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SCALING MATRICES TO PRESCRIBED ROW AND COLUMN MAXIMA*
URIEL G. ROTHBLUM?, HANS SCHNEIDER}, AND MICHAEL H. SCHNEIDER$

Abstract. A nonnegative symmetric matrix B has row maxima prescribed by a given vector r, if for each
index i, the maximum entry in the ith row of B equals r;. This paper presents necessary and sufficient conditions
so that for a given nonnegative symmetric matrix 4 and positive vector r there exists a positive diagonal matrix
D such that B = DAD has row maxima prescribed by r. Further, an algorithm is described that either finds such
a matrix D or shows that no such matrix exists. The algorithm requires O(n Ig » + p) comparisons, O(p)
multiplications and divisions, and O(q) square root calculations where 7 is the order of the matrix, p is the
number of its nonzero elements, and g is the number of its nonzero diagonal elements. The solvability conditions
are compared and contrasted with known solvability conditions for the analogous problem with respect to row
sums. The results are applied to solve the problem of determining for a given nonnegative rectangular matrix
A positive, diagonal matrices D and E such that DAE has prescribed row and column maxima. The paper
presents an equivalent graph formulation of the problem. The results are compared to analogous results for
scaling a nonnegative matrix to have prescribed row and column sums and are extended to the problem of
determining a matrix whose rows have prescribed /, norms.
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1. Introduction. A matrix B is called a symmetric scaling of a nonnegative square
matrix 4 if B = DAD for some positive diagonal matrix D. A matrix B is called an
equivalence scaling of a nonnegative rectangular matrix 4 if B = DAE for some positive
diagonal matrices D and E. In this paper we give necessary and sufficient conditions that
a given symmetric nonnegative matrix 4 has a symmetric scaling with prescribed row
maxima. In particular, we show that for a given pattern (i.e., locations of strictly positive
entries) if the class of symmetric nonnegative matrices with that pattern and having the
prescribed row maxima is nonempty, then every nonnegative matrix with that pattern
can be symmetrically scaled into the class. Thus, our conditions relate the prescribed
row maxima to the pattern of the matrix 4.

Further, we describe an algorithm that for a given matrix A4 either determines a
symmetric scaling B with prescribed row maxima or shows that no such scaling exists.
Using our results for symmetric scalings, we also establish corresponding results for the
problem of determining an equivalence scaling of a rectangular nonnegative matrix with
prescribed row and column maxima. Our results have natural interpretations in terms
of weighted undirected graphs.

We call the problem of finding for a given square nonnegative matrix a symmetric
scaling with prescribed row maxima max symmetric scaling and the problem of finding
for a given rectangular nonnegative matrix an equivalence scaling with prescribed row
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and column maxima max equivalence scaling. These problems are analogues of corre-
sponding well-studied scaling problems in which row and column sums are prescribed.
We refer to the sum versions of these problems as sum symmetric scaling and sum
equivalence scaling. The problem of sum equivalence scaling was described in the en-
gineering literature by Kruithof [10] and was considered by Sinkhorn [17], Brualdi [5],
Sinkhorn and Knopp [18], Bregman [1], Menon [12], Menon and Schneider [13],
Schneider and Zenios [16], and many other authors. The sum symmetric problem was
considered by Brualdi [3], [4] and Marshall and Olkin [11].

One important application of sum equivalence scaling concerns the updating of
(dynamic) data that is given in matrix form, e.g., traffic intensity between sources and
destinations. When new data is not fully observable, but new marginals consisting of
corresponding row sums and column sums are observable, a common technique is to
replace the old data given by a matrix 4 by a scaling DAE whose row sums and column
sums equal the observed marginals. Max equivalence scaling arises naturally when ob-
servations about the new data concern row and column maxima.

We describe our notation in § 2 and list some solvability results for sum symmetric
and sum equivalence scalings in § 3. We consider these problems both for a given pattern
and for all subpatterns of a given pattern, and we add some new results in the latter case.
In § 4 we give nine equivalent conditions for the existence of a solution of the max
symmetric scaling. In § 5 we present an algorithm that, for a given nonnegative matrix
A, either symmetrically scales 4 to have prescribed row maxima or determines that no
such scaling can exist. In § 6, we apply the results of § 4 to study max equivalence scaling,
and in § 7 we restate our results in terms of weighted undirected graphs. Finally, in § 8
we unify max symmetric scaling and sum symmetric scaling by considering scaling prob-
lems in which the /, norms of the rows of the matrix are prescribed.

2. Notation and definitions. For a positive integer 7, we use the notation (n) to
denote the set of integers {1, 2, ..., n}. For a subset I = (n), we use I to denote the
set (n)\I, the complement of I with respet to {n’). The identity of n will always be clear
from the context. The cardinality of a finite set S'is denoted | S|. Also, we use the symbols
< and < to denote strict and weak containment, respectively.

Let A be an m X n nonnegative matrix and let / and J be nonempty subsets of ()
and (n), respectively. We use the notation Ay, to denote the |I| X |J| submatrix of 4
corresponding to the rows and columns of 4, indexed by I and J, respectively. We
identify an index i and the set {i}. For example, when I = {i}, we write 4;; for 4;;. By
convention, we write A;; = 0 if either 7 or J equals the empty set.

For a vector 7 = (ry, ..., 1,)7 € " and subset I = (n), we use the notation ; to
denote the subvector of r whose entries are r; for i € I, and we use r(I) to denote the
element sum of r;. We follow the standard convention that the summation over the
empty set is defined to be 0. Also, the value of max;.;7; in the case of I = & depends
on the underlying group to which the elements r; belong. Specifically, if we are considering
the entries of r as entries of the multiplicative group of nonnegative real numbers, then
the maximization over the empty set is defined to be 0, whereas if the entries are viewed
as elements of the additive group of real numbers, then the maximization over the empty
set is defined to be —oo . The additive case arises in § 7 when we consider graph versions
of our results. Also, for a > 0, we define the operation § = +o0 . This operation will occur
only in minimization expressions over sets containing an element of finite value.

The n X n diagonal matrix whose diagonal entries are d,, ds, .. ., d, is denoted
diag (d,, d>, . . ., d,). A diagonal matrix D = diag (d,, 5, . . ., d,) is called positive if
d; > 0 for i € {n). For an n X n nonnegative symmetric matrix 4, a matrix B is called
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a symmetric scaling of A if B = DAD for some positive diagonal matrix D. For an
m X n nonnegative matrix 4, a matrix B is called an equivalence scaling of A if B =
DAE for some positive diagonal matrices D and E.

An m X n matrix P = [p;] is called a pattern matrix if every entry of P is either O
or 1. Given two m X n pattern matrices P and P’, the matrix P’ is a subpattern of P if
P’ = P. Given a m X n nonnegative matrix 4 = [a;], the pattern of A is the m X n
pattern matrix P such that for i € (m) and j € {(n)

1 ifa;>0, and
p.. =
! 0 otherwise.

For an m X n pattern matrix P, we define the pattern class of P, written II(P), to be the
set of all m X n nonnegative matrices whose pattern is P.

3. Existence conditions for sum scaling. We summarize numerous characterizations
for the solvability of sum symmetric scaling and sum equivalence scaling.

We call a matrix, or a vector, positive if all of its elements are positive. For a positive
vector r = (7;, ..., r,)T € R", let S(r) denote the set of all n X n nonnegative matrices
A = [ay] such that

(1) Ea,-j=r,~ forie(n).
ji=1

Conditions (i), (ii), (iii), and (vi) of the following theorem are contained in Brualdi
[3]1, [4]. Conditions (iv) and (V) are, apparently, new.

THEOREM 1. Let P be an n X n symmetric pattern matrix, and let r € R" be strictly
positive. Then the following are equivalent:

(i) Each symmetric A € II(P) has a symmetric scaling B in S(r).
(ii) Some symmetric A € II(P) has a symmetric scaling B in S(r).

(iii) The set II(P) N S(r) is nonempty.

(iv) IfI and J are subsets of {ny such that P;; = 0, then r(I) = r(J°) with equality
holding if and only if Pcje = 0.

(v) IfI and J are subsets of {n) such that P;; = 0, then r(I N J) = r((I U J)°)
with equality holding if and only if Py e, qune = 0.

(vi) If{K, L, M} is any partition of {ny such that Px xu1 = 0, then r(K) = r(M)
with equality holding if and only if Pr e = 0.

