFF 1.05 1.26 1.21 1.43
GENT 0.83 1.21 0.99 1.15
VPAIR 1.21 1.59 1.26 1.48

ASH331
DUFF 0.83 1.59
GENT 0.60 0.77
VPAIR 0.93 0.82

ASH608
DUFF 4.61 9.12
GENT 1.92 3.57
VPAIR 2.36 2.25

LSQUAR15
DUFF 10.87 13.35 15.71 18.83
GENT 11.09 14.83 14.33 17.47
VPAIR 5.38 6.64 4.73 5.38

ASH958
DUFF 11.70 19.17
GENT 4.28 6.59
VPAIR 4.28 4.01

WELL1033
DUFF 3.41 4.28 12.91 15.38
GENT 2.03 2.80 7.58 9.01
VPAIR 1.65 2.15 6.10 7.20

LSQUAR20
DUFF 66.24 79.59 91.40 106.83
GENT 64.43 81.18 84.81 98.26
VPAIR 17.63 25.87 16.53 18.45

NETWORK4
DUFF 5.50 6.53 14.22 15.05
GENT 7.19 8.96 17.52 19.01
VPAIR 6.31 7.80 11.97 13.46

NETWORK3
DUFF 6.81 7.53 10.44 10.98
GENT 5.44 6.60 10.82 11.76
VPAIR 5.00 5.71 6.92 7.19

WELL1850
DUFF 36.58 37.90 133.36 150.22
GENT 13.35 16.59 49.93 54.98
VPAIR 8.90 11.87 29.50 32.58

magnitude of the larger entry, then the smaller entry is assumed to be zero.

The a priori column ordering is obtained through nested domain decomposition
as illustrated in [5, Fig. 2.6] and the only exception to this ordering occurs when a
zero or small final pivot is obtained. Then, the appropriate column is shifted to the
right and all the columns in between are shifted to the left. The sparsity of R (ignoring
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TABLE 5
Comparison of results for test matrices.

Column ordering
Row ordering

Liu Ostrouchov Robey and Sulsky
MD MD + Duff MD + Duff
Liu DUFF VPAIR

ABB313
Nonzeros in R 1627 1630 1630
Givens n/a 2596 2047
Opcount 56,044 17,112 11,585

Nonzeros in R
Givens
Opcount

LSQUAR15
2786 n/a 2971
n/a n/a 5624

167,004 n/a 38,332

Nonzeros in R
Givens
Opcount

WELL1033
2575 2589 2589

n/a 7242 4913
234,056 46,651 22,363

Nonzeros in R
Givens
Opcount

LSQUAR20
6118 n/a 6688

n/ n/a 12,187
418,444 n/a 110,579

Nonzeros in R
Givens
Opcount

NETWORK4
8300 n/a 8368
n/a n/a 10,692

395,088 n/a 65,584

Nonzeros in R
Givens
Opcount

NETWORK3
4091 n/a 4123
n/a n/a 9947

361,340 n/a 46,499

Nonzeros n R
Givens
Opcount

WELL1850
7410 7416 7414
n/a 26,355 12,839

754,444 302,271 91,573

n/a Results not available

rank deficiency and numerical roundoff) is fixed by this column ordering.
The three local row ordering strategies of Duff (DUFF) [4], Gentleman (GENT)

[7] and the variable pair strategy (VPAIR) are implemented and compared. Also, the
a priori row ordering induced by nested domain decomposition (NDD) [5] is imple-
mented. NDD on this problem has a theoretical bound of O(n3/2) on flops due to the
underlying grid. The results are shown as log-log plots in Figs. 2, 3, and 4. Table 7
shows that there are substantial differences in performance on a 900-element problem.

The variable pair strategy outperforms the fixed pivot row method and Gentle-
man’s variable pivot strategy as measured by flops, number of Givens rotations, and
the amount of intermediate fill-in with better performance as the number of elements
increases. In Fig. 2, the observed growth in the QR flops is O(n157) for the VPAIR
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TABLE 6
Characteristics of the gradient matrices.

Elements
in

each
direction

Total Sparsity
elements Rows Columns Nonzeros (%)

5
10
15
20
25
30

25 150 36 400 7.4
100 600 121 1,600 2.2
225 1350 256 3,600 1.0
400 2400 441 6,400 .60
625 3750 676 10,000 .39
900 5400 961 14,400 .28

10 .,,ENT

DD

o

10

10
0 10 I0

Number of Elements

FIG. 2. QR flops.

strategy, versus O(n1s5) for GENT and O(n"99) for DUFF over this size range for
this problem. The number of flops, ’intermediate fill-in, and Givens rotations are also
less for VPAIR than for NDD. The observed growth in flops for NDD is O(nl-6S);
slightly larger than for VPAIR.

Since the row ordering for the nested domain decomposition is obtained as a side
benefit of the column ordering, there is no overhead required for row ordering using
NDD. To gauge the overhead using VPAIR, r and M (c.f. 2) can be monitored. The
maximum r and maximum M for each size problem are used to obtain an observed
bound on row ordering overhead of O(n’6a). Thus, on this problem, the observed
row ordering overhead for VPAIR grows faster than the observed growth in flops for
VPAIR, but not as fast as the observed growth in flops for NDD.

5. Conclusion. The QR decomposition is a useful solution technique in some
applications where Gaussian elimination is not suitable. The QR decomposition al-
lows rank determination in practice and is numerically more stable than Gaussian
elimination. Since the QR decomposition is generally more expensive than Gaussian
elimination, it must be carefully implemented to be competitive as a general solution
technique. An efficient algorithm has been presented for large, sparse matrices that
often arise in applications.

A strategy for ordering rows is developed and compared with several other row
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ordering strategies in conjunction with several column ordering strategies. The new

strategy is that of minimizing local fill-in for a variable pair of rows. For each active

submatrix, the order of magnitude overhead to perform the next Givens rotation is

roughly the same for the variable pair strategy as for Duff’s [4] fixed pivot row ordering
strategy. The new strategy also can be used to augment coarse row ordering strategies
from nested domain decomposition (NDD) or nested dissection.

For test matrices from the Harwell-Boeing sparse matrix collection [8] and test
matrices from George, Heath, and Ng [9], Duff’s [4] column ordering and the mini-
mum degree column ordering [3] are used. QR flops, intermediate fill-in, and Givens
rotations all show a 33-71% median improvement for the variable pair strategy over
Duff’s fixed pivot strategy for the larger rectangular test matrices. For the same test
matrices, the observed total overhead is much less for the new strategy than for Duff’s
fixed pivot row ordering strategy. Since the sparsity of R is about the same, the low
cost to compute a solution using back substitution is maintained.

Although Duff [4] concluded that his fixed pivot strategy performed similarly to
Gentleman’s [7] variable pivot strategy, the results in 3 suggest that on these test
problems, the issue is not clear cut. Gentleman’s strategy performs as well or better
than Duff’s strategy in some cases, and moreover, requires less row ordering overhead
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TABLE 7
Comparison of row orderings for a mixed finite element problem.

Number
of Row Intermed. Givens QR Nonzeros

elements strategy fill-in rotations flops in R

900

DUFF 151,159 141,816 15,103,219 19,667
GENT 93,295 83,566 7,110,751 19,667
NDD 71,225 61,202 4,498,832 19,667
VPAIR 41,006 30,563 1,754,660 19,667

in the process. However, Gentleman’s scheme generally does not perform as well as
VPAIR on these problems. While it is as yet not possible to definitively state that the
variable pair strategy will perform better than the other row ordering strategies on a
broad class of problems, the results reported here show that significant improvements
are possible. Also, many current applications generate much larger matrices than
those considered here and VPAIR appears to have an advantage over other methods
on general, large sparse matrices.

Row ordering strategies are also compared on a finite element application where
nested domain decomposition [5] is used to determine the column ordering. Comparing
the variable pair strategy to the schemes of Duff and Gentleman, a very dramatic
reduction is seen in magnitude and growth of QR flops, intermediate fill-in, and the
number of Givens rotations, while the sparsity of R is identical. The variable pair
strategy can be utilized as a fine-grained row ordering strategy in conjunction with
the coarse row ordering of the NDD, although the results indicate that the variable
pair strategy also performs well by itself. Furthermore, the variable pair strategy is
expected to outperform nested dissection on problems without an underlying grid.
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BLOCK-TRIANGULARIZATIONS OF PARTITIONED MATRICES
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Abstract. A partitioned matrix, of which the column- and row-sets are divided into certain
numbers of groups, arises from a mathematical formulation of discrete physical or engineering sys-
tems. This paper addresses the problem of the block-triangularization of a partitioned matrix under
similarity/equivalence transformation with respect to its partitions of the column- and row-sets.
Such block-triangularization affords a mathematical representation of the hierarchical decomposi-
tion of a physical system into subsystems if the transformation used is of physical significance. A
module is defined from a partitioned matrix, and the simplicity of the module is proved to be equiv-
alent to the nonexistence of a nontrivial block-triangular decomposition. Moreover, the existence
and the uniqueness of the block-triangular forms are deduced from the Jordan-HSlder theorem for
modules. The results cover many block-triangularization methods hitherto discussed in the litera-
ture such as the Jordan normal form and the strongly connected-component decomposition in the
case of partition-respecting similarity transformations, and the rank normal form, the Dulmage-
Mendelsohn decomposition, and the combinatorial canonical form of layered mixed matrices in the
case of partition-respecting equivalence transformations.

Key words, block-triangular form, Jordan-HSlder theorem, modular lattice, partitioned matrix
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1. Introduction. In the analysis of a discrete physical/engineering system gen-
erally it is all important to recognize "subsystems" and "hierarchy" among them in an
appropriate manner. When the system is described in terms of a matrix (of any kind),
the hierarchical decomposition of the whole system into partially ordered subsystems
is reduced to the block-triangularization of the matrix under a suitably chosen class of
"admissible transformations." To be more precise, the block-triangularization of the
matrix is almost tantamount to finding a good or "canonical" mathematical descrip-
tion of the system, which hopefully reveals the "subsystems" and the "hierarchy" of
physical significance.

In this paper it is assumed that the matrix, say A, in question is a partitioned
matrix of which the row set and the column set are divided into a certain number
of groups, respectively. Two types of admissible transformations are considered: (i)
similarity transformations that respect or conform with the partition structure

and (ii) equivalence transformations that conform to the partition structure that is de-

fined similarly (see 2.1 and 3.1 for the precise definitions). In this paper the transfor-
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mations of types (i) and (ii) are called PS-transformations and PE-transformations, re-
spectively. The main objective of this paper is to investigate the block-triangularization
of A under such transformations by means of the module theoretical framework. In
particular, the Jordan-Hhlder theorem for modules plays the key role in discussing
the existence and the uniqueness of the block-triangular form.

The present problem formulation covers many important instances of the hier-
archical decomposition discussed so far in the literature as briefly mentioned in the
following.

When a general similarity transformation (S-1AS with S nonsingular) is allowed,
the Jordan normal form yields a block-triangular decomposition, whereas when a
general equivalence (SrASc with Sr and Sc nonsingular) is admissible, the rank normal
form serves as a block-triangular decomposition. Needless to say, these normal forms
play fundamental roles in many application areas.

In the design and the analysis of large-scale engineering systems it is often mean-
ingful to consider a most-restricted class of similarity/equivalence transformations,
namely, permutations of the rows and the columns. When the rows and the columns
are permuted simultaneously as pTAp with P a permutation matrix, a block-triangu-
larization is given by the decomposition of the directed graph associated with A into
strongly connected components; see, e.g., Aho, Hopcroft, and Ullman [1]. On the
other hand, when the rows and the columns are permuted independently as PrAPc
with Pr and Pc permutation matrices, a block-triangularization is given by the canon-
ical decomposition of the bipartite graph associated with A into elementary or ir-
reducible components. This decomposition is due to Dulmage and Mendelsohn [10]
(see, also, Brualdi and Ryser [8], Lovsz and Plummer [19]) and is often referred to
as the DM-decomposition. Both the strongly connected-component decomposition
and the DM-decomposition can be computed efficiently by purely graph-theoretical
algorithms.

The underlying mathematical structure of the DM-decomposition can be under-
stood in a more abstract context of matroids such as the Jordan-Hhlder type theorem
for submodular functions (Iri [15]). With the aid of this general principle, the DM-
decomposition is extended to the combinatorial canonical form (CCF) for a layered
mixed matrix that is proposed as a mathematical tool for describing the combinatorial
structure of physical systems (Murota [20], Murota [22], Murota, Iri, and Nakamura
[23]; see Remark 3.2 in 3.3 for more about this). A layered mixed matrix is "mixed"
in the sense that it consists of two different kinds of entries, independent variables
and fixed constants, and the CCF combines the combinatorial technique for the DM-
decomposition and the standard linear algebraic technique for the LU-decomposition
(or Gaussian elimination). The CCF can be computed by an efficient algorithm that
makes use of the matroid-theoretical algorithm for submodular flows. In this way,
combinatorial mathematics can provide us with effective decomposition methods, of-
ten supported by efficient algorithms, when we want to exploit the combinatorial
structure such as sparsity, independence of individual element characteristics, and
dependence stemming from incidence relations. See Iri [14], Murota [20], Recski [25],
and iljak [27] for applications of graph, network, and matroid theories to the design
and the analysis of engineering systems.

In the area of physics and chemistry, especially in quantum physics and chemistry,
it is standard technique to decompose a system with respect to the symmetry of the
system. The underlying mathematical structure for this technique can be explained
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by the group representation theory [9]; namely, the decomposition corresponds to the
decomposition of a group representation into homogeneous or irreducible components.
An attempt is made in Murota [21] to combine the symmetry-exploiting decomposition
method with the matroid-theoretical decomposition method. It may be noted that the
group representation theory can be embraced in the more general theory of modules.

The module-theoretical approach has turned out to be useful also in analyzing
and decomposing automata, dynamical systems, and stochastic processes. In au-
tomata theory any finite machine can be decomposed into loop-free connections of
permutation reset machines; the Jordan-Hblder theorem for groups [7] yields a fur-
ther decomposition of a permutation reset machine (the Krohn-Rhodes theorem; see
Arbib [3]). In mathematical systems theory a finite module over polynomials plays
an important role, and the structure theorem on such a module gives the hierar-
chical decomposition of a dynamical system (see Kalman, Falb, and Arbib [18]). A
stochastic process can also be formulated in terms of a module, called a stochastic
module, as shown by Heller [12], [13]; then the Krull-Remak-Schmidt theorem gives
a decomposition of a stochastic process.

The admissible similarity transformation (PS-transformation) introduced above
has a close relation to a certain type of stochastic process called the hidden Markov
process. It has recently been shown by Ito, Amari, and Kobayashi [17] that (roughly
speaking) two Markov chains generate the same hidden Markov process if and only if
the two transition matrices are connected by a PS-transformation. (This solves the
identifiability problem of hidden Markov processes posed by Blackwell and Koopmans
[6]; see also Rosenblatt [26].) This result, when combined with Heller’s framework of
stochastic modules, leads to the observation of Ito [16] that the PS-transformation
can be formulated in a module-theoretical framework. The present paper adopts
this line of approach to investigate the block-triangularization under PS- or PE-
transformations.

The outline of this paper is as follows. In 2 we consider the block-triangularization
of a partitioned square matrix under PS-transformations and show the existence
and the uniqueness of PS-irreducible components by the Jordan-Hblder theorem
for modules. We also discuss the ordering among PS-irreducible components to
explain the "hierarchy" revealed by the block-triangularization. In 3 we consider
the block-triangularization (with rank conditions) of a partitioned, not necessarily
square, matrix under PE-transformations. The uniqueness of PE-irreducible compo-
nents and the ordering among them will be derived similarly although such a block-
triangularization does not always exist. We also exploit another approach using a

submodular function to explain a necessary and sufficient condition for the exis-
tence of a block-triangularization with rank conditions and the relationship of our

new block-triangularization to the previously known decompositions such as the DM-
decomposition and the CCF. In 4 we discuss an algorithm for block-triangularization
of a partitioned square matrix in a nondegenerate case and also an algorithm to check
the existence of a block triangularization under PE-transformations.

2. Decomposition under partition-respecting similarity.

2.1. Problem formulation. In this section we discuss block-triangularization
of a partitioned square matrix under restricted similarity transformations that pre-
serve the partition structure. More precisely, let F be a field, e.g., the real numbers
I or the complex numbers C, and A be an n-dimensional square matrix over the field
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F with given partitions of rows and columns:

A A AI,
A21 A2e A.

Aul Au2

where Aaz is an na nz matrix called (a,/)-submatrix of A. To describe the
partition structure in terms of matrix operation, we introduce a family of n x n
projection matrices Ha (a 1,...,u), where the (a,a)-submatrix of Ha is the
unit matrix Inn of dimension na and the other submatrices are zeros. Sometimes
we denote the partitioned square matrix by the pair (A,H), where H
A transformation A S-IAS of A is said to be a partition-respecting similarity
transformation (PS-transformation) if the off-diagonal submatrices of S are zeros,
i.e.,

HaS=SHa for a=l,...,.

We say that A is H-similar to A if there exists a PS-transformation that transforms
A to A/. Then our problem is to bring A into a block-triangular form by means of a
PS-transformation.

Alternatively, our problem can be formulated as follows. Let V be an n-dimensionM
F-linear space Fn, which is a direct sum of lower dimensional spaces:

V Va, dime Va ha.
a--1

A linear transformation

f’VV
is constructed by a family of linear transformations

When we take arbitrary basis for each space Va, f is represented by a partitioned
square matrix A, where Aaz corresponds to faZ. In this context PS-transformations
are naturally derived as basis transformations of

It may be in order here to give a definition to the notion of a block-triangular form.
Let A be a square matrix representing a linear transformation from a linear space V
to itself. Then the row set R {1, 2,..., n} is to be identified with the column set
C {1,2,... ,n}. For R, C_ R and C, C_ C, let AIR,, C,] mean the submatrix of
A with row set R, and column set C,. When we split R into a certain number of
disjoint nonempty blocks (El,... ,Rb), C is naturally split into blocks (CI,..., Cb),
where

Rk=Ck for k=l,...,b

according to the correspondence between R and C. We say that A is in a block-
triangular form or is block-triangularized with respect to the blocks (El,..., Rb) when
A satisfies the following condition"

A[Rk,C]-O if l <_l <k<_b.
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If A is block-triangularized in the above sense, it is clear that we can put it into an
explicit upper block-triangular form pWp in the usual sense by using a certain
permutation matrix P, where the superscript T denotes the transpose of a matrix.

A partitioned square matrix (A,//), or simply A, is said to be PS-irreducible if
it can never be transformed into a block_-triangular form with two or more nonempty
blocks by any PS-transformation. If A is a block-triangular matrix obtained from
A by a PS-transformation and, in addition, all the diagonal blocks A[Rk, Ck] for
k 1,..., b are PS-irreducible, we say that A is a (PS-)irreducible decomposition of
A, and A[Rk, Ck] are (PS-)irreducible components of A.

Our problem of block-triangularization above includes two well-known extreme
cases. The first case is with the trivial partition structure: 1. In this case our
problem has been completely solved by the Jordan normal form (in the case of F C)
[11]. The other extreme case is with the finest partition structure: n. In this
case our problem is essentially solved by the decomposition of a directed graph into
strongly connected components with efficient algorithms [4].

On the analogy of strongly connected-component decompositions, a partial or-
der is induced among the blocks {Ck k 1,...,b} in a natural manner by the

zero/nonzero structure of a block-triangular matrix A. The partial order

_
is the

reflexive and transitive closure of the relation defined by: Ck is "smaller" than or
equal to Ct if A[Rk, Ct] = O, where Rk is identified with Ck for k 1,..., b. We
denote this poset ({Ck }b= _) by :P().

As is well known [2], [5], the ideals of the poset :P(A) constitute a distributive

lattice, which we denote by/:)(A). Note that a subset J of C can be naturally identified
with a subspace of V, which we denote by (J), i.e.,

J

(J) span{(0,...,0, 1,0,...,0)w J e J}.

Then

(J1 U J2) (J) + (J2)

and

b(J n J2) (J) n

and hence

(:D(A)) {(J) J E/9(A)}

is a distributive sublattice of the modular lattice formed by the subspaces of V.
We say that J..= S-.AS is fineff as a decomposition of A, than A =... S-ASif

S’(’D(A’)) {S’W’ W’ CD(A’))} is a proper sublattice of S(D(A)) {SW
W ((A))}. Purthermore, we say that .4, H-similar to A, is a finest-possible
decomposition of (A, H) if there does not exist a block-triangular matrix A that is

also H-similar to A and finer than A.
Ezample 2.1. Consider the following five-dimensional partitioned square matrix
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A over F Q:

O

2 -2 5 13
2 1 0 1

0 -1
4 8

-2 -4

6 1 0
0 2 -6
0 1 7

where u 2, n 2, and n2 3. Let S be the nonsingular matrix

1 0 0
0 3 -2
0 -1 1

Then we have

S-1AS
1 -1
0 0
0 -2

-2
0
5

By using the permutation matrix

1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

we can transform A into an explicit upper block-triangular form

0 0

0

pTp 1 6 3 -1 -2
4 0

o 0 3 ’5

with three diagonal blocks

D1--2[C1 R1] _[2]-1] D2--[C2 R2] [4]1 6

-:2 5

Note that Dk’s are also partitioned square matrices with partitions defined by

{[ ] [ ]} {[ 1 0 I [0 01 0 0 0
42 {[0],[1]}, 341- 0 0 0 1 0 0 0 1 ]}.
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}

FIG. 1. The partial order 7(A) and the distributive lattice T)(A) in Example 2.1.

Since (Dl,q51), (D2,42), and (D3,43) are PS-irreducible, A is an irreducible decom-
position of A. Furthermore,it turns out_ to be a finest-possible decomposition of A.
The Hasse diagrams for P(A) and :D(A) are illustrated in Fig. 1.

The main results of this section are as follows. In 2.3 we define a module M(A, II)
from a partitioned square matrix (A, H). It is shown that the PS-irreducibility
is equivalent to the simplicity of this module (see Theorem 2.3) and that the PS-
irreducible components are determined uniquely (see Theorem 2.4) by the Jordan-
Hhlder theorem for modules. In 2.4, it is shown that a finest-possible decomposition
of (A,//) is not unique, but is obtained by a maximal distributive sublattice of the
modular lattice (A, H) of the submodules of M(A, H) (see Theorem 2.7).

2.2. Jordan-Hhlder theorem for modules. In this section we prepare a gen-
eral framework to investigate partitioned matrices by means of module theory. Let
M be an n-dimensional F-linear space, be a finite set of symbols, and E’* the free
monoid generated by E, where the unity is the empty string A. We can extend the
monoid * to a monoid algebra

F{*} { E css c F, and cs 0 for all s * but finite s}
sEE:*

over F.
When we have an action of E’* on M, which satisfies the conditions:

Ax x, x E M,
s(x + y)=sx + sy, s E *, x,yM,

(st)x s(tx), s, t e E’*, x e M,

it is quite natural to consider the n-dimensional .F-linear space M to be a left F{*/-
module.

Let T be an arbitrary ring, A/ an k-module, and
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a strictly increasing finite chain of T-submodules of A/[. We say that the length of
C is h. C is called a composition series of A/[ if each factor module J4i/Mi-1 (i
1, 2,..., h) has no nontrivial submodules. The F(Z*}-module M has a composition
series, since it is also an n-dimensional F-linear space. The following Jordan-HSlder
theorem [9] plays a crucial role not only in this section, but also in 3.

THEOREM 2.1 (Jordan-HSlder [7], [9]). If

and

are any two composition series of 7-module A, then C is equivalent to C, which
means that h h and there exists a permutation a of {1, 2,..., h}, such that

Mi/Mi-1 a(i)/Mla(i)-l.
2.3. Decomposition into irreducible components. Given a partitioned

square matrix (A,//), we consider an F(*}-module M (see the general framework
of 2.2) by setting

Z-- {Zo, ZI, Z}

and defining the action of Z’* on V as follows"

zox :- Ax, }z,x’-11,x (a=l,...,,) xeV.

Then M- V becomes an F{Z*}-module as well as an n-dimensional F-linear space.
We denote this module by M(A, 11) to emphasize its dependence on the matrix A and
the partition structure 11. For another partitioned square matrix A with common

H, we obtain another F(*}-module M(A’, H). The following lemma states that the
module M(A, 11) remains isomorphic under PS-transformations.

LEMMA 2.2. M(A, 11) M(A’, 11) if and only if A is H-similar to A’.
Proof. (=) Let 99"M(A, 11) M(A’,11) be the module isomorphism. Since

F c_ F(E*}, we can consider the two modules F-linear spaces and 99 a bijective
linear transformation that is to be represented by a nonsingular matrix S. For all
x E M(A, 11), we have

A’Sx Zo99(x) 99(ZoX) SAx,
I .Sx- v(z.x) t;U.x

Therefore A’S SA and HaS- $11 for a 1,..., .
(==) Suppose that there exists a nonsingular matrix S such that AS SA and
11S SH, for a- 1,...,p. For all x M(A, 11) and (zo,zl,...,z,) F(*}, we
have

S(Zo, zl,..., z,)x S(A, //1, IL,)x (A’, H1,..., H,)Sx (zo, Zl,..., Zv)SX.

Therefore the morphism 99" M(A,H) M(A’,H) represented by S is a module
homomorphism. Since S is nonsingular, 99 is bijective. Hence it holds that M(A, 11)- M(A’, 11).
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Lemma 2.2 suggests that the decomposition of the partitioned square matrix
(A, H) can be obtained through that of the F(*/-module M(A, 11), which in turn
corresponds to the decomposition of the module along a chain. Now we explain the
correspondence between an irreducible decomposition of (A, 11) and a composition
series of M(A, H). Let L:(A, 11) be the modular lattice of the submodules of M(A, 11).
A composition series of M(A, 11) is a maximal chain of (A, 11).

Let C be a strictly increasing finite chain of the submodules of M(A, 11):

C" 0 Mo M1 c Mh M(A, 11).

The F(*}-submodule
for a 1, . Since.... a=l 11 In, we have

We can obtain increasing chains

11 0 11,Mo C_ 11,:,M C_ C_ IIMh V,

for c 1,..., . Let B be a set of linearly independent column vectors spanning
11M for 0,..., h such that

Bo c_ Bx, G"" c_ B.
Then B [.J:= B spans Mi. Order n column vectors of Bh as [Bhl, Bh2,..., Bh,]
to get a nonsingular matrix S (= S, and put A := S-AS. Let Cz be the
column subset corresponding to/z B Bl-1 for 1,..., h, and Rk be the row
subset identified with Ck for k 1,..., h. Since M is an invariant subspace of A,

Or equivalently,

"[Uh Rk,U=lel]--O for i=1,.., h.A k--i+l

A[Rk, Ct] O if l < < k < h.

That is, A is in a block-triangular form with respect to (R,..., Rb) (C1,..., Cb),
where the number of blocks b is given by the length h of the chain C. It is also clear
that (A, 11) is PS-irreducible if and only if M(A, 11) is simple.

Suppose the chain C is a composition series. Put

Ok := A[Rk, Ck], k {H[Rk, Ck]}= for k 1,... ,h,

then (Dk, k) is also a partitioned square matrix. We can construct another
module Nk M(Dk, k). Then

Nk Mk/Mkml"

It follows from the simplicity of Mk/Mk-1 that D is PS-irreducible and A is an irre-

ducible decomposition of A. Conversely, if (A, 11) is in a block-triangular form with

PS-irreducible diagonal blocks, the subspaces ([.J Ck) for 1 b are sub-k=l

modules that constitute a composition series of M(A, 11). (Recall that (J) denotes
the subspace of V that corresponds to J C_ C.) Thus we have the following theorem.
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THEOREM 2.3. A PS-irreducible decomposition of (A, 1I) is obtained by a compo-
sition series ofM(A, 11). In particular (A, 11) is PS-irreducible if and only ifM(A, 11)
is a simple module.

Now we have already seen how to get an irreducibles, decomposition, but have
not yet discussed the uniqueness. Suppose both (A, 11) and (A’, 11) are irreducible
decompositions of (A,H)with blocks (R1,..., Rb) (Cl,..., Cb)and (R,..., R,)
(C1,..., C,), respectively. Put

Dk := A[Rk, Ck],
D A’[R, C[],

:= for k- 1,...,b,
bfor 1,...,

Then it follows directly from the Jordan-HSlder theorem (Theorem 2.1) as well as
Lemma 2.2 that b b’ and there exists a permutation a of {1, 2,..., b} such that
k k and Dk is k-similar to D k) Hence we have the following theorem on()
the uniqueness of irreducible components of a partitioned square matrix.

THEOREM 2.4. The set of PS-irreducible components of a partitioned square
matrix is unique to within PS-transformations of each component.

Example 2.2. Consider the same A as in Example 2.1. Let S’ be the nonsingular
matrix

1 0 0
0 -2 1
0 1 0

Then we have

0

A=S’-IAS’= o

0 0

2 1 -1
0 3 0
1 -I 6
0 -2 0
0 0 0

4 5
5 5

-2 1
5 1
0 4

By using the permutation matrix

1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

we can transform A into an explicit upper block-triangular form

0

fl’ p,T p, "
0

0

1 6

0

-1 -2 1

-2 5
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Then A’ is also an irreducible decomposition with three irreducible components

and

0

1 6’ D2= -2 5 D3=[41

0 0 1 } {[1
Thus bk ’ and Dk is qbk-similar to D’(k) (k)

0 0 1 3={[0]’[1]}"

123for k 1, 2, 3, where cr 3 2)"
2.4. Ordering among irreducible components. We have already seen that

an irreducible decomposition can be obtained by taking the basis along a composition
series of M(A,//), and that the irreducible components are uniquely determined in the
sense of Theorem 2.4. We have not yet discussed the strictly upper block-triangular
part. Our main purpose is to transform (A,H) into a block-triangular form that
makes the hierarchical structure as clear as possible. In this sense an irreducible
decomposition is not the final goal. We want to make the upper part of the block-
triangular form as simple as possible. To this end we consider the structure of the
whole lattice (A,//) rather than a single chain (composition series of M(A, H)).

Recall the definition of (7:)(A)) in 2.1. Then we have the following lemmas.
LEMMA 2.5. Suppose A S-1AS is a PS-transformation of A. Then S(D(A))

is a distributive sublattice of the modular lattice/2(A, H). Moreover,

S(D(A)) {W e (A, H) W is spanned by a subset of column vectors of S}.

Proof. Let J be an ideal of 7(A), i.e., J E 7:)(A). Then II,(J) C 2(J) for
a 1,..., and A(J) C_ (J) due to the block-triangularity of A. Therefore

(J) e (A,H). On the other hand, W e (A,H) if and only if SW e (A,H).
Hence S(T)(A)) is a distributive sublattice of (A, H). c1

LEMMA 2.6. For any distributive sublattice TY of (A,H), there exists a PS-

transformation A- S-1AS of A such that S(D(A)) _D :D’.
Proof. According to Birkhoff’s representation theorem, we can represent the

distributive lattice :D’ by the set of ideals of a poset :P’. More precisely, let P’
({W1, Wg }, c_) be a poset that consists of the join-irreducible elements of 7:)’ except
zero [2]. We assume k _< if Wk C Wl. Let Bia be a set of linearly independent column
vectors spanning HaWi for 1,..., g such that

BaGBga if Wc_WI.

Then Bi U Bia spans Wi Order the n column vectors of B Ug Bi to get aa=l i=1

nonsingular matrix S (=1Sa and put A := S-IAS. Let C be the column subset
corresponding to

/) B- U B.
k:WkW

Note that Bt spanning Wt is divided into disjoint subsets as
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Since Wt is an invariant subspace of A,

A[Rk, Ct] O unless Wk C_ Wt,

which implies that

Wk C_ Wt if Ck C.

Hence S(7)(A)) _D 7)’. [3

The following theorem is a direct consequence of Lemmas 2.5 and 2.6. Recall the
definition of a finest-p.p.ossible decomposition in 2.1.

THEOREM 2.7. A S-1AS is a finest-possible decomposition of A if and only if
S(7)(A)) is a maximal distributive sublattice of/:(A,//).

Since a maximal distributive sublattice of a modular lattice always contains a
maximal chain of the whole lattice, we have the following corollary.

COROLLARY 2.8. A finest-possible decomposition of a partitioned square matrix
is an irreducible decomposition.

If :(A,//) is distributive, (A,//) itself is the only maximal distributive sublat-
tice of/:(A,//). Then also we have the following corollary.

COROLLARY 2.9. If/:(A,H) is distributive, there exists a block-triangularized
partitioned matrix (A, H), II-similar to A, such that 7)(A) - (A, II).

The following lemma gives a sufficient condition for (A,H) to make (A,H)
distributive in the case of F C.

LEMMA 2.10. Assume F C. If, for each a 1,...,u, Aaa has na distinct
eigenvalues, then :(A,H) is distributive.

Proof. Let W be an element of/:(A,/I). It follows from AW C_ W and HaW C_ W
for c 1,...,u that

HaAI-IaW C_ HaW for a 1,...,u,

which implies IIaW is an invariant subspace of Aaa. Since Aaa has distinct eigen-
values, an invariant space of Aaa is the direct sum of a certain subset of the one-
dimensional eigenspaces. Since W HaW W corresponds to a certain subseta=l
of the set of eigenvMues of Aaa for a 1,..., u. Thus/:(A, H) can be regarded as a
sublattice of the Boolean lattice. Hence (A, H) is distributive. [3

This lemma tells us that we can uniquely determine the finest block-triangular-
ization of (A,//), if Aaa has distinct eigenvalues. We state a simple algorithm for
such a matrix in 4.

Next, we consider the case where (A, II) is not distributive, and show that
(A, H) can have infinitely many maximal distributive sublattices.

LEMMA 2.11. Suppose that /:(A,H) is not distributive. Then there exists a

block-triangular matrix A, H-similar to A, with a pair of blocks (Ck, Ct) such that

A[Rk, C] O, A[R, C] O, A[R, Ck] A[Rt, C], and Ha[R, C] IIa[R, C]
for a 1,...,u.

Proof. Since/:(A, H) is not distributive, it has a sublattice :’ {M1, M2, M3, M,
Ms) shown in Fig. 2, where M5 M2 + M3 M3 + M4 M + M2, and M1
M2 M3 M3 M M4 M2. It follows from the isomorphism theorem on modules
that

M5/M2 M5/M3 M5/M4 M2/M M3/M M4/M1 I.
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FIG. 2. The lattices 12 and T) in the proof of Lemma 2.11.

Consider the distributive sublattice :D’ {Mo, M1, M2, M3, Mb, M} of (A, H), where
M1 and M5 might coincide with Mo 0 and M M(A,//), respectively. It follows
from Lemma 2.6 and M2/M - M3/M that there exists a block-triangular matrix

A, H-similar to A, such that

fit pTp= Rk
Rt

* * * *
O D O
O O D
O O O

with a permutation matrix P.
THEOREM 2.12. Assume F is infinite. If (A, II) is not distributive, there exist

infinitely many maximal distributive sublattices of (_A, H).
Proof. Consider the block-triangular matrix A in the proof of Lemma 2.11.

We may assume here that A is a PS-irreducible decomposition. Consider the PS-
transformation 0 Z-1.Z0 by the nonsingular matrix

I O O O

Zo P 0 I OI 0 pW
0 0 I 0
0 0 0 I

where 0 E F and I denotes the unit matrices of suitable dimensions. Then 0 is
also a PS-irreducible decomposition and there exists the composition series Co from
which the decomposition is obtained. It is easy to verify that C0 # Co, unless 0
0. This shows that there exist infinitely many composition series. Moreover, there
exist infinitely many maximal distributive sublattices since a maximal distributive
sublattice of (A, H) can contain only finite numbers of composition series.

Now we are going to propose a canonical decomposition of partitioned square
matrices. In case that (A, lI) is distributive, we should define the canonical decom-
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position of (A,H) by the (unique) finest-possible decomposition A, where (A)
(A,//). However, when (A,//) is not distributive, obviously we can never find a
//-similar matrix A such that :D(A) - (A,//). We have already defined a finest-
possible decomposition A in the sense that A makes 7)(A) as close to (A,//) as
possible. When (A,//) is not distributive, finest-possible decompositions are not
unique. A canonical decomposition should represent the common structure among
these finest-possible decompositions. Thus we are led to the definition of a canonical
decomposition of a partitioned square matrix as a block-triangular form that realizes
the largest common sublattice of the maximal distributive sublattices of (A,//).
Note that a canonical decomposition is not necessarily an irreducible decomposition,
let alone a finest-possible decomposition.

Example 2.3. Consider a partitioned square matrix (A,//) that is in a block-
triangular form with five PS-irreducible components L1, L2, L3, D, and D, such
that

fit pTAp
R1 L O O H O
R2 O L2 O O H2
R3 O O L3 H -H
R4 O O O D O
R5 O O O O D

with a permutation matrix P, where H[R4, C4] H[R5, C5] for c 1,...,u,
Hj 0 for j 1,2, 3 and there exist no PS-transformations among L, L2, L3, and
D.

The whole lattice (A, H) (in the case that F is an infinite field) and the sublattice
D(A) are illustrated in Fig. 3. (A) is a maximal distributive sublattice of (A, H).
Thus A itself is a finest-possible decomposition of A. Consider the PS-transformation
by the nonsingular matrix Z’ defined by

Z’[Rk, Ct]={ Io otherwise,
if k=l or (k, 1)=(4,5),

and put A’= Z’-AZ. Then we have

, pTA,p
R1 L O O H H
R2 O L2 O O H2
R3 O O L3 H3 O
R4 O O O D O
R5 O O O O D

The lattice 7:)(A’) illustrated in Fig. 3 is also a maximal distributive sublattice of
(A,//). We also consider the PS-transformation by the nonsingular matrix Z"
defined by

Z"[Rk,Ct]= { Io otherwise,
if k=l or (k,/)=(5,4),
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(A, II) V(A)

FIG. 3. The lattice _.(A,H), three maximal distributive sublattices 7)(A), 7)(A’), 7)(A"), and
the distributive sublattice 7)* for the canonical decomposition in Example 2.3.
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and put A"- Z"-IAZ’’. Then we have

A-" pTA,,p

CLC2C3C4 C5
R1 L1 0 0 H1 0
R2 0 L2 0 H2 H2
R3 0 0 L3 0 -H3
R4 0 0 0 D 0
R5 0 0 0 0 D

The lattice T)(A") illustrated in Fig. 3 is also a maximal distributive sublattice of
(A, II). The common sublattice :D*, corresponding to the canonical decomposition,
of the maximal distributive sublattices of (A, II) is also illustrated in Fig. 3.

3. Decomposition under partition-respecting equivalency.

3.1. Problem formulation. In this section we discuss the block-triangulariza-
tion of a partitioned, not necessarily square, matrix under restricted equivalence trans-
formations which preserve the partition structure. More precisely, let A be an rn x n
matrix over a field F with partitions:

All A12 Alu
A21 A A,

A.1 A. A.u
where Aaz is an ma nz matrix called (a, )-submatrix of A. To describe the partition
structure in terms of matrix operation, we introduce a family of m x rn projection
matrices Ha for c 1,...,# and another family of n x n projection matrices FZ
for 1,..., u. The (c, a)-submatrix of Ha is the unit matrix Im, of dimension

ma and the other submatrices are zeros. Similarly, the (/,/)-submatrix of F is the
unit matrix In of dimension n and all the other submatrices are zeros. Sometimes
we denote the partitioned matrix by the triple (A, H, F), where H {Ha}a=lu and

F {F3}=1. A transformation A := S-IASc of A is said to be a partition-respecting
equivalence transformation (PE-transformation) if the off-diagonM submatrices of Sr
and Sc are zeros, i.e.,

//aSr Sr//a for a 1,...,#

and

FzSc ScFZ for / 1,...,.

We say that A is (H, F)-equivalent to A’ if there exists a PE-transformation that
transforms A to A’. Then our problem is to bring A into a block-triangular form by
means of a PE-transformation.

Alternatively, our problem can be formulated as follows. Let U and V be F-linear

spaces F and Fn, respectively, which are direct sums of lower dimensional spaces

U ( Ua, dimF Ua rna,

Y ( Vf, dimF Vf nf.
f=l
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A linear transformation

f’V-U

is constructed by a family of linear transformations

When we take arbitrary bases for each space Us and VZ, f is represented by a parti-
tioned matrix A, where AZ corresponds to fz. In this context PE-transformations
are naturally derived as basis transformations of Us and VZ.

Now we_ define precisely the notion of a block-tria_ngular form, following Murota
[22]. Let A be a partitioned matrix. We say that A is in a block-triangular form
or is block-triangularized if the row set R {1, 2,..., m} and the column set C
{1,2,...,n} are split into a certain number of disjoint blocks" (Ro;R1,...,Rb;ROO)
and (C0; C1,..., Cb; C) in such a way that

or IR01= IV01=0,
for
or IR I= levi =0,

and

A[Rk, Ct] O if 0<_l<k<:oo.

A is said to be properly block-triangularized if, in addition,

rankA[Rk, Ck] min(IRkl, ICkl) for k 0, 1,..., b, oo

is satisfied. A[Ro, Co] and A[R, Coo] are called horizontal tail and vertical tail of A,
respectively. It is clear that if A is block-triangularized in the above sense, we can
put it into an explicit upper block-triangular form ft. PrPc in the usual sense by
using certain permutation matrices Pr and Pc.