Proof. The equivalence of (i), (ii), (iii), and (vi) is given in Brualdi [3], [4]. The
implication (iii) = (iv) is found in [13], and the equivalence of (iv) and (V) follows
from the observations that r(I) = r(INJ) + r(I\J) and r(J) = r((I U J)°) + r(I\J).
Finally, to see that (v) = (vi), consider a partition {K, L, M} of {n) such that
Py xur = 0. Then apply (v) to the sets Kand KU L. O

For positive vectors r = (r1, ..., rm)  €R™and c = (¢1, ..., cn) T € R", let S(r, ¢)
be the set of all m X n nonnegative matrices 4 = [a;] such that

(2) Y aj=r;, forie(m) and 2 a;=c forje{n).
Jj=1 i=1

i=

The following theorem summarizes results of Menon [12], Brualdi [2], and Menon and
Schneider [13].
THEOREM 2. Let P be an m X n pattern matrix, and let r € R" and c € R™ be strictly
positive. Then the following are equivalent:
(1) Each matrix A € II(P) has an equivalence scaling B in S(r, c).
(ii) Some matrix A € II(P) has an equivalence scaling B in S(r, c).
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(iii) The set II(P) N S(r, ¢) is nonempty.

(iv) If I and J are subsets of {m) and (n), respectively, such that P;; = 0, then
r(I) = c(J°) with equality holding if and only if Pje je = 0.

The following two theorems characterize solvability of sum equivalence scaling and
sum symmetric scaling for subpatterns of a given pattern matrix P, respectively.

THEOREM 3. Let P be an m X n pattern matrix, and let r € R™ and c € R" be strictly
positive. Then the following are equivalent:

(i) For some subpattern P’ of P, each A € II(P') has an equivalence scaling in
S(r, ¢).

(ii) For some subpattern P' of P, some matrix A € II(P') has an equivalence scaling
inS(r,c).

(iii) For some subpattern P' of P, the set II(P') N S(r, ¢) is nonempty.

(iv) If I and J are subsets of (m) and {(n), respectively, such that P;; = 0, then
r(I) = c(J°).

Proof. The equivalence of (i), (ii), and (iii) is immediate from Theorem 2 applied
to a corresponding subpattern P’ of P. A proof of the equivalence of (iii) and (iv) of
Theorem 3, which is simpler than the one given in [14], can be found in [15]. O

THEOREM 4. Let P be an n X n symmetric pattern matrix, and let r € R" be strictly
positive. Then the following are equivalent:

(i) For some symmetric subpattern P' of P, each symmetric A € II(P') has a
symmetric scaling in S(r, ¢).

(ii) For some symmetric subpattern P' of P, some symmetric A € II(P') has a
symmetric scaling in S(r, c).

(iii) For some symmetric subpattern P' of P, the set II(P') N S(r) is nonempty .

(iv) If I and J are subsets of {n’)y such that P;; = 0, then r(I) = r(J°).

(v) IfI and J are subsets of (ny such that P;; = 0, then r(I N J) = r((I U J)).

(vi) If{K, L, M} is any partition of (n’) such that Px x,; = 0, then r(K) = r(M).

Proof. The equivalence of (i), (ii), and (iii) follows directly from Theorem 1, applied
to a corresponding subpattern P’ of P.

(iii) = (iv): If (iii) is satisfied for subpattern P’ of P and I, J = (n) with P;; = 0,
then Py; = 0, and it follows from the implication (iii) = (iv) of Theorem 1 that r(I) =
r(J¢), and therefore (iv) holds.

(iv) <> (v) = (vi): These implications follow from the arguments used to show the
analogous implications of Theorem 1.

(vi) = (v): Assume that (vi) holds and that I, J < (n) with P;; = 0. Then
Prnjs = 0, and by the symmetry of P we have Pinyns = [Prusns]” = 0; therefore,
Pinsr0r = 0. Applying condition (vi) to the partition {K, L, M} with K = I N J,
L= ({\J)U (J\I),and M = (I U J)°, it follows that (I N J) = r(K) = r(M) =
r((1U J)°).

(iv) = (iii): We prove this implication using a modification of the technique used
in the proof of Theorem 3.7 in [4]. Suppose that (iv) holds. It follows from the implication
(iv) = (iii) of Theorem 3 with m = n and ¢ = r that for some subpattern Q (which need
not be symmetric) of P there exists a matrix C € II(Q) satisfying (2) with ¢ = r. Then
B = 1(C + CT) satisfies (1) and B € II(P'), where P' = $(Q' + Q7) is a symmetric
subpattern of P.

We observe that it suffices to prove that for some subpattern P’ (which need not be
symmetric) of P there exists a matrix B € II(P’) satisfying (2) with ¢ = r(and, consequently,
m = n). This follows because if B is such a matrix, then B’ = {(B + BT) satisfies (1)
and B’ € II(Q), where Q = {(P' + (P')T) is a symmetric subpattern of P. Therefore,
the implication follows from the implication (iv) = (iii) of Theorem 3. O
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4. Problem statement and existence conditions. We present our main result giving
eight equivalent conditions characterizing the existence of a solution for max symmetric
scaling.

For a positive vector r = (ry, ..., r,)7 € R*, let M(r) denote the set of all n X n
nonnegative matrices 4 = [a;] such that
(3) max a; =r; forie{n).
jelny

Also for a vector r € R” and scalar a € R, let the a-level set of r, denoted lev (r, a), be
the set {i € (n):r; Z a}. Finally, if we have that 4 is an n X n symmetric matrix and
I=1lev(r, a) # ¢, we call A4 an r-upper principal submatrix of A.
THEOREM 5. Let P be an n X n symmetric pattern matrix, and let r € X" be strictly
positive. Then the following are equivalent:
(1) Each symmetric A € II(P) has a symmetric scaling in M(r).
(ii) Some symmetric A € II(P) has a symmetric scaling in M(r).
(iii) The set II(P) N M(r) is nonempty.
(iv) The set II(P') N M(r) is nonempty for some pattern matrix P' satisfying
P =P
(v) If Py =0 for subsets 1, J = {n), then

4) max 7; = max r;.
iel jeJe
(vi) If Py =0 for subsets I, J = {n), then
(5) max 7; = max 7.
ielnJ je(IuJ)©

(vii) If {K, L, M} is any partition of {n)y such that Px xy1 = 0, then

(6) max 7; < max r;.
ieK ieM
(viii) IfPy=0forJ={n)andieJ, then
(7) ¥; = max r;.
jeJe¢

(ix) No upper r-principal submatrix of P has a zero row.

Proof. The implication (i) = (ii) is trivial because II(P) is nonempty (P € II(P)),
and the implication (ii) => (iii) is straightforward because DAD € II(P) whenever 4 €
II(P) and D is a positive diagonal matrix. Also, the implication (iii) = (iv) is trivial.

(iv) = (v): Let A € II(P') N M(r) for some pattern matrix P’ < P, and let I and J
be nonempty subsets of {#) such that P;; = 0, and therefore Pj; = A;; = 0. Because 7;
is the maximum of the entries in the ith row and A4 is symmetric, it follows directly that

max 7; = max max @; = max max g; = max max a; = max rj.
iel iel je(n) iel jeJ¢ jeJ¢ iel

(v) = (vi): Let I and J satisfy the assumptions of condition (vi). Then P05 =
0 (see the proof of (vi) = (v) in Theorem 4) and (5) follows by applying (4) to the sets
INJand TV J.

(vi) = (vii): If K, L, and M satisfy the assumptions of condition (vii), (6) follows
by applying (5) to the sets I = K and J = KU L and observing that KN (KU L) = K
and [KU(KUL)]°=M

(vii) = (viii): If i and J satisfy the assumption of condition (vii), then
{{i}, J\{i}, J°} is a partition of {n) satisfying the assumptions of condition (viii),
and (7) follows by applying (6).
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(viii) = (ix): Suppose that for some a € R and J = {je(n)|r; = a} # J, the ith
row of the upper principal submatrix P is zero. Then, ie J = (n), Py =0,and r; 2
a > r; for j € J°. This violates condition (viii) for the partition {{i}, J\ {i}, J°} and
therefore proves the implication.