A partitioned matrix (A,H,F), or simply A, is said to be PE-irreducible if
rankA min(m, n) and it can never be transformed into a proper block-triangular
form with two or more nonempty blocks by any PE-transformations. If A is a proper
block-triangular matrix obtained from A by a PE-transformation and, in addition, all
the diagonal blocks A[Rk, C] for k 0, 1,..., b, oo are PE-irreducible, we say that
A is a (PE)-irreducible decomposition of A and A[Rk, Ck] are the (PE)-irreducible
components of A.

Our problem of proper block-triangularization above contains two well-known
extreme cases. The first case is with the trivial partition structure: tt 1, 1.
In this case our problem has been completely solved by the rank normal form [11].
The other extreme case is with the finest partition structure: # m, n. In this
case our problem is solved by the DM-decomposition of bipartite graphs [10] with
efficient algorithms. The CCF of layered mixed matrices, which is a proper extension
of DM-decomposition, can be regarded as a special case; we explain this relationship
in 3.3.

On the analogy of DM-decomposition, a partial order is induced among the blocks
{Ck k 1,..., b} in a natural manner by the zero/nonzero structure of a block-
triangular matrix A. The partial order is the reflexive and transitive closure of the
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relation defined by: Ck is "smaller" than or equal to Ct if A[Rk, Ct] O. We denote
this poset ({C1,..., Cb},-’) by P(A).

As is well known [2], [5], the ideals of the poset P(A) constitute a distributive
lattice, which we denote by :D(A). Note that a subset J of C can be naturally identified
with a subspace of V. As in 2 we denote this correspondence by C(J). Then

(:D(A)) {(J) J e :D(A)}

is a distributive sublattice of the modular lattice formed by the subspa_ces of V.
We say that S[-1ASc is finer, as a decomposition of A, than A’ S’-1AS’c

if S’c(:D(A’)) ={ScW’ W’ e (:D(A’))} is a proper sublattice of S(:D(A))
{ScWIW e (:D(A))}. Furthermore, we say that A, (H,F)-equivalent to A, is
a finest-possible decomposition of (A, II, F) if there does not exist a proper block-
triangular matrix A that is also (H, F)-equivalent to A and finer than A.

Example 3.1. Consider the following 4 5 matrix A over F --Q:

0 0 0. I 1 1 1 0
A- , 0 2 1 1 1

2 -2 0 0 2
0 3 0 0 4

where # 2, u 2, m 2, m. 2, n 3, n2 2. Let Sr and Sc be the
nonsingular matrices

1 1
1 0

0 1 1
0 0 1 0

0 1 Sc= 1 0 0

1 0 0
1 0
0 1

Then we have

By using the permutation matrices

0 0 0. 1 2 0 1 1. 0 0 I 0 -1
o 0 3 0 0 4
o 0 0 2 0 2

1 0 0 0 0
1 0 0 0

0 0 1 0 0
0 0 1 0= 0 1 0 0 = 0 0 0 1 0

0 1 0 0 0
0 0 0 1

0 0 0 0 1

we can transform A into an explicit upper block-triangular form

A =PrAPc

0 0 0

o 3 0 4
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Then A is in a proper block-triangular form with two square blocks, a nonempty
horizontal tail (JR01 1, IC0] 2) and an empty vertical tail.

The main results of this section are as follows. We exploit two approaches, one
based on module theory and the other on submodularity. It should be remarked that a
proper block-triangularization does not always exist. It is shown that the existence of
a proper block-triangularization is equivalent to the existence of an invariant module
(see Theorem 3.5), and that it is also equivalent to the equality of the rank of A to the
minimum value of a submodular function (see Theorem 3.15). Sufficient conditions
for the existence are given by the nonsingularity (see Lemma 3.2), or the genericity
(see Theorem 3.16). The PE-irreducibility is characterized either by the simplicity
of the associated module (see Theorem 3.6) or by the minimizers of the associated
submodular function (see Theorem 3.15). The uniqueness of irreducible decomposition
is due to the Jordan-H61der theorem for modules (see Theorem 3.7). It will be shown
that a finest-possible decomposition is obtained by a maximal distributive sublattice of
the modular lattice formed by the submodules of the associated module; the modular
lattice can also be characterized as the lattice of the minimizers of the associated
submodular function (see Theorem 3.10).

3.2. Decomposition into irreducible components and their ordering.
This section is devoted to the construction of an irreducible decomposition and a

finest-possible decomposition by means of module and lattice theories.
To begin with, we observe some properties of a proper block-triangular matrix

and investigate a necessary condition for the proper block-triangularizability of a

partitioned matrix (A, H, F). Suppose A S-IASc is in a proper block-triangular
form with blocks (Co; C1,..., Cb; C) and (H, F)-equivalent to A. Put W (C0),
which is the subspace ofV that corresponds to Co. Since A is also a partitioned
matrix, we have FzW c_ W for/ 1,..., . It follows from the definition of a proper

block-triangular form that 11AW c_ AW for a 1,...,# and KerA C_ W. Put
W =ScW, and then we have

FzWC_W for /=1,...,,

H,AWC_AW for a=l,...,#,

and

KerA C W.

Let (A, 11, F) be the. family of such subspaces W of V. Then we have the following
lemma.

LEMMA 3.1. If a partitioned matrix (A, 11, F) can be transformed into a proper
block-triangular form by means of a PE-transformation, then (A, 11, F) is nonernpty.

If rankA rain(m, n) holds, W 0 or W V satisfies the three conditions
above. Hence we have the following lemma.

LEMMA 3.2. If rankA min(rn, n), then (A, 11, F) is nonempty.
The converse of Lemma 3.1 is also true, which is shown later (see Theorem 3.5).
Now we assume in this subsection that (n, 11, F) is nonempty. Then (A, 11, F)

is a modular lattice. We denote the maximum element of (A, 11, F) by V-, and the
minimum by V+/-.
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Let * be a free monoid generated by a finite set

The action of * on the quotient linear space V-/V_L is defined as follows:

z,(x + y+/-).= ,(x) + y.
zu+a x - vL f Tr f x -t- V.L

1,...,), }((a=l, ,#) xE

where -),Z V V and r U --, U are the projections represented by FZ and//,
respectively.

LEMMA 3.3. The action of * on V-r/V.L is well defined.
Proof. Consider a vector y E V- such that y- x V.L. Since FV.L c_ V.L, we

have ,(y)- (x) V.L. Similarly, it follows from HoAV_L c_ AV_L that ro(f(y))-
yr,(f(x)) f(V_L). Consider two vectors x’, V- such that ro(f(x)) f(x’),

ro(f(y)) f(y’). The existence of such vectors follows from IIoAV- c_ AVT. Since
KerA C_ VL, we have f-l(o(f(x))) C_ x’ + V_L, f-(r(f(y))) C_ y’ + V_L and y’-x’
V_L. Therefore f-(r,(f(x))) + V.L f-(r(f(y))) + V.L. Hence the action of
on V-r/V.L is well defined.

Thus V-/V.L becomes an F(Z*)-module, as well as an F-linear space. We denote
this module by M(A,H,F). Note that W/V.L is a submodule of M if and only if
W (A, H, F). That is to say (A, 11, F) coincides with the modular lattice that
consists of the submodules of M(A, H, F). For another partitioned matrix A with
common (11, F), we obtain another modular lattice .(A’,H,F) and another
module M(A’, H, F). Note that M(A’, H, F) is isomorphic under PE-transformations,
i.e., M(A, 11, F) - M(A’, II, F) if A is (H, F)-equivalent to A’. The converse is true
for square and nonsingular matrices.

LEMMA 3.4. Suppose A and A are square and nonsingular. Then M(A, H, F)
M(A’, 11, F) if and only if A is (1I, F)-equivalent to A’.

Proof. Let ’M(A,H,F) ---, M(A’,H,I) be the module isomorphism. Since
F C_ F(*), M(A, 1I, F) M(A’, 11, F) Y as the F-linear spaces, and a bijective
linear transformation that is to be represented by a nonsingular matrix Sc. Put

Sr AScA-,
then A’Sc qrA is satisfied. For any x M(A, 11, F) V, we have

FzScx zz(x) (zzx) ScFZx for /3- 1,..., ,
which implies FSc ScF for/3 1,..., . For any x M(A, 11, F) V, we also
have

A’-HA’Scx z+(x) (z+x) ScA-11-IAx for a 1,...,#.

It follows from ASc SrA that

A’-IHSrAx A’-SrlloAx.

Because A and A are nonsingular, we have obtained 11oSr Srllc for a 1,

Now we explain how to get an irreducible decomposition. Let C be a maximal
chain of .(A, H, 1")"

c. v+/- Wo g g g
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Since FzWi C Wi for fl 1,..., and =1 F/ In, we have

For/ 1,..., , we can obtain increasing chains

Let BC be a set of linearly independent column vectors spanning FzWi for i
0, 1,..., h and Bo spanning V such that

u c ...,h, and Bc cThen B LJ=I Bi spans W for 0, 1, LJ=IB becomes
C C Ca basis of V. Order the n column vectors of Bc as [BOO,B2,...,B,] to get a

nonsingular matrix Sc = Scz.
Similarly since HaAW C_ AW for c 1,.. # and uEa--1 Ha Ira, we have

AWi ] I-IaAW

We obtain increasing chains

HaAC HaAV_t_ HaAWo c_ HaAW1 c_ c_ lIaAWh IIaAVT

for c 1,..., #. Let Bir be a set of linearly independent column vectors spanning
HaAW for i 0, 1,..., h and Booa spanning Ua such that

c c_... c_ BL c

tt [-Ja= Ba becomesThen B[ I,.Ja=l Bia spans AW for 0, 1,..., h, and B t

a basis of U. Order the m column vectors of B as [BI Bo2,... Bct to get
nonsingular matrix Sr

Put := S-ASc. Let Ci be the column subset corresponding to/, and Ri the
row subset corresponding to/{, where

B B,
/ B BiC_l,
^c c BEBo Boo h,

B6
/{ B{ B{_
^rBo B B.

for 1,...,h,

Then we have

A[Rk, Ct] O if 0_<l<k_<

Since IIaAWk C_ AWk for k 0, 1,..., h, we have

rankA[Rk, Ck] IRk[ for k 0, 1,..., h.

On the other hand, since KerA c_ V+/-, we also have

rankA[Rk, Ck] ICk[ for k 1,..., h,
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Hence,

for k 1,...,h

rankA[Rk, Ck] min(IRkl, ICkl) for k 0, 1,..., h, oc.

That is to say, A is in a proper block-triangular form, where the number of square
blocks b is given by the length h of C. Thus we have the following theorem.

THEOREM 3.5. There exists a proper block-triangular matrix that is (1-I,F)-
equivalent to A, if and only if (A, 17, F) is nonempty.

Before showing that A obtained above is an irreducible decomposition, we give a
necessary and sufficient condition for PE-irreducibility. Recall Lemma 3.2.

THEOREM 3.6. Suppose rankA min(m, n). Then A is PE-irreducible if and
only if there exists no element in (A, 17, F) except 0 or V, namely, if and only if
(A, 17, F) c_ {0, Y}.

Proof. Suppose A is in a proper block-triangular form with two or more nonempty
blocks and (H, F)-equivalent to A. If Co is nonempty, put W Sc(C0); otherwise
W S(C1). Then W is a nontrivial subspace of Y that belongs to f(A, 17, F). This
is a contradiction. The converse is immediate from the construction above. [3

Now we are ready to show that the proper block-triangular matrix A obtained
from a maximal chain C of (A, 17, F) is an irreducible decomposition of A. A com-
position series of M(A, 17, F) is given by

C/V_L 0 Mo C MI C C+ Mh M(A, H, F),

where Mi Wi/V_L for 0, 1,..., h. Put

Dk A[Rk Ck] Ok {17[Rk Ck]"= }=, e, "= {F[R,C]},=I,
for k 0, 1,...,x, then (Dk,k,k) is also a partitioned matrix. For each k
1,..., h, we can construct another F(Z*/-module Nk M(Dk, Pk, k). Then N
Mk/Mk-1. This implies that Dk is PE-irreducible for k 1,..., h. Moreover, since V_L
and V- are the minimum and maximum elements of/2(A,/I, F), respectively, it follows
from Theorem 3.6 that Do and DR are PE-irreducible. Thus A is an irreducible
decomposition of A. Conversely, if (A,//, F) is in a proper block-triangular form with
irreducible diagonal blocks, the quotient spaces ([-Jk=0 Ck)/(Co) for i 0,... ,b
determine submodules that constitute a composition series of M(A, H, F).

We have already seen how to construct an irreducible decomposi_tion, but we have
not yet discussed the uniqueness. Suppose both - S-ASc and A’ S’- AS’c are
irreducible decompositions of (A, H, F) with blocks (R0; R,..., Rb; R), (Co; C,...,
Cb; C) and (R; R,..., R,; R), (C; C,..., C,; C), respectively. Put

Dk A[Rk, Ck] k {17[Rk, Ck] "= {F[Rk, Ck]}=,
for k 0, 1,..., b, c, and

}=, [ := {r,[R C[]}=,D := A’[R C[] {17[ t,C[] t,

for 0, 1,..., b’, oc. Since V_L is the unique minimum element of (A, 17, F), it is
obvious that 0 D, 0 /’ and Do is (0, !/’0)-equivalent to D. In this sense
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the horizontal tail is unique. The uniqueness of the vertical tail is shown as follows.
Put Sr S-IS and Sc S[IS’c, then SrA’= ASc. It follows from ((.Jk=0 Ck)

b’ b’Sc([.jt=0 Cz) ScV that r[R t=0 R] O and c[C, bUk=0 C] O hold. An
easy calculation leads to

S[R R]D DSc[C, C].

That is to say c L, P P, and D is (, P)-equivalent to DL. For
nonsingular irreducible components, it follows from the Jordan-HSlder theorem for
modules (Theorem 2.1) and Lemma 3.4 that b b’ and there exists a permutation a of
{ 1, 2,..., b}, such that k (k,) !Pk P(k,) and
Hence we have the following theorem on the uniqueness of irreducible components of
a partitioned matrix.

THEOREM 3.7. The set of PE-irreducible components of a partitioned matrix is
unique to within PE-transformations of each component.

As to the distributive lattice T)(A) and the modular lattice (A, 11, F), we have
the following results that are quite similar to those in 2. We state them without
proofs.

LEMMA 3.8. If A S-IASc is (11, F)-equivalent to A, then Sc(7?(A))is a
sublattice of (A, 11, F).

LEMMA 3.9. For any distributive sublattice T)’ of (A,H,F), there exists a PE-
transformation A S-IASc such that Sc2(T)(A))

_
T)’.

THEOREM 3.10. A S-IASc is a finest-possible decomposition of A if and only

if Sc(T)(A)) is a maximal distributive sublattice of (A, 11, F).
COROLLARY 3.11. If (A, 11, F) is distributive, there exists a block-triangular

matrix A, (11, F)-equivalent to A, such that T)(A) - (A, 11, F).
THEOREM 3.12. Assume F is an infinite field. If (A, H, F) is not distributive,

there exist infinitely many maximal distributive sublattices of (A, H, F).

3.3. Submodular function and the modular lattice. In this section we show
another way to derive the PE-irreducible decomposition by using a certain submodular
function p. The rank of a partitioned matrix is expressed as the minimum value of p,
and the PE-irreducible decomposition is then derived from the decomposition of the
submodular function p into minors along a maximal chain of the lattice formed by the
minimizers of p. This is a direct extension of the approach that led to the previously
known cases such as the DM-decomposition, the CCF of layered mixed matrices, and
the decomposition of multilayered matrices. (See Remarks 3.1 and 3.2 at the end of
this section for a more specific account.) As we have already seen, a proper block-
triangularization of (A, H, F) exists if and only if (A, 11, F) is nonempty. We show
that (A, H, F), when nonempty, agrees with the lattice of the minimizers of p and
discuss some conditions for (A, H, F) to be nonempty.

Let )4; be the modular lattice, which consists of subspaces W of V such that

FzWC_W for /=1,...,v.

Put

p(W) := E dim IIAW dim W,
c=l

WE)A;.
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LEMMA 3.13. The function p" 14; ---, Z is submodula.

p(W + W2) + p(W fq W2) < p(W1) + p(W2), WyeW (j 1,2).

Proof. It is sufficient to show that dimHAW is submodular. It follows from
HA(W1 + W2) HAWI + HAW2 and HA(W N W2) c_ HAW HAW2 that

dimHAW + dimHAW2 dim(HAW + HAW2) + dim(HAW N HAW2)
>_ dimHA(W + W2) + dimIIA(W W2). U

Since Ha Im we have " I-IAW AW in general, which impliesce=l =1
p(W) >_ dim AW dimW >_ dim KerA. Hence

dimKerA _< min p(W).

By adding n to the both sides, we obtain the following lemma.
LEMMA 3.14. It holds that

rankA < n + min p(W).
WEW

It is well known that the set of the minimizers of a submodular function on a
lattice is a sublattice [24] and that a sublattice of a modular lattice is also modular
[2], [5]. Therefore

(p) :-- {W W lp(W rain p(W’)}
WW

is a modular lattice.
THEOREM 3.15. There exists a proper block-triangular matrix that is (//,F)

equivalent to A, if and only if rankA n + minwewp(W). Then (A,H,F) is
nonempty and (A, H, F) (p).

Proof. Recall that p(W) >_ dimAW- dim W

_
-dimKerA. The first inequality

holds with equality if and only if IIAW C_ AW is satisfied for a 1,..., #, and the
second inequality holds with equality if and only if KerA C_ W. Therefore p(W)
-dim KerA if and only if W E (A,//, F). That is to say rankA n + minp(W) if
and only if (A,//, F) is nonempty. In this case (p) :(A,//, F). Then Theorem
3.5 completes the proof. [:]

When rankA min(rn, n) holds, we see that minp(W) _< min(p(O),p(V)) <_
min(0, rn-n) rankA- n, which implies the equality in Lemma 3.14. This, together
with Theorem 3.15, gives an alternative proof to Lemma 3.2.

Another sufficient condition for the existence of a proper block-triangularization
is given in terms of the genericity of a partitioned matrix. The genericity refers to the
situation where the nonzero entries of A can be regarded as independent parameters.
Let K be the prime field of F; in particular, if F or C, K is the field of rational
numbers Q. Then we have the following theorem.

THEOREM 3.16. If the set of nonzero entries of A is algebraically independent
over K, then

rankA n + min p(W),
WW

and, as a consequence, there exists a proper block-triangular matrix (H, F)-equivalent
to A.
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Proof. Consider the DM-decomposition of (the bipartite graph associated with)
A, and assume that the column set C and the row set R are split into blocks
(Co; CI, Cd; Ccx) and (R0; R1, Rd; R), where

or IRol= ICol=0,
for k 1,...,d,
or IR I= IC l=0,

A[Rk, Cz]=O if O<_l<k<_.

Since all the nonzero entries of A are algebraically independent over K, we have

rankA[Rk, Ck] min(IR} I, ICkl) for k 0, 1,..., d, .
Let W be the subspace of V corresponding to the column subset Co. It is clear that

FW C_ W for/ 1,..., u, which implies W e ]/Y. Since rankA[Ro, Co] IRol, it is
also clear that

p(W) IR01 ICol dimKerA.

This theorem implies in particular that "almost all" matrices (in the case of
F C or ) have a proper block-triangularization.

Example 3.2. Consider the following 4 x 4 partitioned matrix A:

0 0

tl 0 0 t2
A * 0 t3 t4 0

O 0 t5 0 t6
O t7 0 t8 0

where#= 2, u=2, m1=2, m2 =2, n1=2, andn2 =2. Suppose that {t i=
1,..., 8; 0 < t E 1} is algebraically independent over the field Q. Let Sr and Sc be
the nonsingular matrices"

tl v/t2t3t5ts t v/t2t3t5ts
-t3v/tt4t6t7 t3v/tt4t6t7

-t5 v/tl t4t6t7
tTVrt2t3t5ts

t5 x/tl t4t6t7
tT s/t2t3t5ts

Then we have

v/t2t3t5t8
--v/tt4t6t7

v%t3tt8
v/tt4t6t7

t3tv/t t2tt6
-t t5 v/t3t4tTts

t3tT v/t t2t5t6
ttv/t3t4tTt8

= S-ASc ,

0 0

1 0

0 1

o
0 1

-x/t2t4ttv
0

v/tt3t6ts
0
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By using the permutation matrices

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0
Pc

0 1 0 0

0 0 0 1

we can transform A into an explicit upper block-triangular form:

0 0

fi, Pr Pc o 1 v/t t3t 6ts
0

[ 0 1 v/t2t4t5t7
tt3t6ts

Then A is in a proper block-triangular form with two blocks. If we had n algebraic
relation: tt3t6t8 t2t4t5tT, then A obtained above would not be in a proper block-
triangular form.

Remark 3.1. As stated in Theorem 3.15, a proper block-triangulrization ex-
ists if and only if rankA n + minwe p(W). The PE-irreducible decomposition
can be constructed also from the decomposition of the submodular function p into
minors along a maximal chain of the lattice (p), just as has been done for the previ-
ously known cases such the DM-decomposition. In particular, the rank condition:
rankA[Rk, Ck] min(Rk], Ck]) follows from the above identity when combined with
the fact that the submodular function is modular when restriced onto the sublattice
(p). However, this approach based on submodular function fails to capture such
complications arising from identical diagonal blocks as indicated in Example 2.3.

Remark 3.2. The block-triangularization under the PE-transformation includes
the following previously known ces: the DM-decomposition [8], [10], [19], the CCF
of layered mixed matrices [20], [22], [23], and the decomposition of multilayered ma-
trices [20], [23]. Not only is the PE-transformation an extension of the admissible
transformations used in those decompositions, but also the submodular function p
introduced above is an extension of the submodular functions used in their construc-
tions. In all those cases, the column set C Col(A) is partitioned into singletons
(with n), and A takes the form:

A
A2n

where A [A, A,..., A] is the m x n submatrix of A. Such a matrix A is
termed a multilayered matrix in [20], [2a]. In this ce W is isomorphic, a lattice,
to the boolean lattice 2c, and p can be identified with the submodular function

" 2c g defined by

rankA.[Row(A). J] IJI. JC_C.
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where Row(As) denotes the row set of As. This agrees with the submodular function
used in the decomposition of multilayered matrices.

The notion of layered mixed matrix, introduced for the combinatorial-structural
analysis of discrete systems, is defined as follows. Let K c_ F be fields (K is not
assumed to be a prime field). A matrix A is called a layered mixed matrix with
respect to F/K if it can be put into the form

by rearranging the rows, where (i) the entries of Q belong to K, and (ii) the entries
of T belong to F and the set of the nonzero entries of T is algebraically independent
over K. The admissible transformation for A [TQ] is defined as an equivalence
transformation of the form

Pr[ SQ 0
O I

where SQ is a nonsingular matrix over the subfield K and I denotes the identity
matrix of size IRow(r)l mT. It is known that there exists a unique finest-possible
proper block-triangular matrix under this transformation. This is the CCF. We can
regard A as a multilayered matrix with # mT + 1, rn 1 for c 2,..., #, where
Q= A1 and

A2

Then the admissible transformation above is essentially the same as the PE-transforma-
tion of this paper, in which Sr diag[SQ, 1,..., 1] and Sc diag[1,..., 11. The func-
tion iS(J) can be rewritten as follows. Denoting by (J) the number of nonzero rows
in the submatrix T[Row(T), J], we see

a--2

rankA [Row(A), J].

Hence, putting p(J) rankQ[Row(Q), J], we obtain

(J) p(J) + ’(J) IJI,

which agrees with the function used in the construction of the CCF. Note that the
assumed algebraic independence in the T-part guarantees the equality in Lemma 3.14.

Finally, the DM-decomposition is a special case of the CCF in which @part is
empty. In other words, /5(J) 3’(J)- IJI, which is sometimes referred to as the
surplus function [19], where /(J) is now defined as the number of nonzero rows in the
submatrix A[Row(A), J].

For those special cases, efficient algorithms have been constructed based on the
results from network (submodular) flow theory. Namely, the family of the minimiz-
ers, as well as the minimum value, of the submodular function/5 can be computed
efficiently. It remains still open whether the algorithms can be extended to the decom-
position of a general partitioned matrix. The extension will involve the minimization
of a submodular function over a modular (nondistributive) lattice.
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4. Discussions.

4.1. Decomposition algorithm for partitioned square matrices. In this
section we discuss an algorithm for the block-triangularization of a partitioned square
matrix (A, H) under PS-transformations in the case of F C. The following simple
algorithm gives a block-triangular matrix H-similar to (A, H). Furthermore, if A
has distinct eigenvalues for a 1,..., , this algorithm gives the finest decomposition
of (A, 11) whose uniqueness has been guaranteed by Corollary 2.9 and Lemma 2.10.

ALGORITHM FOR THE BLOCK-TRIANGULARIZATION OF (A, 11).
Step 1. Let S be a nonsingular matrix that transforms A into its Jordan normal

form. Put

Step 2. Let G (V, E) be a directed graph that represents the zero-nonzero pattern
of the matrix A, where the vertex set V is identified with the column set C of A
as well as with the row set R, and where the arc set E is defined by E { (j, i)
[A]ij 0}. Find the strongly connected component decomposition (G1,..., Gb)
of G, where the strongly connected components are indexed in such a way that
there does not exist a path from the component Gl to Gk if 1 <_ < k <_ b.
Accordingly, decompose C and R into the blocks (C1,..., Cb) and (R1,..., Rb),
respectively.

When A has distinct eigenvalues, every element of (A, 11) is spanned by cer-
tain eigenvectors ofA for a 1,..., (see the proof of Lemma 2.10). The column
vectors of S are the eigenvectors ofA for a 1,..., . Therefore it follows from
Lemma 2.5 that

T)(A)-= (A,//),

which implies A is the finest decomposition of (A, 11). Thus we have the following
theorem.

THEOREM 4.1. Suppose that for each a 1,..., , Aaa has na distinct eigenval-
ues. Then the output A of the above algorithm is the finest decomposition of (A, 11)
with 7)(A) - (A, 11).

Remark 4.1. In the case of F , the above algorithm, in which the complex
Jordan normal form is replaced by real Jordan normal form, works correctly if
has na distinct complex eigenvalues for a 1,..., because every element of/:(A, 11)
is spanned by certain eigenvectors or pairs of vectors (in a certain two-dimensional
eigenspace), corresponding to real or nonreal eigenvalues, respectively.

4.2. Algorithm for proper block-triangularizability. We have already seen
in 3 that a partitioned matrix (A, II, F) can be transformed into a proper block-
triangular form by a PE-transformation if and only if :(A, 11, F) is nonempty. In
this subsection we give an algorithm to determine whether L:(A, 11, F) is empty or
nonempty by searching for the minimum element V+/- of :(A, 11, F).

Construct an alternating sequence V(), U(1), V(1), U(2),..., of subspaces V() c_
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VandU() C_Uby

V() := O,

U() ra(f(V(a-1))), V() := -),f(f-l(u(a)))
a=l 3=i

( 1,2,...).

Then we have

V(g-hi)

_
f-l(u(+l)) _D f-(f(V()))

_
V() (- O, 1,...).

This implies V() C_ V() C_ and U() C_ U(2) C_ .... Furthermore, if V() V(+)
or U() U(+) then V() V(+1) V(+2) and U(+1) U(+2)

There exists a number q _< min(n, m) + 1 such that V(q) V(q+) and U(q)

U(q+l) where n dim V and m dim U Thus we can obtain V() and U()
within finite steps.

THEOREM 4.2. .(A, 1I, F) is nonempty if an3 only if U() c_ Imf.
Proof. (==:v) We prove V() C_ V+/- by induction. Obviously V() c_ V+/-. Suppose

V() c_ V+/-. Then, since /(V+/-) C_ V+/-, r,(f(V+/-)) C_ f(V+/-), and Serf C_ V+/-, we
have V(+I)= (= ./(f-(" (V()(,= r,(f )))) C V+/-. Hence V() C V+/- for

0, 1 This implies U(’+1) ")..(f(v( )) c_ (f(v. ))]c-- 7rc
Imf.

(==) We check the three conditions in 3.2 for V() E (A, 1I, F). (i) Serf c_
V() follows from Serf _C V(). (ii) It follows from V() =-),(f- (U())) that

/f(V()) /f(f-(U())). Then we have /f(V()) c_ {=1-/(V()) V().

(iii) First note that U() C_ Imf implies f(f-(U())) U(). By applying f
to we see

Thus we have obtained a constructive procedure to determine whether or not
(A,//, F) is properly block-triangularizable. As is evident from the proof, V() V+/-.

Remark 4.2. We can start the above procedure with an arbitrary subspace V()

of V. In this case, the set :* {W V() c_ W E (A,//, F)} is nonempty if and
only if U() c_ Imf. And V() gives the minimum element in

Acknowledgments. Example 3.2 is credited to T. Fujita, who completed his
graduation thesis at the University of Tokyo under Murota’s supervision. The authors
are grateful to Professor Masanori Fushimi for his support and encouragement.
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NUMERICAL RANGE OF MATRIX POLYNOMIALS*

CHI-KWONG LIl AND LEIBA RODMANi

Abstract. Let Mn be the algebra of all n n complex matrices. Suppose

P(A) Area + Am-lAm-1 +"" + AO

is a matrix polynomial, where Ai E Mn and is a complex variable. The numerical range of P(A)
is defined as

W(P())) {it ( x*P())x 0 for some nonzero x n}.

The numerical range of matrix polynomials has important applications to overdamped vibration
systems with finite number of degrees of freedom and it is also related to stability theory. In this paper,
the subject is studied systematically. The emphasis is on the relationship between the geometrical
properties of W(P())) and the algebraic and analytic properties of P(). A factorization result, based
on geometric properties of W(P())) for certain classes of matrix polynomials with not necessarily
hermitian coefficients is proved, and the set W(P(A)) for a linear polynomial with hermitian matrices
as coefficients is studied in detail. The results indicate that the information on W(P())) is very
useful in understanding matrix polynomials and also reflects the fact that it is highly nontrivial to
give a complete description of the set W(P(A)).

Key words, numerical range, matrix polynomial, factorizations

AMS subject classifications. 15A60, 15A22, 47A56

1. Introduction. Let Mn be the algebra of all n n complex matrices. Suppose

P(A) AmAm + Am_IAm-1 + -- Aois a matrix polynomial, where Ai E Mn and A is a complex variable. Define the
numerical range of P(A) as

W(P(A)) {# e (: x*P(A)x 0 for some nonzero x e n}.

If P(A) AI- A, then W(P(A)) reduces to the numerical range of A defined and
denoted by

W(A) {x*Ax x e

where S denotes the unit sphere in n, i.e.,

8-’- {X n X*X-- 1}.

In this sense, the numerical range of a matrix polynomial is a generalization of the
classical numerical range.

One important application where the numerical range of matrix polynomials plays
a significant role is overdamped vibration systems with a finite number of degrees of

*Received by the editors February 15, 1993; accepted for publication July 4, 1993. The research
of the first author was supported by National Science Foundation grant DMS-91-00344 and the
research of the second author was supported by National Science Foundation grant DMS-91-23841.

Department of Mathematics, College of William and Mary, Williamsburg, Virginia 23187-8795
(ckliOcs. wm. edu and ixrodm@cs, wm. edu).
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freedom, e.g., see [11, [6, Chap. 7], and [2, Chap. 10]. The matrix polynomial there is
of the form A2,2 -]- AIA + A0, where A0, A1, A2 are n n positive definite matrices.
Factorizations of such a polynomial of the form A2(AI-Y1)(AI-Y2), which are based
on the properties of its numerical range, are crucial in the theory of overdamped
vibration systems ([5] is a pioneering work in this direction). An extension of these
ideas to the matrix and operator polynomials of arbitrary degree leads to the notion
of hyperbolic polynomials and to important factorization results (quoted in Theorem
3.1) based on the properties of the numerical range. In fact, Theorem 3.1 provided an
impetus for this work.

Another motivation for the study of numerical ranges of matrix polynomials arises
from stability theory. Recall that a scalar polynomial p(A) is said to be stable if all
its roots have negative real parts. In terms of the numerical range of p(A), stability
means that W(p()) c_ {, e Re(,) < 0}. Given n stable scalar polynomials,
pl(A),...,pn(A), it is of interest to know whether all the polynomials q(A) obtained

nby taking convex combination of the n given polynomials, i.e., q(A) i=1
with r/i _> 0 and rh 1, are also stable. Let m be the highest degree of the
polynomials p(A), and for j 0,..., rn let Aj E Mn be the diagonal matrix whose ith
diagonal entry equals the coefficient of AY in p(A). If P(A) ’=1 AjAY, then one
easily checks that q(x) is a convex combination of p(A)’s if and only if q(x) is of the
form x*P(A)x with x e $. Thus all convex combinations of the polynomials p(A)’s
are stable if and only if W(P(A)) C_ {, e V Re(-) < 0}. Thus, results on stable
polynomials can be translated to results about W(P(A)) and vice versa.

Numerical ranges of matrix polynomials have appeared in the literature (see [2,
10.6]), but have not been studied systematically. We believe that this paper is the
first systematic study of the subject. Here we consider the following general problem.

Study the relationship between the geometrical properties of W(P())) and the
algebraic and analytic properties of P(A).

We describe some basic properties of W(P(A)) in 2. A factorization result, based
on geometric properties of W(P(A)) for certain classes of matrix polynomials with not
necessarily hermitian coefficients is proved in 3. In 4, we study the set W(P(A)) for
a linear polynomial with hermitian matrices as coefficients. The results indicate that
the information on W(P(A)) is very useful in understanding matrix polynomials and
also reflects the fact that it is highly nontrivial to give a complete description of the
set W(P(A)). We denote the usual Euclidean norm on n by Ilxll (x’x)12.

2. General properties. The following properties of W(P(A)) can be verified
readily.

PROPOSITION 2.1. Suppose P(A) AmA’+Am_lAm-l+ .+Ao, where Am O.
(a) W(P()) is closed in V.
(b) For any a e C, W(P(A + a)) W(P(A)) a.

(c) IfQ(A) ym=o AJAm-j, then W(Q(A))\{0} {#-1.# e W(P(A)), # 0}.
(d) For any n r matrix S with rank r, r <_ n, W(S*P(A)S) c W(P(A)).

Equality holds if r- n.

(e) If Ai, 0,..., m, have a common nonzero isotropic vector x, i.e., x*Aix 0
for all i, then W(P(A)) .

It is well known, e.g., see [4, 1.3], that the classical numerical range W(A) is
always a compact convex set. Condition (a) of Proposition 2.1 shows that W(P(A))
is closed. However, W(P(A)) need not be connected or bounded, as shown in the
following examples.
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oExample 1. Let P(A) Am(0 I. Then

W(P())) {z e (" zmq 1 0 for some q e [-1, 1]}
{re r >_ 1; 0 kr/m, k 0, 1,...,2m- 1}

has 2m unbounded connected components.
One may wonder whether a connected component of W(P(A)) is comYex. The

following example shows that it need not be.

01Example 2. Let P() mI (0 )" Then

W(P(A)) {z E ’zTM -q 0 for some q e [-1, 1]}
{rei 0 <_ r <_ 1; t? kr/m, k O, 1,...,2m- 1}

has a single nonconvex component.
In the following, we obtain results concerning the number of connected compo-

nents and the boundedness of W(P(A)).
Using the convexity of W(B), it is easy to see that W(B) \ {0} is disconnected

if and only if #B is an indefinite hermitian matrix for some # E . If this happens,
then W(B) is a line segment passing through the origin in and hence W(B) \ {0}
has two components. We are now ready to state our result concerning the number of
connected components of W(P(ik)).

THEOREM 2.2. Let P(A) AmATM + Am_lAm-1 +... + Ao, where Am O.
Suppose W(P(A)) has r connected components.

(a) Suppose W(Am) \ {0} is connected, i.e., #Am is not an indefinite hermitian
matrix for all # , and suppose s is the minimum number of distinct zeros of the
polynomial x*P())x over all x S such that x*Amx O. Then

r<s<m.

(b) Suppose W(Am) \ {0} has disjoint connected components CI and C2, i.e., #Am
is an indefinite hermitian matrix for some # , and suppose si is the minimum
number of distinct zeros of the polynomial x*P(A)x over all x S such that x*Amx
Ci for 1, 2. Then

r <_ s + s2 <_ 2m.

Proof. Consider one connected component C of W(Am) \ {0}. Suppose 2 e S is
such that &*Am& C and &P()2 0 has k distinct roots, where

k min{ number of distinct roots of x*P(A)x O’x

We make the following claim. If y S is such that y’Amy E (, then there exists a
continuous function z: [0, 1] --, such that z(O) 5, z(1) #y for some # with

[#[ 1, and z(t)*A,z(t) e C for all t e [0, 1].
Assume the claim has been verified. Since the solutions ikl(t),...,Am(t) of the

equation
z(t)*P(A)z(t) =0

are continuous functions of t, the zeros of the polynomial y*P(A)y z(1)*P(A)z(1)
are connected to those of 2*P(/)k z(O)*P(A)z(O) by continuous curves in W(P(A)).
Therefore the zeros of the polynomial y*P(A)y must lie in the connected components
containing the zeros of the polynomial 2*P(A)2. Thus there are at most k connected



NUMERICAL RANGE OF MATRIX POLYNOMIALS 1259

components, determined by the distinct roots of &*P(A)& 0, for the roots of those
equations y*P(A)y 0 with y E 8 and y’Amy C.

It remains to prove our claim. If y is a scalar multiple of &, then a constant
function z will satisfy the claim. We assume therefore that & and y are linearly
independent. Let r/0 5"A,& and r/i y*Amy. By the discussion before the theorem,
one sees that z(t)*Amz(t) C for all t [0, 1] is equivalent to the condition that
z(t)*Amz(t) 0 for all t e [0, 1]. To construct the required z(t) we consider several
cases. First, suppose r/0 =/= r/1 and suppose the line segment joining r/0 to r/1 does not
contain zero. Let z(t) (v- t2c+t#y)/llV t2&+t#yll, where # e with I#1 1
satisfies one of the following conditions"

(i) #&*Amy + -fly*Am& O,
(ii) #&*Amy + -fly*Am& M(r/1 r/0) for some M > 0 if r/0 + u(r/1 r/0) = 0 for

all u > 0,
(iii) #&*Amy + -fiy*A,& M(r/1 r/0) for some M < 0 if r/0 + (r/1 r/0) 0 for

all < 0.
The existence of # satisfying (i), (ii), or (iii) can be easily checked. Indeed, assume

(i) does not hold, i.e., #&*Amy +-fly*Am& 0 for all # E with I#1-- 1. Then the
function f(0) ei&*Amy + e-iy*Am&, 0 <_ <_ 2r, does not take the zero value
and is obviously continuous; moreover, f(0 + r) -f(0) for 0 <_ _< r. Therefore,
for any nonzero , there exists a with 0 <_ <_ 2r such that f(0) is a positive
multiple of . This property shows that (ii) or (iii) can be satisfied.

The function z(t) is well defined because & and y are linearly independent and
hence V’I t2& + t#y 0 for all t e [0, 1]. Furthermore, by the choice of #

z(t)*Amz(t) r/0 + t2(r/1 r/0) + tv/1 t2(#&*Ay + -fiy*A&)
I1/1 t2& + t,ll:

for all t [0, 11. Notice that the set {z(t)*Amz(t) t e [0, 1]} is a line segment in

W(Am) not containing zero, and that z(0) and z(1) may not be the endpoints of this
line segment.

Second, suppose r/o : r/i, and the line segment joining these two points contains
zero. In such a case, #Am is not an indefinite hermitian matrix for any # E ;
otherwise r/o and r/1 are not in the same connected component of W(A,) \ {0}. Thus
there exists ) $ such that r/2 l*Aml, and the points r/i, i 0, 1,2, are not
collinear. Clearly, both the line segment joining r/o and r/2 and the line segment
joining r/2 and r/1 do not contain zero. Thus both of them lie in C. Now by arguments
similar to those in the previous case, one can construct zl(t) with t [0, 1] such that
Zl(0) 5, zl(1) /5), and zl(t)*AmZl(t) : 0 for all t [0, 1]; and then construct
zh(t) with t [0, 1] such that z2(0) =/), z2(1) #y, and z2(t)*A,z2(t) 0 for all
t E [0, 1]. From zl and z2, one easily obtains the required z.

Finally, suppose r/o r/1. If W(Am) is a singleton, then A, is a scalar matrix.
One may let z(t) (V’I t2& + ty)/llv/1 t2& + tyll. If W(Am) is not a singleton,
there exists S such that r/2 $*Am9 C and the line segment joining r/o and r/2
does not contain zero. One can then construct zl (t) and z2(t) as in the previous case
and obtain the desired z(t). Cl

Next we identify when W(P(,)) is bounded.
THEOREM 2.3. Let P(,) A,," + Am-1 Am--1 +... + Ao, where A, :/: O. Then

W(P(A)) is bounded if and only if 0 W(Am).
Proof. If 0 W(A,), then # min{[zl z e W(Am)} > 0. Thus there exists
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M > 0 such that
m--1

[x*Amx ml > > IX*AkXA’l,
i--O

whenever x C 8 and , C with > M. It then follows that c_
M}.
To prove the converse, assume that W(P(A)) i8 bounded but 0 W(Am). Let

x 8besuchtht x*Ax=O. Theremust besomeAj, 0 j m-1 8uchthat
x*Ax 0; otherwise, W(P(A)) , contradicting the assumption that W(P(A))
i8 bounded Since A 0, we can find a sequence { p}p= yp 8, such that
limp yp x and yAyp O. Clearly, yAyyp[ for some fixed 8 > 0, for M1
sufficiently large p. Since W(P(A)) is bounded, the (m- j)th elementary symmetric
function of the roots of the polynomial yP(A)yp, which i8 equM to yAyyp/yAmYp,
is also bounded for all p. This clearly contradicts the construction of {Yp}pl"

By Theorems 2.2 and 2.3 we have the following corollary.
COROLLARY 2.4. IfW(P(A)) is bounded, then W(P(A)) has at most m connected

components, where m is the degree of P(A).
The situation when W(P(A)) is bounded and the number of connected compo-

nents is the maximum allowed by Corollary 2.4, i.e., equal to the degree of P(A), is of
special interest, and in the next section we encounter such situations. Here we only
indicate the following fact.