(ix) = (i): We prove this implication constructively in § 5 by exhibiting an algorithm
that for a given nonnegative symmetric matrix 4 and positive vector r either finds a
symmetric scaling of 4 in M(r) or finds an upper principal submatrix of 4 containing a
ZEro row. O

The following observations compare max symmetric scaling and sum symmetric
scaling. First, note that feasibility conditions (iii) and (iv) in Theorem 5 are equivalent.
By contrast, there is no such equivalence for sum symmetric scaling, and the assertion
that for some subpattern P’ of P there is a matrix 4 in II(P’) satisfying (1) is not equivalent
to condition (iii) of Theorem 1. In fact Rothblum and Schneider [14] provide separate
characterizations of each of these two conditions. As a result of the equivalence of con-
ditions (iii) and (iv) of Theorem 5, conditions (v), (vi), and (vii) of Theorem 5 are
simpler than the analogous conditions (iv), (v), and (vi) of Theorem 1. For example,
for the nonequivalence for sum scaling consider

(1) = ()

Then P € M(r), but there is no symmetric scaling of P whose rows sums are (1, 1)7.
Second, as a consequence of properties of the max operation, the set conditions
(v), (vi), and (vii) of Theorem 5 are equivalent to the simple point conditions (vii) and
(viii). No analogous simplification is possible for sum symmetric scaling.
Third, a solution for sum symmetric scaling is unique, whereas a solution for max
symmetric scaling need not be unique. For example, let

(1) ()

Then the general symmetric scaling of 4 that is in M(r) is given by

B= o 0 4 o 0 _ o? 1
—(0 (2a)-1) (o (2a)_l)—(l (4a2)-1)’

where } =a = 1.

5. The algorithm. We describe an algorithm for max symmetric scaling. For a given
nonnegative symmetric matrix 4 and strictly positive vector r, our algorithm either finds
a symmetric scaling of 4 in M(r) or certifies that no such scaling exists by showing that
condition (ix) of Theorem 5 is violated.

THE MAX SYMMETRIC SCALING ALGORITHM
Input: An n X n nonnegative symmetric matrix 4 and a strictly positive vector r € R”".

Outpaut: Either a positive diagonal matrix D such that DAD € M(r) or a subset J < (n)
and an index i € J such that 4, is an r-upper principal submatrix of 4 with zero
row Ai J.

Step 0 (Initialization): Let «; for i € (m) be the distinct values in the vector r listed in
decreasing order. That is,

{a;lie{m)} ={rlie(n)} and a;>ay> ‘"> ap.
Setk=1,J=,andd;, =1fori=1,2,...,n.
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Step 1 (Push down): Set
(8) I={ie{n)|lri=o} and J={ie(n)|r = a}.

If A;; = 0 for some i € I, output (J, i) and STOP; otherwise, set the values d; for
ielsothatd; =1 and

9) dia;d; = oy foriel and jelJ.

Step 2 (Pull up): Select any i € I and set I = I\i. Set

(10) d; = min min[ak], \/E‘
s a;d; ai;
J¥F1

If I # J, repeat Step 2.

Step 3 (Termination): If kK < m, replace k by k + 1 and return to Step 1; if k = m, then
output D = diag (d,, d,, . . ., d,) and STOP.

We observe that whenever the algorithm does not stop in Step 1, then A4;; has no
zero row and we can achieve (9) by setting

(11) d,~=min[min[%},1] foriel.
jeJ | @Qij

The following lemma is crucial for our analysis.
LEMMA 6. During the Max Symmetric Scaling Algorithm, after each execution of
Step 2, we have

(12) diagdi=r; fori,jeJ

and

(13) max diazd; =r; forieJ\I.
jeJ

Furthermore, the d’s are nondecreasing throughout consecutive executions of Step 2.

Proof. We first show that the d’s are nondecreasing and that if (12) and (13) hold
at the beginning of an execution of Step 2, then they also hold at the end of that execution.
Let s be the element selected out of I for the execution of Step 2, let d’' and I' be,
respectively, the values of d and I at the beginning of the execution of the current Step
2, and let d” and I” be the values of d and I at the end of that execution. Thus, we are
assuming that (12) and (13) hold for d = d’ and I = I'. Now the selection of s and the
definition of d’ ensure that
(14) max diagd] = oy = 1s.

jeJ

As dj = djfor je J\ {s} and as the specialization of (12) with d = d' to i = s ensures
that we have

dsagd; = r; foralljelJ,
we conclude that d =2 df. As the remaining coordinates of d are unchanged, it follows
thatd” = d'.
We next establish (12) and (13) withd = d”and I = I". First, if ie J\ {s} and j €

J\{s}, then d}a;d] = d;a;dj = r;. Also, (14) ensures that dia;d] < r, for all j € J.
Next, for i € J we have from the symmetry of 4, from (14), and from the fact that r, =
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a; = min {r;] j € J} that
d,ilaisdg = dgasidli, = Ts = Ti,

completing the proof that (12) holds for d = d”. Further, as it is assumed that (13) holds
ford=d and I = I', as d” = d', and as we have seen that (12) holds for d = d”, we
conclude that (13) is also valid with d = d” and I = I'. This fact combines with (14) to
show that
(15) majx diagd] =1 forieJ\I"=(J\I')U {s}.
J€

That is, (13) holds ford = d”and I = I".

It remains to show that (12) and (13) hold upon each entrance of Step 2 from Step
1. This fact is obvious for the first entrance of Step 2 from Step 1 because then J = I;
hence, (12) follows from (9) and (13) is vacuous. Next, assume that (12) and (13) hold
for the kth entrance of Step 2 from Step 1 and consider the (k + 1)st entrance, assuming
that Step 1 leads to Step 2 rather than to termination. Our earlier arguments show that
(12) and (13) will stay valid throughout consecutive iterations of Step 2; hence, they
will hold at the (k + 1)st entrance into Step 1. Let &', J', and I' = & be the values of d,
J, and I upon the (k + 1)st entrance into Step 1, and let d”, J”, and I” be the updated
values of d, J, and I after the (k + 1)st execution of Step 1. In particular, J"\I" =
JA\I' = J', and (12) and (13) hold for d = d', I = I', and J = J'. Further, as dj = d;
for j € J'\I" = J', we have from the validity of (13) ford = d', J = J', and I = I' that
fOl' l € J//\I// — J/\I/

max dja;d]= max [max dia;d;, max d’,»’a,»,d}’}
jeJ” jeJ’ jer”

(16)

— "
= max {r;, max dia;dj |.
jerr

Now, for j € I", rj = ax+, = min {r;| j € J}; hence, the symmetry of 4 and (9) with
d=d",J=J",and I = I”" imply that forje I

(17) d’,’a,]d}’ = d}"djid'{ S Soa =,
Combining (16) and (17) we conclude that

mz;x dia;d] =r; forallieJ'\I".

jeJ”

That is, (13) holds for d = d”, J = J”, and I = I". This fact and (9) ensure that (12)
holds as well. Thus, both (12) and (13) hold at the end of (k + 1)st execution of Step
1 and therefore at the entrance to Step 2. |

THEOREM 7. If the Max Symmetric Scaling Algorithm is executed with input A €
R"" and r € R", then either the algorithm terminates in Step 3 with a positive diagonal
matrix D such that DAD € XI(r) or the algorithm terminates in Step 1 with J = {n’) and
i € J such that Ay is an r-upper principal submatrix of A with A;; = 0. The algorithm
requires O(nln n+ p) comparisons, O(p) multiplications and divisions, and O(q) square
root calculations, where p and q are, respectively, the number of nonzero elements and
the number of nonzero diagonal elements of the matrix A.

Proof. The algorithm must terminate as Step 1 is executed at most m times, and
each execution of Step 2 reduces | I|. If the algorithm terminates in Step 1, then 4,5 is a
zero row of the r-upper principal submatrix A;;. It follows from Lemma 6 that each
time Step 3 is executed, we have (DAD),; € II(r;) because I = & when Step 3 is exe-
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cuted. Therefore, if the algorithm terminates in Step 3, then J = (n) and (DAD),, =
DAD € II(r).

We finally determine the complexity of the algorithm. With O(# In n) comparisons,
we can sort the values {r;|i€(n) } asrequired in Step 0. In total, Step 1 can be performed
with p comparisons and p divisions, and Step 2 can be performed with p — n comparisons,
p — q multiplications, p divisions, and g square root calculations. O

The following example shows that the square root calculations cannot, in general,
be eliminated. Let

A=[11eR™" and r=(2)eR.

Then the only scaling DAD of A that is in II(r) has D = V2. If the diagonal elements of
A are all zero, then because the square-root operation in (9) can be omitted, the algorithm
can be executed over any linearly ordered group (multiplicative) Abelian group with
zero, that is, a group G together with an element O such that a0 = 0 = Oq forany a € G.
In particular, if the underlying matrix is nonnegative, then the output elements will be
in any subgroup that contains the input elements. The above example shows that this
conclusion need not hold when 4 has nonzero diagonal elements.