PROPOSITION 2.5. Assume that W(P(A)) is bounded, with exactly m connected
components ,..., m, where m is the degree of P(A). Then for every x 0 the
equation x*P(A)x 0 has exactly one root in each j (1 j m).

Proof. By Theorem 2.3, 0 W(Am); in particular, W(Am){O} is connected. Ar-
guing by contradiction, assume that for some nonzero 2 Cn, the equation 2"P(A)2
0 has roots in 1,..., k, where k < m. Proof of Theorem 2.2 then shows that for ev-
ery nonzero y , the polynomial y* P(A)y 0 has no roots in m. This contradicts
the hypothesis that is a connected component of W(P(A)).

Although W(P(A)) is not always connected (and even if it is connected), it is not
always convex as shown by Examples 1 and 2. One may ask (motivated by Example 1)
whether the connected components of W(P(A)) are convex if W(P(A)) has a maximum
number of disjoint connected components. However, the following example shows that
they need not be.

Example 3. Let P(A) A2I + AC + C, where C is a nonscalar positive definite
matrix and > 0. For sufficiently small > 0, W(P(A)) is a union of two disjoint
arcs lying on the circle y2 + x2 + 2-lx 0.

Note that all the results of this section (except for Proposition 2.1(a)) are valid
(with basically the same proofs) for polynomials whose coefficients are bounded linear
operators on a Hilbert space (in Proposition 2.1(d), S is a bounded linear operator be-
tween Hilbert spaces with zero kernel and in Theorem 2.3 the condition "0 W(A)"
should be replaced by "0 W(A)").

Before moving to 3, we would like to pose the following open problem.
Problem 1. Determine general conditions on P(A) so that W(P(A)) is convex,

connected, or its connected componenets are convex.

3. Numerical range and factorization. In this section we express a close
connection between properties of the numerical range and factorization of matrix
polynomials.

We start with known results. A matrix polynomial P(A) is called hyperbolic if
W(P()) is a bounded subset of JR. Clearly, the coefficients of a hyperbolic matrix
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polynomial are hermitian matrices and (by Theorem 2.3) the leading coefficient is
either positive definite or negative definite. For a hyperbolic n n matrix polynomial
P(A) of degree rn denote by Al(x) < <_ Am(X) the roots (all of them are real) of
the equation x*P())x 0, where x E (C)n is nonzero. The set

(3.1)

is called the jth spectral zone of P(A); clearly, each Aj is a closed bounded interval
(possibly degenerate) [aj,/j] on the real line. One can show, e.g., see [7, Satz 1] and
[9, Thm. 31.5], that

(3.2) /j _< aj+l, j 1,..., rn- 1.

A hyperbolic matrix polynomial P(A) of degree rn is called strongly hyperbolic if
W(P())) has rn connected components, i..e., all inequalities in (3.2) are strict.

An n n matrix Z is called a (right) matrix zero of an n n matrix polynomial
m mP(A) -.y=0 AyAY if y=0 AjZY 0. Equivalently, AI- Z is a right divisor of P(A).

The following result has been proved in [8, Satz 1], [10, Thm. 3.2] (a weaker
version of it can be found in [9, Thm. 31.2]), in the framework of polynomials whose
coefficients are bounded linear operators on a Hilbert space.

mTHEOREM 3.1. Let P(A) j=0 Ay)J, A, O, be a hyperbolic n n matrix
polynomial, and let Aj be its jth spectral zone (3.1), j 1,..., rn.

(a) For every j 1,..., rn, the polynomial P()) has a unique right matrix zero
Zy such that a(Zj) c_ Aj; moreover, Zj is similar to a hermitian matrix.

(b) P(A) admits a factorization

P(A) Am(AI Y) (M Y,),

where Y,..., Ym are n n matrices such that a(Y) C_ Aj and 1 is similar to Zy
(j 1,..., m) with Y, Zm.

(c) If, in addition, P()) is strongly hyperbolic, then for every permutation of
{1,..., m} there is a factorization

P(A) Am(M YI(r)) ()I Ym(7)),

where a(Yj(rr))c_ A(j), j 1,..., rn.
In the following we obtain another factorization result (inspired by Theorem 3.1)

based on the properties of numerical ranges of matrix polynomials, with the hyper-
bolicity hypothesis considerably relaxed.

THEOREM 3.2. Let P(/) be a matrix polynomial of degree rn such that W(P(A))
is bounded and W(P(A)) has exactly rn connected components. Assume in addition
that

(3.3) KerP(A) Ker(P(A))*, A e .
Then P(A) admits a factorization

(3.4) P(, Am (/kI Y (,I Ym ),

where A, is the leading coefficient of P()) and Y,..., Ym are diagonalizable n n
matrices.
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Proof. We verify first that P(A) has elementary divisors of first degree only, or,
equivalently, that P(A) has no generalized eigenvectors (see [2, 1.4]), i.e., there do
not exist x, y E (C)n with x 0 such that

(3.5) P()o)x O, P’(.o)x + P(.o)Y 0

for some A0 E . Arguing by contradiction, we assume that such x 0 and y do
exist. Multiplying the second equation in (3.5) by x* on the left and using (3.3), we
have x*P(,o)x O. Thus, A0 is a multiple root of x*P(,o)x 0, a contradiction
with Proposition 2.5.

Once we know that P(A) has elementary divisors of first degree only [2, Thm. 3.2.1]
(a result originally proved in [11, Thm. 1]) guarantees the existence of the factorization
(3.4). The matrices Yj are diagonalizable because the property of having elementary
divisors of first degree only is inherited by all matrix polynomials that are divisors of
P(A) (see, e.g., [3, Thm. 5.6.1]); this property is based on the easily verified fact that
the restriction of a diagonalizable matrix C to any C-invariant subspace is in turn
diagonalizable. [:]

Several remarks concerning Theorem 3.2 are in order. First, a strongly hyperbolic
matrix polynomial certainly satisfies the hypotheses of Theorem 3.2. In this sense,
Theorem 3.2 is a generalization of Theorem 3.1 with weaker hypotheses and weaker
conclusions. Second, condition (3.3) may be satisfied for matrix polynomials with
nonhermitian coefficients. For example, the coefficients of P(A) may be commuting
normal matrices. Third, in contrast with the scalar case, not every matrix polynomial
admits a decomposition into a product of linear factors as in (3.4); for instance, the
polynomial P(A) 212 + (00 0) does not.

In Theorem 3.1(c), ]Q can be chosen so that all its eigenvalues are in the jth
spectral zone of W(P(A)). We could not come to an analogous conclusion in Theorem
3.2. This naturally gives rise to the following problem.

Problem 2. Under the hypotheses of Theorem 3.2, does P(A) admit a factorization
of the form

P(A) Am(AI Yl (r)) (,kI Ym(r)),

where a(Y (r)) C_ A(j), j 1,..., m? Here A1,... ,Am are the connected components
of W(P(,k)), and r is any given permutation of {1,..., m}.

Theorem 3.1 shows that the answer to Problem 2 is affirmative provided

W(P())) c_ lit.

4. Linear polynomials with hermitian coefficients. In this section we study
the numerical range of linear matrix polynomials with hermitian coefficients. For such
polynomials, we provide a full characterization of the geometry of the numerical range
in terms of the algebraic properties of the coefficients.

Let P(A) AA- B, where A and B are hermitian matrices. By Proposition
2.1(e), if A and B .have a common nonzero isotropic vector, then W(P())) (I3. To
avoid this trivial situation, we consider the cases in which A and B have no nonzero
common isotropic vector. In all of these cases, e.g., see [12, 2] or [13, 8], A and B
are simultaneously diagonalizable by a nonsingular congruence. In particular, there
exists a nonsingular S Mn such that S’AS Ir -Is @ Ot and B B1 ( B2 @ B3,
where r + s + t n and B1 Mr, B2 Ms and B3 Mt are diagonal matrices. By
Proposition 2.1(d), we may assume that S- I. Furthermore, we may assume r > s;
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otherwise, replace A by -A and B by -B. With this technical assumption on P(A),
we are ready to prove the following result.

THEOREM 4.1. Suppose P(i) AA- B, where A Ir -I8
B2 B3, r >_ s, r + s + t n, and B1 E Mr, B2 Ms and B3 Mt are diagonal
matrices. Assume A and B have no common nonzero isotropic vector. Then we have
exactly one of the following cases.

(a) A is positive definite, i.e., A I, and W(P(I)) W(B). In particular,
W(P(A)) is a singleton if and only if B is a scalar matrix; W(P(A)) is a positive
(nonnegative) line segment if and only if B is positive (semi)definite.

(b) A is a singular positive semidefinite matrix; W(P())) [a, oo) if B3 is
positive definite, and W(P(A)) (-oo,] if B3 is negative definite, where W(B1)
[a, ]. In this case, B3 must either be positive definite or negative definite because A
and B have no common nonzero isotropic vector.

(c) A is indefinite and B is positive (negative) definite and W(P(A)) IR\ [a, ],
where W(B-1/2AB-1/2) [l/a, 1//3] (W((-B)-I/2(-A)(-B)-I/2) [l/a, 1//3] ).
In this case, W(P(A)) is the union of two disjoint unbounded intervals and 0
W(P(ik)).

(d) A is indefinite and B is a singular positive (negative) semidefinite matrix,
and W(P()) {#-1 # e W(BI- A),# 0} t2 {0} (W(P())
W((-B)A (-A)), It 0} t2 {0}). In this case, W(P(A)) is the union of two disjoint
unbounded intervals and 0 e W(P(A)).

(e) Both A and B are indefinite and W(P(i)) IR.
Proof. Case (a) is clear. If s 0, then

x*BlX + z*B3zW(P(ik)) { x e er z e ,x*x 0},
X*X

W(B1)+ [0, oo) if B3 is positive definite,
W(BI)+ (-oo, 0] if B3 is negative definite.

Thus, case (b) holds.
To obtain (c) and (d), consider W(BA- A) and use Proposition 2.1(c).
For (e), notice that if we take u e + er+, then u*Bu O. Now consider the

sequence uk e+ker+l/(k+l) and the sequence vk ke/(k+l)+er+l, k 1,2,
One sees that {u*kBuk/u*kAuk } and {vBvk/vAvk} go to +/-oo in opposite directions.
Thus W(P(A)) is unbounded above and below. Now apply similar arguments to
W(Bi- A) and use Proposition 2.1(c), to see that W(P(A)) contains all positive and
negative numbers. Clearly, 0 e W(P(A)). Thus W(P(i))= IR, as asserted. [:]

5. Polynomials with a degenerate numerical range. From Theorem 4.1,
one sees that if the numerical range of a linear matrix polynomial P(A) with hermitian
coefficients is given, then one has quite a lot of information about the coefficient matri-
ces. It is interesting to study the more general case, but the analysis will undoubtedly
be more involved. In this section, we study the cases in which the numerical range is
a singleton or lies on the real axis.

THEOREM 5.1. Let P(i) AmAm+Am_Am-l+...+Ao, where Am O. Then
W(P(A)) {a} with a C if and only if 0 W(Am) and P(A) A,(AI hi)m.

Proof. The sufficiency part is clear. To prove the necessity part, observe first that
0 W(Am) by Theorem 2.3. Furthermore, if W(P(I)) {a} then x*P())x must
be of the form It(A- a)m for all x 8. In particular, for every j 0,..., rn- 1,
x*Ajx/x*Amx (-a)m-j and hence x*(Aj -(-a)m-JAm)x 0 for all x E . It
follows that Aj (-a)m-JAm for all j and the result follows.
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Now assume that W(P(A)) c_ IR, so that all the coefficients of P(A) are hermitian
matrices. It is clear (even in the scalar case) that this condition is not sufficient to
ensure that W(P())) C IR. In general, a convenient criterion for W(P(A)) c_ IR is
not available. However, under additional hypotheses such a criterion can be provided.
For example, the following result holds in the quadratic case.

THEOREM 5.2. Let P(A) A2A2 + Ali + Ao, where Aj i8 n n hermitian for
j 0, 1, 2, and A2 O. Then the following are equivalent"

(a) W(P(I)) c_ IR.
(b) 4(x*Aox)(x*A2x) <_ (x*Alx)2 for all x
(c) For every x e S there exists i(x) e lit such that x*P(A)x <_ O.

Moreover, if A2 is positive definite, then conditions (a)-(c) are equivalent to the fol-
lowing:

(d) There exists e IR such that-P(A) is positive semidefinite.
Proof. The equivalence of (a)-(c) follows easily from the formula for solving the

quadratic equation A2(x*A2x) + i(x*Ax) + (x*Aox) O.
Clearly, (d) implies (c). We claim that the converse is also valid if A2 is positive

definite. Consider the following condition.
(e) For every x e S there exists A A(x) e IR such that x*P())x < O.

It is known (e.g., see [2, Thm. 13.1]) that (e) implies (d). Now if (c) holds, then (e)
holds for the matrix polynomial A2/2 + AA + A0 eI, for every > 0. Therefore,
for every e > 0, there exists A() E IR such that -(A2A2 + AA + A0 I) is positive
semidefinite. Since A. is positive definite, the set {A() 0 < <_ 1} is bounded.
Taking a convergent subsequence of the sequence {/k(1/p)}p= and passing to the
limit when p , we obtain condition (d).

Note added in proof. Professor A.S. Markus, Ben Gurion University, Beer-Sheva,
Israel, has informed us that the answer to Problem 2 is affirmative for m 2 and
m 3. For m 2, this follows from Theorem 1 in [14]. In case m 3, the
polynomial P(A) can be first factored in the from P(A) (AI- YI())Q(A), where
a(Yl()) C_ A() and Q(A) is a matrix polynomial of second degree (the existence of
such factorization follows from Theorem 2 in [15]). Using this factorization of P(A),
the proof of the above-mentioned Theorem 1 yields the desired result. Problem 2
remains open for m _> 4.
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A STABLE AND EFFICIENT ALGORITHM FOR THE RANK-ONE
MODIFICATION OF THE SYMMETRIC EIGENPROBLEM*
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Abstract. An algorithm is presented for computing the eigendecomposition of a symmetric
rank-one modification of a symmetric matrix whose eigendecomposition is known. Previous algo-
rithms for this problem suffer a potential loss of orthogonality among the computed eigenvectors,
unless extended precision arithmetic is used. This algorithm is based on a novel, stable method for
computing the eigenvectors. It does not require extended precision and is as efficient as previous
approaches.

Key words, symmetric eigenproblem, rank-one modification
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1. Introduction. Given a real scalar p, a real n-vector u, and the eigendecompo-
sit[on of a real n n symmetric matrix B, the rank-one modification of the symmetric
eigenproblem is to find the eigendecomposition of the matrix B + punT.

This is an important problem in numerical linear algebra. Applications include
divide-and-conquer algorithms for the symmetric tridiagonal eigenproblem [8], [9],
[14], [16], [18], the bidiagonal singular value decomposition (SVD)[2]-[4], [14], [17],
[20], [21], and the unitary and orthogonal eigenproblems [1], [4], [12]; updating the
SVD [6], [14], [15]; and various stationary value problems [10].

The problem can easily be reduced to the following special case (see [7]). Given
a diagonal matrix D diag(dl, d2,..., dn) with dl < d2 < < dn, and a real vector
z (Zl, z2,..., zn)T with zj > 0, find the eigendecomposition

D + zzT QAQT

of A =_ D + zzT, where A diag(A1,A2,... ,An) with A1 < A2 < < "n, and Q is
orthogonal. The diagonal elements of A are the eigenvalues of A and the columns of Q
are the corresponding eigenvectors. From now on we focus on this reduced problem,
yet still refer to it as the rank-one modification problem.

Since error is associated with computation, a numerical eigendecomposition of
D + zzT is usually defined as a decomposition of the form

(1) D / zzT d2(2T / O((IIDII2 / Ilzll)),

where e is the machine precision,/ diag(X1, X2,..., Xn) with X1 < X2 < < Xn,
and is numerically orthogonal. An algorithm that produces such a decomposition
is said to be stable.

While the eigenvalues of A are always well conditioned with respect to a symmetric
perturbation, the eigenvectors can be extremely sensitive to such perturbations [11],
[26], [28], [29]. That is,/ is guaranteed to be close to A, but ( can be very different
from Q. Thus one is usually content with a stable algorithm.
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The problem can be further simplified in light of (1). Given any rank-one mod-
ification matrix D + zzT, we can use the deflation procedure in [9] to reduce the
eigenproblem to one that satisfies

dj+l -dy > T(IIDII2 + IIz[[22) and zy > rV/IIDII= + Ilzll 2’

where T is a small multiple of e to be specified later.
The basic tool for the rank-one modification problem is an algorithm developed by

Bunch, Nielsen, and Sorensen [7] and inspired by earlier work of Golub [10]. Dongarra
and Sorensen [9] propose a more liberal deflation process to make the algorithm more
efficient and more stable. We refer to the algorithm in [9] as Algorithm I.

While Algorithm I always computes the eigenvalues to high absolute accuracy,
in the presence of close eigenvalues it can have difficulties in computing numerically
orthogonal eigenvectors [7]-[9]. This instability affects all algorithms using rank-one
modification techniques.

To overcome this instability, Kahan [22] proposes using extended precision arith-
metic to compute some key quantities more accurately. Independently, Sorensen and
Tang [27] develop a new version of Algorithm I that uses simulated extended precision
and they show that it is stable. The problem with extended precision is that it results
in machine-dependent software [5], [27].

In this paper we present a new algorithm for solving the rank-one modification
problem. Since Algorithm I works well for finding the eigenvalues, the new algorithm
uses a similar approach. But it uses a completely different approach to finding the
eigenvectors; one that is stable. The amount of work for the stable approach is
roughly the same as for Algorithm I, yet the new algorithm does not require the use
or simulation of extended precision arithmetic. We refer to this new algorithm as
Algorithm II.

Section 2 introduces Algorithm I and points out how it can fail. Section 3 intro-
duces Algorithm II. Section 4 proves the numerical stability of Algorithm II. Section
5 reviews previous results on the stability of Algorithm I and shows why these results
require more accuracy than necessary. Section 6 presents numerical results and 7
points out extensions.

Throughout the paper we assume that the elements of D and z are given in
floating-point representation. We take the usual model of arithmetic

o (x o +

where x and y are floating-point numbers; o is one of +,-, , and /; fl(x o y) is the
floating-point result of the operation o; and I1 <- e. We also require that

fl(x/) V/(1 + )

for any positive floating-point number x. For simplicity, we ignore the possibility of
overflow and underflow.

2. How Algorithm I can fail. The following lemma characterizes the eigen-
values and eigenvectors of D + zzT.

This model excludes machines like the CRAY and CDC Cyber that do not have a guard digit.
Algorithm II can easily be modified for such machines.
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LEMMA 2.1 (Bunch, Nielsen, and Sorensen [7]). Assume that dl < d2 < < dn
and that zj > O. Then the eigenvalues {Ai}=l of D + zzT satisfy the interlacing
property

and are the roots of the secular equation

n Zy
f(A) l + .= dj )

For each eigenvalue Ai, the corresponding eigenvector is given by

Zl Zn zj(2) qi
d i’ dn hi (dj )i)2

Algorithm I uses a rational interpolation strategy to solve for {Ai}= (see [7]).
For each eigenvalue Ai, it finds a numerical approximation/i and approximates qi by

Zn

dl i dn ,i .= (dj i)2

In other words, the exact Ai is replaced by the approximation i in (2).
In pathological cases, even though hi is very close to hi, the approximate ratio

zj/(dj- ,i) is very different from the exact ratio zj/(dj-/i), resulting in a computed
eigenvector very different from the true eigenvector. More importantly, when all the
eigenvectors are computed, the resulting eigenvector matrix is far from orthogonal.

3. Algorithm II.

3.1. Computing the eigenvectors. For each eigenvalue Ai, the corresponding
eigenvector is given by

Zl Zn Zj
q

d i"’" dn i dj ij-1

(see Lemma 2.1). Observe that if hi was given exactly, then we could compute each
difference, each ratio, each product, and each sum in this formula to high relative
accuracy, and thus compute qi to componentwise high relative accuracy.

In practice we can only hope to compute an approximation i to hi. But suppose
nthat we could find a 2 such that {i}i=l are the exact eigenvalues of the new rank-one

modification matrix D + 22T. (We rederive LSwner’s [24] solution to this inverse

eigenvalue problem below.) Since

A=D+zzT

D + 22T + ZZ
T

+ (z- + z(z-
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.2. will be close to A as long as 5 is close to z. Moreover, the formula

(3) q-II
dl i dn i .= (dj i)2

gives the exact eigenvector corresponding to the eigenvalue i of ft.. As we observed
before, [I can be computed to componentwise high relative accuracy. Thus, when
all the eigenvectors of A are computed, the resulting eigenvector matrix will be nu-
merically orthogonal.

We now show why such a exists (cf. [5], [24]). By definition,

n

det(.- M)= H(J )"
j=l

On the other hand,

det(.- AI) det(D + 5T AI) (
Combining these relations,

1+

n

II(j A) 1+
j=l j=l

dj

Setting , di, we get

1-[j(j di)
I-Iji(dj

~2(4) z

j dj , dj

n

j=l

If the computed eigenvalues {,i }in_- satisfy the interlacing property2

d < 1 < d2 < 2 <... < dn < n,
then the expression on the right-hand side of (4) is positive and

(5) 5i= I (j di) h (j di)

Working backward, if 2 is given by (5), then the eigenvalues of D + 52T are
Each difference, each ratio, and each product in (5) can be computed to high rela-

tive accuracy. As a result, 2 can be computed to componentwise high relative accuracy.
Substituting the computed 2 into (3), //I can also be computed to componentwise
high relative accuracy. Consequently, when all the eigenvectors are computed, the
resulting eigenvector matrix Q- ((ti11 ~IIqn will be numerically orthogonal.

To show that )/)T is a numerical eigendecomposition of A, we must show that
2 is close to z. We do so in 4.

2 Since the exact eigenvalues satisfy the same interlacing property (see Lemma 2.1), this is only
an accuracy requirement on the computed eigenvalues and is not an additional restriction on A.
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3.2. Computing the eigenvalues. To guarantee that is close to z, we must
ensure that the approximations {Ai}in__l to the eigenvalues are sufficiently accurate.
The key is the stopping criterion for the root-finder, which requires a slight reformu-
lation of the secular equation (cf. [7]).

Consider the eigenvalue Ai E (di, di+l), where 1 _< _< n- 1; we consider the case
i n later. Ai is a root of the secular equation

n 4f(, =_ 1 + E dj ,k

We first assume that ,i E (di di-+-di+l ). This can easily be checked by computing2
di+di+ d+d+ [d+d+ di+l)f( 2 If f( ) > O, then )i (di, diq--di+) otherwise ,i2

Let j dj -di and let

and
n 4

j--i+1

Since

f( + di) 1 + (#) + (#) g(#),

we seek the root #i .Xi -di (0, 5i+1/2) of g(#) 0.
An important property of g(#) is that each difference 5j -# can be evaluated

to high relative accuracy for any # (0,5i+1/2). Indeed, since 5i 0, we have
fl(Si #) -fl(tt); since fl(Si+l) fl(di+l di) and 0 < # < (di+l di)/2, we can
compute J(5i+l #) as fl(J(di+l -di) fl(#)); and similarly, we can compute 5j I
to high relative accuracy for any j i, + 1.

Because of this property, each ratio zy/(Sj #) in g(#) can be evaluated to high
relative accuracy for any # e (0, 5i+1/2). And, since both (#) and (#) are sums of
terms with the same sign, we can bound the error in computing g(#) by

r/n(1 + +
where is a small multiple of e that is independent of n and #.

di+d+ di+l). Let 5j dj di+l and letWe now assume that ,i 2 ,

and
n 2

-.j--i+l

We seek the root #i )i di+l [5i/2, 0) of the equation

g(#) =- f(# + di+l) 1 + (#) + (#) O.

For any tt [5i/2, 0), each difference (j p can again be computed to high relative
2accuracy, as can each ratio zj/(Sj -#); and we can bound the error in computing

g(#) as before.
Finally we consider the case n. Let 5j dj dn and let

n 2

(#)=j.= 5J-#ZJ and (#)=0.
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We seek the root #n An dn e (0, Ilzll) of the equation

g(#) =- f(# + dn) 1 + (#) + (#) 0.

Again, for ny e (0, ]z]]), each ratio zy/(5 ) can be computed to high relative
accuracy, and we can bound the error in computing g() as before.

In practice the root-finder cannot make any progress at a point where it is
impossible to determine the sign of g() numerically. Thus we propose the stopping
criterion

(6) g(p) n (1 + () + ()),
where, before, n(1 + ](,)] + ](,)]) is an upper bound on the roundoff error in
computing g(). Note that for each i, there is at least one floating-point number that
satisfies this stopping criterion numerically, namely, fl().

We have not specified the scheme used to find the root of g(). We used the
rationM interpolation strategy in [7] for the numericM experiments, but bisection or
the improved rationM interpolation strategies in [13] and [23] would also work. Wht
is most important is the stopping criterion and the fact that, with the reformulation
of the secular equation given above, we can find a p that satisfies it.

3.3. Efficiency. The only additional work in Algorithm II is the evaluation of 5
using (5). This is roughly equivalent to 1-2 extra evaluations of the secular equation;
however, Li [23] reports a comparable savings from using our stopping criterion (6).

4. Numerical stability of Algorithm II. In this section we show that Algo-
rithm II computes the eigenvMues to high absolute accuracy and that 5 is indeed close
to z.

Since f(A) 0, we have
n 2 n 2

dj-Ai .= Idj-Ai’

and the stopping criterion (6) implies that the computed eigenvalue Ai satisfies

j= .= dj

Since

it follows that

n

Thus
n 2

j=l I(dJ i)(dj ,Xi)l
n

< rn max (Idk- il + Idk- ,’il) E z
l<k<n
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or

]i-Ail <r/n max (Idk--)il+ldk--Ail) < 2r/n
max

l<k<n 1 T]Tt l<k<n

i.e., all the eigenvalues are computed to high absolute accuracy.
To show that 5 is close to z, we note that for any j,

Substituting this into (7), we get

n Zy 2r/n
n Zy

j=l ’=

or

Ilzl12 zj

I(d ,)(d

Letting flj 2Tnllzlle/((1 -rln)zj), this implies that

(8)

for every 1 <_ j <_ n, provided that j < 2.
Let i- Ai oij(dj Ai)/zj for all and j. Suppose that we pick T 2r/n2 in

the deflation procedure of 1. Then zj > 2n211zl12. Assume further that r/n < 1/100.
Then flj < 2/3, and (8) implies that Iaijl <_ a =- 4Tnllzl12 for all and j. Thus

l-Ij (Xj d) yI (j d)(l + cj/z)
zi lj#(dj d) I-Ij#i(dj d)

j=l Zi ]

(9)

15-ziI=z l+aY--A -1 _< z l+--
j Zi Zi

<_zi exp -1 _< (e-1)an/2

< 4v=llzll,.,

_1)
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where we have used the fact that an/(2zi) _< 1 and that (ex- 1)Ix _< e- 1 for
0<x<l.

One factor of n in T and (9) comes from the stopping criterion (6). This is
quite conservative and could be reduced to log2 n by using a binary tree structure for
summing up the terms in (#) and (#). The other factor of n comes from the upper
bound for 1-Ij(1 + aji/z). This also seems quite conservative. Thus we might expect
the factor of n2 in T and (9) to be more like O(n) in practice.

5. Another view of numerical stability. In this section we review previous
results on the numerical stability of the eigenvector computation and show why they
impose unnecessary requirements on the accuracy to which the eigenvalues are com-
puted.

The following lemma bounds the lack of numerical orthogonality in the eigenvec-
tors computed by Algorithm I.

LEMMA 5.1 (Dongarra and Sorensen [9]). Let ;k and ; be distinct eigenvalues
of D + ZZT. Let Ck k/[[k[[2 and e 5e/[[e[[2, where

Zl Z2 Zn Ik- kl k2 kn
and

Z Z2 Zn I1 2 n
are the computed eigenvectors corresponding to the exact eigenvectors qk and qt. If

5ij dj ; (1 + rij

where Irijl <_ 7 << 1 for all and j, then

kTe < 7(2 +7)
1 +7
1--7

Thus numerical orthogonality can be assured for Algorithm I whenever it is pos-
sible to compute all of the differences dy ,i to high relative accuracy. Sorensen and
Tang [27] show that in pathological cases one encounters enormous difficulties meeting
this condition, and thus they advocate the use of extended precision arithmetic.

But what does this condition imply about Algorithm II? Recall that

z
dj d dj+ d

j=l j=i

and

5i i (j di) " (j di) ( di).
J= (dj -di)

J=i
(dj+l di)

Thus if we compute all of the differences ,j di to high relative accuracy, then 5i
will be close to zi to high relative accuracy. In contrast we have shown only that the
stopping criterion guarantees that 5i is close to zi to high absolute accuracy, but this
is enough for Algorithm II to be stable.
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6. Numerical results. In this section we present some numerical results for
Algorithms I and II. The tests were run on a SPARCstation 1 in double precision
arithmetic. The machine precision is e 1.1 10-16. T WaS taken small enough that
no deflation occurs.

We define the scaled orthogonality and residual measures

(0= max
[[(Tci--eill2

and n= max
l<i<n ne l<i<n

and are the orthogonality measures for Algorithms I and II, respectively;
and are the residual measures for Algorithms I and II, respectively. We also
define

Z= max,
l<i(n Zl2

which measures the scaled absolute error in replacing z by
We use the following three sets of test problems.
TEST 1 [27]. These problems arise in applying Cuppen’s divide-and-conquer

algorithm [8], [9] to the matrix

T ,,

where W2x is the symmetric tridiggongl matrix of order 21 with diagonal elements
10, 9,..., 1, 0, 1, 2,..., 10 and off-diagonal elements all 1. As becomes smller and
the number of copies of W2 becomes larger, more and more difficult rank-one modi-
ficatio problems arise.

TEST 2 [27]. D diag(1, 2 , 2 + , 10/3) and z (2, , , 2)T. This example
illustrates how badly Algorithm I can fail in computing the eigenveetors.

TEST 3. n 202;d 1, dn 10/3, and the rest of the d’s are of the form
2j, for j 1,2,...,100; and z (2,,...,,2)T. As > 0 becomes very
small, this matrix has 10 an isolated eigenvalue; the remaining eigenvalues are
clustered around 2. This generalization of TEST 2 is designed to show the stability
of Algorithm II in the presence of gn extremely large and tight cluster.

Tables 1, 2, and 3 summarize the results. For Algorithm II, the orthogonality
nd residual are small, and the vectors z and 5 agree to machine precision. For
Algorithm I, the residual is small, but the orthogonality can be very poor.

7. Some extensions. In this paper we have presented a novel, stable algorithm
for solving the rank-one modification of the symmetric eigenproblem. The techniques
developed have also been extended to the following:

Cuppen’s method for the symmetric tridiagonal eigenproblem [8], [9], [14],
[s].

An algorithm for the eigendeeomposition of symmetric arrowhead matrices

[25]; this is in turn the bic tool in the arrowhead divide-and-conquer algorithm for
the symmetric tridiagonal eigenproblem [3], [14], [16], [18].
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TABLE 1
Results for TEST 1.

2O
7

2O 48
7

36
7

(..OI 1.1 104 1.9 106 3.2 102 2.0 107 8.3 109

T,I II 4.2 10-2 3.8 10-2 3.8 10-2 1.8 10-2 1.6 x 10-2

Z 1.8 10-3 1.5 10-4 5.5 10-4

OH 9.3 10-2 8.1 10-2 6.9 10-2
8.8 10-4 1.8 10-3

1.1 10-1 1.3 10-1

7.5 X 10’2 4.; 10-2 418 10-2 2.1 x 10-2 5.2 10-2

TABLE 2
Results for TEST 2.

loglo fl
(.91

Oil
"]II

4 4

1.0 100 1.7 103

3.5 10-2 2.2 I0-I

1.2 x 10-2 4.4 10-2

2.6 x 10-1 5.2 x 10-1

1.0 x 10-1 2.3 x 10-1

4 4 4
7 10 13

1.4 105 9.6 l0s 1.7 1012

8.9 10-2 2.0 10-1 2.0 10-1

4.4 x 10-2 4.4 x 10-2 4.4 x 10-2

4.2 x 10-1 4.2 x 10-1 3.2 x 10-i

2.0 x 10-1 1.6 x 10-1 2.2 x 10-1

TABLE 3
Results for TEST 3.

n

lOglo/3

Z

OII
T,II

202 202 202
3 8 15

6.9 10-5 6.1 10-5 1.6 10-4

3.7 x 10-2 2.5 10-2 4.5 x 10-2

1.4 x 10-2 3.6 x 10-3 1.7 x 10-2

Algorithms for updating the SVD [6], [14], [15].
A divide-and-conquer algorithm for computing the bidiagonal SVD [2], [4],

[14], [17], [21].
Algorithms for downdating the SVD [6], [14], [19].

Moreover it should be easy to apply these techniques to the divide-and-conquer algo-
rithms for the unitary and orthogonal eigenproblems developed in [1], [4], and [12].

Acknowledgments. The authors thank Peter Tang of Argonne National Lab-
oratory for providing them with the test matrices used in [27]; Ren-Cang Li of the
University of California at Berkeley for sending them a copy of [23]; and Shivkumar
Chandrasekaran and Ilse Ipsen of Yale University for some helpful discussions.
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FAST SOLUTION OF CONFLUENT VANDERMONDE LINEAR
SYSTEMS*
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Abstract. It is shown that the solution of confluent Vandermonde linear systems can be obtained
by the Hermite evaluation of rational functions, which can actually be converted to the Hermite
evaluation of two polynomials. Based on this result, divide and conquer methods are used to construct
a fast algorithm for confluent Vandermonde linear systems. If fast polynomial multiplication and
division (fast Fourier transform (FFT)) are used, the algorithm needs only O(n log n log p) operations.

Key words, confluent Vandermonde linear system, divide and conquer, FFT
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1. Introduction. Let a0, al, ap be p + 1 numbers, no, nl, np be p + 1
ppositive integers and p(x) (1, x,...,xn-1)T, where n Y’i=oni. The confluent

Vandermonde matrix, denoted by V(a0,..., ap, no,..., Up) or, briefly Vc, is given by

(1.1) Vc (p(ao),p’(ao),... ,p(n-)(ao),... ,p(ap),p’(ap),... ,p(m’-l)(ap))

(see [4], [8]). In the case of no nl ftp 1, Vc yields the well-known Van-
dermonde matrix. If p(x) (p(x),p2(x),...,pn(X))T, where pi(x) is a polynomial
of degree i- 1, (1.1) defines the confluent Vandermonde-like matrix V [13] and the
Vandermonde-like matrix [9], [12] if no nl np 1. Consider confluent
Vandermonde linear systems

(1.2) Vu b.

These systems are associated with the construction of quadrature formulae [1], [11],
[15], [17] and the approximation of linear functionals [2], [21].

If Gaussian elimination for solving dense systems of linear equations is applied to
(1.2), it requires O(n3) operations. Fortunately, it is shown that operations of solving
some special linear systems such as Vandermonde systems [5], [16], confluent Vander-
monde systems [4], Vandermonde-like systems [12], and confluent Vandermonde-like
systems [13] can be further reduced. Based on forward and backward vector recur-
sion, Bjhrck, nlfving, and Pereyra [4], [5] presented some fast algorithms for both
Vandermonde and confluent Vandermonde linear systems in the early 1970s. Their
algorithms require O(n2) operations. In 1988 and 1990, Higham [12], [13] considered
the generalization of Vandermonde linear systems and confluent Vandermonde linear
systems, i.e., Vandermonde-like systems and confluent Vandermonde-like systems. He
derived some O(n2) fast algorithms for both systems for the case where the polyno-
mials p (x), pl (x),..., pn(X) satisfy a three-term recurrence relation that generalizes
the early ones for pk(x) xk-. Recently, the author [16] showed that the solution of
Vandermonde linear systems can be obtained by the evaluation of certain polynomials.
We state the result here for use later in the paper. For convenience, quot(A(x), B(x))
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1993. This work was partly supported by The Netherlands Organization for Pure Research grant
611-302-025.

Department of Mathematics, Faculty of Mathematics and Informatics, Catholic University of
Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands (na.h:[una-net.ornl.gov).
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denotes the quotient of polynomial division A(x)/B(x), i.e., ignoring the remainder
r(x): A(x)= B(x)quot(A(x),B(x))+ r(x), throughout the paper.

THEOREM 1.1. Let V V(al,a2,...,an) be the Vandermonde matrix of order
n, ai aj, j,i,j- 1,2,...,n, and

L(x) (x al)(x a2)... (x an),

Li(x) L(x)
l, 2, n.

x ai

Then the solution of the Vandermonde linear system

(1.3) Vu b

is given by

(1.4) ui Li(ai)’

where

1,2,...,n,

g(x) quot(L(x)b(x), xn),

b(x) bxn-1 + b2xn-2 +... + bn-lX + bn.

Based on this result, the author [_16] gave a new fast algorithm for solving Van-
dermonde linear systems with O(n log n) operations by using fast polynomial multi-
plication and division.

Let r(x) be a rational function and a0, a, an be p + 1 numbers, where p is
a nonnegative integer. The Hermite evaluation of r(x) is to compute

r(k)(a), k=0,1,...,n-l, i=0,1,...,p,

where no, n,..., np are positive integers.
The purpose of this paper is to extend Theorem 1.1 to confluent Vandermonde

systems and to construct an asymptotically fast algorithm with O(n log n log p) oper-
ations for the linear systems (1.2) by using the divide and conquer method. To the
best of our knowledge, the method presented here is the fastest method known for
solving confluent Vandermonde systems. In 2, we focus our attention on the proof
that the solution of confluent Vandermonde linear systems can be obtained by the
Hermite evaluation of rational functions, and we derive the inverse of confluent Van-
dermonde matrices as well as the determinant of the matrices. Based on the result
given in 2, we convert the Hermite evaluation of rational functions to the Hermite
evaluation of polynomials, which, as we will see, can be done only by the Hermite
evaluation of two polynomials in 3. To obtain a fast algorithm for solving confluent
Vandermonde linear systems, we use the divide and conquer method. In 4, we ana-
lyze the computational complexity of the algorithm presented in 3. It is shown that
if fast polynomial multiplication and division are used in the algorithm, the algorithm
needs only O(n log n log p) operations.
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2. Solution of confluent Vandermonde linear systems. As we have seen,
the solution of Vandermonde linear systems can be obtained by evaluating certain
polynomials so that a stable algorithm for the equations can be constructed easily.
The question arises naturally: Does a similar result for confluent Vandermonde linear
systems exist? The answer to this question is the purpose of this section.

Let p(x)- (p:(x),...,pn(X))T, where pk(x)is a polynomial of degree k- 1 and
denote

p[x] p(x),

[xo x] ([xo, x] ,[zo
where pi[xo,..., xk] is the kth divided difference of pi(x) at xo,..., xk defined by

[xo,... ,x] [x,... ,x]- [o,..., x_]
Xk xo

If xi+: xi xi xi- h( 0), induction shows that

and
1 p(nk(2.2) h-+01im p[xo, x Xk] ( ,k+(k) (Xo), (X0)).

k

Partitioning the confluent Vandermonde-like matrix Vc as

Vc (Bo, B, Bp),
)where Bk is an n n matrix with (i, j) entry pJ- (ha), we immediately have the

following limit equality concerning Bk from (2.2):

(2.3) Bk Qkdiag(1, 1, 2,..., (nk 1)),

where Q is an n n matrix with (i, j) entry

pi[ak, ak + h,...,ak + (j- 1)hi.
Now we investigate the relation between Qk and an n x n Vandermonde-like

matrix Mk(h) with (i, j) entry pi(ak + (j 1)h). Equality (2.1) acts the key for
relating these two matrices. In fact, from (2.1) Q can be decomposed the product
of Mk(h) and an nk nk upper triangular matrix, i.e.,

Qk Mk(h)Uk,(2.4)
where
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(’i h-1 lh_2diag ’.1

Therefore,

(Qo, Qp) (Mo(h), Mp(h))blockdiag(Uo,. Up).

In particular, (2.3)and (2.5)imply that

V lhimo Mo h Mp(h))blockdiag(0,...,/)p).

where { U diag(1, 1, 2!,..., (n 1)!). Assume that pk(x) xk-1 + a},k-lx
k-2 +

+ a}0. A simple computation shows the following result.
PROPOSITION 2.1. Let

V (p(ao),p’(ao),... ,p(n-)(ao),... ,p(ap),p’(ap),... ,p(np-)(ap))

be a confluent Vandermonde-like matrix, where p(x)= (p(x),p2(x),... ,pn(x))T and
pk(x) xk- + ak,-iX

k-2 +’’’ + ao. Then

n

det(V) H k! H (ai aj)nnj
i--0 k-=O p>_i>j>_O

In the case of pk(x) xk-, (Bo,..., Bp) and (Mo(h),..., Mp(h)) yield a conflu-
ent Vandermonde matrix and a Vandermonde matrix, respectively. Our next theorem
shows that the solution of confluent Vandermonde linear systems can be computed
by the Hermite evaluation of rational functions.