We note that a diagonal element a;; is considered twice in the course of an execution
of the algorithm. If r; = ay, we have a; = a;d? in the kth execution of Step 1, and then
in one of the following executions of Step 2, Vay/a; = Vr;/a; is determined and is
compared with other numbers to update d;. Thus, the square rooting can be avoided if
each original g; is the product of r; and the square of a known number. Consequently,
the square rooting can be avoided in the “decision problem” where one determines
whether or not there exists a scaling corresponding to a given vector r and matrices in a
given pattern P. This is achieved by testing any matrix 4 in II(P) with a; = r; for all i

6. Equivalence scaling. We apply our results for max symmetric scaling to max
equivalence scaling.

For strictly positive r = (ry, ..., rn,)T € R and ¢ = (¢, ..., ¢,)T € R", let
M(r, c) denote the set of all m X n nonnegative matrices 4 = [a;] such that

(18) max a;=r; forie{m) and max a;=c¢ forje{n).

jeln) ie(m)

In the following theorem we characterize the existence of a solution for the max
equivalence scaling by reducing it to max symmetric scaling.

THEOREM 8. Let P be an m X n pattern matrix, and let r € R™ and c € R" be strictly
positive. Then the following are equivalent:

(i) Some A € II(P) has an equivalence scaling in M(r, c¢).

(ii) Each A € II(P) has an equivalence scaling in M(r, c).

(iii) The set II(P) N M(r, ¢) is nonempty.

(iv) The set TI(P') N\ M(r, c) is nonempty for some pattern matrix P’ = P.

(v) The vectors r and c satisfy

(19) max r; = max cj;
ie(m) jeln)

furthermore, if Py = 0 for subsets I = (m) and J = (n)), then

(20) max r; =maxc¢; and maxc; = maxr;.
iel jeJe JjeJ iel¢



10 U. G. ROTHBLUM, H. SCHNEIDER, AND M. H. SCHNEIDER

(vi) The following conditions hold:
(a) The vectors r and c satisfy (19).
(b) If Py =0 forie(m)andJ < {n), then

r; = max c;.
jeJe

(c) IfPj=0forI< (m)yandje{n), then

¢, = maxr;.
iel¢

(vil) The vectors r and c satisfy (19), and for all « € R and subsets I =
lev (o, r) = {my and J =lev (e, ¢) = {n), if I, J # &, then the submatrix Py, contains
neither a zero row nor a zero column.

Proof. The implications (i) = (ii) = (iii) = (iv) follow from the arguments used
to establish the corresponding implications in Theorem 5.

(iv) = (v): Suppose that 4 € II(P’) N M(r, c) for some pattern matrix P’ = P,
Then

max r; = max max g; = max max g; = max ;.
ie{m) ie(m) je(n) jeln) ie{m) jeln)

Furthermore, if P;; = 0 for some I = {(m) and J = {(n), then

max r; = max max g; = max max a; = max ¢;.
iel iel jeJ° jeJ¢ el jeJe

A symmetric argument proves the second inequality in (20).

(v) = (vi): This implication is trite because parts (b) and (c) of condition (vi) are
the specializations of the second part of condition (v) for the cases of I = i and J = j,
respectively.

(vi) = (vii): Suppose that for some o € R, I = lev (o, ¥) # & and J =
lev (e, ¢) # . It follows that

riZa>maxc; foriel
jeJe

and

c;Za>maxr; forjel.
iel¢
Therefore, if P;; has a zero row or a zero column, we get a violation of parts (b) or (c),
respectively, of condition (vi). The implication (vi) = (vii) now follows because the
first assertion of (vii) is the same as part a of (vi).

(vii) = (i): For an m X n nonnegative matrix 4, define the (m + n) X (m + n)
matrix A’ and the vector ' € R"*" by

0 A ,
(21) A = and r'= (—) .
AT | 0 ¢

It is straightforward to show that max symmetric scaling with input 4’ and r' has a
solution D' = diag (d', d>, . .., d},+») if and only if max equivalence scaling for 4, r,
and c has a solution D = diag (d}, d5, ..., d),) and E = diag (d\ 41, - . ., dm+n). We
conclude that condition (i) of Theorem 8 is equivalent to condition (i) of Theorem 5
applied to A’ and r'. It is straightforward to show that condition (vii) of Theorem 8 is
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equivalent to condition (vii) of Theorem 5 when applied to 4’ and r'. Therefore, the
equivalence of (i) and (vii) follows from Theorem 5. O

We observe that the reduction of max equivalence scaling to max symmetric scaling
in the proof of Theorem 8 shows that max equivalence scaling can be solved by the Max
Symmetric Scaling Algorithm. Moreover, the diagonal elements of the matrix A’ defined
in (21) are all zero. Therefore, it follows from the complexity analysis at the end of § 5
that max equivalence scaling can be solved using O((n + m) In (n + m) + p) comparisons
and O(p) multiplications and divisions, where p is the number of nonzero elements of
the matrix 4. Further, we observe that max equivalence scaling can be solved over any
linearly ordered Abelian group with zero. The example given in § 5 shows that in general
max symmetric scaling does not have this property. Also, sum equivalence scaling does
not have this property. For example, let

1 2 1
A= and r=c= .
1) (1

The only equivalence scaling of 4 with row and column sums all equality 1 is the matrix

(V21 2-V2\_(1-27"2 0 ) (V2 0
\2-V2 V2-1) 0 V2-1)"\o 1)

We note that when a solution to max equivalence scaling exists, it need not be
unique. For example, let

A l* Y g e (?
(24311 r—c4.

Then the general equivalence scaling B of A4 that is in M(r, ¢) is given by

B_IOAl 0\ (4 o'

(O a) (0 a_') (Za 4 ) ’

where § = a = 2. By contrast, the corresponding equivalence in sum equivalence scaling
is unique.

The results about max equivalence scaling were derived from results about max
symmetric scaling. Historically, a reverse logic has been applied in the sum case as results
about sum equivalence scaling are used to establish results about sum symmetric scaling
(see Brualdi [2] and Csima and Datta [7]). The latter arguments use uniqueness (up to
multiplicative scalar) of diagonal matrices D and E for which DAE has prescribed row
sum vector r and column sum vector ¢. Hence, if 4 is symmetric and r = ¢, the fact that
DAE and EATD = EAD have the same row and column sums can be used to argue that
(with proper normalization) D = E. But, as we have seen above, no such uniqueness
results are available in the max case.

7. Graphs. We observe that max symmetric scaling and the corresponding solv-
ability theorem have an equivalent undirected graph statement. An (undirected) graph
is an ordered pair G = (V, E), where V is a finite set of vertices and E is a set of edges
composed of unordered pairs of vertices. Given such a graph G = (V, E) and a vertex
v € V, we let N(v) denote the set of neighbors of v, i.e., N(v) = {ueV:{u,v} e E},
In particular, we say that v is isolated if N(v) = ¢. Note that by definition a graph
may contain /oops but may not contain repeated edges. For subsets S, T = V, we use
[S, T'] to denote the set of edges {u, v} € Ewithue Sandve Torue TandveS.
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A weight function for a graph G = (V, E) is a real-valued function f defined on the
edges E. For convenience, in this case we write f,, for f({u, v}). A weighted graph is a
triple (V, E, f), where (V, E) is a graph and f is a weight function for G. A potential for
G is a real-valued function defined on the vertices V. For a nonempty subset W of V,
we define the subgraph induced by W to be the graph (W, E’), where E' contains all
edges of E of the form e = {u, v} for vertices u, ve W.

Next, we define a mapping ® from the set of symmetric nonnegative matrices to
the set of weighted graphs. For an n X n symmetric nonnegative matrix 4 = [a;], we
define the mapping ® by

(22) AS (V,E.f),

where

V={n),

E={{i,j}la;>0}, and
fi=Ina; for{i,j}eE.

It is easy to see that P is a bijection between the set of nonnegative symmetric matrices
and the set of weighted graphs.

We state the following lemma without proof.