THEOREM 2.2. Let Vcu b be the confluent Vandermonde linear system given
by (1.2) and

P

l(x)-H(x--ai)n,
i-o

l(x) O, 1,...,p,l(x) (x ai)
b(x) br + b_x +"" + bx-1,
q(z) quot(l(z)b(z), zn),

Pwhere ai aj, i j, i,j 0, 1,...,p, and n t=o nt. Then, the solution of the
system is given by

(2.8) ui (k- 1)!(nj k)! lj()
(nj -k)

x--aj

j-1

mj + k, O

_
j

_
p, l

_
k

_
nj, m0=0, mj E nt,

t--o



FAST SOLUTION OF CONFLUENT VANDERMONDE LINEAR SYSTEMS 1281

Proof. Set

di=aj+(k-1)h, i=mj+k, O<_j<_p, l<_k<_nj,
n

Z-(x) II(x ),
i--1

Z(x)[(x) x-d’
(x) quot(l(x)b(x), xn).

Consider a linear system

(2.9) M(h)blockdiag(0,..., ]p)u(h) b

where M(h)= (Mo(h),..., Mp(h)), and denote

(2.10) v(h) (vl (h), vn(h))T blockdiag(0,..., fp)u(h).
Under the assumptions of Theorem 2.2, M(h) becomes a nonsingular Vandermonde
matrix if h is sufficiently small. Theorem 1.1 shows that

q(di)
1,2,... n.(2.11) vi(h)- li(di)’

On the other hand, a computation shows that the inverse of j is of the form

-1 diag(1, h, h2,...

Hence,

1 1 1 1

1 2 ( nj-1)1
1 ( nj-1

t (dt)

t=k

1 n (_l)n_t It-l)hn-k E (t- 1)!(nj- t)! k- 1 [j(dt)t--k

tk nj k (dt)
hn -k (k- 1)!(ny k)! t- k

(k- 1)!(nj k)! [j(x)

where aj + (k- 1)h <_ k <_ aj + (nj 1)h and

[(x)[(x) +
II (x- ,)

i--m +

j O, 1,...,p.
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Since ai aj, j, i,j O, 1,... ,p, Proposition 2.1 shows that Vc is nonsingular.
Furthermore, because the set of all nonsingular matrices is an open set, we have

ui lim ui (h)
h--0

1
lim

(k- k)!

1 (q(x))(k- 1)!(hi k)!

(nj -k)

x’-aj

Let

and Vc-1 (bj) if V is nonsingular. Clearly, vj (blj, b2j,..., bnj)T is the solution
of Vvj ej. Proposition 2.1 and Theorem 2.2 show the following result on the inverse
of confluent Vandermonde matrices.

COROLLARY 2.3. The confluent Vandermonde matrix

Vc V ao, ap, no,..., np

defined by (1.1) is nonsingular if and only if ai ay, j, i,j 0, 1,...,p. Let
Vg- (bij) if Vc is nonsingular. Then

(2.12) bij (k- 1)!(nt k)! lt(x)

(m-k)

x-at

t--1

i=Enr+k,
r--0

l_k_nt, O_<t_<p, j=l,2,...,n,

where qj(x)= quot(l(x),xJ), j- 1,2,...,n, l(x) and li(x), i= 1,2,...,n, are given
in Theorem 2.2.

3. Algorithm. Based on the result given in the previous section, divide and
conquer methods are used to construct a fast algorithm for solving confluent Vander-
monde linear systems in this section. To this end, we denote

q(x)
(3.1) R (x) j O, 1,... ,p

and expand Rj(x), q(x), and lj(x) in Taylor series at ai, i.e.,

n --1

(3.2a) Ry(x) E rjt(x aj) + O((x aj)n),
t--O

n --1

(3.2b) q(x) E qt(x a.i) + O((x a.)n),
t--O
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nj -1

(3.2c) lj(x) E ljt(x aj) + O((x
t--0

It follows from Theorem 2.2 that the solution of confluent Vandermonde linear systems
is given by

j-1
rj,n -k

i Ent + k, k 1 2, nj.(3.3) ui (k- 1)"

Comparing the coefficients of equality Rj(x)lj(x) q(x) shows that the vector

rj (rjo, rjl,... ,rj,n-l)T is the solution of the triangular Toeplitz linear system

(3.4) Tjrj qj,

where Tj is the triangular Toeplitz matrix of the form

ljo
ljl ljo

lj,n-i "’. ljl lj0

or simply tri(/j0,... ,lj,nj-1) for convenience, qj (qjo, qjl,... ,qj,nj-1)T, and

1 q(k) (aj), k O, nj 1, j O, p.

Equality l(x) (x aj)n lj(x) implies

lk)(aY) l(n+)(aJ) k O, nj 1 j O, .,p.
k! + k)!

To construct a fast algorithm for confluent Vandermonde linear systems, we need
a fast algorithm for the Hermite evaluation of polynomials such that the algorithm
can easily be adjusted to evaluate two polynomials q(x) and l(x) by adding minimum
operations. To do this, consider first the Hermite evaluation of polynomials.

Let q(x) be a polynomial of degree at most n- 1, ao, al, ap be p + 1 distinct
numbers, and no, nl,..., tp be p+l positive integers. Consider the Hermite evaluation
of q(x)

q(k)(a), k=0,1,...,n-l, i=0,1,...,p.

Without loss of generality, assume n Pt=o nt 2TM for some positive integer m.
Denote

i-1

c,+y a, m E nk, j--1,...,n, i=0,...,p,
k---0

(3.7)

To (x)

Tji(x) Tj-l,2i-1 (x)Tj-l,2i(x),

1,2,...,n,

1,..., 2m-j,
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Dividing q(x) by Tm_l, (x) and Tm_l,2(x and denoting the remainders by r,-1,1 (x)
and rm-l,2(x), respectively, i.e.,

(3.8a) q(x) qm-, (x)Tm-l,1 (x) + rm_l,l (x),

(3.8b)

one finds that

q(X) qm-l,2(x)Tm-l,2(x) t_ rm_l,2(x),

(3.9a) q(J) (hi) r(Jm_,(ai), j=O, 1,...,ni-1, i<t,

(3.9b) r(j) (hiq(J)(ai) m-l,2 J 0, 1 .,ni- 1 i > t,

where t is the nonnegative integer such that c2,-1 at. We compute directly q(J)(at),
j 0, 1,..., nt- 1. Thus, repeating the procedure to r,-l,l(X) and rm-l,2(x) finishes
the computation q(J) (hi), j 0, 1,..., ni 1, - t.

To obtain r,_l,(x) and rm-l,2(x) from (3.8a) and (3.8b), we need two poly-
nomial divisions of polynomials. It is somewhat expensive, though some O(n log n)
algorithms exist for polynomial division [3]. Fortunately, preprocessing can be used to
reduce operations in cases where all divisors satisfy (3.7). Given a polynomial B(x) of
degree n, by preprocessing B(x), we define the computation of the quotient of X2n-1

divided by B(x) (see [18]). Assume that Qji(x) is the quotient of x2j+1-1 divided by
Tji(x). It is not hard to see from (3.7) that

(3.10a) Qj-l,2i-l (X) quot(Tj_l,2i(x)Qji(x), x2 ),

(3.10b) Qj_l,2i(x) quot(Tj_,2i_l (x)Qji(x), x2

are the quotient of x2-1 divided by Tj-l,2i-l(X) and X2a-1 divided by Tj_,2i(x),
respectively. After preprocessing, the polynomial division can be computed by using
the following result (see [18] for details).

PROPOSITION 3.1. Let

A(x) E aixi, B(x) E bix,
i----0 i=0

(an = 0, bn = 0,5 >_ n),

D(x) be the result of preprocessing B(x) and K(x) quot(A(x),xn). Then

(3.11) Q(x) quot(D(x)K(x), Xn-l),

(3.12) R(x) A(x) Q(x)B(x),

are the quotient and the remainder of division A(x)/B(x), respectively.
Similarly, we can compute l(n+J)(ai), j 0, 1,..., ni 1, 0, 1,... ,p in the

following way. Dividing l(x) by T2_, (x) and 2T_,2(x), we have

(3.13a) l(x) (m-1,1 (x)T2m-l,1 (x) -t- m-l,1 (x),
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(3.13b) l(x) (m_l,2(x)T2m_l,2(x) + m-l,2(X),

where m-,l (x) and m-,2(x) are the remainders. Hence,

(3.14a) (n+j) (ai) (n+j)=’m-,(ai), j=0,1,...,ni-1, i<t,

(3.14b) (n+j) (ai) m-,(a), j=0,1,...,n-l, i>t,

where t is the same as in (3.9). We then compute for t

l(nt+J)(at), j O, 1,...nt 1,

in the same way as in the computation of q(J)(at). It is not necessary to preprocess
Tj2(x) after preprocessing Tji(x). In fact, let ft.(x) and/(x) be two polynomials of
degree and let n ( _> 2n), respectively, and let D(x) be the result of preprocessing
/(x). Using Proposition 3.1 to (x) and /(x), we obtain (x) the quotient of
fi(x)/[(x). ((x) the quotient of (x)/[(x) is clearly the quotient of (x)/[2(x).
Therefore, the corresponding remainder can be computed by

(3.15) [{(x)
Based on our discussion, we now give an algorithm for confluent Vandermonde linear
systems.

ALGORITHM 3.2. The algorithm is divided into two stages. At stage I, the
algorithm converts all polynomials defined by (3.7) into the form hx, computes
rm(X), i.e., q(x) given in Theorem 2.2, and preprocesses Tm(X). At stage II, we
continue to preprocess Tj(x) for j <_ rn- 1 by using (3.10). For clarity, functions
Divl and Div2, which are based on Proposition 3.1 and our later discussion, are used
to compute the remainders rj(x) and ri(x), respectively. For the sake of reducing
the operations as explained in 4, the remainders m-,(x)., 1, 2, are computed
directly by polynomial division. After finding a proper at, the algorithm calls the
algorithm Solution to solve the corresponding triangular Toeplitz linear system (3.4)
and obtain u (rnt + 1 _< _< rnt + nt), the solution of the confluent Vandermonde
linear system (1.2). Again for clarity, we delete the details for the algorithm Solution
here, which is given in the next section.

i-1StageI: Cm+j=a, rn0=0, rn=k=0nk,
j=l,...,n, i--O,...,p,
To x ci, 1, 2,..., n, b blXn-1 - -- bn-lX + bn,
rnl {0, 1,... ,p}
Forj 1" l’rn

For 1" 1" 2m-j

Tj{ Tj_ 1,2i-lT-1,2{
endfor

endfor j
rm quot(Tmb, xn), T,
Qml quot(x2"+1-1, Tml)

Stage II: For j m"-l’m- [log(p + 1)] + 1
For 1" 1" 2m-j
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if S {/} then
call Solution(rji, yi, at, nt)
For k- l:l:nt

Um+k vn-k/(k- 1)!
endfor k
S =elseif Sy then

Qj-,2- quot(Tj-,2Qj, x2

Qj-I,2i quot(Ti_l,2_Qy, x2)
For k 2i- 1, 2i

rj-,k Divl(rj, Ti_,k, Qj-l,k, 2J-l)
if j m then

i_,a i (modT]_,)
else
_
, Div2(i, T_,, Q_,, 2-)

endif
endfor k
if c(i_)- at and S then

call Solution(rii, ii, at, nt)
For k 1 1 :nt

u,+ v_/(k 1)
endfor k
Si-l,2i- ={t: t Si and t < l}
S_,2i={t: t Si and t > l}

endif
endif

endfor
endfor j
nction eivl(A(x), S(x), Q(x), n)

K(x) quot(A(x), x)
P(x) quot(K(x)Q(x), x-n() A()- p()()

return R(x)
end
nction Div2(A(x), B(x), Q(x), n)

K(x) quot(A(x), x)
P (x) quot(K(x)Q(x), x-p() uuot(p()Q(),-)
() A()- p()()

return R(x)
end
Algorithm Solution(A(x), B(x), n, a)

for k 0, 1,...,n- 1
(+) (a) 5()(a)Compute a (na)

Solve triangular Toeplitz linear system
tri(a0, a,..., a_)v (b0, bl,..., b-i)T

end
where [x is the integer ceiling function of x.
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4. Computational complexity. In this section, we analyze the computational
complexity of Algorithm 3.2. The following two propositions estimate the operations
needed by the algorithm if the FFT is used to compute polynomial multiplications
and polynomial divisions in the algorithm.

PROPOSITION 4.1. If fast polynomial multiplication and division are used, Stage
I of Algorithm 3.2 needs at most O(n log n log p) operations.

Proof. Recall our algorithm, where rml(X) and Qm(X) can be computed by
using directly fast polynomial multiplication and division, respectively. Both need
O(n log n) operations.

Let A(x) and B(x) be two polynomials of degree and rh ( _> rh _> 2), respec-
tively. If the FFT is used to compute A(x)B(x), it is well known that there exists a
constant C independent of and rh such that

C(fi, rh) _< C1 log rh.

Denote the operations needed to compute all Tji(x) at Stage I by T(n, p). In the case
of p= O,

a) t
t--0

which can clearly be computed by using C(2j + 1) operations. Thus the computation
of all Tji(x) in this case needs only C2n operations, where C and C2 are constants
independent of n. We claim generally that

(4.1) T(n, p) <_ C(n log n log(p + 1) + n),

where C max(C, C2).
Note first that (4.1) holds for p 0 implies that (4.1) is true if n + p 1. We

prove (4.1) by induction on n + p.
Assume all Tji(x), j _< m- 1 have been finished and let

Tm-l,l(X) (x co)n... (x at_)m-l(x at) k*,

Tm-,2(x) (x at)t(x at+l)n+l (x ap)np,

where 0 _< kt <_ nt 1 and kt n kt. Clearly, Tin-l,1 (x) (x co)- if t 0, or
t=l andkl =0, andTm_,2=(X-ap)- ift=p. In the case oft=0ort=land
k 0, all Tj(x), 1 <_ j <_ m 1, 1 <_ <_ 2m-j-1 can be computed by using at most
nC operations. Hence

n ) n n n
T(n,p) <_ T -,p +C+Clog-

n n n n n<_ C- log log(p + 1) +C + C log

<_ C(n log n log(p + 1) + n).

If t p, (4.1) is derived in the same way. Otherwise,

(n) (n)nnT(n,p) <_T -,p +T ,P2 +Clog-
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n n n n
log(p2 + 1) + C n n<_ C- log log(pl + 1) + C- log - log + Cn

n
Cn log log(2(pl + l)(p2 + 1))1/2 + Cn

<_ Cn log n log(2(pl + 1)(p2 + 1))1/2 + Cn,

where pl _< t, P2 P t. Since p >, 1, p2

_
1, and p + p2

_
p, it is easy to check

that (2(p + 1)(p2 + 1))1/2 <_ p + 1. Equation (4.1) follows immediately. The overall
computational cost of Stage I is T(n, p) + O(n log n) O(n log n log p).

PROPOSITION 4.2. If fast polynomial multiplication and division are used, Stage
II of Algorithm 3.2 needs at most O(n log n log p) operations.

Proof. Denote the operations needed for fixed j, at Stage II by ’(j, i). The
algorithm computes ?,-l,i(x), 1, 2 by

rml (X)( mod 2Tn-l,i(x)), i= 1,2.

Since deg(T2m_l#(X)) deg(rml(X)), after the multiplications 2

which need O(n log n) operations, such computation can be done by using O(n) oper-
ations. This is the reason we compute m-l,l(X) and m-l,2(X) by using polynomial
division directly. As for the algorithm Solution(rye, yi,at, nt), when Algorithm 3.2
calls Solution(ryi, yi, at, nt), 2j

_
hi. The total number of operations of performing

Solution is at most o(2Jj) To see this, let A(x) i=0 x be a polynomial of
degree at most ft. Consider the computation

A(a) o +a +... + ea,
At(a) 1 "- 22a +.." + hea-1,

A()(a) h! +... + h. ( (n + 1)aae-(n,

which can be written as a product of an (rh + 1) x (fi + 1) Toeplitz matrix with a
vector as follows.

A(a) ! (n!& o .
A’ (a) 0 ! h!a

A()(a) 0 0 ! (n! 1

Hence, polynomial multiplication can be applied to such computation. The cost is

O(fi log rh). Since rj(x) and r(x) are polynomials of degree at most 2J-1 and 22J-1,
respectively, the computation of rt (at) and ti)(at), t 0, 1,..., nt- 1 needs at most

O(2J log nt) _< O(2Jj) operations. Triangular Toeplitz linear systems can actually be
solved by using polynomial division (see [3] for details). Therefore, solving the linear
system included in the algorithm Solution needs O(nt log nt) _< O(2Jj) operations.
The rest of the computation at Stage II is multiplication of polynomials of degree
at most 22J. We thus have 7(j, i)

_
O(2j). The overall operation at Stage II is

bounded by

E E o(2JJ) O(nlognlogp),
j--m--[log(p+l)T+l i--0
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which completes the proof. [:]

Propositions 4.1 and 4.2 show that Algorithm 3.2 needs only O(n log n log p) op-
erations if fast polynomial multiplication and division are used.
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CONDITION AND ACCURACY OF ALGORITHMS FOR
COMPUTING SCHUR COEFFICIENTS OF TOEPLITZ MATRICES*
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Abstract. A formula for the condition number of Schur coefficients of a positive definite Toeplitz
matrix is obtained and an efficient algorithm for computing the condition number is given. New
bounds of backward roundoff errors in Schur and Levinson algorithms for computing Schur coefficients
are presented. These bounds, together with the condition number, provide a posteriori estimate of
the error in computed Schur coefficients. Numerical comparison of Schur and Levinson algorithms
with the LDLT algorithm also indicates their forward stability.

Key words. Toeplitz matrix, Schur coefficients, condition of the problem, stability of algorithms
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1. Introduction. Associated with an (n-F 1) (n + 1) positive definite Toeplitz
matrix

An- {ali-jl}in,j=O,

there are n parameters Cl, c2,..., cn called Schur, or reflection, or partial autocorrela-
tion coefficients (for definition see 2). They appear in a wide variety of applications
in science and engineering, such as theory of analytic functions, geophysics, speech
processing, statistics, transmission lines and others (see, for example, [1], [3], [9],
[11], [13], [15], and [16]). The Schur coefficients are called here S-coefficients and are
denoted by c (Cl,..., Cn).

In the present paper we analyze accuracy of computing S-coefficients by two stan-
dard algorithms, the Schur [16] and the Levinson [12] algorithms that are described
in 2. In fact, these algorithms can be used to define S-coefficients. We also show
in 2 that S-coefficients can be determined by the LDLT decomposition of a certain
positive definite matrix defined by co,..., an. The Schur and Levinson algorithms
are known as fast algorithms since they give the S-coefficients in O(n2) arithmetic
operations. The algorithm based on LDLT factorization is of O(n3).

To analyze the accuracy of computed S-coefficients, it is useful to consider the
condition number of the corresponding map

F (ao, an) ---+ (Cl,...,cn),

at the point a- (a0,..., an), which is given by the expression

(1 1) k(F, a) [IF’ (a)li]lali
lictt

Received by the editors May 28, 1992; accepted for publication (in revised form) July 20, 1993.
Department of Mathematics, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel

(gohberg(C)taurus.b+/-tnet). The research of this author was supported in part by National Science
Foundation grant DMS-9007030.

Department of Mathematics, University of Connecticut, Storrs, Connecticut, 06269
(koltrach0ucormvm.b+/-tnet). The research of this author was supported in part by National Sci-
ence Foundation grant DMS-9007030.

Department of Mathematics, University of Connecticut, Storrs, Connecticut, 06269
(dx+/-ao0ucormvra.b+/-tnot). The research of this author was supported in part by National Science
Foundation grants DMS-9007030 and DMS-8901860.

1290



ON COMPUTING SCHUR COEFFICIENTS 1291

Here F’ (a) is the derivative of F at a and IIF’ (a)l is an operator norm of a linear
map induced by vector norms of a and Fa. If x is a perturbation of a such that

then

(1.2) IIFx Fall <_ k(F, a)e + o(),

(see, for example, Belitzkii and Lyubich [20]). In 2 we obtain a formula for the deriva-
tive of the map of S-coefficients and we give an efficient algorithm for computing the
condition number k(F, a). We also find lower and upper bounds for k(F, a) that differ,
at most, by a factor of n from lower and upper bounds for the usual condition number

n--1of An-1 {ali_jl}i,j=0, k(An_l)= IIA_IIIIIA-III, given by Cybenko [4]. Extensive
numerical experiments in 5 show that the ratio of k(nn-) and k(F, a) is, in fact,
of order unity; therefore, we presume that there is little difference between
and k(F, a). (Similar results for the condition numbers of the inversion of a positive
definite Toeplitz matrix and the solution of Yule-Walker equations can be found in
Gohberg and Zoltracht [5] and Golhberg, Zoltracht, and Xiao [7], respectively.)

In 4, we present the backward roundoff error analysis for Schur and Levinson al-
gorithms. The obtained bounds improve previously known results by Bultheel [2]. The

n--1essential factor of the backward error bound in the Schur algorithm is l-Ij=l (1 +
in the Levinson algorithm it is ,,y= (1 + Iyl) where 1,..., n are the computed
S-coefficients. Since the essential factor is squared in the error bound for the Levin-
son algorithm, we conclude that the Schur algorithm might be more trustworthy than
the Levinson algorithm. (For the general definition of trustworthiness, see Stoer and
Bulirsch [17, 1.3].) This conclusion is supported by numerical experiments in 5 that
consistently show higher accuracy in the Schur algorithm. The obtained error bounds
do not imply that either of the algorithms is backward stable on the class of all pos-

n-1itive definite Toeplitz matrices; indeed, the attainable maximum for YIy= (1
is 2-1. The obtained backward error bounds have, however, the following practical
significance: If the computed S-coefficients (say, by the Schur algorithm) satisfy the
inequality

n--1

(1.3) 4n2 II (1 + Ijl)k(F, a)u <_ 10-p,
j--1

where u is the unit roundoff error, then at least p correct figures can be guaranteed
in the computed results.

Further insight into numerical behaviour of Schur and Levinson algorithms can be
obtained by comparing them with the numerically stable LDLT algorithm of Martin,
Peters, and Wilkinson [14]. Under the presumption that k(F,a) k(An_), this
algorithm is forward stable for computing S-coefficients. Namely, the error in the
computed vector of S-coefficients, 5, is given by

(1.4)
c < Kn3/2k(An_ )u + o(u),
I1 11

where K is a constant of order unity. Numerical comparisons in 5 suggest that Schur
and Levinson algorithms are also forward stable although, in the majority of the
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experiments, the LDLT type algorithm is more accurate than the Schur algorithm,
which in turn is more accurate than the Levinson algorithm.

The effects of finite precision arithmetic on the computation of S-coefficients from
underlying time series rather than from the autocorrelation sequence and in fixed
point rather than floating point arithmetic are studied by Alexander and Rhee [18]
and Rialan and Scharf [19].

2. S-coefficients. Let An {ali_jl}i,j=o be a real symmetric positive definite
Toeplitz matrix The S-coefficients of An are defined recursively. One such recursion
is the Schur algorithm [17].

ALGORITHM 1
1. Start with

 o(0)  o(0) 1, Eo a0,

po(i) qo(i) -ai, i= 1,...,n.

2. For k 0, 1,..,n- 2 let

Ck+l pk(k + 1)/Ek,

Ek+ (1-- c2 )Ekk+l

Pk+l(k+2) qk+l(k+2) I pk(k+2) qk(k+l)

Pk+ (n) qk+ (n) pk(n) qk(n 1)

3. Cn pn_ (n)E11
The numbers Cl,..., cn are the S-coefficients of An. The S-coefficients can also

be calculated (see, for example, Gohberg, el al. [6]) by the Levinson [1] algorithm.

ALGORITHM 2
1. qo(0)=l, Eo=ao.
2. For k 1,2,...,n

k-1

Ck -EIE aj+qk-l (j),
j=o

q (o) 1q ik)

0

qk-- (k 1)

qk-l (k 1)

0

Ek Ek-1 * (1-- C2k ).
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We use the same notation qk(O),..., qk(k) in Algorithm 2 and qk(k + 1),..., qk(n)
in Algorithm 1 because, if we put them together, these numbers satisfy the equation

qk(O)

A I q

qkin)

I’0

0
1
0

0

where Ak {a]i-j]}k j=0 k and 1 in the right-hand side is ini,j=o, A7 {ali-jl}i=k+l n,

position k + 1. The above equation can be used to obtain the LDLT factorization
of An and the LTDL factorization of A in terms of the quantities computed in
Algorithms 1 and 2, respectively. (See, for example, [6].) In fact, it holds that

1 0 0
-qo(1)/Eo 1 0

-qo(n)/Eo -ql (n)/E1 1

Eo 0
Ez

0 0

and

A-1

1 -qo(1)/Eo
0 1

0 0

-qo(n)/Eo

1 ql(0).., qn(O) E 0 0
0 1 qn(1) Ei- 0

0 0 1 0 0 E

1 0 0
ql (0) 1 0

qn(O) q(1)... 1

which are used later in the paper. Note that the following inequality holds:

k

0 < Ek ao II(1 a 1,... ,n;
j=l

hence, Icjl < 1, j 1,...,n. It follows from the Levinson algorithm that the S-
coefficients do not change when the matrix A is multiplied by a positive real num-

bet; therefore, it is often assumed that a0 1. In fact, there is a one-to-one corre-

spondence between all n-tuples (Cl,... ,en) such that Icjl < 1, j 1,... ,n, and all
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n-tuples (al, an)such that A {ali_jl}ni,j=0, a0 1 is positive definite (see for
example, Koltracht and Lancaster [10].) Algorithms 1 and 2 are two standard meth-
ods for computing S-coefficients. They are known as fast algorithms, since they give
S-coefficients in O(n2) arithmetic operations. Another representation of S-coefficients
can be obtained as follows.

THEOREM 1. Let An {ali_jl}in,j=o be a positive definite Toeplitz matrix. Let

al an

al

an
ao

and let W LDLT, where L {Ljk}jn,k=o is a lower triangular matrix with unit
diagonal and where D is a diagonal matrix. Then the S-coefficients of An admit the
following representation:

Ck --nn,k-l k 1,...n.

Proof. Let A,_ Ln-1Dn-1LTn- 1" Using the representation of S-coefficients in
Algorithm 2 and comparing with (2.2), we get

c E- 0
c. E-
cn 0 0

al

a2
-D11L11

1 0 0 al
ql (0) 1 0 a2

qn-l(O) qn-l(1)... 1 an

It is straightforward to check that

Ln-1 0 ]bT 1

where

bT [al,..., an]D-llL-T_I

Transposing the last equation we see that b -c; hence, the theorem is proved.
Note that

W-
0 1 0 1

where

0 0 1
0 1 0

Jnml
1 0 0
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This shows that W is positive definite if and only if An is positive definite. Theorem
1 implies the following algorithm for computing S-coefficients.

ALGORITHM 3
1. Compute the LDLT factorization ofW using the standard algorithm of Martin,

Peters, and Wilkinson [14].
2. Set ck -Ln,k-1, k 1,..., n.

This algorithm requires n3/6 + O(n2) multiplications and is, of course, slower
than Algorithms 1 and 2. However, it can be used for an experimental comparison
of numerical properties of Algorithms 1 and 2 with properties of Algorithm 3. It is
interesting to note that

Ln-lDn-lC -[al,... ,an]T

and hence the vector of S-coefficients is an intermediate result in computing the so-
lution of the Yule-Walker system of equations

LTAn-ix Ln-lDn-1 n_lx --[al, an]T

by the LDLT algorithm.

3. Condition numbers. It follows from Algorithm 1 that ck is a rational func-
tion of a0,... ,ak; therefore the map F a c is differentiable. Thus for c = 0,
i.e., when An is different from the identity matrix, the formula (1.1) for the condition
number k(F, a) can be used, where the norm is always the infinity norm. Since it is
clear that c depends on a0,..., ak only, we have

F (a) \-a/k:,j:o
where Fk (a0,...,a) ck,k 1,...,n, and OF/Oaj 0 for k < j.

THEOREM 2. Let Ek, qk(j), k 0,..., n, j 0,..., k be defined as in Algorithm
2. Then for k 1,...,n,

(3.1)

20_F
Oao qk(k)
ORb 0 qk(k)Oa _E.I_I

o o
Oak

qt:(O) qk(k- 1)
o q (O)

+
0 0

qk(k) qk-l(k 1)
qk(k- 1)

q (O) 0

and

(3.2)
k

k(F, a) - max
k--1,...,n

Proof. We will show (3.1) for k n. For k 1,... ,n- 1, the proof is exactly
the same. Let 7n(j) Eqn(j), j 0,1,...,n and 7n-(j) E-qn-(j), j
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0, 1,...,n--1. It follows from (2.2)that "n(j)= (A-1)n,j, j 0,...,n and ’n-l(j)
(A’11)n_1,j, j 0,... ,n-1, where (A-1)r,s denotes the (r,s) element of A-1. From
Algorithm 2, we have

(3.3)

Since ’n-1 (j) do not depend on an, differentiation of (3.3) with respect to an yields

Differentiating (3.3) with respect to aj, j 1,..., n- 1, we get

(3.4) OFn n--1
0"n--1 (Tn)

Oaj E am+ Oaj
"/n-1 (j 1).

rn--O

It is known (see, for example, Gohberg and Koltracht [5]) that for an arbitrary in-
vertible matrix A (ai,j)in,j=O,

O(A-1)r,8 _eTr A-leieyA-les"

Therefore, if An is Toeplitz and symmetric, then

-eTrA-lTA-les,

where Tj is a Toeplitz matrix of the form

-0 1 0

1 0 . 0 1

0 1 0

with l’s in positions of aj’s in An. Thus

0"n-1 (m) O(All)n-l,m
Oaj Oay

T_en_1A11TjA-11em
Substituting into (3.4), we get

rn- O,...,n- 1.

It is clear that

am+ em
m=O an
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Since A’n en, it is not hard to obtain now the well-known identity

A11
an qn(O)

Since

T A-I Ell[qn_l(O). qn-l(n- 1)]T,en-1 -1

we get for j 1,...,n- 1,

0F, -E.l (qTn_lTjqn -t- qn-1 (j 1))
Oaj

where

T
qn-1 [qn-l(O),...,qn-l(n--1)].

For j 0 this identity holds with Tj I and qn_ (-1) 0. It is straightforward to
check that this system of equations is equivalent to (3.1). The formula (3.2) follows
immediately from (1.1) and from the fact that a0 > lay I, j 1,..., n. The theorem
is proved. [:]

The main reason for expressing F’ (a) in the form (3.1) is that in this form F’ (a)
can be computed by the fast Fourier transform (FFT). Indeed, in this form the compu-
tation of F reduces to two convolutions that can be obtained at the cost of O(k log k)
arithmetic operations. Thus, we get the following recursive algorithm for computing
the condition number of the map of S-coefficients.

ALGORITHM 4
1. Set t0=0, f0=0.
2. For k 1,...,n

2.1. Compute ck, Et: and qk via Algorithm 2.
2.2. Compute (OFk/Oaj k)j=o via (3.1) using the FFT.
2.3. Let

t max(Icl, tk-1).

2.4. Compute

3. Set

k(F, a) ao" f
t

The complexity of this algorithm is dominated by the step 2.2. The cost of step
2.2, for k- 1,..., n, is bounded from above by O(n2 log n). Note that the condition
number of an individual S-coefficient, Ck 0, is given by

k

k(Fk, (al,...,ak)) k] .=
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which can be computed at the cost of O(k log k) only.
It will be seen in the next section that the Schur algorithm is numerically more

trustworthy than the Levinson algorithm for computing S-coefficients. Therefore,
for better accuracy of the above condition estimator, it is advisable to compute the
S-coefficients via the Schur algorithm first; and then to use them in the Levinson
algorithm for computing vectors qk, k 1,..., n.

Next, we derive upper and lower bounds for the condition number k(F, a) in
terms of S-coefficients, and obtain a precise and simple formula if all S-coefficients are

nonnegative.
THEOREM 3. Let F (ao,...,an) (cl,...,Cn) be the map of S-coefficients.

Then the following bounds for the condition number k(F, a) hold,

< k(, ) < ( + I1) i 1 + Icl(a.)
I111 -1-Ij=l (1 cj) Ilcll J=

1 -Icl

Moreover, if cy > O, j 1,...,n, then the condition number can be expressed as

follows:

(3.6) k(F, a) (1 + cn) I 1 + cj

IICll j=l
1 Cj

Proof. Since

0F 1
n- 2Oan ao 1-Ijn (1 cj)

the left inequality follows immediately from (3.2). From (3.1) we have

IlF’(a)l <_ 2 max (Ek--_lllqklllllqk_llll).
k=l,...,n

It is shown by Cybenko [4] that

k n

Ilqklll <-- H(1 --I-ICj[)<_ H(1 -ICjl);
j=l j=l

hence,

n- n ) 2(1 + ICnl) 1 + IcjlIIF’(a)ll <_ 2 E-11 H (1 + Icjl) H(14-[cjl) Ilcll 1 -Icjl"
j=l j=l j=l

Thus the right inequality follows. Suppose now that Cl,..., Cn

_
O. Then it follows

from Algorithm 2 that qk(j) >_ O, k 0,..., n, j 0,..., k. Since all OFk/Oaj are of
the same sign, it follows from (3.1) that
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It is also shown by Cybenko [4] that in this case

k k

IIqll qk(j) H(1 + cj).
j=0 j--1

Thus

IIF’ (a)ll (1 + Cn) nl 1 + Cj

a0 j=l
1 cj

The theorem is proved.
For the discussion of numerical properties of Algorithm 3 in the next section, we

remark that bounds of Theorem 3 are similar to the bounds for the usual condition
number of An-l, k(An-1) IIA111111An_111. Indeed, it is shown by Cybenko [4] that

(3.7)
n-11 1 + Icjl

n-X Cff)
< k(An-1) < n H 1 Icji"

j=l

In particular, if Cl,..., Cn

_
O, then clearly

(3.8) k(An-1) <_ nk(F, a).

The comparison of bounds in (3.5) and (3.7) and the inequality (3.8) indicate that
there should be little difference between the condition numbers k(An-) and k(F, a).
Our numerical experiments in 5 support this conclusion.

4. Analysis of algorithms. To analyze the propagation of roundoff errors in
Algorithms 1 and 2, we need the bounds for the size of entries of vectors Pk and qk

appearing in these algorithms, which will be used later in the Appendix. For the
quantities qk in Algorithm 2 we have the bound already used in Theorem 3; namely,

k k

_lqk(J)l <-- II (1 + Icjl), 1,...,n,
j--0 j--1

with the equality holding in the case when c,..., cn )_ O. Quantities qk(k+l),..., qk(n)
in Algorithm 1 can be bounded from above using (2.1). (See the proof of Theorem
4.) To find an upper bound for pk(k + 1),... ,pk(n), we need the following result.

LEMMA 1. Let Wk ZkAnZk, k 1,..., n 1, where

is a permutation matrix with the leading block J defined in (2.3) and of the size

(k + 1) x (k + 1). Let Wk LkDkL be the LDLT factorization of Wk; then

Ej (Dk)j,j, j O,...,n

and

pk(j) -Ec(Lk)j,k, j=k+l,...,n.
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Proof. Let k be fixed. Let Jm be of the form (2.3) and have the size (m +
1) x (m+l). Using the fact that J,A,J, Am, m 0,1,...,n, it is easy to
see that the determinants of the principal leading submatrices of An and Wk of the
same size are equal. Since diagonal entries in the LDLT factorization are ratios of
corresponding determinants, it follows that they are the same for An and Wk; hence,
(Dk)m,m Era, m 0,..., n.

It is shown in Gohberg et al. [6] that for the matrix

the following identity holds:

(4.2) A
q (o)

pk(k + 1) I
Observing that

Ak * ]W= .AJ ,
and comparing the factorization identities (2.1) and Wk LkDkL, it is not hard to
see that

q (O)

0

0

(Lk)k+l,k

(Lk)n,k

Thus,

qk(O)" (L,)k+,k ]
AJk Ek ]qk(k). (Lk)n,k

Comparing the last equality with (4.2) we get

Pk(j) -Ea(La)j,k, j-k+l,...,n.

The lemma is proved E]

THEOREM 4. Let Ek, qk(j), Pk(j), k 1,..., n- 1, j k + 1,..., n be defined by
Algorithm 1. Then

(4.3) Iqe(J)l, IP(J)I <- (E(ao Ej))/ <_ ao.

Proof. It follows from (2.1) that

j-1

Eq(J)E[11 + Ej ao;
k=0
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hence, q(j) <_ Ek(ao Ej). Similarly from Wk LkDkLTk, we have

j-1

E(Lk),i(Dk)i,i + (Dk)j,j ao.
i-----0

By Lemma 1 we have Pk(j) --Ek(Lk)y,k and (Dk)i,i Ei; hence, p2k(j)E[l
(a0 E). The theorem is proved.

Remark. The first part of this theorem is well known; to the best of our knowledge
the second part, i.e., the bound for pk(j), is new.

Next, we state the results of the backward round off error analysis for Algorithms
1 and 2. The proofs, which are rather technical, are given in the Appendix. We
assume the standard model of floating point arithmetic with a guard digit

fl(x (R) y) (x (R) y)(1 + e),

where (R) stands for +,-,.,/, and e is bounded by the unit roundoff error lel _< u. We
also assume for simplicity that a0 1.

THEOREM 5. Let , Pk(j), k, qk(j) be the values of ck, Pk(j), Ek, qk(j) computed
by Algorithm 1 in floating point arithmetic with a unit roundoff error u. Suppose that
Ikl, IPa(J)l, Iqk(J)l < 1. Then there exist el,..., en such that 1,..., n are the exact S-
coeJ:ficients of the positive definite Toeplitz matrix defined by a0 1, al +el,..., an-t-n
and

<- 4i 2 + H(1 + +
j=l t=l

i= 1,...,n.

Note that E=I Iy]-< i; hence, we also have

(4.4) leil<_4i 2+i l+[t[) u+o(u), i=l,...,n.
t=l

THEOREM 6. Let k, Ek, (tk(j) be the values of ck,Ek, qk(j) computed by Algorithm
2 in floating point arithmetic with a unit roundoff error u. Suppose that Ikl < 1, k
1,..., n. Then there exist el,..., en such that 1,..., n are the exact S-coejficients of
the positive definite Toeplitz matrix defined by a0 1, al + 1,..., an + n and

i-1

(4.5) I1 -< 2i2 H (1 + + o(u), 1,..., n.
j=l

The assumption made in Theorems 5 and 6 that Ikl < 1, k 1,..., n is necessary
because if for some k, Ik] _> 1, then there is no positive definite Toeplitz matrix having
a as its S-coefficients. In view of Theorem 4, the same applies to the assumption in
Theorem 5 that IP(J)I, IVTk(J)l <-- 1.

Moreover, if say, (al,..., an) represents the response of a layered piecewise homo-
geneous elastic medium to a unit probing signal applied to the surface, then Cl,..., cn
are the reflection coefficients of this stratified medium, and by definition they must be
less than one in magnitude. The quantities Pk(j) and qk(j) represent observed signals
in the kth layer and also must be less than one in magnitude. (See, for example,
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Koltracht and Lancaster [11].) Therefore, the assumptions of Theorems 5 and 6 also
mean that the computed quantities are physically meaningful.

Theorems 5 and 6 lead us to following observations.
Observation 1. The fact that the essential factor of the backward error bound for

n--1the Schur algorithm, namely, l-[j=1 (1 + Ijl), is squared in the error bound for the
Levinson algorithm, indicates that the Schur algorithm might be more trustworthy.
This conclusion is supported by numerical evidence in the next section.

Observation 2. The error bound (4.4) has the following practical significance: If
the S-coefficients computed by the Schur algorithm satisfy the inequality

n-1

(4.6) 4n2 H (1 + Ijl)k(F, a)u <_ 10-p

j--1

and the conditions of Theorem 5 are met, then at least p correct figures can be
guaranteed in the computed S-coefficients.

For S-coefficients computed by Algorithm 3, the following inequality holds:

(4.z) II - cll < Kn3/2k(A _ )u + o(u),
IIcll

where K is a constant of order unity, and where in practice it is rare for the bound
Kn3/ak(An_)u to be exceeded. This follows immediately from the results of Martin,
Peters, and Wilkinson [14], because the computation of ,...,n amounts to the
following:

1. Computing Ln-1 and Dn-1 by the algorithm from Martin, Peters, and Wilkin-

2. Solving by substitution

3. Setting

ci -(Dn-1)i-,}Yi, i 1,...,n.

Following Gohberg and Koltracht [5], we could claim that Algorithm 3 is forward
stable for computing S-coefficients of a positive definite Toeplitz matrix, if we could
show that k(A_) is of the same order of magnitude as k(F, a), the condition number
of the map of S-coefficients. It follows from Theorem 3 and (3.7) that both upper
and lower bounds for k(F, a) are comparable with those for k(An-). In the case of
c,..., cn _> 0, it follows from (3.8) that we can replace k(A_) by nk(F, a) in (4.7).
Extensive numerical evidence in the following section shows that there is indeed little
difference between the two condition numbers. Therefore we claim that Algorithm 3
is forward stable for computing S-coefficients.

5. Numerical experiments. Numerical experiments in this section are de-
signed to test the forward stability of Algorithms 1, 2, and 3 and to compare the
condition number of the map of S-coefficients k(F, a), with the usual condition num-
ber of An-, k(An-) IIA-llllAn_l[. In each experiment, we start with a set
of S-coefficients c,..., c chosen in (-1, 1) and generate the corresponding positive
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definite Toeplitz matrix A, using an algorithm from Koltracht and Lancaster [10], in
double precision. Then we compute S-coefficients of this matrix An using Algorithms
1, 2, and 3 in single precision and compare the computed S-coefficients 1,..., n with
the original set. The condition numbers k(F, a) and k(An-1) are computed in dou-
ble precision via Algorithm 4 and the Gohberg-Semencul formula (see, for example,
Gohberg and Leiterer [8]), respectively. All computations are performed on the IBM
ES-9000 computer with the unit roundoff error u 10-7.

For a fixed value of n (e.g., n 20, 30, 40), we generate n uniformly distributed
random numbers in a given subinterval of (-1, 1) as the original S-coefficients. We
recompute the S-coefficients by agorithms 1, 2, and 3 and denote them by , 1, 2, 3,
respectively. This procedure is repeated 20 times for every given subinterval. In the
following table the worst relative error

among the 20 trials is given for each algorithm and for different subintervals. For each
subinterval we also compute the largest value of the condition number, K(F, a), over
the 20 trials and the largest ratio of k(An-1) kl versus k(F, a) k2, and k2 versus

kl.

TABLE 1
n-- 20.

Sign Subin. of c

Worst case errors

Levinson

[-.e, 01 .0000

[-.a, 01 .000a

[-.a, 01 .00a:

.[-.,.2] .oooo
[-.45, .451 .00010

[--.65, .651 .00127

[0,.l .0000

[0,.35] .00053

[0,.45] .0176

Schur LDLT k(F, a) kl/k2 k2/kl
.00004 .00002 135.18 1.23 4.31

.00015 .00007 8 102 1.77 3.59

.001278 .00055 6 103 1.97 3.56

.00002 .00001 59.88 1.20 2.87

.00010 .00004 4 x 102 2.17 1.78

.00130 .00045 9 x 103 4.13 1.36

.00013 .00018 2 x 103 0.22 10.1

.00060 .00067 8 104 0.36 8.96

.0157 .01349 2 105 0.55 7.03

TABLE 2
n=30.

Sign Subin. of c

+/- [-.45, .45]
[-.65, .651
[0,.1

+ [0,.351
[0,.40]

Worst case errors

Levinson

[-.,ol .ooo79

[-.,o1 .oee
[--.40,01 .124

[--.25,.25] .000029
.00030

.os

.00054

.050

.387

Schur LDLT k(F, a) kl /k2 k2/kl
.00034 .00014 1689 0.85 2.76

.007 .009 104 1.14 2.21

.039 .020 5 105 1.32 1.97

.000025 .000012 106 1.32 2.66

.00023 .0001 1 103 3.0 1.56

.01114 .00615 x 105 6.71 0.86

.00068 .0020 3 104 .25 8.7

.056 .073 9 x 105 0.35 5.98

.193 .272 5 106 0.43 5.01
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TABLE 3
n--40.

worst case errors

Levinson Schur

.00081

.00312

.021

.00011

.00311

LDLT
.00037
.00121

.0074

.00006

.00098

1062
.00462

.01576

.5637

k(F,a) kl/k2
2 103 0.586

104 0.77

8 104 0.85

482.91 1.63’
3 10a 4.30

.014 4 105 5.52

.0086 3 x 105 0.16

.04223 3 x 105 0.21

.4819 6 x 106 0.31

k2/kl
4.45
3.52

2.8O

2.52

1.14

1.07

11’5
9.44

6.54

We see from Tables 1, 2, and 3 that the ratio kl/k2 is, indeed, of order unity and
that the forward error in all these algorithms is consistent with the condition of the
problem; namely,

. k(F, a)u.

Note that in most of the cases the worst error in the LDLT algorithm is smaller
than that in the Schur algorithm which is in turn smaller than that in the Levinson
algorithm. For matrices that correspond to nonnegative S-coefficients, the worst error
is smallest for the Levinson algorithm. However, a closer examination of each of the
20 cases represented by one row of a table (even for rows corresponding to nonneg-
ative S-coefficients), shows that the error in Levinson algorithm is larger than that
in Schur algorithm which is in turn larger than that in the LDLT algorithm in the
vast majority of the individual experiments. Therefore, our practical recommendation
is to use the Schur algorithm (or the LDLT algorithm if the cost is no object) for
computing S-coefficients. Note also that condition numbers are visibly smaller when
S-coefficients vary in sign as compared to the constant sign pattern, that agrees with
the results obtained in Koltracht and Lancaster [10]. When the intervals are larger,
like (-.85, .85), or (-.65, 0), or when n becomes larger, all three algorithms fail in the
worst case because the condition numbers become too large.

Appendix. It is convenient to start with the proof of Theorem 6 which is some-
what easier.

Proof of Theorem 6. It is clear that for k 1 the theorem is true. Let us consider
qk, ck, Ek as functions of al,..., ak and denote them as ck ck(al, ak), qk

qk(al, ak) and Ek Ek(al, ak). Let us denote Tk =-- (al,...,ak). Assume
that the claim is true for s 1,..., k. For es, s 1, 2,..., k, define

q’8 qs(al + el,...,a +

E E(al + el,...,a +
Let us now find ek+l such that 5k+ Ck+(pl + el,...,pk+l + ek+), where
satisfies (4.5). It follows from Algorithm 2 that 5k+l fl(gk+l * -1), which can be
written as follows.

(A.1) k+l --(Tk. ([k + Ak)(1 + 5k)/Ek,
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where Ihkl <_ u, IAkl <_ ITt:l. Iklu, and a. b denotes the dot product of two vectors.
Let us define ek+l from the equation:

(A.2) e+l ak+l + ek+l + ai+lqk(i)
i=0

It follows from (6.1) that

i=0

Solving for e+, we get

k

ek+l (E’k/Ek 1)(Tk" k + Ak) + ai+l (k(i)
i=0

+ E’/ (T. +) +.
Since k(k) qk(k)= 1, we have

k-1

+ (E’/ )(T +) + a+((i) ’())
i=0

(A.3) + E’k/Ek Tk k 5k + A + o(u).

Assuming that (1 Ck) * (1 + Ck) is used to compute 1 c, we get k a- (1
ffk2)/(1 + k) where k 4u + o(u). Therefore, E’k/k =(1 + i) or

(A.a) ]E’/- 4 + o().

Let us now find the bound for k --q’k. From the definition, we have

q-i 0 +

where is a (k+l)-dimensional vector and

k

(A.5) Ir/(i)l <_ (1 + [kl)llqk-1[I12u <_ II(1 +
j=l

Also from the definition, it follows that

q,k= [ ,0
qk- 0

Thus for s 1,...,k

From (4.1), we get
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Starting with r/o 0, we get by induction and (A.5),
8--1

1Ilq -q;lll <- E (1%- [jl)IIT]II1
i=1 j=i+l

s--1 I
i--1 j=i+l j=l

for s 1,..., k, which implies that

k

(A.6) IIck q;ll <- k H(1 + lel)2.
i---1

Using (A.4) and (A.6), we obtain from (A.3) that

k k k

Ik+l[ < 4kt H(1%- 1i]) %- k22t II(1 + levi)- + u H(1 + levi) + o().
i=1 i=1 i=1

The theorem is proved. S
Proof of Theorem 5. The claim is clearly true for k 1. Suppose that (4.4) holds

for s 1,...,k. For these es, s 1,...,k, define

P; Ps(Pl %- 1,’’’, Ps %" s

qs q(Pl + 1,..., fls %"

E’s Es(pl + 1,’’’, fls %" s)"

Let us find now ek+l which satisfies (4.4). It follows from Algorithm 1 that

k+l fl(fk(k + 1) /-1) (fk(k + 1) /-1)(1 + /k),

where I/kl < u. We also have

Pk(k + 1) i-1 (k + 1) + C-k(k_l(]g %" k-1;

hence,

k

(A.7) /5(k + 1) po(k + 1) + (i(i_l(k) %" i-1),
i--1

where for i- 0, 1,...,k- 1,

(A.8) Ii] <_ [Pi(k + 1)lu + [O+ll[q(k)12u (1 + [+1[)2u.

Let us define now ek+l from the equation

(A.9) 0k+l o(k + I)- k+1%" diqi-1 (k /Ek.
i=1
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Then it follows from (A.7) and (A.8) that

0(k + 1) + E(ffii_l(]g) + i_1) E’k(1 + k)
i=1

Solving for ek+l, we get

(A.10)

(ek+l ik(k + 1)(1 E’k/) +
i=1

k

"4- E i(q’i-1 () i-1 (k)).
i=1

As in the proof of Theorem 6, we have

(A.11) IE’k/- 11 < 4ku + o(u).

It remains to find the bound of q-i (k) i-1 (k). It follows from Algorithm 1 that

(A.12) q(j) Pi-1 (j)i "4- i-l (j 1) + 5j.

(A.13) i(j) i--1 (j) + ii-1 (j 1) + Aj,

where for 1,...,k and j + 1,...,n,

(A.14) 15.1 _< (1 +

(A.15) IAjl <_ (1 +
Let us define

di [i(i + 1),..., i(n)]T -[q’i(i + 1),..., qi(n)]T,

Di [fi(i + 1),... ,pi(n)]T- [p’i(i + 1),... ,pi(n)]T,

and

max
i<_j<_n

Then it follows from (A.12), (A.13) and the definition of p’i, q that
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hence, Ai _< (1 + Iil)A_l + #. Since Ao 0, we obtain

i+1

(A.16) A EH(1 -I-
t--2 s--t

hence, for 1,..., k,

(A.17) A _< H(1 + II)2 + o().
j=l

Returning to (6.10), we see that

The theorem is proved.

Acknowledgments. We would like to thank Professor James Bunch and the
referees for their useful comments.

REFERENCES

[1] A. M. BRUCKSTEIN AND T. KAILATH, Inverse scattering for discrete transmission-line models,
SIAM Rev., 29 (1987), pp. 359-389.

[2] A. BULTHEEL, Error analysis of incoming and outgoing schemes for the trigonometric moment
problem, in Pad Approximation and its Applications, Amsterdam, 1980; Lecture Notes in
Math. 888, Springer-Verlag, Berlin, 1981, pp. 100-109,

[3] I. F. CLAERBOUT, Imaging the Earth Interior, Blackwell Scientific Publications, Inc., Cam-
bridge, MA, 1985.

[4] G. CYBENKO, The numerical stability of the Levinson-Durbin algorithm for Toeplitz systems
of equations, SIAM J. Sci. Statist. Comput., 3 (1980), pp. 303-319.

[5] I. GOHBERG AND I. KOLTRACHT, Mixed componentwise, and structured condition numbers,
SIAM J. Matrix Anal. Appl., 14 (1993), pp. 688-704.

[6] I. GOHBERG, T. KAILATH, I. KOLTRACHT, AND P. LANCASTER, Linear complexity parallel al-
gorithms for linear systems of equations with recursive structure, Linear Algebra Applica-
tions, 88/89 (1957), pp. 271-315.

[7] I. GOHBEIG, I. KOLTRACHT, AND D. XIAO, On the solution of the Yule-Walker equations,
Proc. SPIE Conference On Advanced Algorithms and Architectures for Signal processing
IV, Vol. 1566, July 1991, pp. 14-22.

[8] I. GOHBERG AND J. LEITERER, General theorems on canonical factorization of operator func-
tions relative to a contour, MAT. Issled. 3 (1972), pp. 87-134. (In Russian.)

[9] T. KAILATH, A Theorem of I. Schur and its impact on modern signal processing, in I. Schur
Methods in Operator Theory and Signal Processing, Oper. Theory, Adv. Appl., I. Gohberg,
ed., Vol. 18, Birkhauser, Basel, 1986, pp. 9-30.

[10] I. KOLTRACHT AND P. LANCASTER, Condition numbers of Toeplitz and block-Toeplitz matrices,
Oper. Theory, Advances Applications, 18 (1986), pp. 231-323.

[11] , Threshold algorithms for the prediction of reflection coejCficients in a layered medium,
Geophysics, 53 (1987), pp. 908-919.



ON COMPUTING SCHUR COEFFICIENTS 1309

[12] N. LEVINSON, The Wiener RMS (root mean square) error criterion in filter design and predic-
tion, J. Math. Phys., 25 (1947), pp. 261-278.

[13] J. D. MARKEL AND A. H. GRAY, JR., Linear Prediction of Speech, Springer-Verlag, New York,
1978.

[14] R. S. MARTIN, G. PETERS, AND J. n. WILKINSON, Symmetric decomposition of a positive
definite matrix, Numer. Math., 7 (1965), pp. 362-383.

[15] F. RAMSEY, Characterisation of the partial autocorrelation function, Ann. Stat., 2 (1974),
pp. 1296-1301.

[16] I. SCHUR, Ueber Potenzreihen die im Inneren des Einheitskreises Beschrankt SAnd, J. Reine
Angew. Math., 147 (1917), pp. 205-232.

[17] J. STOER AND R. BULIRSCH, Introduction to Numerical Analysis, Springer-Verlag, New York,
1980.

[18] S. T. ALEXANDER AND Z. M. RUSE, Analytical finite precision results for Burg’s algorithm and
the autocorrelation method for linear prediction, IEEE Trans. ASSP-35 (1987), pp. 626-
635.

[19] C. P. RIALAN AND L. L. SCHARF, Fixed-point error analysis of the lattice and the Schur algo-
rithms for the autocorrelation method of linear prediction, IEEE Trans. ASSP-37 (1989),
pp. 1950-1987.

[20] G. R. BELITSKII AND Y. I. LYUBICH, Matrix Norms and their Applications, OT36, Birkhauser,
Basel, 1989.



SIAM J. MATRIX ANAL. APPL.
Vol. 15, No. 4, pp. 1310-1318, October 1994

1994 Society for Industrial and Applied Mathematics
017

EIGENVALUES OF BLOCK MATRICES ARISING FROM
PROBLEMS IN FLUID MECHANICS*

K. A. CLIFFEt, T. J. GARRATT$, AND A. SPENCE

Abstract. Block matrices with a special structure arise from mixed finite element discretizations
of incompressible flow problems. This paper is concerned with an analysis of the eigenvalue problem
for such matrices and the derivation of two shifted eigenvalue problems that are more suited to
numerical solution by iterative algorithms like simultaneous iteration and Arnoldi’s method. The
application of the shifted eigenvalue problems to the determination of the eigenvalue of smallest
real part is discussed and a numerical example arising from a stability analysis of double-diffusivej
convection is described.

Key words, block matrices, eigenvalues, finite elements, Navier-Stokes
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1. Introduction. Let A and B be N N real matrices with the block structure

K C] B=(1.1) A= CT 0 /0]
where N n+m, n > m, K is n n, C is n m of rank m, and M is n n symmetric
positive definite. The paper is concerned with the theory of the generalised eigenvalue
problem

(1.2) Aw #Bw

called EVP1 and three related eigenvalue problems called EVP2, EVP3, and EVP4
that are introduced in 3. Since the matrices are typically large and sparse, numerical
techniques based on transformation methods like the QZ algorithm will be very
expensive. The reason for introducing the related eigenvalue problems EVP2, EVP3,
and EVP4 is that they should be amenable to iterative techniques commonly used
to find selected eigenvalues of large sparse matrices ([2, I-5]). In the applications
we have in mind K, C, and M arise from mixed finite element discretizations of
the "velocity-pressure" formulation of the Navier-Stokes equations for incompressible
flow problems [3], [9], and the eigenvalue problem (1.2) arises in the determination of
the stability of steady flows [5]. The problem is to find the eigenvalues of (1.2) with
smallest real part.

As is standard, the finite values # E C such that det(A- #B) 0 are known as
finite eigenvalues, though we usually drop the term "finite." Since B is singular there
are also infinite eigenvalues, which are defined to be zero eigenvalues of Aw Bw,
with corresponding eigenvectors that are null vectors of B. The theory for (1.2) is
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more complicated than for the standard eigenvalue problem Aw #w [21]. However,
the assumptions made in this paper on C and M allow very precise statements to be
made about the number of eigenvalues of (1.2) and make possible the introduction of
related eigenvalue problems that are better suited to solution by iterative algorithms.

Eigenvalue problems of the form (1.2) with block structure (1.1) arise in
applications involving constraints. For example, Malkus [14] discusses the case when
K is symmetric in an analysis of the discrete Ladyzhenskaya-Babuska-Brezzi (LBB)
stability condition for incompressible finite elements arising in linear elasticity ..or
Stokes flow. For symmetric K, the results on the eigenvalues of EVP1 in Theorem 2.1
and Lemma 2.2 are contained in [14, Thm. 3] though our method of proof produces
the results in a more direct manner. In addition, the case of K symmetric and M I
is discussed by Golub in [10].

The plan of the paper is as follows. In 2 the basic theory for the eigenvalue
problem (1.1), (1.2) is presented. Section 3 contains an analysis of some related
eigenvalue problems that provide some shift strategies for the eigenvalues. In 4 some
practical aspects are considered. First there is a discussion relating to the execution
of certain matrix-vector operations and second the estimation of the accuracy of
computed eigensolutions is examined. Section 5 contains a discussion of strategies
that could be used to determine the eigenvalues of smallest real part of (1.1), (1.2).
These are illustrated with reference to a matrix problem arising from a finite element
discretization of two-dimensional double-diffusive convection in a box.

2. Theory for the eigenvalue problem. This section contains some results
about the eigenvalue problem Aw #Bw which, for convenience, we rewrite (and
rename) as

(EVP1) CT 0 p # 0 0 p

where, in analogy with our applications arising from the discretization of the Navier-
Stokes equations, we use the notation w [u,p], u E Rn, p Rm, where u and p
correspond to velocity and pressure degrees of freedom, respectively.

First we note that since C is full rank, the QR factorisation of C has the form
(ignoring possible permutations that play no role here)

R1 ] R1),(2.1) C QR [Q Q2] 0 (= Q1

where R is n x m, R is m xm nonsingular and upper triangular, Q is n x n orthogonal,
Q1 is n x m and provides an orthonormal basis for range(C), and Q2 is n x (n- m)
and provides an orthonormal basis for C+/-. For future use note that CTC is m x m
positive definite and has the Cholesky decomposition CTC RTR1 [11, p. 217].
Also, the matrix

r := I- c(cTc)-IcT

is a projection from Rn onto C+/- along range(C).
Now we state a fundamental result on the number of eigenvalues of EVP1.
THEOREM 2.1. (a) The eigenvalue problem EVP1 has precisely n-ra eigenvalues,

that are those of the reduced eigenvalue problem of dimension (n m)

(REVP1) Q(K #M)Q.z O.
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(b) If (#,z), z E 1n-m is an eigensolution of REVP1 then (#,u,p) is a
corresponding eigensolution of EVP1 where

?.t Q2z, p -R’IQT(K #M)Q2z.

(c) If (#, u,p), u Rn, p Rm is an eigensolution of EVP1 then (#,z) is a
corresponding eigensolution of REVP1 where z Qu.

0Proof. (a) Introduce Z [Q0 I.], where Q is defined in (2.1), and y :=

ZTw (QTt,p) (QITt, Q2Tt,p) =: (tl,t2,p).
ZTAZy-- #ZTBZy, that in block form becomes

Now EVP1 is equivalent to

(2.3) K21 K22 0 u2 # M2 M22 0 u2

R1T 0 0 p 0 0 0 p

where Kij QKQj, Mij QTMQj, i,j 1, 2. Simple manipulation shows that
u 0, (K22- #M22)u2 0, p -R-1(K12- #M2)u2. Since M and M22 are
symmetric positive definite, (a) is immediate. Results (b) and (c) now follow.

Remark 1. An equivalent proof in the style of Golub [10] uses the projection
defined by (2.2). Since ru u for u C+/- we may write the first row of EVP1 as
Kru + Cp #Mru. Premultiplication by gives

(2.4) rKuu #rMru

that has the same eigenvalues as (REVP1) plus rn zero eigenvalues corresponding to
eigenvectors lying in range(C) that have no relevance for EVP1.

For future analysis it is convenient to exclude the possibility that # 0 is an
eigenvalue, and so we assume the following:

(e.5) # 0 is not an eigenvalue of EVP1.

This assumption is not a severe restriction in the applications we have in mind, since
though zero eigenvalues are important, corresponding to "steady-state" bifurcations
in some nonlinear problem, they are usually detected readily. For example, if a direct
solver for A is feasible then one can check the determinant of A. If a zero eigenvalue
of EVP1 has been found, an eigenvalue problem satisfying (2.5) may be obtained by
considering a "shifted" eigenvalue problem with the same structure as EVP1, but
with K replaced by K .-7M for some appropriately chosen shift 7 R.

Under assumption (2.5), K22 is nonsingular and so (2.3) may be rewritten as

vw= 0 K21 * M21 M22 0 w

R , , 0 0 0

or

0 0 0]uw= KlM22 0 w,
0

where denotes unique submatrices that do not affect the analysis. Clearly (2.6) has
a zero eigenvalue of algebraic multiplicity 2m. Thus we have proved the following
lemma.
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LEMMA 2.2. Under (2.5), EVP1 has an infinite eigenvalue of multiplicity 2m.
Similar results apply to the following generalization of EVP1,

cT 0 =" 0 0 p

where C1 and C2 are n rn matrices of rank m. Such a problem arises after the
discretization of the Navier-Stokes equations by a spectral method [6]. Provided C1
and C2 satisfy the nondegeneracy condition,

C2TC1 is invertible

(which is a natural condition in the context of discretizations of the Navier-Stokes
equations); then results analogous to Theorem 2.1 hold. To see this we introduce the
projection operator

(e.8) 71"12 I CI (CC1)-IcT2

(cf. (2.2)). Clearly, if u E range(C), then 7r12t 0, and if u E C, then 7r12t u.
Now follow the approach of Remark 1 to obtain

(2.9) 7r12KTr12u-- #Tr12MTr12u

(cf. (2.4)), which has n-m eigenvalues for u C. A corresponding reduced
eigenvalue problem can be derived (cf. Theorem 2.1(a)).

Remark 2. It is important to note that if K and M are large and sparse (as is the
case in the applications we have in mind) then typically one would not explicitly form
the matrices in (REVP1). This is because Q2 is full and hence Q2TKQ2 and QMQ2
are full. Rather one would employ iterative techniques to find selected eigenvalues as
discussed in 5.

3. Some shifted eigenvalue problems. It is a common technique to shift the
eigenvalues of an eigenvalue problem, so that if Aw #Bw then (A- 7B)w (#-
7)Bw and all the eigenvalues # are shifted by 7, with the corresponding eigenvector
remaining unchanged. In this section we look at some generalised eigenvalue problems
that are closely related to EVP1 in that the new eigenvalue problems allow us to shift
both the finite and infinite eigenvalues. First consider the eigenvalue problem

51cT 0
V a

52CT 0
v

for some 51,(2, 7 /" Note that 7 52 0,51 1 recovers EVP1. We have the
following theorem about the eigenvalues of EVP2.

THEOREM 3.1. Denote the finite eigenvalues of REVP1 by #i,i 1,... ,n- rn.
Assume (2.5) and

(3.1) (i) 2 # O, (ii) 1-1 # #i- 7"

Then EVP2 has eigenvalues hi, i 1,..., n + rn with
(a) ai #i-7, i= l,...,n-m
(b) O" 1-1, n- rn + 1, n + m.
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Proof. Since M is positive definite it is straightforward to show, under (3.1(i)),
that the matrix on the right-hand side of EVP2 is nonsingular and hence EVP2 has
n +m eigenvalues. Under the transformation introduced in the proof of Theorem 2.1,
EVP2 is equivalent to

K21 "M21 K22 M22 0 v a M21 M22 0 v,
IR1T 0 0 2R1T 0 0

and premultiplication by the inverse of the matrix on the right-hand side produces
the eigenvMue problem

I 0 0 ]* M (K22 /M22) 0 v av

* * 1-1

(where again denotes unique submatrices). Clearly this matrix has an eigenvMue at
515-1 of multiplicity 2m and n- m eigenvalues satisfying (K22 -"M22)z aM22z,
which is precisely a simple shift of REVP1. Statements (a) and (b) now follow.

Thus we see that the finite eigenvalues #i of EVP1 are shifted by ", but the
infinite eigenvalues are transformed to 515-1. Thus any eigenvalue of EVP1 may be
shifted to any location. Two examples of EVP2 that are the most likely to be useful
are now introduced. Consider

0 0
V a cT 0

V.

Clearly this has n m eigenvalues ai tt ", i 1,..., n m, and 2m eigenvalues
at zero. Similarly the eigenvalue problem

ICT 0
V a cT 0

leaves the finite eigenvalues #i of EVP1 unchanged, but transforms the infinite
eigenvalues to 51. Note however that not all eigenvectors are preserved by the shifts.
Eigenvectors of EVP1 corresponding to the infinite eigenvalues have the form (0, w2)
and these are unchanged. However the eigenvectors of the finite eigenvMues of EVP1
are changed, but only in the last m components. To be precise, we have the following
result, which may be deduced from the block form of the equations for EVP1 and
EVP2.

LEMMA 3.2. (a) Let # be a finite eigenvalue of EVP1. Assume (2.5) and (3.1).
If (wl, w2), wl E Rn, w2 l:tm is an eigenvector of EVP1 associated with #, then
(vl, v2), where vl wl, v2 (51- (#-’)’)52)-1w2 is the corresponding eigenvector of
EVP2.

(b) Let (0, w2), w2 e Rm be an eigenvector corresponding to an infinite eigenvalue
of EVP1. Then (0, v2) with v2 w2 is an eigenvector of EVP2 corresponding to the
eigenvalue 1’1.

Remark 3. We have not gone into the detailed structure of the infinite eigenvalue of
EVP1 or the eigenvalue 515- of EVP2 of algebraic multiplicity 2m. However analysis
using the Weierstrass-Kronecker canonical form reveals that 515 has geometric
multiplicity m and that the eigenvMues occur in 2 x 2 pairs corresponding to Jordan
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blocks of the form

O i-I

This is to be expected following the results in [14].
4. Computational considerations. For K, C, and M small and/or full it will

T TQ2 MQ2 andprobably be a reasonable strategy to form /22 Q2 KQ2 and M22
to solve REVP1 directly. However, if K, C, and M are large and sparse the "reduced"
matrices K22 and M22 will be full, and transformation methods will probably not be
feasible. Iterative methods like simultaneous iteration or Arnoldi’s method (probably
applied to the EVP3 or EVP4) become attractive. It is therefore necessary to
implement matrix vector operations, which for the generalised eigenvMue problem
reduce to solving systems of (n + m) dimensional linear equations. These could be
carried out directly on the (n + m) dimensional systems [5], [7], [12], but an approach
that involves only solving n dimensional systems is possible.

This is illustrated with reference to EVP3 with - 0. An iterative method will
require the solution of a linear system of the form

,4.1, v given,CT 0 p 0 0 q

using an n dimensional system with coefficient matrix M.
It is readily shown (say by a block Gaussian elimination approach) that (4.1) can

be solved by the following algorithm:

(i) solve Mw Kv for w
(ii) solve [CTM-1C]p CTw for p
(iii) solve Mx
(iv) setu=w-x.

This is the Uzawa algorithm [1] and to be efficient, step (ii) would be carried out
iteratively to avoid the direct computation of CTM-1C. For example, one could
precondition CTM-1C by CTM[-1C, where Ms is the "lumped mass" matrix derived
from M.

"Shift-invert" [16] or Cayley transform [7], [12] techniques are also possible with
iterative methods like subspace iteration, requiring the solution of nonsymmetric
systems of the form

for appropriate 3’, and for three-dimensional partial differential equations this system
will invariably have to be solved iteratively. However, if good estimates of the
wanted eigenvalues are available and if direct solution of (4.2) is possible, then these
approaches are likely to prove very ecient.

A standard approach to estimate the accuracy of an approximate eigenpair
of Aw #w is to calculate the "residual" vector r := A -/5. Standard backward
error analysis [23, p. 171] shows that typically a "small" residual indicates that/5 is
a "good" approximation to #. A similar analysis holds for problems considered here.
Let (/5, [, i5]) denote an approximate eigenpair with cTt O. Then the corresponding
residual vector r R’+m has the form

(4.3) r (rl, 0), rl := K +C fitM Rn.
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With T 1 it is readily shown that

CT 0 0 0

i.e., (/5, [,15]) is an exact eigenpair of a perturbed problem (with the same block
structure as (1.1), (1.2)). In 5 we use IIr1112(= Ilrl12) to test the accuracy of an
approximate eigenpair (cf. p383 of [11]).

5. Applications. The eigenvalue problem arises in the determination of the
stability of steady solutions to the Navier-Stokes and related equations, and linearised
stability theory [8], [19] shows that stability is determined by the eigenvalues with
smallest real part of a linearised problem. The eigenvMue problem EVP1 arises if a
mixed finite element method is used to discretize the linearised problem [5], [9], [15].
Of special interest is the case when the eigenvalues of smallest real part are complex,
since algorithms for the detection of Hopf bifurcations in parameter dependent systems
can be developed from knowledge of these eigenvalues. The matrices K, C, and M
are sparse and very large. In [12], a problem with over 2 105 degrees of freedom is
studied.

Since EVP1 involves large sparse nonsymmetric matrices one must fall back on
iterative methods like Arnoldi’s method or simultaneous iteration [2] to compute
wanted eigenvalues. As mentioned in 4, shift-invert strategies are possible if
good estimates of wanted eigenvalues are known. However, one can also apply
iterative methods directly to EVP3 or EVP4 with appropriate choices for or 51,52,
respectively. To be precise two approaches are given.

(a) Choose - {Re(#1)+ Re(#n_m)}/2 in EVP3. Thus with Pi #i- /, we
have Re(p1) + Re(pn-m) O. The zero eigenvalue of multiplicity 2m of EVP3 is "in
the middle" of the spectrum.

(b) Choose 1 {Re(#1)+ Re(#n_m)}/2 in EVP4. Thus the eigenvalue of
multiplicity 2m of EVP2 is "in the middle" of the spectrum of EVP4, with #1 #n-m
being unchanged.

In both EVP3 and EVP4 the troublesome 2m multiple eigenvalue, which
corresponds to the infinite eigenvalue of EVP1 (Lemma 2.2), will not be computed by
the iterative algorithm. We note that the recent implicit polynomial filters algorithm
of Sorensen [20] would appear to be an appropriate method to apply to reformulations
like EVP2.

If the eigenvalues of EVP1 are known to be real, then simple shift strategies
based on EVP3 and EVP4 allied to iterative methods provide the lart: :t and smallest
eigenvalues. However, when the eigenvalues may be complex then one may have to
further transform the matrix eigenvalue problem. One approach is to utilize the
Chebyshev transformation ideas of Shad [17], [18]. For a standard eigenvalue problem
Aw #w, the idea is to carry out a shifted Chebyshev polynomial transformation
of A, say to ps(A), where the eigenvMues # of A lying inside a certain ellipse in
the complex plane are mapped to eigenvalues Ps(#) of ps(d) satisfying IPs(#)l < 1.
The aim is to choose the polynomial p (and hence the ellipse) so that only the
desired eigenvalues of A lie outside the ellipse. These become dominant, well-separated
eigenvalues of p(A) and hence are computed by an iterative solver applied to p(A).
These techniques were applied successfully to EVP3 to find eigenvalues of smallest
real part of two problems from fluid dynamics and the results were reported in [5] and
[7]. Transformation EVP4 was used to provide the numerical results in the following
example.
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5.1. Example. We consider a matrix arising from a mixed finite element
discretization of the equations modeling two-dimensional double-diffusive convection
in a box heated on the bottom boundary (see [22, Chap. 8]). The governing equations
are solved in the Boussinesq approximation and are given in [4]. We do not reproduce
these equations here but note that the model has nondimensional parameters: Prandtl
number Pr, Rayleigh number Ra, salinity Rayleigh number Rs and T (see [4, p. 254]),
and interest centres on the loss of stability as Ra increases (which corresponds to
increasing the temperature difference between the top and bottom boundary). Our
calculations were performed with Pr- 10 and T 10-2, which corresponds roughly
to a salt solution and water, Rs 2000 and Ra 2480. The exact eigenvalues
of the continuous problem, # say, are known [22, (8.18)]) and the three leftmost
eigenvalues are #, # 0.047486 + 24.502i, # 0.098696. A mixed finite element
approximation was obtained in the usual way [13] using nine-node quadrilateral
elements with biquadratic interpolation for velocities, temperatures and salinities,
and discontinuous piecewise-linear interpolation for pressures [4]. The matrix was
set up using ENTWIFE [24] with a 4 4 grid that leads to a matrix with the
block structure of (1.1) with n 324, rn 48, and hence N(= n + m) 372.
The three leftmost eigenvalues of the matrix problem to seven significant figures are

#1,#2 0.04932671 +/- 24.51725i, #3 0.09874659. (In fact numerical values are
known with residuals (see (4.2)) less than 0.25 10-13.)

In the following, "Arnoldi (k,/)" means Arnoldi’s method restarted times with
subspace of dimension k [18]. First Arnoldi (20,1) with a random starting vector was
applied to

A1 := CT 0 0 0

to obtain a very rough idea of the convex hull of the eigenvalues of EVP2 with

7 0, 51 0, and 52 1, and hence a rough estimate of #n-m is obtained. (Of
course, the matrix vector operations with A1 were performed by solving linear
systems.) Next form EVP4 with 52 1, 51 Re(#n_,)/2, in line with strategy (b)
above, and try to find the leftmost eigenvalues of

A2 := CT 0 51CT 0

Arnoldi (20, 50) failed to find any of the three leftmost eigenvalues, perhaps because
of severe clustering of the eigenvalues [18]. The hybrid algorithm of Shad [18] (see
above) utilizing the Chebyshev transformation to find the two leftmost eigenvalues
(so that the ellipse passes through #3) is however successful. A two-step procedure
was used:

(i) Arnoldi (20, 1) with a random starting vector was applied to
P5(A2) to obtain a "purified" starting vector.
(ii) Arnoldi (20, 1) was applied to p42(A2). This computed #1,#2
with residuals less than 5j. 10-12 (see (4.3)).

Numerical experiments using EVP3 with 7 chosen in (a) above produce similar
results. This is not surprising since the distribution of the extremal eigenvalues of
EVP3 and EVP4 is the same.

Acknowledgments. Y. Shad kindly sent us a copy of his hybrid algorithm [18]
that was used to carry out the computations in 5.



1318 K.A. CLIFFS, T. J. GARRATT, AND A. SPENCE

REFERENCES

[1] K. APPOW, L. HURWICZ AND H. UZAWA, Studies in Nonlinear Programming, Stanford
University Press, Stanford, CA, 1958.

[2] F. CHATELIN, Spectral Approximation of Linear Operators, Academic Press, New York, 1983.
[3] K. A. CLIFFS, Numerical calculations of two-cell and single-cell Taylor flows, J. Fluid Mech.,

135 (1983), pp. 219-233.
[4] K. A. CLIFFS AND K. H. WINTERS, Convergence properties of the finite-element methbd for

Bdnard convection in an infinite layer, J. Comput. Physics, 60 (1985), pp. 346-351.
[5] K. A. CLIFFS, T. J. GARRATT, AND A. SPENCE, Calculation of eigenvalues of the discretised

Navier-Stokes and related equations, in The Mathematics of Finite Elements and
Applications, VII MAFELAP, J.R. Whiteman, ed., Academic Press, New York, 1990,
pp. 470-486.

[6] A. J. CONLEY, Spectral Methods for 3D Navier-Stokes Equations, Ph.D. thesis, California
Institute of Technology, Pasadena, CA, 1992.

[7] T. J. GARRATT, The Numerical Detection of Hopf Bifurcations in Large Systems Arising in
Fluid Mechanics, Ph.D. Thesis, School of Mathematical Sciences, University of Bath, UK,
1991.

[8] A. GEORGESCU, Hydrodynamic Stability Theory, Martinus Nijhoff, Dordrecht, the Netherlands,
1985.

[9] V. GIRAULT AND P. A. RAVIART, Finite Element Approximation of the Navier-Stokes
Equations, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1979.

[10] C. H. GOLUB, Some modified matrix eigenvalue problems, SIAM Rev., 15 (1973), pp. 318-334.
[11] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, The Johns Hopkins University

Press, Baltimore, 1983.
[12] P. M. GPESHO, D. K. GARTLING, J. R. TORCZYNSKI, T. J. GAPtATT, K. A. CLIFFS, A. SPENCE,

K. H. WINTERS, AND J. W. GOODRICH, Is the steady viscous incompressible 2D flow over
a backward-facing step at Re 800 stable?, Internat. J. Numer. Meth. Fluids, 17 (1993),
pp. 501-541.

[13] C. JOHNSON, Numerical Solutions of Partial Differential Equations by the Finite Element
Method, Cambridge University Press, Cambridge, 1987.

[14] D.S. MALKUS, Eigenproblems associated with the discrete LBB condition for incompressible
finite elements, Internat. J. for Engrg. Sci., 19 (1981), pp. 1299-1310.

[15] B. MERCIER, J. OSBORN, J. RAPPAZ, AND P. A. RAVIART, Eigenvalue approximation by mixed
and hybrid methods, Math. Comp., 36 (1981), pp. 427-453.

[16] B. N. PARLETT AND Y. SHAD, Complex shift and invert strategies for real matrices, Linear
Algebra Appl., 88/89 (1987), pp. 575-595.

[17] Y. SHAD, Practical use of some Krylov subspace methods for solving indefinite and unsymmetric
linear equations, SIAM J. Sci. Statist. Comput., 5 (1984), pp. 203-228.

[18] , Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems,
Math. Comp., 42 (1984), pp. 567-588.

[19] D. H. SATTINGER, Transformation groups and bifurcation at multiple eigenvalues, Bull. Amer.
Math. Soc., 79 (1973), pp. 709-711.

[20] D. G. SOPENSEN, Implicit application o.f polynomial filters in a k-step Arnoldi method, SIAM
J. Matrix Anal. Appl., 13 (1992), pp. 357-385.

[21] G. W. STEWART, Perturbation theory .for the generalised eigenvalue problem, in Advances in
Numerical Analysis, G.H. Golub and C. de Boor, eds., Academic Press, New York, 1978.

[22] J. S. TURNER, Buoyancy effects in fluids, CUP, Cambridge, 1973.
[23] J. H. WILKINSON, The Algebraic Eigenvalue Problem, Oxford University Press, 1965.
[24] K. H. WINTERS, ENTWIFE User Manual (Release 1), Harwell report AERE-R 11577, Harwell

Laboratory, Didcot, UK, 1985.



SIAM J. MATRIX ANAL. APPL.
Vol. 15, No. 4, pp. 1319-1332, October 1994

() 1994 Society for Industrial and Applied Mathematics
018
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Abstract. The perturbation of the Cholesky factor of a perturbed positive definite matrix is
considered. Estimates are included for small perturbations in the spectral norm as well as for large
perturbations in the Euclidean norm. The results can be applied to floating point perturbations as
well.
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1. Introduction. Let H be a Hermitian positive definite matrix of order n.
Then, as it is well known, there exists a unique upper triangular matrix R with real
and positive diagonal elements such that

(1) H=R*R.

The matrix R is called the Cholesky factor of H. It is given by the recursive formulae
Cholesky algorithm)

(2) IRlil 2 +... + IRiil 2 Hii, 1 _< i _< n,

(3)

From this it follows that R depends continuously on H.
In this note we derive some explicit perturbation estimates for the Cholesky fac-

torization. Let H + 5H be the perturbed positive definite matrix and R + 5R be its
perturbed Cholesky factor. Then

(4) H + 5H (R + 5R)* (R + 5R) R* (I + A)R,

where A R-*SHR-1, so we may go over to the normalized problem

I + A (I + F)* (I + F).

Here, of course,

(6) Fi > -1, 1 _< _< n.

Once a norm estimate for F is obtained, we can estimate 5R FR as
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Sun [12] obtained an estimate for the Frobenius norm IIFIIF and then

We treat more general norms including an estimate for the spectral norm J]rl]2. Then

From this we obtain

From (8) we obtain a columnwise estimate

(0)

which may be more appropriate for differently scaled columns Section 2 gives esti-
mates for IIFII in terms of the same norm IIAII, if the latter is small enough. For the
spectral norm we obtain

1 + v/i 4CniiAll2
Cn + [log2 n].

The estimate IIAII2 < IIH-1]]2]]hHII2 may be pessimistic, if we deal with the floating
point perturbation of the type ]hHij] < e]Hij]. Section 3 gives an estimate for A in
terms of e.

In Section 4 we prove some large perturbation estimates for the Frobenius norm.
For example, whenever I + A is positive definite, we have a simple global estimate

(12)

After a first version of this paper was written, the authors became aware of a re-
lated paper [4] where results slightly sharper than (11), (12) were obtained by other
methods. We thank the referee for pointing this out.