LEMMA 9. Let A be an n X n symmetric nonnegative matrix, and let (V, E, f') be
the corresponding weighted graph under the mapping ® in (22). Let r € R" be strictly
positive, and let s be the potential defined by s; = In r; for i € {(n). Then the following
are equivalent:

(i) There exists a positive diagonal matrix D = diag (d,, d>, . . ., d,) such that
DAD € M(r).
(ii) There exists a potential p such that
(23) max {p,+ fuwt P} =5, forveV.
ueN(v)

Furthermore, D and p are related by p, = In d, forue{(n) = V.
The next theorem follows directly from Theorem 5 and the correspondence between
matrices and graphs described in Lemma 9.
THEOREM 10. Let G = (V, E) be a graph, and let s be a potential for G. Then the
following are equivalent:
(i) For every weight function f for G there exists a potential p satisfying (23).
(ii) For some weight function f for G there exists a potential p satisfying (23).
(iii) There exists some weight function f for G such that
(24) max f,=s, forveV.

ueN(v)
(iv) There exists E' = E and some weight function f: E' — R such that

max f,=s, forveV,
ueN’(v)

where N'(v) = {ueV:{u,v} €E'}.
) If[S,T)= D for S, T< V, then

max s, = max S,.
veS veT®
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i) If[S, T]1= B for S, T< V, then

max S, =< max .
veSNT ve(SUT)°

(vil) If{S, T, U} is any partition of V such that [S, SU T1= &, then

max §, < max S,.
vesS velU

(viii) Let W< V. Ifve Wis an isolated vertex of the subgraph induced by W, then

Sy, = max s,.
ueWwe
(ix) For every a € R, the subgraph of G induced by the level set lev (s, ) has no
isolated vertex.
We observe that Theorem 8 also has an equivalent graph formulation in terms of
bipartite graphs. We have omitted the details because they are straightforward.

8. pth power scaling. For 0 = p = oo and x € R", we define the /, norm of x by
| x|l ,. We consider the problem of determining a symmetric scaling of a given nonnegative
symmetric matrix such that the rows of the resulting matrix have prescribed /, norms.
Of course, the cases of p = 1 and p = oo reduce to sum and max symmetric scaling,
respectively. Here, we show that the cases of 0 < p < oo can be reduced easily to the case
ofp=1.

For an m X n nonnegative matrix 4 and 0 < p < oo, the pth Hadamard power of
A, written 4P, is the matrix whose ijth entry is (a;)”. Let A; denote the ith row of the
matrix 4. For a strictly positive vector r € " and 0 < p = o0, let SP(r) denote the set
of all n X n nonnegative symmetric matrices B such that | B;||, = r; for each i € (n).

It is easily seen that B € S?(r) if and only if B® € S(r'”). Moreover, B = DAD if
and only if B®) = D 4P D Thus, as an immediate consequence of Theorem 1, we
obtain the following theorem.

THEOREM 11 (/,-symmetric scaling). Let P be an n X n symmetric pattern matrix,
let r € R" be strictly positive, and let p € R with 0 < p < oo. Then the following are
equivalent:

(i) Each symmetric A € II(P) has a symmetric scaling B € SP(r).
(ii) Some symmetric A € I1(P) has a symmetric scaling B € S7(r).

(iii) The set II(P) N SP(r) is nonempty.

(iv) If Py =0forI, J<={n), then |rill, = lIr)l, with equality holding if and only
iflﬁqp:= 0.

Conditions (v) and (vi) of Theorem 1 can also be extended in the obvious way.
Further, analogous results can also be derived for the cases of —c0 = p < 0.
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A COMPLETED THEORY OF THE UNSYMMETRIC LANCZOS
PROCESS AND RELATED ALGORITHMS,
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Dedicated to the memory of Heinz Rutishauser (1918-1970).

Abstract. This paper is a continuation of Part I [M. H. Gutknecht, STAM J. Matriz Anal.
Appl., 13 (1992), pp. 594-639], where the theory of the “unsymmetric” Lanczos biorthogonalization
(BO) algorithm and the corresponding iterative method BIORES for non-Hermitian linear systems
was extended to the nongeneric case. The analogous extension is obtained here for the biconjugate
gradient (or BIOMIN) method and for the related BIODIR method. Here, too, the breakdowns of
these methods can be cured. As a preparation, mixed recurrence formulas are derived for a pair
of sequences of formal orthogonal polynomials belonging to two adjacent diagonals in a nonnormal
Padé table, and a matrix interpretation of these recurrences is developed. This matrix interpretation
leads directly to a completed formulation of the progressive qd algorithm, valid also in the case of
a nonnormal Padé table. Finally, it is shown how the cure for exact breakdown can be extended
to near-breakdown in such a way that (in exact arithmetic) the well-conditioned formal orthogonal
polynomials and the corresponding Krylov space vectors do not depend on the threshold specifying
the near-breakdown.

Key words. Lanczos algorithm, biconjugate gradient algorithm, BioMIN, BIODIR, breakdown,
formal orthogonal polynomial, recurrence, Padé approximation, staircase, quotient difference algo-
rithm, qd algorithm
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Introduction. In Part I [13] we derived a number of basic results on sequences
of formal orthogonal polynomials of the first and second kind (FOP1s and FOP2s,
respectively). Given a linear functional ® : P — C defined on the space P of complex
polynomials by!

(1.1) @(2*) = rst (kEN),

there is a finite or infinite sequence {n;};_ (J < 00) of indices with 0 =: ng < n1 <
ng < ---(< ny if J < 0o) for which a regular (monic) FOP1 P,; := P;;,; exists. By
definition, these are those values of the index n for which a unique monic polynomial
P, := P, of exact degree n satisfying

(1.2) ®;(pP,) =0 (Vp€ Pn_1)

exists. These indices are also characterized by the nonsingularity of the n X n moment
matrix

o] div1 --- Dlpn-1

di41 b2 - Dign
(1.7) Mn = Ml;n = . . .

D4n-1 Di4n --- ODiyon—2

* Received by the editors October 2, 1990; accepted for publication (in revised form) April 22,
1992.
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1 Equations copied from Part I are numbered as before. Most of those that are explicitly used in
this part are recalled in the introduction. Also note that Part I ended with §4 and that Part II, for
the sake of continuity, begins its numbering with §5.
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Starting from these regular FOP1s P,,; we have obtained a full sequence {P,}32 :=
{P1;n}32 ¢ of monic FOP1s by setting

(1.28) Po(2) := Wy, (2)Po;(2) if nj <n<njy =:n;+h;.

Here Wy,_,; could be an arbitrary monic polynomial of exact degree n — n;, but in
view of actual implementations we have primarily considered the case where W,,_;
is the n — n; element of a fixed sequence {W;,} of monic polynomials satisfying a
three-term recurrence

(2.10) Wini1(2) = (2~ o) Win(2) = B Wm-1(2) (m €N)

(with Wo(2) :=1, W_1(2):=0, B :=0).
The FOP1s P, of (1.28) satisfy the formal orthogonality conditions

(2.1) ®&(pP,) =0 (Vp€Pa_1), @u(2"P,)#0, where fi:=n;+nji1—n—1.
In particular, when P, is regular, n = n;, then

(2.2) ﬁ=nj+hj—1=nj+1—1.

Equivalently, assuming n; < n’ < n;y; and n; <n < njiq, we can write

<I)l(Pn’Pn)=0 ifi?éj
or i=j and n'+n<nj+nj—1,
(2.6) q)l(Pn’Pn) =:6j #0 if i=j and n'+n=nj+nj+1—1,

(2.5)

where §; is independent of n — n; and n' — n;.
The formula (2.10) implies that the nonregular FOP1s P, (nj < n < njt1) can
be generated according to

(211)  Poyi(2) = (2 —p,,)) Pa(2) = By, Pa-1(2),  m5 <n<mjy—2.

(Likewise, any other recurrence for {W,,} leads to one for those P,.) Less trivial is
the fact that the orthogonality relation (2.1) allows us to establish for the regular
FOP1s a three-term recurrence

(217) P'"j+1 (z) = (Whj (2) - a.‘i(z))Pnj (z) - ,Banj_l(Z) y J=0,...,J-1,

with a monic polynomial coefficient Wy, — a; € Pp; (hence, a; € 'Phj_l) and a scalar
coefficient 3; € C. (The initial values are: P,_,(z) := 0, Pp(2) := 1, fo := 0.)
For the coefficient 3; there is an explicit formula and for the coefficients of a;(z) =

hj—1 . .
seo s jW,(z) we have found a recursive formula based on the solution of a lower

triangular system:

(2.23&) ,qu)l(Pnj—anj_l) = q’l(anj—IPnj+1—l) s

(223b) q)l(a.‘ipnj“l’kpnj) = Ql('z'P‘nj-|-’¢7'P‘nj-¢.1-~1) - ath—].@l(Pnj"'kPnj-kl—l)
— Bhy—191(Pj4kPrjpn—2), k=0,...,h;—1.