2. Small perturbations. We first consider the Cholesky factorization of I + A,
IIAII2 < 1. For a Hermitian A set

(13) P(A)

All-- A12
A22
2

Aln

A2n

Ann

Obviously 7) is an invertible linear operator mapping the real space 7-/of Hermitian
matrices onto the real algebra T of upper triangular matrices with real diagonal. (cf.,
also, Stewart and Sun [10]-[12].) For any S E T we have
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Let II" be any norm on T. By the same symbol we denote the corresponding operator
norm

(15) II:Pll max 117)(A)II
AET
(A)--1

where is a norm on . By P(I) I/2 we have

1 IIIII() IlPll >_
().

The following theorem is a strengthening of the corresponding result from [12]. (The
latter deals with the Frobenius norm. An asymptotic estimate of this form was de-
rived by Barlow and Demmel [1].) Our proof is simpler and is based on a homotopy
argument.

THEOREM 2.1. Let A E , S P(A), and I + A be positive definite. Let

(17) p max
IIp(r*r)ll

where the maximum is taken over all F T with Fii > -1 for all i. If

(18) 4pllSII _< ,
then the Cholesky factor of I + A equals I + F with

(19) Ilrll
_

1 + V/1- @llSll

Proof. For 0 _< r/ <_ 1, the matrix I + r/A is positive definite and its Cholesky
factorization is

(20) (I + F)* (I + r) I + A,

where, as mentioned above, Fv depends continuously on r and F0 0, F1 F. Now
(20) is equivalent to

(21) r, ,s-

Hence

Ilr, _< nllSll + pllroll,
which implies that IIr, lies outside of the nonvoid open interval

1 V/1 aPnlISll
2p

Now by continuity, IIr, must lie left from that interval. Thus, (19) follows.
From (19) it follows that

Ilrll _< IlSll(1 + 4pllSll) _< 211Sll.
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Using this and (21) we obtain

IISI1(1- 4pllSII _< IIFII _< IISI1(1 + 4p]]SII),

which shows that the estimate (19) cannot be essentially sharpened for small A.
By (17), (19), the practical use of Theorem 2.1 depends on p and, in the case

of a self-adjoint matrix norm I1" II, its upper bound II:PlI. We shall consider the
Frobenius norm

IIAIIF x/TrA*A,

and the spectral norm

]}All2 max IIAxlI2, Ilx]12 --(X’X) 1/2.

The corresponding p’8 from Theorem 2.1 are denoted by PF and p., respectively. We
have

IIP(A)II IA,I + IA,, < IA, + ]A,, IIAII F"
i< <

Here the equality sign is attained at any A with zero diagonals. Thus,

1

Now by Theorem 2.1, IlSll < 1/(2x/)implies

(23) Ilrll
_

211sI1 < /IIAII

The spectral norm is more complicated A simple estimate

(24) P -< IIPlI -< V
follow8 immediately from (22). For a better estimate we use a binary splitting to
decompose the 8pace of Hermitian matrices into a direct sum of subspace8 that we
illustrate for n 7.
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In general, it holds that

A Aq /... / A1 / A0, q [log2n],
where the matrix A0 is the diagonal part of A. This direct decomposition has the
properties

1
IIP(Ao)II-IIAolI, IIV(A,)II-IIA, II, i-,...,q,

This immediately gives

IIAlle <_ IIAII2, i-0,..., q.

1
(25) 1 _< IIPlI2 <_ Cn + [log2 n].

Next, we show that the operator 7) has spectral norm unbounded in n. In fact,
117)112 log n as n --, oo, so the log2 n estimate (25) is about the best possible.
(Compare also related results of Mathias [8] which are slightly sharper. We bring
our proof because of its simplicity.) Kahan [6], [7] has given an example of upper
triangular matrix Z E Cnn, with zero diagonal, for which2

(26) IIz-Z*ll2 >- log

Since P(Z + Z*) Z, we obtain

1 1)n+-log2+nn

(27) II (z + z*)l12 1

IIz + z*ll2
> -(logn + o(1)),

which shows that the log n-like bound for [[’P[[2 is almost attainable Kahan’s matrix

0 1
0 1

Z=i

Z reads

E CnXn 2 -1.

Even if we restrict the domain of 7) to the space of real symmetric matrices, 117112
remains log n-like. A real example Af is constructed as follows. (A similar example
appears independently in [4].)

01Replace each Zij by the two by two block IZijl[_i 0]" For example, in the case
n 8, we get

"0 0 0 1 0 1/2 0 1/2
0 0 -1 0 - 0 -5 100 0 0 0 0 1 0
0 0 0 0 -1 0 -1/2 )
0 0 0 0 0 0 0 1
0 0 0 0 0 0 -1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

2 We thank the referee for pointing out an error in [6].
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In fact, there is a permutation matrix P for which

(Here denotes the null-matrix.)
Since C -iZ and Z -Z* we have

and then

Finally,

c-c=-i(z+z*),
c+c= -i(z- z*),

C -iZ.

o -i(z + z*) ]+= i(z + z*) o

[ o -i(z-z*) ]-’= i(z- z*) o

4Cn
and yields

(29) Ilrll <_

Remark 2.2. The quotient IIV(A)IIe/IIAII. can sometimes be essentially less than
]17)112. For instance, if U diag (eik) is unitary such that U*AU IA I, then

IIV(A)II- IIV(UIAIU*)II- IIUV(IAI)U*II.
IIV(IAI)II IIIAIII IIAII,

because of the monotonicity of the spectral norm. (Here IAI denotes the pointwise
absolute value, IAIj IAjl for all i, j.)

The case of the perturbation of a general positive definite matrix H is easily
reduced to that of Theorem 2.1.

COROLLARY 2.3. Let H E TI be positive definite and R its Cholesky factor. Let
5H be Hermitian perturbation such that A R-*bHR-1 satisfies the conditions of
Theorem 2.1. Then H + 5H is positive definite and its Cholesky factor reads

(30) R + 5R (r + r)R,

where 5R rR and F is defined by (5), (6).
Note that by

(31)

the value IIH-1112 influences the estimate for IISI] and thus for Ilrll. This can lead
to pesimistic estimates for relative or floating point errors. This is considered in the
next section.

1 + V/1- 4CnllS]12

(28) IlSl12 <

and as in (27) we again obtain the lower log n-like bound for IIPlI2.
According to (25), Theorem 2.1 applies if
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3. Floating point perturbations. If in Corollary 2.3 a relative perturbation
bound is given by 115HII2 _< ellHII2, then by (31) the key quantity IIAII2 is bounded
by elIHII211H-1112. This condition may be pessimistic if we consider "floating point
perturbations" of H, where 15Hijl is small with respect to IHij] for every i, j, or,
more generally, with respect to v/HiiHyy.

THEOREM 3.1. Let H E TI be positive definite, R its Cholesky factor, and 5H
Hermitian perturbation such that for all i, j

(32) ]6Hijl <_ ev/HiiHjj,

where

(33)

and

(34) B=[HiJ 1
Then H + 5H is positive definite and its Cholesky factor is given by

R + R (,r + r)R,

with

(35)

Proof. By (32) for any vector x, we have

2

<_ ne Iv/Hxl <_ nellB-llex*Hx,

where we have used Ilxll <_ lIB-1112x*Bx. Setting here x R-ly, we obtain
nel[B-111211yll and hence

(36) [IAII <_ nllB-Xll.
Recall,

A- R-*SHR-1.

Now by (33), we have

which implies (28). Then by (29) we obtain (35). [:]
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It is instructive to compare the norm estimate (31) with the estimates (10), (8),
(35). Corollary 2.3 and (28), (31) yield

Ilrll . < 2Cntc(H) a(H) IIHII.IIH-II.,

while (35) yields

Ilrll < 2ncllB-1llmax I H I

Now, IIB- II is newer much larger and can be much smaller than (H) [9]. Note
also that (8) and (10) give local estimates for the factor R + 5R. This is important
if R has very small and very large columns. The matrix B, obtained from H by
diagonal scaling, was shown to be of crucial importance in floating point perturbation
theory of the eigenvalue problem [2]. Our result shows that B controls the Cholesky
decomposition in a similar sense.

Remark 3.2. If 5H has at most p nonzero elements in any row (any column),
then the factor n in the estimates of Theorem 3.1 can be replaced by p. This can be
easily shown by using the estimates from [9] or by the Hadamard product technique.

Example 3.3. As an example, consider the matrix

H= <<1.

Here

Any perturbation 5H of the type (32) with e < 0.01 causes perturbation 5R FR
with

IIrll < 20.5,

i.e., for all x,

II Rxll2 < 20.SellRxl12
holds. Note that this implies

< 20.5.

Furthermore, since )min(H) < r]2 << 1, the application of Corollary 2.3 gives pes-
simistic estimate, because H is almost singular for small .

Example 3.4. Let H RR be the Cholesky factorization of real positive definite
H E Rnxn and R R + 5R the computed Cholesky factor of H using floating point
arithmetic with precision e. Then (see [2, Lemma 4.5])

RR H + 6H,

where

l<_i,j<n.
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Using Theorem 3.1, we obtain

ilSRxll2

_
2n(n + 5)Cn$llB-1112 IIRxlI2, x e an,

1 + V/1 4n(n + 5)C2nalIB-ll2

provided that

4n(n + 5)C2ne"

If, e.g., lib- 112 100, n 1000, 10-16 we have

IlSRxII2 <_ const, lO-TIIRxll2, x6Rn.

Thus, the singular values of/ and R, for example, coincide in seven digits at least,
see [2, Thm. 2.14].

We now present another approach that permits a better treatment of perturba-
tions preserving certain sparse structures. We also obtain some multiplicative esti-
mates similar to those in [13].

Let

(37) 5H =/I o E

with the relative error mask matrix/:/and the relative error matrix E; see [3]. Here
/:/ij can be Hij or v/HiiHjj or some other measure for the relative size of perturbation

5Hij, Eij is the relative perturbation of Hij (as measured relative to given/:/ij) and
o denotes the Hadamard (pointwise) matrix multiplication. Thus, 5Hiy HiyEij for
all i, j. It is reasonable to assume both/:/and E Hermitian. Let/ H + 5H be
positive definite and

R*R + 5H R*(I + R-*SHR-1)R R*K2R,

with

K V/I + R-*SHR-1.

(x/: is the square root of a positive definite matrix.) If

K QT(= T’Q*)

is the (unique) QR factorization of K with upper triangular T and Tii > 0, 1 <_ _< n,
then

R’T*Q*QTR (TR)* (TR) [*[

is the unique Cholesky factorization of/ with

[ TR Q* v/I + R-*SHR-1R

and

IITII2 -IIv/I + R-*HR-1112 <_ V/1 + IIR-*HR-1112
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If we define

i-Is D-1/ID-1, Rs RD-1, Hs R*sRs,

with an arbitrary diagonal positive definite D, then

R-*SHR-1 R-*( o E)R-1 R-*(/ts o E)R-

holds. Hence

< i +
[I//s o/:/Sill
Amin(Hs) liE o 11,

with

E (E*), Hs ()’.
Here we have used the Cauchy-Schwarz inequality for the Hadamard product and the
spectral norm. (See [5, p. 212]) If we define the condition number

D Amin(Hs)

then

On the other side,

(Tmin(T) V/mi,(/-- }:-*(H-1)

>_ V/1- I’R-*SHR-I" > il- (H,//)V/"E "oo,

provided that

(38) v/lIE o 11o < (H,/)-.

Thus, we have proved the following multiplicative perturbation bound for the Cholesky
factorization.

THEOREM 3.5. Let H 7-l be positive definite, R its Cholesky factor, and 5H
/I o E Hermitian perturbation satisfying (38). Then the Cholesky factor of H + 6H
reads

where

(H,)V/IIE o l[ < (Tmin(T) --< (Tmax(T) <-- iI + (H,/-I)v/IIE o
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Remark 3.6. We can bound (H, H) by

(H, H) _<
,min(HB)

where HB is balanced H (i.e., HB DBHDB, has unit rows and columns and DB is
the diagonal scaling). Thus, the error term is then approximatively given by

Next, we want to estimate relative errors in the elements of the Cholesky factor
as functions of the relative errors in the elements of H. Since 5R (T- I)R, we
immediately obtain

(39)

an estimate comparable with the one given by Sun [13]. Note, T is the Cholesky
factor of I + R-*SHR-1 and the estimate

(40) lit- rll
2Cn H, /:/) V/lIE

1 + il- 4c2(H, At) V/lIE o ll

holds, provided that V/lIE o 11 < 0.25c2(H,/2/) -1. Since

J

5R (T r)R
k--=i

and therefore for 1 <_ <_ j <_ n

J

k=i

we see that the magnitude of 15Rijl relative to

k=i

is given by (40). Thus, the relative errors in/ii, 1 _< _< n are determined by the
condition of H and bounded by lit- 1112. The relative error in an element with
magnitude of at least about the average of the corresponding column has nearly the
same bound. If all elements in a column have about the same modulus, they all
have relative errors about o(llT- III2 ). Furthermore, if R is the optimally pivoted
Cholesky factor then

l<_i<_j<_n.
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4. Large perturbations. The estimates for F in 2 are asymptotically sharp,
but their validity is restricted by a too strong condition (18). It is desirable to obtain
estimates that are valid whenever the factorization (5) exists. The relation (5) can be
written as

(41) A r + r* + r*r.

Taking the trace in (41), we obtain

(42) TrA 2TrF + Ilrll,

a central identity in our analysis. One can easily show that, with the proper notion
of the angle, (42) is in fact the cosine theorem for a certain matrix triangle. By (6)
and (42), we obtain

IIrll < i2n + vllAII..

Combining this with the local estimate

Ilrll < VIIAII
for IIAIIF < 1/2 (see (23)), we obtain a simple global estimate

Ilrll <_ v/Sn + 2vIIAII.
If A is positive or negative definite better estimates are available. We first prove the
monotonicity property of the Cholesky factorization.

LEMMA 4.1. Let K, H be positive definite with the Cholesky factorizations

(43) K R*KRK, H R*HRH,

and H K positive semidefinite (K - H). Then

Proof. From R*KRK - R*HRH we obtain (RgRI)*(RtR1) I and (44)
follows.3 []

We now treat the case I + A with A positive semidefinite.
LEMMA 4.2. Let F E T be a matrix satisfying (5), where A is positive

semidefinite. Then

(45)
1 + V/1 + IIAII

1< Ilrll < II(A)II < IIAII.
Proof. From (41), using the monotonicity of the diagonal, we obtain

(46) Aii

_
2Fii

_
0, 1 _< _< n,

3 We thank the referee for improving the statement and the proof of this lemma.
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and then
n

1
n

2(47) E F2 -< E A.
i=l i=l

On the other side, if we set (I + F)(0 for the leading submatrix of I + F, then

FI,i+I -,

(48) +
F,+I

Hence

(49)

and

Fi,i+i

i,i+l

AI,i+I 1Ai,+

1

O.min((I --
(50) lit diag FIlE _<

Ai,i+l

1 <_i<_n-1,

1 [[A diag A[IF
4,min(I - A) x/

where ffmin (’) denotes the minimal singular value and ,min(’) the minimal eigenvalue of
a matrix. This inequality is related to the simple fact that a diagonal perturbation of
a diagonal matrix causes only a diagonal perturbation of its Cholesky factor. Finally,
from (47)and (50), we obtain

n

Ilrll r2 + Ilr- diag rll F
i:1

_< IIP(dig A)II, / IIP(A- diag A)II IIP(A)II
and the upper bound in (45) follows. To prove the lower bound, we use the majoriza-
tion inequality between eigenvalues Ai(.) and singular values ai(.) of a matrix (see,
e.g., [11]) to obtain

n n

Tr(I + F) _< E ai(I + F) E V/1 + Ai(A)
i----1 i--1

and then
n

TrF < A(A)
.: 1 + V/1 + Ai(g)

Now, (42) implies

Ilrll TrA- 2Trr > A,(A)-
i:1

n A(A):E I+V/I+A(A)i:1

2Ai(A) ]1 + V/1 + i(A)

(1 + V/1 / IIAII.)

and the lower bound for IIFII follows. Cl

Remark 4.3. The estimates (48), (49) and (50) do not depend on the semidef-
initeness of the perturbation. Thus, for example, if Amin(A) is not too close to -1,
,min(n) > --0.5, say, then IIF- diag FIIF <_ IIA- diag AIIF.
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Note added in proof. Ji Guang Sun [14] pointed out that the estimate (36)
can be replaced by

Thus, using Theorem 2.1, we obtain

xIIB-1IIelI,SBIIF
1 + V/1 21IB-II211BIIF

provided that
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TOWARDS A DIVIDE AND CONQUER ALGORITHM FOR THE
REAL NONSYMMETRIC EIGENVALUE PROBLEM*

LOYCE ADAMS AND PETER ARBENZ$

Abstract. Theory is developed that could be used towards developing a divide and conquer
algorithm for the nonsymmetric eigenvalue problem. The shortcomings of this theory and its appli-
cation to the Hessenberg and nonsymmetric tridiagonal problems are discussed. The conclusion is
made that the method may not be as promising as the divide and conquer methods for symmetric
problems.

Key words, tridiagonal matrix, Hessenberg matrix, modified eigenvalue problem, divide and
conquer algorithm

AMS subject classifications. 15A18, 65F15, 65W05

1. Introduction. In 1981, Cuppen [7] introduced a divide and conquer algo-
rithm for the computation of the spectral decomposition of real symmetric tridiag-
onal matrices. The algorithm, which was primarily designed for parallel computers,
turned out to be faster than and comparably accurate to the well-known QR algo-
rithm even on sequential computers [8]. We review this algorithm in 2. Similar
divide and conquer algorithms have proven to be efficient for the bidiagonal singular
value problem [18] and the unitary eigenvalue problem [14].

In this paper we investigate the advisability of using algorithms similar to those
of Cuppen to solve the eigenvalue problem for real nonsymmetric matrices. In 3 we
investigate how far the theory for symmetric rank-one modified eigenvalue problems
carries over to the nonsymmetric case. This theory is then applied in 4 to two special
cases of eminent interest: the eigenvalue problems for nonsymmetric tridiagonal ma-

trices and for real (upper) Hessenberg matrices. In 5 we discuss stability issues that
arise in the nonsymmetric case. Jessup [17] recently investigated the Hessenberg and
nonsymmetric tridiagonal problems using a rank-two splitting assuming the matrices
are diagonalizable.

The interest for the Hessenberg form stems from the fact that general matrices
are transformed into this form before the QR algorithm is applied. We note here that
the QR algorithm computes a Schur decomposition. In contrast, divide and conquer
algorithms work with eigenvectors and possibly principal vectors. They therefore
provide a spectral decomposition or, in the case of defective matrices, a partial spectral
decomposition.

The nonsymmetric tridiagonal eigenvalue problem arises, for example, in con-
nection with the nonsymmetric Lanczos algorithm [12, p. 502]. It is also possible to
transform a general matrix into a similar tridiagonal matrix by means of (nonorthogo-
nal) Householder elementary reflectors. This process however is not stable [25, p. 403].
Nevertheless, efforts have been made to stabilize it (see [10] and the references therein).
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Divide and conquer algorithms have been successfully implemented for solving the
symmetric tridiagonal eigenvalue problem or for the computation of the singular value
decomposition (SVD) of bidiagonal matrices on shared memory multiprocessors [8],
[18]. The implementation of these algorithms posed difficulties on distributed memory
multiprocessors due to the excessive amount of data that must be transferred between
processors [16]. For our investigation we assume therefore that our target machine is
a shared memory multiprocessor computer.

2. Cuppen’s divide and conquer algorithm. In this section we consider the
problem of determining the spectral decomposition

(2.1) )/T, , ),/ E IRnn

of the symmetric tridiagonal matrix

Cuppen [7] introduced the decomposition

(2.2)
=T + D ( T1 0 )0 +

T1 T2 + 0kUUT

o

0 1
1 o

o

where u ek + 0ek+l with 0 +/-1 and ej denotes the jth unit vector. The in-
troduction of the factor 0 was indeed an idea of Dongarra and Sorensen [8] to avoid
cancellation when forming the new diagonal elements of T1 and T2.

As the element of T at position (k, k + 1) vanishes, the computation of its spec-
tral decomposition amounts to the solution of two independent symmetric tridiagonal
eigenvalue problems for T1 and T2 of order k and n-k, respectively. With the spectral
decompositions T XAXT, 1,2, we get

x [A + x

where

X X @X2, A A1 @ A2, XTek )v XTu OXe

Thus, if we know A1 and A2, we obtain the eigenvalues and vectors of T by com-

puting the spectral decomposition of the matrix in square brackets, i.e., the spectral
decomposition of a diagonal modified by a matrix of rank one.
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As the matrices ( A) 1 and (T A) (1 + 0kuT(T A)-lu) for A a(T)
are congruent [3]-[5], the eigenvalues and vectors of T can be obtained from the ones
of T by an investigation of the rational function [3], [6]-[8], [11], [13], [25]

(2.4)

f is called the (modified) Weinstein determinant [13], [24]. Alternatively, f(),) 0 is
called the secular equation [11]. By (2.4) one easily obtains the interlacing properties

(2.5) Aj -- j _
j+l, 1 <_ j < n, An <_ ,

for positive Ok. (Similar inequalities hold if 0k < 0.) Note that the Aj do not appear
ordered in the diagonal of A!

From (2.3) it is seen that the eigenvalue Ai persists (with unchanged eigenvectors)
if vi 0. In this case we can deflate, i.e., remove, the corresponding jth row and
column from A + OkvvT. Moreover, if A is an eigenvalue of T of multiplicity m > 1,
by an orthogonal similarity transformation of (2.3) the corresponding eigenvectors
can be rotated such that at least m- 1 of them are orthogonal to u [6]. This choice
of eigenvectors introduces (at least) m- 1 zero components in the vector v XTu
thus permitting further deflation. Of course, in a numerical context one must deal
with the problem of "almost vanishing" vk’s and "almost equal" eigenvalues. These
issues are discussed in [8] and [18].

The result of the deflation process is a diagonal matrix A E ]Rn’n’, n _< n,
a(T) and vector vwhich has only simple eigenvalues A E a whose elements are

all nonzero. The eigenvalues of A + OkvvT are the eigenvalues of that, at the
same time, are not eigenvalues of T. The eigenvalues of A and A / OkvvT strictly
interlace, i.e., satisfy formulae corresponding to (2.5) but with strict inequality signs.

The deflation process is of great importance for the success of the divide and
conquer algorithm. First, the investigation of the Weinstein determinant is simplified
since its poles coincide with the eigenvalues of A and, second, n is often considerably
smaller than n [7], [8].

For the computation of the zeros of f, a quadratically and monotonically conver-
gent root finder has been proposed by Bunch, Nielson, and Sorensen [6]. As soon as
a zero of f is found, a corresponding eigenvector of can be computed by

(2.6) : (X T)-u X(, A . A2)-v.

Calculation of eigenvectors by (2.6) can lead to a loss of orthogonality for close
eigenvalues. Recently, work was done by Sorensen and Tang [20] and Gu and Eisen-
stat [15] to make this eigenvector calculation more stable.

For the complexity analysis for this algorithm, we assume that we have no defla-
tion and that in the average s iteration steps are required to obtain one eigenvalue
with the mentioned zerofinder, f(A) in (2.4) and its derivative are computed by

ff())=. 1 + O3kvTh,(2.7) ()0 O3khTh,
h h(A) (A- A)-lv,

in 6n + O(1) flops. Notice that after convergence, h() is an (unnormalized) ei-
genvector of A + O3kvvT corresponding to the just found eigenvalue . So, on the
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average, the computation of one eigenvalue together with its normalized eigenvector
costs (6s + 1)n + O(1) flops. Due to the special structure of X, the transformation of
an eigenvector of A + kVYT to one of needs n2 flops. Altogether it costs

(n) n3 43(2.8) Z(n)=2Z + +(6s+l)n2+O(n) -Sn +2(6s+l)n2+O(n)

to compute the complete spectral decomposition of T, provided that the split eigen-
value problems are solved with the same divide and conquer algorithm.

It is also possible to compute the eigenvectors of T directly by inverse iteration as
soon as its eigenvalues are known [9]. In this way the expensive back transformation
could be saved and one would get an overall O(n2) algorithm. Unfortunately, inverse
iteration does not yield sets of orthogonal eigenvectors in the presence of close eigen-
values. If the close eigenvalues were not deflated, a further orthogonalization may be
necessary, hence bringing back the potentially O(n3) complexity.

3. Rank-one modified eigenvalue problems. Let A E ]Rnn and consider
the modified eigenvalue problem

(3.1) fix := (A + uvT)x Ax, u, v e ]Rn \ {0}.. is called a rank-one modification of A.
We consider the problem of determining the eigenvalues and eigenvectors of ft.

assuming that we know all the eigenvalues and an orthonormal basis of the cor-
responding eigenspaces of A. Interestingly, we do not need to know the principal
vectors of A.

3.1. Nonpersistent eigenvalues. An eigenvalue of ft. is called nonpersistent if
it is not an eigenvalue of A. Otherwise it is called persistent [24, p. 39]. We first deal
with the former simpler case. We start with a result that can be formulated in a
similar way for higher rank modifications [1].

PROPOSITION 3.1. For a(A), the spectrum of A, the matrices

( )A- ft 0 and C :-- 0T(3.2) B :--
0T 1 (A)

with

(3.3) (A) "= 1 vT(A A)-lu

satisfy the equation

(3.4) C MBN,

where

(3.5a) M’=( vT(A
In

)--i

and

(3.5b) N :=
vT 1 0T

u) ( u)1 0T 1 vT(A-A)-1 (A)

(A-)-lu ) ( In (A-)-lu )I vT ’(A)



NONSYMMETRIC DIVIDE AND CONQUER ALGORITHM 1337

Proof. The proposition is proved by verification.
Because det M det N 1 for all A, we have

(3.6) det(A- .) det(A- A)(A), a(A).

Thus, A a(A) is an eigenvalue of . if and only if (A) 0.
Furthermore, as N is invertible, it provides a bijective mapping from the nullspace

of C onto the nullspace of B. Analogously, MH maps the nullspace of CH one-to-one
onto the nullspace of BH.

If A is not an eigenvalue of A, a vector x in the nullspace of C must have the form

(0)x=

Therefore,

is a vector spanning the nullspace of B. From the form of Nx it is clear that

(3.7a) (A- A)-lu

is a right eigenvector of . corresponding to A. Similarly one shows that

(3.7b) (AH )-lv

is a left eigenvector of A corresponding to A.
Note that the geometric multiplicity of a nonpersistent eigenvalue of . cannot

exceed one. The algebraic multiplicity, however, can exceed one, as is demonstrated
by the following example.

Example 3.1. Choose

0 1 0

A= 1 "’.
and = 1 "’.

1 0 1 0

Then, a(A) {e2j/n,j 0,... ,n- 1} and a(.) {0}. Equation (3.1) holds with

u el, v -en.

Thus, (A) becomes

det(A- ) An
(A) det(A-A) An- 1

A 0 is an (algebraically) n-fold eigenvalue of ft.. Its one-dimensional right eigenspace
is spanned by (el. (3.7a))

(A 0)-lu ATu en
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and its left eigenspace by (cf. (3.7b))

(AH 0)-iv Av el.

Also to get right principal vectors corresponding to A we can, at least theoretically,
proceed in the following bootstrapping manner [1]" Let us define
We recursively construct vectors q that span Af (9 Af_l Afj g Af.l such that Ark
is spanned by ql,..., qk. This construction breaks down as soon as k d, where d is
the smallest integer for which Afd+l Afd. Notice that d is the algebraic multiplicity
of A.

Formula (3.7a) yields a basis vector of All. If x E Af+l (9 Aft., j >_ 1, then clearly
y (ft,- A)x e Afj (9 Af_ and y e T(- A). If, on the other hand, y
Af_) N T( ), then (fi A)+y e Af+ (9 Aft. In fact, (ft. A)(fi. A)+ is the
orthogonal projector onto 7(fi,-A) [12, p. 423]. So, (-A)(fi,-A)+y y. Therefore,

(., A)+" (.Afj (9 Afj_].) N ’R,,(-,J-,. A) .Afj+l (9

is bijective.
So, provided that qj e (Afj (9 Aft-l) N 7(fi, A), the nonzero vector

spans Jf3"+l (9 Jj.
Because 7(. A) Af(fi.H )+/-, the vector qj is in 7(fi, A) if and only if

(3.9) slHqj -0,

where s is the left eigenvector of A corresponding to A.
Using (3.4) in the form B+ NC+M, (3.8) becomes

qj+ (A A)-qj.

So, starting with q, we construct the principal vectors eb. of grade j > 1 using (3.10)
until (3.9) fails to be true.

Example 3.1 (continued). With the above we can set

ql en, Sl el.

As sHq 0, there is a right principal vector of grade two, obtainable by (3.10)

q2 (A- A)-len (A- 0)-en ATe, en-.

We continue as described until we get to qn e. At this point

SlHQn-- 1 0

and the process breaks down.
Left principal vectors can be obtained in a similar way, starting with Sl.
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3.2. Persistent eigenvalues. Proposition 3.1 can be generalized to the case
where A is an eigenvalue of the unmodified matrix A, i.e., a persistent eigenvalue.

PROPOSITION 3.2. Let be an eigenvalue of A with geometric multiplicity m.
Let WL, WR E Cnm be matrices with orthonormal columns spanning .h/’(AH-) and
Af A respectively. Then the matrices

(3.11a)
A A uvT 0 Onxm

B 0T 1 0T )Omxn 0 Om

and

(3.11b)
A-A 0

C 0T 1 vT(,- A)+u
Omxn WLHU

vTWR
0,

satisfy the equation

(3.12) C MBN,

where

(3.13a) M --vT(A- A)+
w w )u

1 VT(A A)+u
Wt’u

and, similarly,

(3.13b)
In WRW -(A- A)+u Wa

N- vT(In WnW) 1--vT(A--A)+u vTwn ).W O.,x 0.
Proof. The proposition is proved by verification.
The submatrix

(3.14) Ze(A) ( 1- vT(Aw/u-- A)+u vTWRo ) E(C)(m+l)(m+l)

of C is a generalization of (A) in (3.3). A)+ is the Moore-Penrose generalized
inverse of - A. In the real symmetric case, (A) and Ze(A) are called Weinstein
determinant and extended Weinstein matrix [24].

Proposition 3.2 gives a means for computing the eigenspaces of . corresponding
to a persistent eigenvalue . With (3.12) it is easily verified that

(3.15a) Af(-A)= {w(A-A)+u+Waw] (w)Af(Z*(A))}w
and

(3.15b) Af(fi.H- )= {w(AH- )+v+ WLW]
Principal vectors corresponding to persistent eigenvalues can be computed in a

way similar to those corresponding to nonpersistent eigenvalues. The main difference
is that the spaces Af G Af_l can have dimensions greater than one [1].
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As in the symmetric case, it is natural to choose the matrices WL and WR such
that WLHU rel, Ir Ilull, and WHv el, I1 IIvII, respectively. This means
that columns 2 to rn of WL and WR are orthogonal to u and v, respectively, and thus
are left and right eigenvectors of both A and A. The extended Weinstein matrix then
has the form

(3.16)

where

(3.17) 2e(A)= (at )0 a 1 vT(, A)+u.

To determine whether there are further eigenvectors corresponding to A, we must
investigate 2e. We have five cases to consider.

1. If r 0 then rank e(A) 2 and we get no more right or left eigenvectors,
and dimAf(A- ) rn- 1.

2. If 0, : 0 then rank2(A) 1. In this case, (0 1)T spans Af(2(A)) and
Xm WRen, the first column of WR, is the rnth right eigenvector and dimAf(A-A)
rn. Likewise, up to normalization, y, (AH -/)+v- (’/)Wie is the rnth left
eigenvector.

3. If : 0 and r 0, then the rank of 2() is one. Up to normalization,
Xm (A- A)+u- (a/)WRe is the rnth right eigenvector, and dimAf(.- ) m.
Likewise, Ym Wiel is the rnth left eigenvector.

4. If 0, a # 0, e() has rank one. We easily find that Xm WRe
and Ym WLel are the mth right and left eigenvectors of A, respectively, and
dimAf(fi.- ) m.

5. If a 0, 2 equals the 2 2 zero matrix and has a null space
spanned by (1, 0)T and (0, 1)T. Hence the ruth eigenvectors are given as in case 4.
The m+ 1st right and left eigenvectors are given by Xm+l (A
and Ym+ (AH X)+v/II(AH X)+vlI, respectively, and dimAf(.- A) m + 1.

Clearly, for any the dimensions of Af(fi.- A) and Af(A- ) differ by at most
one.

We also note that the left and right eigenspaces of A corresponding to found by
the above process produces vectors that are orthonormal, and hence further techniques
do not have to be used to get an orthonormal I/VL and

3.3. Deflation. After having determined left and right eigenspaces and com-
puted the extended Weinstein matrix for all E a(A), one may wonder if this in-
formation can be used to reduce the cost of the search of the remaining eigenvalues
A E a(fi.) \ a(A). We know that left and right eigenvectors corresponding to different
eigenvalues are orthogonal, but we see no way to reduce the order of the given matrix
eigenvalue problem for the computation of the remaining eigenvalues as can be done
in the symmetric eigenvalue problem in the deflation process. Notice that it is not
even possible to determine the cardinality of a(A) \ a(A). To be able to deflate, we
must assume that A is diagonalizable. This assumption is of course true for symmetric
matrices. If AX XA, A diag(A,... ,An), we can deflate in the proper meaning
of the word, i.e., we can transform the original modified eigenvalue problem into a
modified eigenvalue problem of lower order, containing all the information to compute
the eigenvalues in a() \ a(A) and corresponding eigenvectors. Let X [x,... ,Xn]
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and Y := (X-1)H [yl,..., Y,]. Then

Bases for left and right eigenspaces corresponding to an m-fold eigenvalue Ak, say,
are obtained by selecting those vectors xi and yi for which Ai Ak,j 1,..., m.
Notice that diagonalizable matrices have no degenerate eigenvalues.

Using the spectral decomposition (3.18), the modified matrix A becomes

(3.19) ft. X(A + fiU)yU, fi yUu, XUv.

If A + fiU has the spectral decomposition A + fiU ).17H, then

(3.20)

So we must investigate the eigenvalue problem

(3.21) (A + fiH)w Aw

to get the spectral decomposition of . As left and right eigenvectors of A correspond-
ing to the above eigenvalue Ak are given by the unit vectors eil,-. ei., the extended
Weinstein matrix in Ak becomes

Vil Vim

0

We now chose a unitary Q Q(Ak) E (mxm such that

Vi

QH (,kk)el,
Vi

m

I%
j=l

and replace columns il,..., im in X and Y by

[Yil,""", yi,]Q.

As we transformed left and right eigenvectors by the same Q, the relation Y (X-1)H
remains valid. Therefore, (3.18) and (3.19) still hold with the modified X and Y, but
now )ij 0, j 2,..., m. So, xi2,..., xi. are right eigenvectors of A corresponding
to the eigenvalue Ak. If (Ak) 0, xil is a further right eigenvector corresponding to
this same eigenvalue Ak.

We can proceed in this way for every eigenvalue of A and finally permute the
columns of X and Y such that - XHv has n’ leading nonzero elements followed by
n- n’ zeros, rH (rlH 0T). Splitting fi ySu in the same way, 1H (111H, 12/-/),
we obtain
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where X1, Yi E {[]nn’ and X2, Y2 E n (n-n’). Note, that A has only simple eigen-
values. The matrix in parenthesis in (3.22) is a rank-one modified diagonal matrix,
the secular equation of which is

n
Viti(3.23) (,k) 1 .H (,k A)-lfi 1 [[] ) Xi

0.
i=l

The zeros of this function yield the nonpersistent eigenvalues. If (A) 0, A a(A),
by (3.7a) and (3.22)

X(A- A)-f

is a corresponding eigenvector of .
It is however possible that (A) 0 for a A a(A). Considering again Ak from

above, this can be the case if I)i, I(Ak)l > 0 but ij 0, j 1,..., m. This means
that we are in case 3 of the analysis of 2e. A second situation occurs when (Ak) and
all the 9j vanish, but one of the j is nonzero. In this case Ak is degenerate!

Example 3.2. Let

=A+uv= 3 + 1 (2,1,0)= 2 4 0
2 1 2 1 2

Then, WL(2) WR(2) span(e3). After deflation of the eigenvalue two we get

(A) 1
2 1

which vanishes when A 2. Notice that

A 2 is a defective eigenvalue of of algebraic multiplicity 2.
Given A+uvT, we have presented the theory for finding each eigenvalue of .

with its associated geometric multiplicity and orthonormal bases for its left and right
eigenspaces. This was done by knowing the exact same information about matrix A.
Hence, in theory, a recursive algorithm for the nonsymmetric eigenvalue problem can
be specified.

In addition, we gave the theory for finding the left and right principal vectors and
algebraic multiplicity of each eigenvalue of A. This was done by knowing the left and
right eigenvectors of A and ft. corresponding to the eigenvalue. We also showed how to
deflate in the case where is both an eigenvalue of A and .2. and A is diagonalizable.

4. Application of the theory. We now apply the theory of the last section to
the nonsymmetric tridiagonal eigenvalue problem. At the end of this section we will
make a few remarks on the Hessenberg eigenvalue problem. We discuss the details
as well as the hurdles involved in realizing a recursive algorithm for these problems.
We do not further analyze the issues of deflation or the calculation of the principal
vectors.
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4.1. The tridiagonal eigenvalue problem. We consider the eigenvalue prob-
lem

(4.1) Tx Ax,

where T is the nonsymmetric irreducible tridiagonal matrix

(4.2) = ".. ".. "..

o n-1
n Ctn

A#o, v,#o.

We do not assume that is diagonalizable. Notice, that tridiagonal matrices with

ii+l > 0, for all i, are symmetrizable [25, p. 335]. We split T into T and a rank-one
modification. To zero out the elements of T at position k and 7k+1 simultaneously,
we must choose the splitting vectors u and v appropriately:

Ok-1

7+1 m’7+l
O?l--k--1

o)T2 + -kek (e weTs) T + UVT,
k+lel

where

u kek
"/k+l el

v
Tel

To compute the nonpersistent eigenvalues of T we must form the rational function
() that appears in the secular equation (3.3). This function is given by

(4.4)
el =0.

In case we use a Newton-type zerofinder for this purpose, the derivative of is given
by

(’(A) --vT(T-- A)-2u-- 13ke(T A)-2ek wV+eT(T2 A)-2e.
A divide and conquer algorithm for the tridiagonal eigenvalue problem based on

the above theory has the following structure.

ALGORITHM TDC (, (j, 5tj, Ifdg, I], j 1,2,... ,)).
{This algorithm computes j, rhj, Ig e nx#, Id e nx,#, j 1,..., J, the
distinct eigenvalues j of, their geometric multiplicity and bases for their associated
left and right eigenspaces.}
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l(a). Split T according to (4.3).
1 (b). Compute the eigenvalues and corresponding left and right eigenvectors of T1

and T2 by calls to TDC or another appropriate subroutine.
l(c). Merge the eigenvalues and eigenvectors of T1 and T2 to get the d distinct

eigenvalues Ay of T, their geometric multiplicities my, and bases WL E (nmj and

W E nmj for the corresponding left and right eigenspaces.
2. Find the persistent eigenvalues A a(T)N a(T) together with the corre-

sponding eigenvectors. This is an investigation of the extended Weinstein matrices
Ze (Ay), j 1,..., d, evaluated at the eigenvalues of T.

3. Find the nonpersistent eigenvalues A a() \ a(T) together with the corre-
sponding eigenvectors. Here, a zero-finding procedure is needed to locate the zeros of
the function in (4.4).

The structure of the complete divide and conquer algorithm can be represented
by a balanced binary tree with the task of solving the original problem being the root
of the tree. The edges coming from the root represent the splitting of this problem
into the two subproblems depicted as the descendent nodes of the root. Edges from
these nodes (and intermediate nodes) toward the leaves represent recursive calls to
TDC in step l(b). The leaves of the tree represent the smallest subproblems that we
are willing to solve by some black box eigensolver.

Once the eigenproblems at the leaves are solved, the "glue-back" problems at the
next level up in the tree are solved by the merge operation in step l(c) followed by
steps 2 and 3. This "glue-back" operation is then repeated at each successive level in
the tree until we finally solve the original problem at the root of the tree.

A shared memory parallel implementation that is identical in structure to that
described in Dongarra and Sorensen [8] would apply to the nonsymmetric case as
well. Briefly, p processors can simultaneously solve the eigenproblems at the leaf
nodes. As we go up the tree, all "glue-back" problems at a given level can be solved
simultaneously. Moreover, a given "glue-back" involves a rootfinding problem that
can utilize multiple processors, so that at any given tree level, all p _< n processors
can be kept busy. Hence we get more fine-grain parallelism and less coarse-grain
parallelism as we go up the tree.

The memory needed to s/ore the left and right eigenvectors of all these problems
is four n n arrays. Only vectors for two consecutive levels need to be stored at a
given time, with two arrays allocated for each level. This is twice the storage the QR
algorithm needs. The QR algorithm however computes Schur vectors. Notice that
the four arrays occupy the shared memory in a parallel implementation.

We want to elaborate on the three steps of the algorithm.
1. Different strategies can be chosen to decide when to switch from TDC to

another eigenvalue solver. In their divide and conquer algorithm for the symmetric
tridiagonM eigenvalue problem, Dongarra and Sorensen [8] switch to the QR algorithm
as soon as there are as many subproblems as these are available processors, i.e., after
log2 (p) splits where p is the number of processors. For the unitary eigenvalue problem,
Gragg and aeichel [14] (see also [2]) divide until they end up with 1 1 or 2 2
problems.