After introducing the infinite row vector p := [Py, P1,...], we can express the
recurrences (2.11) and (2.17) as

(3.11) zp(2) = p(2)H,
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where the Gragg matrix H is an infinite block tridiagonal unit upper Hessenberg
matrix

[ Ay B, )
Co Ay B
(3.6) H:= C: As
. (BJ)
| (Cy-1) (AJ) ]

Under the assumption (2.10), the diagonal blocks A; are h; x h; comrade matrices
containing on the diagonal and the first superdiagonal the coefficients )Y and 8%
from (2.10), and in the last column the coefficients ; ; of the polynomial a;. The off-
diagonal blocks C; and B; are zero except for the element in the upper right corner,
which is 1 in C; and B; in B;. If J < 0o, B is the hj_; X 0o zero matrix, and A
is the infinite tridiagonal matrix TW representing the recurrence (2.10) in the form
2w (z) = w(z)TW (where w := [Wy, Wy,.. ]).

By using matrix notation, we can express the orthogonality properties (2.5)—(2.6)
in compact form:

(3.22) @ (p’p) =D,

where D is a block diagonal matrix whose blocks D; are h; x h; lower right triangular
matrices with all antidiagonal elements equal to §;.

The FOP1s P, and the associated FOP2s @Q,, (n € N) are essentially the denomi-
nators and the numerators, respectively, of the proper parts of the Padé approximant
lying on the Ith diagonal of the Padé table of the formal Laurent series

(1.25) f2)= Y ¢t

k=—00

More exactly, the (m,n) := (I +n — 1,n) Padé approximant of f is equal to

m—-—n
— k m—n Qn (z —1)
Tmn(2) : k=Z_°° k2" + 2 Po(z-1)’
cf. (1.21), (1.22), and (1.34). The rational function 7y, , is the (m,n) entry of the
Padé table.

An important feature of the Padé table is its block structure: Identical entries
occur in finite or infinite square blocks, cf. Corollary 1.6. The regular FOP1s belong to
entries on the first row or the first column of such a square block. This Block Structure
Theorem is important in this second part, where we now consider pairs of sequences
of FOPIS’ {Pn};t.o=0 = {Pl;n}%o=0 and {P1/l, ‘;l.o=0 = {H-I—l;n};o:O’ which belong to two
adjacent diagonals of the Padé table. We mark the quantities corresponding to the
second sequence by a prime, writing for example M,,, H', p’. We also set ® := ®; and
®' := ®; ;. Note that this usage of primes differs from the one in Part I, where they
indicated quantities belonging to the FOP2s, the polynomials of the second kind.

In §5 we define a new sequence of regular FOP1s whose elements are alterna-
tively taken from the two above-mentioned sequences and belong to all distinct Padé
approximants that lie on the two diagonals. We call the corresponding sequence of
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Padé approximants a block staircase sequence. In analogy to the three-term recur-
rence (2.17) for the regular FOP1s that belong to one diagonal, we derive a pair of
three-term recurrence formulas (with one polynomial coefficient in each) for the new
sequence of FOP1s. Since FOP1s from both diagonals appear in these formulas, we
call them mized recurrences. Two equivalent but different matrix formulations for
them are given in §6. Actually, these matrix formulations involve all the polynomials
from the two sequences {P,}32, and {P.}32, and not just the regular ones.

By eliminating either the first or the second sequence, we rediscover in §7 the
matrix formulations of the separate recurrences for the second and the first sequence,
respectively, which are both of the type discussed in Part I, i.e., they are determined
by Gragg matrices of the form (3.6). It turns out that the Gragg matrix of the second
sequence is obtained from the one of the first sequence by executing one step of a
block LR algorithm, i.e., we have to compute a particular block LU decomposition
and then multiply the factors together in reverse order. The factors, which are block
bidiagonal (but none of which is chosen with unit block diagonal), are exactly the
matrices that describe the mixed recurrences of the block staircase. This block LR
algorithm generalizes Rutishauser’s LR algorithm for tridiagonal matrices, and hence
also his (equivalent) qd algorithm [23]. It is the key to a nongeneric progressive qd
algorithm, which, in contrast to the classical (generic) progressive qd algorithm, never
breaks down in exact arithmetic.

In §4 of Part I we applied the results on (diagonal) sequences of FOP1s to the
unsymmetric Lanczos process. Let A : H — H be a bounded linear operator mapping
a separable real or complex Hilbert space into itself. The standard inner product in
H is denoted by (.,.), but we use instead a formal inner product (.,.)s defined by
(y,x)B := (y,Bx), which is induced by another bounded linear operator B : H — H
that commutes with A. (The cases of practical interest are B = I, B = A, and
B = A~!.) Orthogonality with respect to this indefinite inner product is referred to
as formal orthogonality. Associated with A, Xg, yo, and this inner product are the
Schwarz constants or moments

(41) ¢k = (Yo,A*x0)B = (y0,BA*x0) (k€N).

The link to the above-described theory of FOPs is based on the identification of these
moments with the values that the linear functional ® = ®, of (1.1) takes on the
monomials.

Starting from A, xg, yo, the classical (generic) Lanczos biorthogonalization (BO)
algorithm [19], [15], [11] generates the two sequences {x,}%_5 and {y,}“Z% such that
forn=0,1,...,v -1

(4.6a) Xpn € Kpny1 := span (Xp, AXg, A%xq,...,A"Xg),
(46b) yn € £n+l (= span (y07 AHy07 (AH)zyO’ teey (AH)nYO)a
and
=0 if m#n,
(4.7) (ym, Xn)B { #0 if m i n.

In view of (4.6), x,, must be equal to a polynomial in A times xq, and y, must be
equal to a polynomial in A¥ times yo. From the orthogonality condition (4.7) and
the uniqueness of the regular FOPs it follows easily that actually

(4.14) Xp = Po(A)xoln,  yn = Po(AH)yol,,
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where P, is the monic regular FOP1 of degree n, P, is the polynomial with the
complex conjugate coefficients, and I'y, and T, are scale factors. As we know, such a
regular FOP1 need not exist, and that is when (4.7) no longer holds and the generic
BO algorithm breaks down. Our remedy for this breakdown was to use (4.14), with
P, being any FOP1 of degree n (regular or not). The nongeneric BO algorithm
(Algorithm 1) was then obtained by translating the recurrences for the FOP1s via
(4.14) to recurrences for x,, and y,. In these recurrences the scale factors T',, and T,
are replaced by the relative scale factors

(4.20a) Yni =Tn/Tn-i, Ani:=Tn/Tn-i (n€N,i€N).

The application of the BO algorithm to solving linear systems of equations Ax =
b is based on defining a sequence of approximants z, in such a way that x,, is the
residual vector for z,,

(4.61) X, =b-Az,, n=012,...,

(normalized BIORES algorithm) or such that x,, is the residual of z, in a system with
scaled right-hand side

(4.62) x, = bp, —Az,, n=012,...,

(unnormalized BIORES algorithm).

The BO algorithm terminates when x,, = 0 or y,, = 0. But while the generic BO
algorithm (and thus also BIORES) breaks down seriously whenever (y,,x,)s = 0, our
generalization fails only if the inner product vanishes for all n beyond some bound n ;.
This is then called an incurable breakdown [22], [21]. Unfortunately, in order to detect
such an incurable breakdown, we theoretically have to work with exact arithmetic and
to iterate until n reaches the rank of A. When the algorithm is applied to solving a
linear system, the hope is that in theory x,, = O for some n, and that in practice the
residual x,, is sufficiently small even much earlier. There is, however, the additional
difficulty that y,, = 0 causes the algorithm to stop, and this requires that we find a
nonzero replacement for y,, that is orthogonal to X, and can be used to proceed.

Here, we discuss in §8 three iterative linear system solvers that are closely re-
lated to the unnormalized nongeneric BIORES algorithm and have in fact the same
breakdown behavior. (For the generic versions this is not true [11].) The first two,
normalized and unnormalized nongeneric BIOMIN, are extensions of the well-known
and highly successful biconjugate gradient (BCG) method [20], [7], [11]. The third
is (normalized) nongeneric BIODIR, which, independently, has also been developed
by Joubert [17], [18]. These three methods generate relevant subsequences of es-
sentially the same sequences of approximants z,, residuals x,, and corresponding
B-biorthogonal vectors y,, as nongeneric BIORES; but additionally they produce two
BA-biorthogonal sequences {u,} and {v,}. The elements of the first serve as di-
rection vectors, i.e., they specify the direction of the correction for z,. While the
vectors x, and y, correspond according to (4.14) to a diagonal sequence of FOP1s,
the vectors u,, and v, correspond similarly to the FOP1s on the adjacent diagonal.
And while nongeneric BIORES is based on the recurrence for the first block diagonal
sequence of FOP1s, nongeneric BIOMIN is based on the recursion for the block stair-
case sequence, and nongeneric BIODIR makes use of the one for the block diagonal
sequence on the adjacent diagonal.

Finally, in §§9 and 10, we present a theoretically clean approach to treating near-
breakdowns. Of course, such an approach is of great importance in practice, where
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the occurrence of exact breakdown is very unlikely, but near-breakdown may cause
severe numerical effects. We formulate this theory for polynomials, but the applica-
tion to the above-mentioned iterative linear solvers is straightforward. (The actual
implementation still requires a careful treatment of many nontrivial details. This is
the subject of joint work with Roland Freund and Noél Nachtigal [8].)

This treatment of near-breakdown is based on defining appropriate clusters or
blocks of polynomials in such a way that formal orthogonality is maintained between
the blocks, but not within the blocks. The first polynomial in each block is still a
regular FOP1, and, moreover, it is well conditioned if the blocks are suitably cho-
sen. To construct these polynomials (or the corresponding sequences of Krylov space
vectors) we apply a block orthogonalization process, which is just the appropriate
generalization of the Gram-Schmidt process.? The resulting algorithm, which is de-
scribed here in terms of polynomials and in [8] in terms of Krylov space vectors, can
be considered as a generalization of the nongeneric BO algorithm of §4 and of the
similar algorithms proposed by Parlett, Taylor, and Liu [22], [21], [24] and by Boley
et al. [1]. Although mainly exact breakdowns were considered in [22], [24], we suggest
applying Parlett’s adjective “look-ahead,” which is by now well established, to the
near-breakdown versions of all of the above-mentioned algorithms, while the adjective
“nongeneric” should be reserved for the versions curing exact breakdown.

In Parlett, Taylor, and Liu [22] the discussion was actually restricted to 2 x 2
blocks. Several options of block LDU decomposition of the moment matrix were
considered for this case, but the resulting generalizations of the Lanczos algorithm
differ in detail considerably from the proposals made here, even for exact breakdown.
In particular, the left Lanczos vectors are chosen differently; thus, in the relations
(4.14) the polynomial P, is there in general not the complex conjugate polynomial of
P,,. Moreover, as we will see in §9, the above-mentioned “appropriate generalization”
of the Gram-Schmidt process for near-breakdowns is not the straightforward one,
which would not yield a “block three-term” recurrence. Finally, here we not only
treat block diagonal sequences (§9), but also block staircase sequences (§10), which
present some additional difficulties.

Upon revision of this paper we learned of nongeneric algorithms developed by
Hegediis [14] for applying conjugate gradients to a particular indefinite problem. From
his treatment one must conclude that he was probably also aware of the possibility
of developing some of the nongeneric algorithms given here; but he did not specify
them.

5. Block staircase sequences and corresponding recurrences. In this sec-
tion we consider two adjacent sequences of FOP1s, {P,} := {P;,} and {P,} :=
{Pi+1;n}, and their associated sequences of FOP2s, {Q,} := {Qu»} and {Q,} =
{Qi4+1;n}, and derive a recurrence for a particular sequence formed alternatively from
regular elements of {P,} and {P.}. We denote those elements of this sequence that
are taken from {P,} by Pry, and those taken from {P.} by P,’,";_/- The index sequences

A A\
{nf}}]=0 and {n}/}f=0

still indicate the degrees of the corresponding polynomials and are subsequences of the
two index sequences {n;} and {n]}, respectively, that belong to the regular FOP1s in

2 We use the notion “block orthogonal” here, although there is a danger of confusion with the
different meaning the word “block” has in “block Lanczos” or “block Gram—Schmidt.”
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F1G. 3. A block staircase sequence. The elements of the staircase are marked by x, while the

other regular elements on the two adjacent diagonals are marked by o. The notation ng‘v means
A= nV

n =nY.
j Y

{P,} and {P,}, respectively. These subsequences are chosen such that n{ := 0 and
(5.1) n} <ny (j=0,...,JY), nf<ndy, (G=0,...,J"-1),

and such that they contain as many indices as possible; in the cases where the in-
terlacing condition (5.1) does not determine ny or nf,, uniquely, we make the last
of the choices allowed by (5.1). From the Block Structure Theorem 1.6 for the Padé
table, it is seen that such ambiguities occur in connection with blocks that contain
elements from both {P,} and {P,}, i.e., which are intersected both by the upper and
the lower diagonal (on which m —n =1 and m — n = [ + 1, respectively), cf. Fig.
3. In such cases, either the first column or the first row of the block contains regular
elements out of both {P,} and {P;;1.,}, and then the lower or the right, respectively,
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of these elements is dropped, while the other becomes an element of {PnjA} or {P;l;, }
respectively. Note that

(5.2) JV<IN<S TV +1< 00,

i.e., there can be at most one more marked element on the upper diagonal, and the
number of elements may be infinite.
Let us also set

N A\ V._nV
(5.3) m] .—nj +l—‘1, mj .——nj +l,
(54)  hf=ni-ni+l=mj-m}, hi=n},—nf=mi, —m+1.

Both h} and h} are > 1. If J*, JY < 00, then hf}, := hYy :=nY. :=nfv ., = oco.

The index pair sequences {(m},n})}72, and {(m], n;’)}j;(, define the block stair-
case sequence for the two adjacent diagonals of the Padé table. (For the more general
situation of the Newton-Padé table, block staircase sequences have been introduced
in [12].) Note that the index pairs specify for each block an entry of minimum degrees
m and n on one of the two adjacent diagonals, but do not indicate the upper left
corner of the block.

The orthogonality result of Theorem 2.1 yields the following lemma. for such block
staircase sequences.

LEMMA 5.1. The following formal orthogonality properties hold:

(5.5a) <I>(an;\) =0 (Vpe Prp4hp—2 = 'Pn;/_1) ,
(5.5b) 8} 1= ®(2" Ppp) #0,

and

(5.6a) @'(pPpy) =0 (Vp € Prysny-2="Pnp,,-2),
(5.6b) 8y = <1>'(z"f+1—lp;,;) #0.

Proof. Apply (2.1) and (2.2) to the current situation and note that the regular
elements following Pn;‘ and P!, on the same diagonal have the indices
J

(5.7) nf +1=n)+h} and np, =n]+h),

respectively, independently of whether this following regular element is part of the
block staircase or not. This is due to the fact that, in case of a dropped element, the
index of the next element differs from that of the dropped one only by 1, as can be
seen from Fig. 3. 0

COROLLARY 5.2. The following formal orthogonality properties hold:

(5.8a) @'(an;,\) =0 (Vpe Pn;\+h;\—3 = 'Pn;!_z),
(5.8b) 8) = @'(2" 1 Pap) #0,

and

(5.9a) <I)l(sz,',]y) =0 (Vpe Pryt+hy—2 = P"§\+1“2) ,

(5.9b) 8 =@ (zn?ﬂp,;jv) #0.
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Proof. In the same way that (1.2) was written as the homogeneous linear system
(1.6), (5.5a) can be written as

n
(5.10) > irjcaTijn =0, i=l+n,...,l+2n+h-2,
j=0

where n := ng‘, h = h;-\. When the first equation is deleted, this system represents
(5.8a). Both (5.5b) and (5.8b) express that the “next equation after (5.10),” with
i: =1+ 2n+ h — 1, is not homogeneous.

Similarly, (5.6a) and (5.9a) are represented by the same homogeneous linear sys-
tem, and (5.6b) and (5.9b) yield the same strictly inhomogeneous equation. 0

Lemma 5.1 and Corollary 5.2 allow us now to establish recurrence formulas for
block staircase sequences. By analogy to the derivation of the recurrence formula for
diagonal sequences in §2, we start from representations of Pn/\ and P’ nYoa in terms of

the previous elements of the staircase. Clearly, in view of (5. 4), there are polynomials
5 € Prp—1 and t; ; € Pry_2 (s =0,1,...,5) such that

J
(511)  Pap,,(2) = 2Way 1(2)Phy(2) = > [thJ(z)P,gv (2) +£2;(2) Pas (z)]

8=0

(If hy =1, we set t ; := 0.) We multiply this relation with the monomials of degree
at most nV +h) — 1= nj,, — 1. Each of these monomials can be written as either
P +kw1th0§k§h{‘—2 0<i<y, Ol‘zn'+kW1th0SkSh,Y—1 0<i<j.
(Note that the range of k in the first loop is empty if A} = 1, in which case the
multiplier 2" +k is not used.) Then, we apply ® to the resulting n? 71 relations in
order to obtain a linear system of n? +1 equations for the polynomlals th ; and ty . 3
s§ =0,...,j. In view of (5.4), these polynomials have a total of n},, coefﬁcxents
In view of (5.8a), all expressions ®(z™ t* Pry,,) and B (2 +k Py, ,) vanish, so that
Pn;,\+1 does not appear in the system. In order to verify the structure of this system,
we list a number of results following directly from (5.4), (5.5), and (5.9); k is always

assumed to lie in the given ranges.