We can go either way. Switching presents the problem of how to solve the nonsym-
metric tridiagonal eigenvalue problem at the leaves of the binary tree. A possibility
is the LR algorithm [23, p. 319]. Because of the pivoting that must be performed
to retain stability, this algorithm destroys the tridiagonal form. Therefore, we may
just as well apply the nonsymmetric Hessenberg-QR algorithm here. This loss of the
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tridiagonal form causes the need for much private memory! In the worst case, we
must provide each processor with O((n/p)2) words of memory just to perform the LR
or QR algorithm at the leaf level.

Eigenvectors for the leaf problems are best computed by inverse iteration with
T- Aj to get the right eigenvectors and with TT- j for the left eigenvectors. They
could be computed all together if inverse vector iteration is applied to the seven-
diagonal Hermitian matrix

On T- Aj )pT
TT- Xj On P"

Here, P denotes the odd-even permutation matrix.
The overall complexity of this step is Cn3 + O(n2) unless we divide until we end

up with 1 x 1 or 2 x 2 problems. We can however force the constant C to be as small
as we like if we only divide sufficiently often, ending up with O(n2) complexity if we
divide to 2 x 2 problems.

2. In step 2 we must compute the extended Weinstein matrices Zc(Aj). W and

W are known from step 1. The transformation of Zc into the form (3.16) is easy as

rn <_ 2 because we are dealing with irreducible tridiagonal matrices.
If re - 0 we must also compute

a 1 + tke(T1 )u)+ek + w?k+lelT(T2 Aj)+el 0.

To circumvent computing the SVD we can proceed as follows. Let us consider the
computation of ekT(TI Ay)+ek and set w (Ay T1)+ek. Then (Aj T)w
Pn(_T1)ek with w E Af(Aj-T1) +/-. Here, Pn(-TI) is the orthogonal projector onto
the range of A -T. Let -T QR be the QR factorization of A -T. Then, the
upper triangular matrix has the form [12, p. 374]

( r)R=
0RT1 0

Therefore,

n()y TI) n(QR) span(Qek)+/- Af(Aj T) span
-1

Let

( R-lr )/i1 + IIR-1z :=
-1 rll2

and Q [q,..., qk]. Then Pn(-T) [ql, qk- ][ql, qk-]* and

W (Ik zzH) ( R[q’ qk-]*ek )0

Each eigenvalue causes O(n) operations as we are dealing with a tridiagonal T. As
there are at most n matrices at a level in the problem tree, the overall complexity of
this step is O(n2). Again, as T is tridiagonal, the auxiliary memory needed for the
QR decomposition is only O(n) words.
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3. Find a()\a(T). We must find the roots of the secular equation (4.4). Then
the associated left and right eigenvectors associated with these roots are calculated
by (3.7a) and (3.7b).

The main problem here is the location of the nonpersistent eigenvalues. They
can be almost anywhere within the union of Gerschgorin disks. As we realistically
cannot assume that the matrices are diagonalizable, we do not even know the number
of eigenvalues we must look for unless we find all principal vectors corresponding to
the persistent eigenvalues.

Jessup [17] discusses zerofinders that are based on the principle of the argument
(Cauchy’s integral formula). We doubt, as does Jessup, their practicability. The
calculation of the integer integrals involved is too expensive although the integrals
need not be computed very accurately.

A reasonable choice for a zero finder is Newton’s iteration. To get good starting
guesses for the iteration, eigenvalue bracketing procedures based on the matrix sign
function could be applied [21]. The application of such procedures on the root level
would, however, be so involved with respect to memory and complexity that it is cer-
tainly better to use such a method right from the start. Such methods compute Schur
normal forms via unitary similarity transformations and are therefore intrinsically
stable.

Forming the function and its derivative costs O(n) flops. If we assume that we
need s iterations on the average to find a zero of , where s is bounded with increasing
n, then the overall complexity to find all nonpersistent eigenvalues would be O(n2).
The computation of the corresponding eigenvectors with formula (3.7), with inverse
iteration or with the procedure of step 2, would cost another O(n2) flops.

The described procedure gives us an overall O(n2) algorithm. As remarked in
2, a similar algorithm has been implemented by Gates [9] for the symmetric divi-
de and conquer algorithm. The problem with the Gates algorithm was the possible
loss of orthogonality among the eigenvectors that made reorthogonalization necessary
and brought back the O(r3) complexity through the backdoor. Our algorithm has
of course no better behaviour. So, the computed right eigenvectors corresponding to
an eigenvalue A must be orthogonalized against the left eigenvectors corresponding to
nearby eigenvalues and vice versa.

We do not see an inexpensive way to prevent a parallel zero-finding procedure
from finding the same zeros without communication among the processes. Recall that
this was possible for the symmetric problem since we knew a priori distinct intervals
that each contained one nonpersistent eigenvalue. The processors working on the
same problem can of course communicate their information on already computed
zeros (via shared memory). Convergence to equal eigenvalues cannot be excluded this
way, however computation of all zeros is guaranteed. Hence, it is highly questionable
whether a zerofinder can be found for the nonsymmetric tridiagonal problem that will
parallelize as efficiently as its symmetric counterpart. If this difficulty is overcome, as
well as the stability issues we discuss in 5, a shared memory parallel algorithm with
the same structure as that given in Dongarra and Sorensen [8] would cost O(n) with
n processors.

4.2. The Hessenberg eigenvalue problem. A divide and conquer algorithm
for the eigenvalue problem

(4.5) /x ;x,
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where H is an irreducible upper Hessenberg matrix proceeds formally much like the
divide and conquer algorithm for the tridiagonal eigenvalue problem (4.1).

We define a matrix H to be

( )(p ek / + uvT(4.6) H := [--I- hk+I,k
el q

where p E IRk and q E ]Rn-k are arbitrary vectors. Thus / differs from H by a
rank-one modification. H has a zero entry at position (k + 1, k). We write

(4.7) H=( HIO H12)H2
where H1 IRkk and H2 ][(n-k)(n-k) are irreducible Hessenberg matrices and
H12 ]lk x (n-k).

There are two essential differences that distinguish a Hessenberg divide and con-
quer from our previous algorithm TDC for the tridiagonal eigenvalue problem.

(i) As H is not the direct sum of H1 and H2, merging the eigenvalues and
eigenvectors of H1 and H2 is not trivial anymore as descibed below. This concerns
not only complexity. Let (, x) be an eigenpair of H1. Then, clearly, (, ()) is an

weigenpair of H. On the other hand, if (, y) is an eigenpair of H2, then (, y )) is an
eigenpair of H if and only if

(4.8) (A- H1)w H12Y.

Equation (4.8) can be satisfied precisely if H12y e R(A- HI). If A a(H1) this is
always the case. If A E a(H) a(H2) a solution may or may not exist. In the latter
case, A is a degenerate eigenvalue.

( ( )ek P((A) 1 + a (H A)-q e
o- hk+l,k

(4.9)

+ qT(H2 A)-lel]
Note that the complexity to form Z(A) does not increase essentially if p and q are
nonzero, because the vectors (HT -A)-lek and (H2- A)-le must be computed
anyway!

Due to the Hessenberg structure of H, the evaluation of (A) costs O(n2) flops
unless H is diagonalizable and we use formula (3.23). This is an order of magnitude
more than in the tridiagonal case.

The main problem of the tridiagonal divide and conquer algorithm, that of finding
the zeros in step 3 of the algorithm, remains unchanged.

The Hessenberg divide and conquer algorithm has of course higher complexity
than the tridiagonal divide and conquer algorithm. The transformation into Hes-
senberg form is a natural intermediate step for the stable computation of the Schur
normal form of a full matrix. A divide and conquer algorithm however cannot take
advantage of this matrix structure. The stability of the algorithm cannot be increased
by working with this form. We therefore see no reason for working with Hessenberg
matrices in the context of a divide and conquer algorithm.

(ii) The Weinstein determinant
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5. Stability. A principal difficulty in nonsymmetric eigenvalue problems is sta-
bility. Eigenvalues and eigenvectors may be very sensitive to small changes in the
matrix elements. All eigensolvers, divide and conquer algorithms included, are expe-
riencing this problem.

Let us consider the following example.
Example 5.1. Let

0 1 0 0 0 1 0 0 O 0
1 r/ 0 0 U 111 0 r/ 0 =T+uvT= +0 1 0 1 0 0 1 1 1

0 0 1 0 0 0 1 0 0 0

This matrix has the spectrum a(T) {+-
If r/is perturbed by a small value e, the eigenvalues change by

1
{( + () i{() +

/4 +
+/- e + O(e2), 1,...,4.

Thus, the eige_nvalues are very sensitive to changes if 0 or U -4. If r 0 or

U- -4, then T is a matrix with two degenerate eigenvalues.
If r v/, then, for all i,

le3/4i(v + ) i(v) + o(1.

The eigenvectors are as sensitive as the eigenvalues,

II0,( + ) 0,()11 33/4 -- O(), i- 1,...,4.

This is the typical behavior of eigenvalues and eigenvectors of matrices that are close
to defective matrices.

If we assume that e macheps , 10-16, then v is a small value but still not small
enough to allow deflation. With this assumption we lose about four significant digits
in computing the eigenvalues and eigenvectors of if r/ 10-s using any eigensolver.
This is what is actually observed in a numerical calculation with standard routines
such as those in MATLAB.

If the zeros of the spectral function

(5.3) -I A- -I A el

corresponding to (5.1) are computed, the behavior (5.2) is observed as roundoff is
introduced when solving the two 2 2 systems of linear equations in (5.3). This is in
accordance with backward error analysis that considers these zeros as exact zeros of
a function with nearby coefficients.

The eigenvalues of T in Example 5.1 are quite sensitive to perturbations of the
matrix elements. One may suggest that the large condition number 4/v/- + O(1) of
the left matrix in (5.3) is a consequence of this sensitivity. This is however not the
case. Sensitive eigenvalues A of T do not necessarily imply large condition numbers
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of T1 or T2. This is especially true when the eigenvalues of T and are well
separated as the following example shows.

Example 5.2. The matrix

3 -6 0 0
1 _5 5 03 18

0 1 11 3
15 50

0 0 1 --3
1

T + uvT 0

0

-6 0 0 0 0
T

35 0 0 5 118
0 4 3 --1- 5o 1

0 1 -- 0 0

has a single four-fold eigenvalue 0. Numerical approximations of the eigenvalues and
vectors of , computed with MATLAB, have absolute errors of O(1/4). This is due to
the high sensitivity of the eigenvalue of with respect to perturbations of the matrix
elements.

20

15

10

-5

-10

-15

-20
-1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

FIG. 5.1. Plot of (A) h- vT(T- A)-lu, --1 < A < 1, of Example 5.2.

T has no eigenvalue close to zero. So, the eigenvector of corresponding to zero
could be computed with high accuracy without difficulty using (3.7) if a good enough
approximation of the eigenvalue were available. This has some resemblance to the
situation in the symmetric tridiagonal eigenvalue problem where eigenvectors may
be inaccurately computed due to eigenvalues that are not known to have sufficient
precision [15], [20]. If we use 0 in (3.7), the calculated eigenvector using double
precision is (10, 4, 5, 6)T, which is exact to within macheps. However, for this problem,
it is difficult for a rootfinder to accurately locate the root of (A) in (4.4) corresponding
to 0. This is because is very fiat near zero (cf. Fig. 5.1). In particular, in the
intervals [-.0007, .0] and [0, .0007] the values of () range from -10-11 to 0 and 0
to -10-11 respectively. If we use the value -.00002 as the computed approximation
of 0 (the associated value of is 8.88.10-16), then the corresponding eigenvector
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computed by (3.7) is (9.9975, 4.9988, 5.9988, 10.9987)T. So here, an absolute error of
10-5 in the eigenvalue caused an error in the third decimal place of each component
in the eigenvector.

The two examples above have shown matrices with ill-conditioned eigenvalues
whose spectral decomposition is hard to compute with any algorithm. The problems
were more or less ill posed and their solutions intrinsically hard. In the context of divi-
de and conquer algorithms, the question arises: What happens when the given matrix

has a well-conditioned spectral decomposition but T has a block with sensitive
eigenvalues and vectors?

As a consequence of the assumption that our matrices need not be diagonalizable,
we do not use the spectral decomposition to compute either the zeros A of or
the eigenvectors. Rather we use formula (4.4) to get the and formula (3.7) to
compute the corresponding eigenvectors. Therefore, the sensitivity of the eigenvalues
and vectors is determined by the condition number of T- A, A E a(T). This number
is worse the closer the eigenvalues of T and are. If i is even a persistent eigen-
value, the corresponding eigenvectors of are determined by (3.15), which involve
the eigenvectors of T corresponding to . In this way we inherit the sensitivity of the
eigenvalues of the submatrices of T.

Notice that on the other hand it may be advantageous to have the eigenvalues
of T and T close to each other. The eigenvalues of T would then be a good starting
guess for an iterative procedure to find the eigenvalues of .

An illustrative example for close eigenvalues of T and is the following example.
Example 5.3. Let

1+?? -1 0 0 1+7 -1 0 0 0 0
1 0 1 0 1 -1 0 0 1 1
0 1 2 1 TWuvT 0 0 1 1 + 1 1
0 0 1 1 0 0 1 1 0 0

T has the spectrum a(T) {5[?? +/- V/??2 +4??],0,2}. For ?? 0, the triple ei-

genvalue 0 has geometric multiplicity 2. T has four well-separated eigenvalues all of
which are well conditioned. The eigenvalue of closest to ero is

1 1772i + +

The corresponding eigenvector is given by

+ +
1 + + 0(??2)

+ o(.
+ +

Calculating this eigenpair with MATLAB for a small value ?? reflects these expansions.
The errors in the computed numbers are of the order O(macheps).

The condition number of T i is 4/?? / O(1). Again this can be observed in a
MATLAB computation. For ??- x/’macheps, approximately eight significant digits are
lost if is computed by formula (3.7a), assuming A is given exactly.

So, the divide and conquer algorithm indeed can suffer severely from the ill con-
ditioning of split matrices. It should however be noted that the decomposition of T
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given in Example 5.3 is not the only possible one. For instance, if we write

1
0
0

-1 0 0 l+r/ -1 0 0 0 0
0 0 10 1 0 1 - v.+1 2 1 0 0 0 1 2

0 1 1 0 0 1 1 0 0

the matrix T has well-separated eigenvalues and T- is well conditioned in a neigh-
borhood of 0. Here, we have used the freedom of how to choose the parameter w
in (4.3). In Example 5.3 we set w 1, here we changed it to w 2.

It would be interesting to find out to what extent a good selection of w can improve
stability in general. To our knowledge, this question has only been investigated for
divide and conquer algorithms for systems of linear equations [19]. Of course, the
selection of the split-index k also has an influence on the stability of the eigenvalues
of T.

6. Conclusions. In this paper we have derived the theory needed to devise di-
vide and conquer algorithms for nonsymmetric eigenvalue problems. We have formu-
lated an algorithm for solving eigenvalue problems involving tridiagonal matrices and
have commented on an analogous algorithm for Hessenberg matrices. The tridiagonal
divide and conquer algorithm has a very favorable complexity: O(n2 and O(n) for the
computation of all eigenvalues and eigenvectors on sequential and parallel computers
with O(n) processors, respectively.

As expected, the cost for the Hessenberg divide and conquer algorithm is one
power of n higher. We see no reason to compute with Hessenberg matrices in a divide
and conquer algorithm. The higher order complexity is not rewarded by a gain in
stability! The Hessenberg form is well suited for the computation of the Schur normal
form but inappropriate if eigenvectors are desired. The computation of the Schur
normal form on the other hand should not be approached by a divide and conquer
algorithm.

The difficulty of stably tridiagonalizing arbitrary matrices prevents a widespread
use of nonsymmetric tridiagonal eigenproblem solvers. It may be possible to transform
arbitrary matrices stably into a very sparse_but no longer tridiagonal form [22]. The
divide and conquer algorithm could eventually take advantage of this form as systems
of linear equations with such matrices must be formed in the course of the algorithm.

There are however two important issues that must be solved successfully before
a divide and conquer algorithm will be feasible.

Zero finding. There are two difficult problems connected with finding the zeros
of the secular equation (A) 0. The first is determining the number of zeros of
and the second is the actual search procedure.

The first problem is difficult as geometric and algebraic multiplicities of the eigen-
values of nonsymmetric matrices can differ and, as Example 3.2 illustrates, counting
only geometric multiplicities is not sufficient. In theory, one can determine the alge-
braic multiplicities by finding the principal vectors by the procedure described in 3.
However, in practice, this procedure will most likely suffer from stability problems.

It is possible to determine the number of the zeros of a function in specific do-
mains of the complex plane. Jessup [17] discusses methods based on the principle of
the argument (Cauchy’s integral formula). Stickel [21] introduced a method to deter-
mine the number of eigenvalues in a particular parallelogram. Both methods are too
expensive.
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One must probably resort to Newton’s iteration. As with any zerofinder, in order
not to find the same zero several times, it may be necessary to successively deflate
zeros, which introduces communication and potentially ruins parallelism. The amount
of work to find the zeros of depends to a great extent on the nature of the zero. So,
load balancing is also difficult to achieve.

Stability. It is principally arguable whether it is reasonable to try to compute
eigenvectors of nonsymmetric matrices instead of Schur vectors as is done stably in
the QR algorithm.

The former can be arbitrarily ill conditioned. Assuming the matrices to be di-
agonalizable does not help as the diagonalizable matrices are a dense subset of the
algebra of matrices.

Even if the original matrix has well-conditioned eigenvalues and eigenvectors, it is
not clear whether the split subproblems have this property (cf., Example 5.3). There
may be ways to minimize the condition of the eigenvalues of the split submatrices by
choosing the split-index k or the parameter w in (4.3) properly.

In summary, it appears to us that zerofinding and stability make it difficult to
find a successful and fast implementation of a divide and conquer algorithm for the
large nonsymmetric eigenvalue problem. There may be subclasses of this eigenvalue
problem that can be computed safely. In any case, an implementation of a divide and
conquer algorithm must be able to detect a loss of accuracy.
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GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING
CAN FAIL IN PRACTICE*

LESLIE V. FOSTER

Abstract. Even though Gaussian elimination with partial pivoting is very widely used, n n
matrices can be constructed where the error growth in the algorithm is proportional to 2 1. Thus
for moderate or large n, in theory, there is a potential for disastrous error growth. However, prior
to 1993 no reports of such an example in a practical application had appeared in the literature.
Examples are presented that arise naturally from integral and differential equations and that lead to
disastrous error growth in Gaussian elimination with partial pivoting.

Key words. Gaussian elimination, numerical stability, integral equations
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1. Introduction. Gaussian elimination with partial pivoting (GEPP) is one of
the most widely used algorithms in scientific computing. When applied to an n x n
matrix A it results in a factorization PA LU, where P is a permutation matrix, L
is lower triangular, and U is upper triangular. Let represent the solution to Ax b
computed in floating point arithmetic on a computer with relative machine precision
e. Then it is known [Will that

I1- xll < 4n2cond(A)pe,

where x is the exact solution, cond(A) is the condition number of A in the supremum
norm and p is the growth factor,

()
maxi,j,k

(1.1) p
maxi,j

with a!k. denoting the i,j element after the kth step of elimination. Thus GEPP is
considered numerically stable unless p is large.

The theory for GEPP suggests that p can be very large. The sharpest bound is

p _< 2n-1 and this is attained, for example, for matrices An of the form [HH], [Will,
[GVL]

A5 diag(:t: 1)

1 0 0 0 1 0
-1 1 0 0 1
-1 -1 1 0 1 T

-1 -1 -1 1 1 0

-1 -1 -1 -1 1 0 0

where T is an n- 1 n- 1 nonsingular upper triangular matrix and 0 max
Thus for moderate or large n the growth factor can be large. However, more than 25
years ago Wilkinson reported:

Received by the editors November 4, 1992; accepted for publication (in revised form) August
13, 1993.

Department of Mathematics and Computer Science, San Jose State University, San Jose,
California, 95192 (foster(sjsumcs. sjsu. edu).

1354



PARTIAL PIVOTING CAN FAIL IN PRACTICE 1355

"It is our experience that any substantial increase in size of elements of
successive An is extremely uncommon even with partial pivoting No
example which has arisen naturally has in my experience given an increase
by a factor as large as 16."

Since Wilkinson made his remarks, Dongarra et al. [DBMS] report an example where
p is 23 and Higham and Higham [HH] report several natural, noncontrived examples
where the growth factor is between n/2 and n. Although the growth factors reported
in these papers are larger than those mentioned by Wilkinson, they are much less than
the theoretical limit of 2n-1. For random matrices Trefethen and Schreiber ITS] show
that the average growth factor does not grow exponentially. In this paper we present a
class of practical examples where the growth factors do grow exponentially. Recently
Wright [Wri] also presented such a class. Wright’s paper and ours are different in that
we consider Volterra integral equations, which are not discussed by Wright, and the
growth factors for our matrices can be closer to the theoretical limit than the growth
factors for Wright’s matrices. Also the matrices in our examples are dense whereas
Wright’s are sparse. The papers are related in that results in both papers apply to
boundary value problems.

In the next section we show that when the quadrature method [Bak], [DM], [Linz]
is used to numerically solve certain Volterra integral equations, large growth factors
can result. In 3 we illustrate the theory of 2 with a population growth model and
with a two-point boundary value problem. In the last section we present a brief
discussion of the implications of such examples.

Software, in the form of MATLAB in files for constructing the above examples
is available via the gopher system. Type "gopher sundance.sjsu.edu" on a computer
with a gopher client and follow the menus.

2. A class of Volterra integral equations that lead to large growth
factors. A linear Volterra integral equation of the second kind is of the form:

(2.1) z(s) k(s, t)z(t) dt G(s).

Such equations show up in a wide variety of applications [Bur], [Jet], [Lin]. We
consider for known k(s, t), (s), and G(s) the following modification of (2.1)"

(2.2) z(s) k(s, t)z(t) dt + (s)x(L) G(s).

In general it is not possible to find an exact solution to (2.1) or (2.2). However,
a variety of approximation techniques [Bak], [DM], [Lin] can be used, including the
commonly used quadrature method. This is the method that we use, "starting" our
procedure with the block quadrature method [DM]. We use Newton-Cotes quadra-
ture formulas of order p _> 1. To be specific for any n we divide 0 _< s _< L into
n- 1 equal subintervals of length h L/(n- 1). or 1,..., n, j 1,...,n, let
si (i- 1)h, tj (j- 1)h, i (si), bi G(si), kii k(si,tj), and let xi be the
numerical approximation to x(si). Let x-- (xl,x2,...,x)T and b-- (b, b2,..., bn)T,
where the superscript T indicates transpose. We approximate fk(s, t)x(t)dr. Our
approximation depends on i. For 1 _< i _< p + 1 we integrate an interpolating polyno-
mial of degree p through (ty,kiyxy),j 1,...,p+ 1. For _> p+ 1 we use composite
integration. For example if kp + we use standard pth order closed Newton-
Cotes composite integration for the integral from 0 to 8kp_t_ For the integral from
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8kp+l to 8kp+l we integrate an interpolating polynomial of degree p + 1 through
(tj kij xj ), j kp + p 1,..., kp + 1.

With these approximations the vector x satisfies

(2.3) Ax b.

For example, for p 2 and n 7 the matrix A is

1 0 0 0 0 0 1
5hk21 2hk22 hk23

1 ---y-- 12 0 0 0 2
4hk32

12

hk3
3

3hk4
8

hkh
3

hk6

hk33
3 1 3 0 0 0

9hk42 9hk43 3hk44
1 0 08 8 8

4hk52 2hk53 4hk54 hk55
1 03 3 3 3

4hk62 17hk63 9hk64 9hk65 3hk66
3 24 8 8 8

4hk,2 2hk,3 4hk74 2hk75 4hk76 hk77
3 3 3 ----- 3

In this case rows three, five, and seven are produced by using Simpson’s rule for
integration. Rows four and six have an odd number of intervals of integration and
involve the usual Simpson rule and Simpson 3/8 rule [Linz, p. 99]. Row two arises
from the block quadrature method [DM].

This approach has the attractive feature that involves higher order approxima-
tions for p > 1 and that, except for the last column, the matrix A is block lower
triangular and so, in principle, (2.3) can be solved in O(n2) not O(n3) operations.

For large n we have the following results.
TttEOREM 2.4. Assume that k(s, t) is bounded for 0 <_ s <_ L, 0 <_ t <_ L. For

any fixed order of integration p >_ 1 and for sufficiently large n no row interchanges
are required when GEPP is applied to the matrix A in (2.3).

Proof. Let wij be the weights in the numerical integration formula corresponding
to the i, j element of A and choose n such that 5 max 1<i, j<n Iwjkjh <_ 1 / (p + 1).
The first n- 1 columns of A are lower triangular except for a p p diagonal block in
columns 2 through p + 1. Outside these columns no row interchanges are required in

Let consist of columns 2 to p + 1 of A and ] be anGEPP since 5 <_ 1/(p + 1) <_ .
n p matrix with ones on the diagonal and zeros elsewhere. Then .3. - B, where
max l<_i<_n, l<_j<_p [bijl <_ 5. Let be after k steps of GEPP, let Bk - ftk, and
let xk max _<i_<,, l_<y_<p Ibikjl. Clearly, no row interchanges are required at the first

step of GEPP applied to .
We now use induction. For some k, 1 _< k _< p- 1 assume no row interchanges are

required through step k of GEPP and that xk <_ 5/(1- kS). Then for k + 1,... n,
k and k Therefore nolanai > 1-x >laikl <_ xk <_ [1/(p + 1)l/[(1 k/(p+ 1)1 <:_.

pivoting will be required at step k + 1. Also since ^k+l ^k ^k ^kak/ak then foraij aij= j, 15ikj+i <_ x + XkXk/(1 x) x/(1 x). For k + 1,... ,p we then have

I.+1- 1] _< xk + XkX/(1- Xk) Xk/(1- Xk). Consequently Xk+l <_ x/(1- x).
This and x _< 5/(1 -5k) imply that Xk+l <_ 5/[1 -(k + 1)5]. This completes the
proof and also shows that max l<_i<_n,l<_j<_p IbP.] <_ 5/(1 -ph).
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THEOREM 2.5. Assume that k(s, t) is continuous over 0 <_ s <_ L, 0 <_ t <_ L, and
3(s) is continuous over 0 <_ s <_ L. Let "(s) be the solution to the integral equation

(2.6) /(s) k(s, t)7(t) dt (s).

For any fixed p the growth factor p for GEPP applied to (2.3) satisfies

max0<r<8<L {1, 13(s)+ f;k(s,t)’(t)dt[, [1 + fl(n) +
limp

maXo<s<L {1, I/(s)l, ll + (L)I}

Proof. Select a fixed T, 0 _< T <_ L and suppose that k is an integer, p + 1 <_ k _<
n- 1 such that hk T. Assume that h is sufficiently small so that no pivoting is
required in GEPP applied to A in (2.3). Then after step k of GEPP, we have

L21 I 0 0 A22 u2 A A21 A22 0 + en
L31 0 1 0 A32 Un A31 A32 nn

In (2.8) there are k, n- k- 1, and 1 elements, respectively, in the first, second, and
third block rows and columns. Here en (0, 0,..., 0, 1)T.

Now let (flT,2T,/)T U (UT, U, Un)T and Vle Rk satisfy UllV1 Ul.
Then from (2.8) Llu fl and LIUI A so that Alvl 1. This last
equation is the equation produced when the quadrature method is applied to (2.6)
over the interval 0 <_ s <_ T kh. By standard results [DM, pp. 126-127], for si ih
fixed and < k

(2.9) vi- "(si) -* 0 as h --+ 0.

In the proof of Theorem 2.4 it was shown that Ull I +/}, where ij 0, for

j > > p + 1, and where max <i,j<n IDijl <- 5/(1 -pS), with 5 -- 0 as h -- 0. It then
follows from (2.9) that for ih fixed and <_ k

(2.10) ui -9/(si) --* 0 as h - 0.

From the second block row in (2.8), we have L21Ul -{- u2 2 and L21U11
A2. Therefore u2 -A2vl + 2. Since elements in -A2 come from discrete
approximations to integrals and from (2.9) it follows that for such that k + 1 _< _<
n- 1 and for si fixed then

(2.11) ui --,/0
r

k(s, t)’(t) dt +/(si) as h --, 0.

From the third block row in (2.8), we also have L31Ul + Itn tnn + n and L31U11
A31 so that un 5n, A31v1 +/. Since 5nn - 1 as h 0, we see that

(2.12) u -- 1 + 3(L) + k(s, t)/(t) dt.

In proving (2.10), (2.11), and (2.12) we have assumed that k _> p + 1. These
equations are also true for k _< p. For example, for <_ k _< p as h 0 it follows easily
that ui -+ /(0) and 7(s) (0) so that (2.10) is true. The theorem follows from
(2.10)-(2.12) and the definition of growth factor. [
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COROLLARY 2.13. With the assumptions of Theorem 2.5

maxo<s</ {1, 17(s)l, [1 + V(/)I }
]im p >

n--,oo maxo<s<L {1, I/(s)l, I1 +/(L)I }

Proof. The result follows by letting T s in (2.7) and using (2.6).
Corollary 2.13 shows that for any of the numerical integration schemes that we

have outlined, large growth occurs for sufficiently large n if the solution (s) to (2.6)
is large relative to the coefficient (s) in (2.2). The next section shows that large
growth can happen for practical problems where A is well conditioned.

3. Examples. Our first example comes from a simple model for population
dynamics. Let x(s) represent the population of a species at time s and let x0 be the
initial population. For some fixed time L assume for 0 _< s _< L that births occur at a
rate r(s) and deaths are governed by a survival function f(s) where a fraction f(s- t)
of the organisms born at time t are alive at time s, t _< s _< L. It follows [Jer] that

(a.1) x(s) of(s) + I(s t)r(t) dr, 0 < s < L.

If we assume that the birth rate is proportional to the population, r(t) x(t) for
some constant , then (a.1) becomes a Volterra integral equation of the second kind
(2.1) with k(s, t) f(s- t) and G(s) zof(s). On the other hand if we introduce a
birth control policy where the birth rate is reduced by an amount proportional to the
final population so that r(t) z(t) cx(L), for a constant c, then (3.1) reduces to
the form (2.2) with k(s, t) f(s t), G(s) zof(s), and (s) f2of(s t)dr.

We can now illustrate the results of 2 by assuming, say, that z0 1, 1,
L 50, c .5, and f(s) e- with c .25 so that (s) a(1- e-)/c. For
most functions f(s), (2.1) or (2.2) with k(s, t) I(s- t) do not have exact solutions
in terms of the usual transcendental functions and are not equivalent to ordinary
differential equations. However, to calculate errors we choose a simple f(s) so that
(2.2) has an exact solution z(s) zo[a+(e;--c--c)e(’-(-il]/[+(--c--c)e-(’-)i].
In this case the solution to (2.6) is ’),(s) a[1 e(’-)]/( c). Thus by Corollary
2.13 for large n the growth factor should be approximately

1 + o[1 e(’-c)i]/( c)
4.3 x 10

1 + a(1 e-L)/c
or larger, and partial pivoting should have large error growth.

In Fig. 3.2 we have plotted, versus n, the growth factors as computed by (1.1)
when solving (2.3) for p 2 by GEPP and complete pivoting. For partial pivoting
row interchanges are required for n _< 92 and the growth factor remains .moderate.
However for n _> 93 no row interchanges are required for partial pivoting and the
growth factor becomes large. For n 200 the computed growth factor is 4.02 105,
close to the above theoretical estimate. Also in Fig. 3.2 we have plotted, versus n, the
relative error in the approximate solution to (2.1) obtained by solving (2.3) by partial
pivoting and complete pivoting. Here by relative error we mean maxi=l n Ix(si)
xil/maxi=l n Ix(si)l, where x(c) is the true solution. Gaussian elimination with
complete pivoting is numerically stable and for this example the relative error decreases
proportional to ha (since our numerical integration is based on the Simpson rule). On
the other hand, for partial pivoting, the large growth factor leads a large relative error
in the calculated answer. GEPP is unstable and inaccurate for n >_ 93.
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FIG. 3.2. The growth factor (left), and the relative error (right), when solving (2.3) with partial
pivoting (solid lines) and complete pivoting (dashed lines).

To further illustrate the difficulty with partial pivoting in Fig. 3.3 we have plotted
the approximate solution to (2.2) obtained by solving (2.3) using partial pivoting with
n 100 and the true solution. In this case, to solve (2.3) we used the MATLAB "\" op-
erator, which is based on Linpack’s implementation of GEPP, on a SUN SPARCstation.
The large discrepancy for s > 42 is due to the instability of partial pivoting.

2.5

2

0.5
0 5 10 15 20 25 30 35 40 45 50

time

FIG. 3.3. The true solution (dashed) to (2.3) and approximate solution (solid) calculated when
using partial pivoting for n 100.

Finally we note that on a modern workstation it requires less than a second to
set up and solve (2.3) for n 100, say, and that the linear systems solved to produce
the graphs in Figs. 3.2 and 3.3 are well conditioned. For example, the matrices used
to produce Fig. 3.2 all have condition numbers less than 162.

For our second example we consider a boundary value problem. Suppose constants
L, k, and C and a function g(t), 0 < t < L, are known and that an unknown function

x(t), 0 < t < L, satisfies

(3.4) x’(t)=kx(t)+g(t), 0<t<L withx(L)=Cx(0).

This example is simple enough so that we can find the solution exactly, but suppose
that we wished to solve it numerically. We choose to first convert the differential
equation (3.4) into an integral equation by integrating from zero to s and substitute
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in x(0) x(L)/C to get

]0
s

(3.5) x(s) kx(t) dt x(L)/C g(t) dt G(s).

This is of the form (2.2) with k(s, t) k and /3(s) -1/C. If we apply the
quadrature method to (3.4) using the trapezoid rule to approximate the integrals, the
resulting linear system Ax b is simple enough in this case so that we can exactly
describe L and U in an LU factorization of A. It is easy to check for b 1 kh/2
and w (1 + kh/2)/(1 kh/2) that

1 0 0 0 -I/C-- 1 kh2 0 0 -1/C
kh -kh 1 kh ".
2 2

0
kh -kh kh 1 kh -1/C2 2
kh -kh kh -kh 1- l/C-2

kh 1 ""2

kh kh 12 b

kh kh kh
2 b b

kh kh kh kh
2 b b b

I1
0

0

0

1
\0

0 0 c

b C

"" b bw2
C

bwn-2b c

0 bn-1
C

From this factorization it follows easily that if Ikhl <_ 2/3, no row interchanges are
required in GEPP and that there will be large elements in U if bwn-1/C is large.

As a specific example let k 1, L 40, and C 6. An application producing
such numbers would be a solution mixture problem over the time period -40 _< { _< 0
where fluid with a solute concentration 1 enters a tank of volume 1 at a rate 1, where
mixed fluid leaves at a rate 1, where the ratio of the final to the initial amount of
solute in the tank is 6 and where we let t - to transform the domain to 0 < t < 40.
In this example, if n _> 61 we have kh <_ and the growth factor is large. For n 61,
say, the condition number of A is 88, the relative error in the calculated solution when
solving (2.3) by a QR factorization is 1.1%. Yet if partial pivoting is used to solve
(2.3) then due to a growth factor of 1.28 x 1017 the relative error is 860%. GEPP fails
again for this concrete physical example.

From the above decomposition it follows that when C 1, say, and kh 2/3 that
the growth factor is (2/3)(2n-1 1). This is quite close to the maximum theoretical
growth factor of 2n-1. In comparison, the maximum growth factor reported in [Wri]
is proportional to (x/)n. We might also note that we can generalize the results
for our second example to boundary value problems for systems of m differential
equations. For such systems we can get growth factors, approximately, as big as

[2(1.5)m- 1](/m)-1/[3(1.5)m- 3] where large growth occurs in the last m columns
of U. For example if m 5 and n 90, growth of 2 x 1018 can occur in the last five
columns of U.
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4. Conclusions. The existence of practical examples where partial pivoting fails
leads to a number of questions for the scientific computing community. To initiate a
debate we propose the following answers.

1. Why haven’t practical examples where partial pivoting fails been reported ear-
lier? We expect that the primary reason is that such examples are indeed rare. Our
problems and our approach to solving these problems were carefully selected. How-
ever, we should note that most software packages in numerical linear algebra do not
report information about the growth factor and so it is possible that large growth
factors do occur from time to time in practice, but have gone unreported.

2. Should widely used packages in numerical linear algebra provide information
about growth factors ? In view of our examples we believe that such information should
be reported if, for example, a user requests an "expert" solution. The authors of
Lapack are planning to incorporate this in future releases of Lapack [Dem]. For a
dense matrix a bound on the effect of the growth factor on the error in the calculated
solution can be determined in O(n2) operations [CG], [ER], [GVL] which is small
compared to the work in factoring the matrix.

Both Linpack [DBMS] and Lapack [ABB] had diiiculty with the matrices in our
examples. For the second example in 3, if L 60, n 100, k 1, and C 6 Linpack
DGECO reports an estimated condition number of 1.5 102 when the actual condition
of A is 132. On the other hand, if L 40 and n 61 Linpack DGECO reports an
estimated condition number of 534, which is much closer to 88, the true condition
number. However, this might lead the user into thinking that the calculated solution
is correct while, as we have seen in 3, it is not. With Lapack for our examples, if the
growth factors were not too large, then the "expert" routine DGESVX successfully uses
iterative refinement to overcome the inaccuracy due the large growth factor. However,
if the growth factor is sufficiently large, iterative refinement does not converge. Also
the Lapack condition estimator fails in some cases. Neither packnge warns the user
that GEPP is unstable due to a large growth factor.

For our examples, the reason that the Linpack and Lapack condition estimators
fail is that they rely on the ability to solve Ax y. However due to large growth
factors, the solutions to Ax y are not calculated correctly. The underlying condition
estimators are not failing themselves, rather they are working with incorrect solutions
to Ax y.

3. Are tests on random matrices useful for comparing and analyzing algorithms
in numerical linear algebra? Such tests are valuable in that they allow the quick
generation of many examples. Also random matrices can be amenable to theoretical
analysis. However tests with random matrices are not sufficient. For example, the
matrices in our illustrations contained only negative numbers below the diagonal. If
rndom matrices were generated so that signs of elements were random, then for
n 50, say, the probability of this sign pattern is negligible (10-737). It would never
show up in random sampling. We feel that tests with random matrices are often
overused.

4. Is there a need for a collection of test matrices arising from practical prob-
lems? Since there are phenomena that occur in practice that do not show up in tests
with random matrices, there is such a need. The collection could complement existing
collections such as the one in [DGL]. Ideally the new collection would be in an easy-to-
use format such as MATLAB m files so that the collection is compact and flexible code
could be included that would generate the matrices for different prameter choices,
similar to the style used by Higham [Hig]. However, the focus would be on interesting
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matrices that can arise in practice. The collection of examples in Hansen’s Regular-
ization Tools [Han] would be a good beginning. Indeed the genesis of this paper came
from observing some of the sign patterns for the matrices in Hansen’s collection.
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A HYBRID TRIDIAGONALIZATION ALGORITHM
FOR SYMMETRIC SPARSE MATRICES*

IAN A. CAVERS*

Abstract. This paper considers sequential direct methods for the reduction of a sparse symmet-
ric matrix to tridiagonal form using sequences of orthogonal similarity transformations. Currently,
the best published approach combines a bandwidth-reducing preordering algorithm, perhaps Gibbs-
Poole-Stockmeyer (GPS), with a band-preserving tridiagonalization such as the EISPACK BANDR
routine. This paper introduces a new hybrid tridiagonalization algorithm, BANDHYB, based upon
band-preserving reduction techniques that rearrange the elimination sequence of nonzero entries to
take better advantage of the sparsity within the band of the permuted matrix. For many practical
sparse problems a GPS-BANDHYB approach substantially reduces the CPU requirements of tridi-
agonalization, compared to a GPS-BANDR scheme, without increasing storage requirements. Over
a wide range of sparse problems the new algorithm reduced CPU time by an average of 31%, with
reductions of more than 60% observed for some problems.

Key words, sparse matrices, tridiagonalization

AMS subject classifications. 65F50, 65F30

1. Introduction. This paper considers methods for the similarity reduction of
a large n n sparse symmetric matrix A to a symmetric tridiagonal matrix T. The
class of algorithms studied are sequential direct methods of the generic form

A0:-A
FOR := 1,2,...,k

Ai "= QTAi_ Q
in which A is systematically reduced to tridiagonal form (Ak T) using a sequence
of k carefully selected orthogonal similarity transformations TQi Ai_lQi.

For symmetric dense eigenvalue problems, tridiagonalization is an important in-
termediate step used in many solution methods [15]. The tridiagonalization of such
problems is typically conduced using either Householder or Givens reduction [21]
requiring O(n3) flops. When a matrix is sparse, however, both standard tridiago-
nalization algorithms quickly destroy sparsity. In fact, for most sparse problems of
interest, little advantage can be made of sparsity with such algorithms. The reduc-
tion requires O(n3) flops and O(n2) storage, and the original matrix might as well
have been treated as dense [7]. This paper reexamines the sparse tridiagonalization
process, developing a new hybrid algorithm based on Givens transformations, that
reorders the elimination sequence of nonzero entries to improve sparsity exploitation.
This hybrid algorithm is better suited to the reduction of general sparse symmetric
matrices than previous alternatives to the standard Householder or Givens reductions.

In the past 20-25 years, sparse matrix research has paid particular attention to the
direct solution of sparse linear systems, producing many clever methods that success-

fully exploit matrix sparsity. (See [5] for example.) Attempts to extend this success
to sparse tridiagonalization have been hindered by the higher levels of fill associated
with orthogonal similarity transformations. Section 2 of this paper presents two pre-
vious attempts to overcome the diiTiculties associated with the tridiagonalization of

Received by the editors April 6, 1992; accepted for publication (in revised form) August 18,
1993.
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Following [15] a flop is defined to be any floating point arithmetic operation.
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general sparse symmetric matrices. Section 3 of the paper introduces our bandwidth
contraction algorithm that reorders the elimination of nonzero entries to control the
introduction of fill and take better advantage of sparsity. In 4, bandwidth contraction
is combined with a column-oriented, band-preserving reduction to produce an effec-
tive hybrid tridiagonalization algorithm. Section 5 then describes implementations
of the bandwidth contraction and hybrid tridiagonalization algorithms. This section
includes an extensive comparison between both sparse algorithms and the EISPACK
BANDR [8] routine on a large number of sparse problems from the Harwell-Boeing
collection [6]. The hybrid tridiagonalization algorithm is shown to substantially re-
duce the computational requirements for most sparse problems. Finally, 6 provides
concluding remarks and directions for future research.

2. Existing sparse tridiagonalization methods. This section explores exist-
ing direct tridiagonalization approaches, analyzing their limitations and their poten-
tial extension to improve sparsity exploitation. After a brief discussion of the role
of Givens rotations in sparse tridiagonalization, we review sparse tridiagonalization
schemes based on customized Givens reductions. We then explore an alternative band-
preserving tridiagonalization approach for banded matrices, including a discussion of
its extension for the tridiagonalization of general sparse symmetric matrices.

2.1. Givens rotations and sparse tridiagonalization. Givens rotations,
G(i,j, 0), are often chosen for sparse matrix application because they permit fine-
grained control over the elimination of nonzeros and the introduction of fill entries.
In fact, rotations can be constructed to zero any entry of a matrix using any other en-
try in its row or column as the zeroing entry. (In Fig. 1, xl is the zeroing entry.) The

cos0 -sin0 1sin 0 cos 0
Xl X X X |
X2 X X X

:1 X X X X X 1
0 x x x x x

FIG. 1. Sparsity structure unioning by a Givens rotation.

trivial example in Fig. 1 illustrates an important property of rotations that impacts
matrix sparsity. If cancellation is ignored and x is nonzero, the sparsity structure of
both modified rows is the union of the structure of the two rows prior to the rotation’s
application. (In the special case of x2 or X zero, the rotation is either the identity or

it swaps the sparsity structure of the two rows, avoiding the introduction of fill entries.
It is advantageous to have a zero zeroing entry. In addition to fill avoidance, swapping
matrix rows to eliminate nonzero x2 requires no floating point computations.)

The algorithms in this paper use Givens rotations to construct orthogonal simi-

larity transformations of the form G(i, j, O)TA G(i, j, 0), which modify both rows and
columns and j of A. By symmetry of the sparse problems and similarity transfor-
mations, all algorithms need only to consider transformation modifications to either
the upper or lower triangular portion of each matrix. Without loss of generality we
work with a matrix’s lower triangular portion.

From the wide selection of rotations that can be constructed to eliminate a par-
ticular nonzero entry, this paper concentrates on algorithms using adjacent rotations.
A rotation G(i,j, 0)T is considered adjacent if li- Jl 1. As discussed in 6, future
study will consider the use of nonadjacent rotations.
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2.2. Customized sparse Givens reduction. Using O(n3) flops and O(n:)
storage, the standard Givens reduction tridiagonalizes a symmetric matrix column
by column as shown in Fig. 2. Within each column nonzero entries are eliminated

FOR col:= 1 TO n-2 DO
FOR row:= n DOWNTO co1+2 DO

A := G(col + 1, row, O)T A G(col + 1, row, 0)

FIG. 2. Givens reduction.

from the bottom up using the column’s subdiagonal entry as the zeroing entry. Dense
Givens rotations, which assume that the unreduced portion of the matrix is dense,
are used throughout.

The flexibility of Givens rotations permits both the order in which a column is
zeroed and the plane of the zeroing rotation to be modified. These variable elements
of the basic algorithm can be used to construct customized sparse Givens reduction
algorithms that attempt to take better advantage of sparsity. Unfortunately, the ex-
perimentation of Duff and Reid [7] shows that, independent of rotation plane selection
and the elimination order of each column’s nonzeros, adaptations of Givens column-by-
column reduction for large sparse matrices generally experience overwhelming levels
of fill and matrix sparsity is quickly destroyed. In fact, Duff and Reid conclude that
if a Givens reduction approach is taken, typically little advantage is made of sparsity
and it is preferable to treat the matrix as dense.

2.3. The tridiagonalization of banded matrices. If tridiagonalization algo-
rithms are to effectively utilize matrix sparsity, it appears essential to restrict the
accumulation of fill entries to some maintainable substructure of the matrix. Suppose
that a symmetric matrix of bandwidth2 b is to be reduced to tridiagonal form. In ad-
dition, for the remainder of this subsection assume that the band is dense. Applying
a column-by-column Givens reduction to the matrix leads to overwhelming levels of
fill outside the band, quickly destroying matrix sparsity. Alternatively, the algorithm
of Rutishauser [18] and Schwarz [20] (subsequently referred to as the Rutishauser-
Schwarz or, simply, R-S algorithm) controls the encumbering effects of fill by actively
preserving a matrix’s banded structure throughout tridiagonalization.

The pseudocode in Fig. 3 outlines the Rutishauser-Schwarz algorithm. Once
again, Givens transformations are used by this band-preserving tridiagonalization
algorithm to provide fine-grained control over the elimination process. Globally, the

FOR col:-- 1 TO n-2 DO
FOR diag:= min(b,n-col) DOWNTO 2 DO

/*Zero Acol+diag,col.*/
A := G(col + diag, col + diag 1, O)T A G(col + diag, col + diag 1, 0)
IF bandwidth(A) > b THEN

Annihilate bulges with additional adjacent Givens transformations.

FIC. 3. The Rutishauser-Schwarz algorithm.

effect is that the banded matrix is reduced column by column. Indeed, within each
column, adjacent transformations eliminate the nonzeros from the outside in. The
key difference is that R-S immediately removes fill created outside the band of the

2 Bandwidth (or semibandwidth) is defined as b maxi,j{1...n},i# li- Jl such that Aij O.
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Band Zeroing
"I’m.nsf0rmat..ion
G(3,4,el)TAG(3,4,O1)

Bulge Chasing
Transformations

G(6,7,B2)TA 6(6,7,e2
6(9,10,B3)TA G(9,10,e3)
G(12,13,B4)TA G(12,13,e4
6(15,16,Bh)TA 6(15,16,e5)

FIG. 4. Bulge chasing to preserve bandwidth.

original matrix. The symmetric elimination of a band nonzero produces a pair of fill
entries, or bulges, outside the band as illustrated by the B1 entries in Fig. 4. Before
eliminating the next band nonzero R-S chases the bulges off the end of the matrix
with an additional sequence of adjacent transformations. (See Fig. 4.) In this fashion
the algorithm maintains the banded structure of the unreduced portion. During the
reduction of a typical column k, the elimination of band entry Aik requires n-b-i+lb 7
bulge-chasing transformations. Adjacent transformations are used exclusively by the
algorithm because nonadjacent rotations create triangular bulges consisting of several
nonzero entries that require a larger number of bulge-chasing transformations.

Table 1 provides formula for the tridiagonalization costs of the Rutishauser-
Schwarz algorithm. The analysis assumes 2 < b

_
(n/2- 1) and Cp-s is the non-

analytic term Mod(n- 1, b)(Mod(n- 1, b)- b), which typically can be safely ignored
without incurring large errors.3 FR_S and TR-s refer to flop and transformation
counts, respectively. In addition to FR_S, the construction of each transformation

TABLE
Tridiagonalization costs of the Rutishauser-Schwarz algorithm for a densely banded matrix.

(- - + ). ( +
_

+)
-F2b3 q- 4b2 b- - q- 3 -F (-s q- 3)CR-s (b--1)(n--1)2+CR_s

requires one square root. Although TR-S is comparable to the number of transfor-
mations used by Givens reduction on the same densely banded problem, in general
the band-preserving approach modifies fewer nonzero entries with each transforma-
tion. As a result, for matrices of moderate bandwidth, Ft_S is smaller than the
floating-point requirements of Givens reduction.

The EISPACK [8] implementation of the R-S lgorithm BANDR does not use
standard Givens transformations. Instead it employs a "root free" vriant of the
transformation, with identical fill properties, often referred to as a fast Givens trans-

3 Mod(x, y) is the remainder from the division of integer x by integer y.
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formation [9]. In this case the computational requirements of the band-preserving
tridiagonMization are reduced to

Fa(10} ( 20)FR_s 4b--+6 n2- 4b2+3b--+10 n

(1)
4b3 5b2 5b 10 10 h+- 2 6 b 7+- +2) CR-s

and n square roots. The analysis leading to F_ ignores the cost of periodic rescaling
and assumes that a reduction uses the two types of fast Givens transformations in
equal proportion. For either variant of the band-preserving R-S algorithm O(bn)
storage is required.

We note that BANDR will not be faster for all bandwidths than the best dense
matrix algorithm, Householder’s reduction. Assuming that the Householder reduc-
tion requires -n3 flops [15], while BANDR requires 4bn2, the dense matrix algorithm
requires fewer flops for bandwidths larger than . However, the selection of a tridiag-
onalization algorithm is often strongly influenced by the lower storage requirements
of the Rutishauser-Schwarz algorithm.

2.4. Generalization of band-preserving tridiagonalization techniques.
For general sparse symmetric matrices we can extend the band-preserving techniques
of Rutishauser and Schwarz to form the following two-stage tridiagonalization algo-
rithm.

1. A :-- pTAp, where P is a bandwidth reducing permutation matrix.
2. TridiagonMize A using the R-S algorithm.

Many heuristic algorithms have been suggested for the identification of bandwidth re-
ducing preorderings [3], [14], but the most widely accepted algorithms are RCM [11]
and GPS [13], [17]. The experience of Gibbs, Poole, and Stockmeyer [14] and our ex-
perimentation with the Harwell-Boeing test matrix collection suggest that GPS most
frequently provides the smallest bandwidth preorderings over a wide range of prob-
lems. Consequently, GPS was selected for the experimentation in 5 and will be ref-
erenced as the bandwidth-reducing preordering in subsequent discussion. Although fill
entries may accumulate during the tridiagonalization of the permuted matrix pTAp,
the R-S algorithm uses bulge-chasing transformations to constrain them to the band.

Limited advantage of sparsity is taken if we treat the band of the preordered
matrix as dense during the tridiagonMization stage of the extended algorithm. In
this case complete reliance is placed upon GPS to exploit sparsity, but for many
problems the band of the preordered matrix is relatively sparse prior to reduction.

(See Table 2.) To take advantage of band zeros, three modifications could be made
to the basic band-preserving tridiagonalization algorithm.

1. Avoid constructing and applying transformations to eliminate band or bulge
entries that are already zero.

2. Exploit zeroing entries (see 2.1) that are zero by performing row and column
exchanges instead of using the general form of the Givens transformation.

3. Apply each nontriviM transformation to only those lower triangular entries
whose column(row) index is in the unioned sparsity structure of the two modified
rows(columns).
Both the Schwarz code [20] and EISPACK BANDR [8] check if the bulge or band
entry is already zero before performing an elimination. These codes, however, are
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TABLE 2
Band filling characteristics of sparse R-S.

Problem n Bandwidth

5-pt problems b2 b
PLAT1919 1919 "80(GPS)
NOS3 960

Initial
off-diagonal band
density

2/b

No. of columns (rows) elimi-
nated before band is full.

b-1
10.1% 31

65(GPS) 12.4% 19

primarily intended for densely banded matrices and neither incorporates the second
or third modification. Enhancing the two-stage tridiagonalization algorithm by all
three sparsity modifications produces a new algorithm subsequently referred to as the
sparse Rutishauser-Schwarz algorithm or simply sparse R-S.

Unfortunately, the unreduced portion of a typical sparse matrix’s band still fills
quickly during band-preserving tridiagonalization. As an example, consider applying
sparse R-S to five-point problems created by discretizing partial differential equations
on a uniform b b square grid with Dirichlet boundary conditions. The problems
are ordered with a standard lexicographic labeling, minimizing bandwidth at b. After
b- 1 columns of a five-point problem have been reduced to tridiagonal form, the
remainder of the band is completely filled in. The preponderance of fill within the
band is largely due to the sequence of bulge-chasing rotations required by each band
nonzero’s elimination. Once the matrix’s band has been filled, there is no further
opportunity to exploit sparsity beyond the densely banded form of the remaining
submatrix. Consequently, the flop and transformation requirements of a five-point
problem reduction are identical in the highest order terms to F_S and TR-S for a
densely banded matrix of equivalent order and bandwidth.

The speed with which the band of a five-point problem fills is typical of most
large sparse symmetric problems. Table 2 provides fill data for two additional sparse
problems from the Harwell-Boeing test matrix collection [6] as tridiagonalized by
sparse R-S. Despite starting with relatively sparse bands, the unreduced portion of
the band of both problems is completely filled well before b columns are reduced to
tridiagonal form.

Because of high levels of band fill, typically very little advantage can be taken of
sparsity in the band. In general, the application of sparse R-S is only slightly superior
to the original band-preserving R-S tridiagonalization approach. In the next section
we introduce an alternative to sparse R-S that more successfully utilizes band sparsity.

3. Bandwidth contraction. The previous section demonstrated the inability
of sparse R-S to take good advantage of internal band sparsity. This section presents
an alternative approach to sparse tridiagonalization. It also uses bandwidth-reducing
preorderings and band-preserving reduction techniques, but reorders the elimination
sequence to more fully exploit band sparsity.

3.1. Motivation. The sparse tridiagonalization techniques explored in this sec-
tion are motivated by the following observation. A bandwidth-reducing preordering
frequently produces a permuted matrix whose profile consists of varying length spikes
of nonzeros extending from the main diagonal. The longest spike defines the band-
width of the permuted matrix as shown in Fig. 5. For many practical problems,
the spikes of the permuted matrix are of dramatically different lengths. The new

sparse tridiagonalization approach attempts to exploit this characteristic. Although
fill cannot be avoided, the bandwidth of the matrix could be significantly reduced
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xxx
xx

FIG. 5. Matrix bandwidth and spike length.

with relatively few transformations if the ends of the longest spikes could be clipped
off at low cost before the contracted band becomes dense.

3.2. The sparse bandwidth contraction algorithm. There are a number of
ways that the ends of the profile’s longest spikes could be clipped off with Givens
transformations. One way to approach the clipping process is to rearrange the elimi-
nation order of a band-preserving tridiagonalization so that the matrix is reduced to
tridiagonal form diagonal by diagonal (outermost diagonal first), rather than column
by column as in sparse R-S. A diagonally oriented band-preserving tridiagonalization
for densely banded symmetric matrices has been previously considered [19], [21], but
was superseded on sequential machines by the Rutishauser-Schwarz column-oriented
reduction [18], [20]. (See 4.1 for a detailed comparison of algorithm complexity.) To
our knowledge, however, no one has considered the relative merits of the two reduc-
tion paradigms extended for general application to sparse symmetric matrices. (For
densely banded matrices, the LAPACK [1] project considered the relative merits of
these two algorithms implemented on vector machines.)

As shown in Fig. 6, our bandwidth contraction algorithm uses the diagonally ori-
ented spike-clipping process to completely tridiagonalize a sparse symmetric matrix.

1. A := pTAp, where P is a bandwidth-reducing permutation matrix.
2. b bandwidth(A) ,3. FOR b := b DOWNTO 2 DO / Tridiagonalize A.*/

FOR col 1 TO n-b DO
IF Aco+,co : 0 THEN /*Zero Aco+,co.*/

IF Aco+-_l,co 0 THEN
Exchange rows/columns (col + b) and (col + b- 1) in A.

ELSE
A := G(col +, col +- 1, 0)T A G(col +, col +- 1, 0)

(Exploit band sparsity of modified rows and columns.)
IF bandwidth(A) > b THEN

Chase bulges with additional adjacent Givens
transformations or row/column exchanges.

ENDIF/*Outermost IF*/
FIG. 6. The bandwidth contraction algorithm.
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To properly exploit band zeros, the three modifications made to the basic Rutishauser-
Schwarz algorithm in 2.4 are also incorporated into the bandwidth contraction algo-
rithm.

We begin with the matrix symmetrically permuted to reduce bandwidth. Then,
starting with Al+b,1, the band’s outermost diagonal is scanned for its first nonzero en-
try. This entry is eliminated using an adjacent Givens transformation or a row/column
exchange. If a nonzero entry is created beyond the current bandwidth, the bulge is
chased off the end of the matrix as described in 2.3. The scanning and reduction
of the outermost diagonal continues until all nonzeros have been eliminated. At this
point the current bandwidth of the matrix is reduced by one and the reduction process
continues with the next diagonal.

As for the sparse Rutishauser-Schwarz algorithm, bandwidth contraction uses
adjacent transformations exclusively, avoiding the creation of multiple entry bulges
and the concomitant extra bulge-chasing transformations. Triangular bulges not only
increase computational costs, they also accelerate the introduction of fill entries into
the band. An added complication for a diagonally oriented tridiagonalization is that
nonadjacent transformations may reintroduce fill entries in previously zeroed positions
of the diagonal. This discussion, however, is not intended to completely rule out the
use of nonadjacent transformations. There are special sparsity patterns for which non-
adjacent transformations are beneficial. Future study will explore the potential role of
nonadjacent transformations in more sophisticated bandwidth contraction algorithms.

3.3. A demonstration of bandwidth contraction. To illustrate the poten-
tim effectiveness of bandwidth contraction, we provide a small contrived example in
Fig. 7. The top matrix in Fig. 7 shows the original sparse matrix A with its nonzero
entries indicated by an X and the numbered diagonal. It is assumed that A has al-
ready been permuted to reduce its bandwidth to 6. Two additional matrices, C and
D, illustrate A after a partial reduction by sparse R-S or bandwidth contraction. In
both C and D a 0 marks the positions of eliminated band nonzeros. Finally, reported
flop counts assume that both reductions employ fast Givens transformations.

Matrix C illustrates A after sparse R-S has reduced its first three columns to
tridiagonal form. Despite the highly sparse nature of the original problem, the re-
mainder of the band is almost completely filled. The entire tridiagonalization uses
eight row/column exchanges and 132 nontrivial transformations, requiring a total of
7232 flops.

Matrix D illustrates A after bandwidth contraction has eliminated the three out-
ermost nonzero diagonals and contracted the bandwidth to 3. Although the elimina-
tion of nonzeros once again produces fill entries within the band relatively quickly, the
algorithm is able to efficiently exploit the sparsity of the band away from the main di-
agonal. For example, bandwidth contraction eliminates the entire sixth and fifth sub-
diagonMs of the band at the relatively low cost of 216 flops, using seven row/column
exchanges and four nontrivial transformations. The complete tridiagonalization uses
12 row/column exchanges and 163 nontrivial transformations, requiring a total of
6537 flops. For this example, the computational requirements of tridiagonalization
with bandwidth contraction, as measured by flop counts, are approximately 9.6%
lower than for the sparse R-S approach.

It is important to note that the number of nontrivial transformations used by
a tridiagonalization is a misleading metric of algorithm performance. Bandwidth
contraction requires more transformations, but generally fewer nonzeros are modified
by each nontrivial transformation, permitting a lower total flop count.
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The key to the success of bandwidth contraction is the elimination of the outer-
most diagonals at low cost. As the result of several contributing factors, bandwidth
contraction prolongs the advantages of sparsity in the outermost subdiagonals. First,
when nontrivial adjacent transformations are required, they are often applied to well-
separated pairs of rows and columns, insulating the effects of fill from one transfor-
mation to the next. In contrast, the sparse R-S initial band zeroing transformations
and associated bulge-chasing transformations are applied to groups of neighboring
rows and columns. These initial transformations produce a cascade of fill entries,
typically not observed for bandwidth contraction, which quickly fills the band despite
a matrix’s initial sparsity. Second, the sparsity of the outermost diagonals permits
bandwidth contraction to cheaply eliminate many of the band nonzeros and associ-
ated bulges, without fill, using row/column exchanges. In addition, the sparsity of the
outermost diagonals often reduces the number of transformations required by bulge-
chasing sequences. Finally, as the nonzeros of the outermost diagonal are eliminated,
bulge-chasing sequences must shorten, while the length of the sequences used by sparse
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(BC flops)/R-S flops)
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FIG. 8. The flop requirements of BC relative to R-S for a densely banded matrix, n 1000.

R-S remains relatively constant as it reduces the first few columns. Consequently, the
initial stage of bandwidth contraction produces fewer band fill entries. Thus, the
partial tridiagonalization often significantly contracts the matrix’s bandwidth before
producing a densely banded intermediate matrix.

In general, the relative success of the sparse tridiagonalization algorithms de-
pends on problem-specific sparsity structures. The extensive experimental analysis of
5 confirms the relative advantage experienced by bandwidth contraction for many
practical sparse problems.

4. A hybrid tridiagonalization algorithm.

4.1. Motivation. Two metrics of tridiagonalization algorithm cost are flop and
transformation counts F and T. As demonstrated in the previous section, the band-
width contraction algorithm may be able to significantly reduce the bandwidth of
a sparsely banded matrix at relatively low cost. Consequently, for sparsely banded
matrices, bandwidth contraction flop counts are smaller than for sparse R-S, de-
spite larger transformation counts. If the band of a matrix is dense, however, the
Rutishauser and Schwarz column-oriented band-preserving tridiagonalization is supe-
rior in both measures of work.

Table 3 provides formulas for the tridiagonalization costs for the fast Givens
bandwidth contraction variant applied to a densely banded, symmetric matrix of
bandwidth b. The analysis assumes that b < (n + 1)/2 and that an equal proportion
of the two types of fast Givens transformations are employed. The analysis ignores the
potential cost of the periodic rescaling required by fast Givens transformations. CBC
is the nonanalytic term Mod(n, k)(k-Mod(n, k)). When b << n, the Mod(n, k) terms

TABLE 3
Tridiagonalization costs of the bandwidth contraction algorithm for a densely banded matrix.

(22 16b 3b2) n4b 4 + 10 -k=2 () n2+

TBC

=.()-(-

can be safely ignored without incurring significant errors. Comparison of FI and
FI_ from (1) in 2.3, shows that the flop requirements of bandwidth contraction are
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larger than those for the R-S algorithm applied to the same problem. To demonstrate
the potential difference in tridiagonalization costs, Fig. 8 plots the flop requirements of
bandwidth contraction, normalized by F_Gs, against bandwidth for a densely banded
matrix.

While F is typically 10-25% larger than FFGR-S, for problems with nontrivial
bandwidth, the difference between TBC and TR-S can be much greater. At first glance
there may seem to be an inconsistency in our analysis. As mentioned in 3.3, however,
transformation counts are generally a misleading metric of tridiagonalization costs.
FG FGFR_s and FBC are closer than predicted by TBC and TR_s because, as bandwidth

contraction reduces a matrix’s bandwidth, the number of nonzeros modified by each
transformation generally declines. The computational effort of applying later trans-
formations is reduced, while for the R-S algorithm the cost of each transformation
remains relatively constant.

As an aside to our discussion of sequential algorithms, vector machines com-
plicate the relative efficiency analysis of tridiagonalization algorithms. In general,
vector machines put more weight on T relative to F. During the development of the
LAPACK [1] replacement for BANDR, SSBTRD, several band-preserving tridiago-
nalization algorithms were tested on vector machines [4]. In very general terms, for
small n (less than 50) or matrices with moderate bandwidth (20 _< b < 50), it was
found that vectorized code based on a diagonally oriented elimination is the fastest
approach. For other densely banded matrices, variants of a column-oriented tridiag-
onalization are more efficient. Emphasizing the importance of good performance for
large n and small bandwidth, SSBTRD is based on the column-oriented, vectorized
algorithm of Kaufman [16].

4.2. The hybrid tridiagonalization algorithm. The observations of the pre-
vious subsection suggest a hybrid tridiagonalization algorithm. While the band of
the resulting matrix remains sparse, the hybrid algorithm employs the bandwidth
contraction scheme. When some measure of band density or "fullness" exceeds a
specified threshold, the reduction switches to sparse R-S to complete the tridiagonal-
ization. To avoid the redundant elimination of band nonzeros, the hybrid algorithm
always completes the reduction of a nonzero diagonal before switching to sparse R-S.
Vector machines complicate the transition decision. This paper concentrates on the
sequential algorithm.

The most sensitive design issue for this hybrid algorithm is the selection of a met-
ric for measuring band fullness and the choice of a threshold value. There are many
ways to determine when the contracted band is dense or nearly so. The most obvious
choice is to directly monitor the number of nonzero entries in the band. Instead, we
suggest regulating the transition between bandwidth contraction and sparse R-S by
a threshold on the number of nonzero entries in the outermost nonzero subdiagonal.
The transition is made when the number of nonzeros is greater than some fraction
of the subdiagonal’s length. As shown below, monitoring the number of nonzeros in
the next subdiagonal can be integrated cheaply into bandwidth contraction. Equally
important, this transition regulation technique is a good approximation of band den-
sity. As shown in 5, sparsity within the band is best exploited at the transformation
level, which is controlled by the zeros in the outermost diagonal. In addition, once
the outermost diagonal is full, or nearly so, each successive subdiagonal eliminated
will have a similar density and the band will quickly fill.

The pseudocode in Fig. 9 describes the hybrid tridiagonalization algorithm. Let
threshold be the fraction of the outermost diagonal that must be nonzero before the
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1. A :- pTAp, where P is a bandwidth-reducing permutation matrix.
2. b := bandwidth(A)
3. /*Initialize nzcnt for the outermost diagonal.*/

nzcnt :-- 0
FORi:-- 1TOn-bDO

IF Ai+b,i 0 THEN nzcnt:= nzcnt+l
4. (a) b:=b

(b) /*While the matrix is not tridiagonal and the threshold has not been*/
/*met, eliminate the outermost nonzero diagonal.*/
WHILE (b >_ 2) AND (nzcnt < (threshold * (n- b))) DO

i. nzcnt "= 0
ii. FOR col :- l TO n- b DO

IF Aco+,co = 0 THEN /*Zero Acol+,co.*/
IF Aco+-_l,co 0 THEN

Exchange rows/columns (col + b) and (col + b- 1) in A.
ELSE

A ’= G(col +, col +- 1, )T A G(col +, col +- 1, )
(Exploit band sparsity of modified rows and columns.)

IF bandwidth(A) > b THEN
Chase bulges with additional adjacent Givens
transformations or row/column exchanges.

ENDIF/*Outermost IF*/
IF Aco+b_l,co -0 THEN nzcnt:= nzcnt+l

iii. IF An,n_+ 0 THEN nzcnt:= nzcnt+ l

iv. b:--b- 1
(c) IF b > 1 THEN complete tridiagonalization with sparse R-S.

FIG. 9. The hybrid tridiagonalization algorithm.

transition to sparse R-S is made and let nzcnt be the number of nonzeros in the next
subdiagonal. The algorithm is able to check the nonzero status of entry Aco+-_,col
after the elimination of entry Aco+-,col because the entries of row (b + col 1) will
not be modified again during the reduction of the current outermost diagonal. The
resource requirements of the band density metric are^ minimal--one additional inger
variable, and during each diagonal’s reduction n-b comparisons and at most n-b+ 1
integer operations.

4.3. Performance of the hybrid tridiagonalization algorithm. Consider
the application of the hybrid tridiagonalization algorithm to matrix A of Fig. 7 with
a threshold of 0.85. In the first stage of the tridiagonalization, bandwidth contraction
reduces the three outermost nonzero subdiagonals, producing matrix D of Fig. 7.
The hybrid tridiagonalization algorithm then transfers control to sparse R-S to com-
plete the reduction to tridiagonal form. Table 4 summarizes the computational re-
quirements of all three sparse tridiagonalization algorithms, assuming the use of fast
Givens transformations. The hybrid algorithm requires approximately 19% and 10%
fewer flops than sparse R-S and bandwidth contraction, respectively. It is interesting
to note that the total number of nontrivial transformations required by the hybrid
tridiagonalization algorithm is significantly lower than for bandwidth contraction and
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TABLE 4
Tridiagonalization summary for a small sparse example.

Method Row/Column Nontrivial Transformations
exchanges

Sparse R-S 8 132
Bandwidth contraction 12 163
Hybrid tridiagonalization 12 136

7232
6537
5880

only marginally higher than for sparse R-S.
As an additional example, the five-point problem, with a standard lexicographic

ordering, produces matrices for which the bandwidth contraction algorithm is able to
take little advantage of band sparsity. The hybrid algorithm, however, detects the
inability of a partial bandwidth contraction to exploit matrix sparsity and immediately
switches to sparse R-S. The extra costs incurred over a direct application of sparse
R-S are insignificant, except for very small problems. Generally, even in the worst
case, the hybrid tridiagonalization algorithm is always comparable to sparse R-S.

The test problem of Fig. 7 is obviously a trivial example. The experiments de-
scribed in the following section, however, show that the hybrid tridiagonalization
algorithm dramatically reduces the computational requirements of sparse tridiagonal-
ization for a wide range of sparse problems.

5. Experimentation. This section describes extensive experimentation with im-
plementations of the bandwidth contraction and hybrid tridiagonalization algorithms.
After briefly describing the implementations, testing environment, and suite of test
problems, we analyze test results comparing the implementations to the EISPACK
BANDR.

5.1. Implementation. The implementation of bandwidth contraction BAND-
CON was created by rewriting the EISPACK Fortran routine BANDR (an R-S code)
to perform a sparse, diagonally oriented, band-preserving tridiagonalization. Using
this new routine, BANDHYB implements the hybrid tridiagonalization algorithm by
augmenting BANDCON with the threshold strategy described and a transition to a
modified version of BANDR that omits initializations. The hybrid algorithm switches
to a column-oriented scheme when the band is dense or nearly so. Given the speed with
which a sparse band fills during an R-S reduction (see 2.4), using a sparse R-S code
for this portion of the BANDHYB code is not warranted. Otherwise BANDCON and
BANDHYB closely follow the algorithms in 3.2 and 4.2 with one exception. That
is, based on the outcome of the following study, we implement bandwidth contraction
with only two of the three sparse algorithm modifications listed in 2.4.

Unlike the first two sparsity modifications listed in 2.4, exploiting the sparsity
of a pair of rows or columns during the application of a transformation requires sig-
nificant overhead. To determine if the potential savings were worthy of the increased
overhead, experiments with a symbolic reduction code were conducted. Assuming no

cancellation, the program estimates the flop requirements of different tridiagonaliza-
tion algorithms by manipulating matrix sparsity structures. For 15 larger problems,
this code compared the flop requirements of a hybrid tridiagonalization algorithm
that fully exploits sparsity with one that treats the band as dense while applying a

transformation. Accounting procedures differ between the two simulations, but the
sequence of sparsity structures encountered is identical.

Going from dense to sparse transformations, savings of 12-22% in the bandwidth
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contraction portion of the reduction are observed for three problems; however, for
the remaining matrices, savings are less than 5%. Considering the cost of the en-
tire hybrid tridiagonalization, the potential savings of sparse transformations in the
bandwidth contraction are very small. The largest reduction is 1.2% and for the re-
maining problems the potential savings are 1% or lower. Considering the storage and
computational overhead required by a sparse data structure, performing sparse trans-
formations is not beneficial to BANDCON or BANDHYB performance and will not
be pursued by the sparse tridiagonalization implementations described in this paper.
In future work, however, sparse transformations will be reevaluated for the special
case in which a partial bandwidth contraction is the end goal.

As a consequence of the preceding study, both BANDCON and BANDHYB keep
the densely banded data structure of BANDR, storing each subdiagonal of the band’s
lower triangular portion in a separate column of an n (b + 1) double precision array.
As a result, the storage requirements of the three routines are essentially identical
and the analysis of 5.3 concentrates on the CPU requirements of each routine.

To improve eciency, BANDR uses fast Givens transformations instead of classi-
cal Givens transformations. Unfortunately, to avoid overflow problems when a tridiag-
onalization requires a large number of transformations, periodic rescaling is necessary.
In BANDCON and the bandwidth contraction portion of BANDHYB, the BANDR
rescaling strategies are completely reformulated. This aspect of the implementation
will not be given in detail here; in general, the bandwidth contraction algorithm needs
more rescaling than the column-oriented tridiagonalization. Fortunately, the compu-
tational requirements for rescaling in either approach was insignificant for all large
problems tested.

5.2. Test problems and the testing environment. To compare the compu-
tational requirements of BANDCON and BANDHYB to BANDR, all three routines
are applied to 115 symmetric problems from the Harwell-Boeing sparse matrix col-
lection [6]. The problems range in size from a 24-node problem to the BCSSTK24
problem with n 3562. When nonzero values are not provided by the collection, a
random value in the range (0.0, 1.0] is assigned to each nonzero entry. Unless oth-
erwise specified, each problem is preordered to reduce bandwidth using the Lewis
implementation of GPS [17].

All testing was conducted on a SUN SPARCstation 2. The reported CPU second
timings, produced using the system routine et+/-me, include both user and system
time. In these experiments the transition to a column-oriented tridiagonalization
in BANDHYB is made when the outermost subdiagonal is full. In our experience,
threshold values less than 1.0 can improve the performance of BANDHYB for some
sparse problems. Our research of effective threshold selection techniques, however, is

inconclusive, so we chose to work with a value of 1.0 in this paper.

5.3. Numerical results. BANDCON and especially BANDHYB are very suc-
cessful relative to the EISPACK BANDR. For 98 of the 115 problems tested, the
hybrid tridiagonalization algorithm significantly reduced CPU requirements. For this
group of problems, reductions in CPU time range from a low of 6.6-/0 to a high of
63.3%. For the 70 problems tested with more than 400 nodes, BANDHYB required
on average 31.1% fewer CPU seconds than BANDR. The first 20 entries of Table 5
summarize timings of test problems for which BANDHYB is especially successful. For
this group BANDHYB exhibited a mean reduction in CPU time of 44.2%. Of the
17 test problems for which BANDHYB shows little or no improvement, 14 are very
small problems and three matrices have between 400 and 1000 nodes.
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Name

685 BUS
GR 30 30
NOS3

DWT 1005
CAN 1054
CAN 1072
BCSSTK09
1138 BUS
ERISl176
DWT 1242
BCSPWR07
BCSPWR09
PLAT1919
BCSSTK26
DWT 2680
ZENIOS

SSTMODEL
LSHP3466
BCSSTK24
BCSSTK28

TABLE 5
Selected tridiagonalization timings.

685 78
900 49
960 65
1005 106
1054 112
1072 156
1083 95
1138 126
1176 100
1242 91
1612 103
1723 116
1919 80
1922 245
2680 65
2873 30
3345 82
3466 61
3562 312
4410 323

Tridiagonalization times (sec)
BANDR BANDCON BANDHYB % CPU reduction

BANDR-,BANDHYB

67’7
77.9
128.6
209.1
237.5
331.9
234.3
305.3
291.3
278.6
604.4
730.4
706.7
1863.7
1103.3
1.25

1449.8
1790.7
8990.3
14643

26.4
59.2
85.8
88.7
151.7
193.7
158.5
111.7
118.9
149.2
233.5
312.4
440.0
1018.0
678.7
0.81
856.3
1448.1
5417.2
9235.5

DWT361 3.29 [ 3.94

26.0
57.9
83.1
86.8
147.6
189.2
150.8
112.2
120.1
142.6
232.8
313.1
424.6
1001.1
664.9
0.86
857.8
1441.8
5328.9
9118.1

3.14

61.6
25.7
35.4
58.5
37.8
43.0
35.7
63.3
58.8
48.8
61.5
57.1
39.9
46.3
39.7
31.2
40.8
19.5
40.7
37.7

4.6

Although the performance of BANDCON is similar to BANDHYB for most of the
problems listed in Table 5, for some problems BANDCON is slower than BANDR. As
an example, consider the tridiagonalization times of DWT 361 given at the bottom
of Table 5. BANDCON requires significantly more CPU time than does BANDR.
Such performance degradation is understandable from the theoretical analysis for the
tridiagonalization of densely banded matrices provided in 4.1. The hybrid routine

BANDHYB, however, always has comparable CPU requirements to BANDR in the
worst case; for the majority of sparse problems it is significantly faster.

For 40 of the 115 problems tested, BANDHYB, with a threshold of 1.0, uses band-
width contraction for the entire tridiagonalization process. The band of many of these
problems becomes quite dense towards the end of the reduction and the tridiagonal-
ization might have benefitted by an earlier switch to BANDR. This suggests that
although the transition regulating criterion works well for most problems, there is
room for improvement using lower threshold values or a more sophisticated transition
criterion.

Although BANDHYB implements efficient techniques for clipping longer spikes, it
is important to reiterate that the primary objective of preordering must be to reduce
bandwidth. It is not beneficial to search for preorderings with long spikes or with a

wide variation in spike length as the first priority. For example, nested dissection [10]
permutations of sparse matrices often produce spikes of widely varying length, with
the longest spikes towards the bottom of the matrix. But the bandwidth of such
preorderings is much larger than for GPS. Although BANDHYB takes good advan-
tage of the increased sparsity away from the main diagonal for nested dissection pre-
orderings, Table 6 demonstrates that it is much better to choose bandwidth-reducing
preorderings. More direct examples of banded-like ordering are given by considering
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TABLE 6
Sparse tridiagonalization, GPS versus nested dissection.

Name GPS bw ND bw
n (transbw) (transbw)
BCSSTK09 95 980
0s (57) ()

DWT 1007 34 894
1007 (12) (22)

PLAT1919 80 1891
1919 (10) (72)

BCSSTK27 45 778
14 () ()

Tridiagonalization times (sec)
BANDR

234.3 964.4

BANDHYB
Ps ti

150.8 375.6

"72.2 715.3 50.2 137.4

706. 6877.0 424.6 2729.0

140.4 1145.7 113.7 264.6

TABLE 7
The effects of a poor preordering on DWT 878.

Preordering method Bandwidth BANDR time BANDHYB time
GPS 27 43.1 34.1i
RCR/I 46 70.0 36.3
GK 40 59.8 34.7

the tridiagonalization of DWT 878 using GPS, RCM [11], and GK [12], [17] preorder-
ings summarized in Table 7. GK and RCM are likely to have longer spikes (higher
bandwidth) but better profile than GPS. They are exactly the kinds of orderings one
might use to get longer spikes. Switching from a GPS ordering to either RCM or GK,
the CPU requirements of BANDR closely mirror the large increase in bandwidth.
The "spike clipping" process of BANDHYB, however, is able to efficiently exploit
the increased band sparsity presented by RCM and GK, resulting in only marginal
increases in CPU requirements..

6. Conclusions and future study. This paper has introduced novel sequential
methods for the tridiagonalization of symmetric sparse matrices. We began by describ-
ing the difficulties and limitations associated with existing direct methods extended
for use with sparse matrices. The most successful of these approaches combined GPS
and an enhanced version of the Rutishauser-Schwarz algorithm. Unfortunately, the

Rutishauser-Schwarz algorithm was designed primarily for densely banded matrices
and proved unable to take advantage of the band sparsity of matrices permuted to
reduce bandwidth. Alternatively, working with adjacent transformations and bulge-
chasing techniques, the elimination sequence of band entries was modified to produce
a hybrid tridiagonalization algorithm, which is shown to more fully exploit matrix
sparsity. Compared to the EISPACK BANDR, BANDHYB dramatically reduced the
CPU requirements of tridiagonalization without an increase in storage. Even in the
worst case, BANDHYB was always comparable to BANDR.

Although substantial progress has been made, there is room for improvement and
future research will address many interesting areas. The hybrid algorithm presented
by this paper is one approach of many in a large algorithm space. The following list
outlines a few of the different alternatives defining the space of band-oriented, sparse
tridiagonalization algorithms.

1. Chase all bulge entries between band eliminations or attempt to delay or

avoid bulge-chasing transformations.
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2. Eliminate a single entry or multiple entries with each transformation.
3. Use adjacent transformations exclusively or permit the use of nonadjacent

transformations as well.
4. Target the algorithm for serial, vector, or parallel computing environments.
5. Zero the nonzero entries using alternative elimination sequences.

For densely banded matrices, a recent paper by Bischof and Sun [2] investigates
time and space tradeoffs associated with avoiding or delaying bulge chasing and elim-
inating multiple-band entries with a single transformation. These techniques are not
appropriate for all stages of a sparse tridiagonalization. However, although multiple
elimination is inappropriate while the band of the matrix remains sparse, future work
will consider its incorporation into the second stage of the hybrid tridiagonalization
algorithm. In addition, both techniques are of special interest for parallel sparse
tridiagonalization algorithms under investigation.

Future research will also explore the potential role of nonadjacent transformations
in sparse tridiagonalization algorithms using a symbolic model of fill under develop-
ment. New elimination sequences that permit additional exploitation of band sparsity
will be sought. The transition strategies of BANDHYB will be explored in further
detail, seeking more advantageous threshold values or more sophisticated transition
techniques. Finally, the extension of sparse tridiagonalization techniques to bidiago-
nalization is being considered.

A future paper will compare eigenvalue methods based on a sparse tridiagonal-
ization with other eigenvalue methods, in particular Lanczos-type algorithms, used in
the solution of specific sparse symmetric eigenvalue problems.
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