(5.12a) B( R Wy _y Poy) =0 if i <.
J

(Here, for the case i = j — 1, we have used that n} , +k < nf;, +h}, -2 =
—-1<n}-2<ny-2)

_1 -1
v =0 if i<j—1

nf +k+1py / =J-4
(5.12b) ®(2 Wiy -1 Pry) { 20 i i=7 k0.
(Here, we have used that ny_; + hj_; + h} —2=n} +h} —2=n} - 1)
(5.13a) D HEALEY L) =0 if i< s;

s =0 if i<s,
(5.13b) (M Y Ph ) =0 if i=s, k+0ty; <hy -1,

#0 if i=s, k+0t);=h) -1,
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=0 if i<s,
(5.13c) @) Par){ =0 if i=s, k+0t); <h) -1

v =0 if i<s
;i +k /\ )
(5.13d) (2™ T g, nﬁ){¢o if i=s, 0}, =0, k=0.

By capitalizing on these formulas, the above-mentioned lmear system (Wthh was
obtained by multiplying (5.11), for ¢ = 0,1,...,j, with 27 +k (k =0,. -2)
and 2™tk (k=0,...,hY —1), and then applymg ®) reduces to the following set of
equations:

i—1 [
(5.14a) S Y P+ Y @R Py) =0,

s=0 s=0

k=0,...,h} —2;i=0,...,5;
i i

(5.14b) S B P )+ Y B R Poy)

s=0 =

0ifi<j—1,

= { BT Wy 1Py) #0if i=j, k=0,
&(z" +’°+1W,,v va) if =3,
k=0,...,h}’—1;i=0,...,j.

This system is of triangular structure, like the one for diagonal sequences, which
consists of (2.13) and (2.14). Again, except for the last few equations, the system is
homogeneous and we can conclude that “most” of the unknown polynomials are zero.
In fact, let us assume that j > 0 and, at first, that tg; # 0. Then, if dtg; > 0, the
equation with i = 0 and k = h{ — 9tg; — 1 in (5. 14a), which is homogeneous but
contains in view of (5.13c) exactly one nonzero term, yields a contradiction. Likewise,
if 8t); = 0, we let + = k = 0 and use (5.14b), (5 13b), and (5 13d) to obtain a
contradlctlon Next, suppose that tg; = ty; = t7; =t,; =1t; =0, but
tY; # 0 for some ¢ < j — 1. Then, (5.14b) and (5. 13b) w1th k = hV Btv -1e€
{1 2,...,h — 1} lead again to a contradiction; hence t/; = 0. If tg; =ty ; =t} ; =

= tV . =0 for some i < j — 1, we can likewise conclude from (5. 14a) and (5. 13c)
or from (5 14b), (5.13b), and (5. 13d) that t); = 0. In summary, if j > 0, there holds

(5.15) to j—l j = 0 .

By the same arguments we conclude from (5 14a) and (5.13c) that 0t}; < 0; from

(5.14b), (5.13b), and (5.13d), by choosing i = j and k = 0, we conclude that

(5.16) () = 0 #
the constant ;' being given by

=t0=t .=-~-=t\./ t

g =ty

2J j—1,3 —

(5.17a) @] =6]/6}, where 6} = &(z" Pnp), 6 = B2+ P,,;y).
For e] =t} ; we get from (5.14b) (with i = j) the additional h} — 1 equations

@(znj +k+1 e}/ P‘rll,;/) + 90;/@(2",' +k Pn;.\) = <I>(z i Y+k+1 Whv 1 P’ v)a

5.17b
( ) k=1,. h-—-l.



THE UNSYMMETRIC LANCZOS PROCESS, PART II 25

If the polynomial e}’ is expressed in powers of z or in terms of the polynomials
Wh, it follows from (5.9b) that the matrix of the resulting linear system for the
coeflicients is right lower triangular and regular, since its antidiagonal elements are
all equal to 5}’ # 0. In case of the monomial basis, the matrix is Hankel.

Summarizing, we have shown so far that the general representation (5.11) reduces
actually to a mixed three-term recurrence formula

(518) Pup,, () = [Way-1(2) = 2} (Pay () = ¢ Pap (), G =0,1,...,J" ~1.

In a completely analogous manner we can derive a mixed three-term recurrence
formula for computing P,,. We start from the representation
J

j j-1
(5.19) ,'1;./ (2) = Whp—1(2) Pap (2) — Z te i (2)Pas(2) — Zt;/,j(z)Prlz},’(z)

3=0 s=0

with new polynomials ¢ ; € Ppa—2 (s =0,1,...,5) and t]; € Pry_1 (s =0,1,...,5—
1). (If hy =1, we set t;,; :=0.)

This time, we multiply this relation with the monomials 2™ +* (1 < k < Y —1,
0<i<j)and 2W+F 1 <k < hY, 0 < i < j — 1), which together are all the
monomials with degrees between 1 and n} + h} — 1 = n}. Again, we then apply ®
to both sides. Due to (5.9a), P,’l}, does not appear in the resulting linear system of

n) equations, and in view of (5.4), the total number of coefficients of ¢} ; and ty ; in
(5.19) is also n;’ To simplify the system we need the following formulas, which are
analogous to (5.12) and (5.13). (Note that the ranges of k and the maximum degrees
of 8t ; and 8t ; have changed.)

(5.20a) B(2™ R Wia_1 Pn) =0 if i <j—1;
. =0 if i<j—1,
(5.20b) B2 Wip 1 Ppp)g =0 if i=j-1,k<hl -1,
TL#0 W i=5-1,k=h],—1;
(5.21a) DR Ph) =0 if i <s;
y =0 if i<s,
(5.21b) (™R Py) g =0 if i=s, k+08t); <hj,
#0 if i=s, k+0t),; =hY;
. =0 if i<s,
(5.21c) B EE)  Popa)d =0 if i=s, k+0t); <h) -1,
#0 if i=s, k+0t); =h) —1;

(5.21d) B2 R ) Pop) =0 if i<s.
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By applying these formulas, we can rewrite the linear system as

[ T
(5.222) > (TR P+ B ) Poy)
8=0

0ifi<j—1,
q’(z‘J 1+kWh/\ an/\)¢0 lf’l—-]_l k 1'—1
k=1,...,hY;i=0,...,j—1;

i—1
(5.22b) DB REY; Phy)+ Z B(2" R 1) Pap)
8=0 8=0
0ifi<j—1,
(2"t Wha_1 Pap) if i =,
k=1,...,h0 =1;i=0,...,5.

Again, the system has a triangular structure. For let us assume that j > 0 and

0,; # 0. Then (5.21c) and (5.22b) with i = 0 and k = hyy -3t ;—1 € {1,2,. h0 —1}
yxeld a contradiction, showing that tO = 0. By the same a.rgument 3 'j =ty

=t/ ,.,=0 (for some i < j — 1; implies that ¢}'; = 0. On the other ha.nd
assuming t0 i = to, =t/;=0,t; #0 (for some 1 < j — 1), we conclude from
(5.21b) and"(5.224), by choosmg k= hY - tY, € {1,2,....hY} there, that £, = 0,
unless i = j — 1 and k = hY_;. In the latter case there holds

(5.23) ty_1,(2) =9} #0,

where the constant ¢} is given by
(5.24a) = 60/6)_y, where 6)_; = ®(2" P’}/_l), 8 = ®(2" T Pon).

Finally, choosing i = j in (5.22b) yields a linear system of A7 — 1 equations for

Ao N .
ej -— tj’j.

an Atk /-\Pn{\ +¢A¢zn1+kP/ _¢z1+kWh/\ an/\,
3 J

5.24b
( ) k=1,...,h} —1

Here also, if e;-\ is expressed in a basis of polynomials with ascending degrees, the
coefficient matrix of this system is right lower triangular and regular, with antidiagonal
elements 67 # 0. If the monomial basis is used, the matrix is again Hankel.

Summarizing, we get the following theorem.

THEOREM 5.3. The regular FOP1s Pps, j=0,. ..,J", and P, v, i=0,...,JY,

of the block staircase sequence starting at (0 n§) = (0,1) satisfy a pazr of mized three-
term recurrence formulas:

(5.25a) P,',Jy (2) = [Whp-1(2) - e’\(z)]PnA (2) — ¢} nv (&), §=01,... AN
(5.25b) Pup,  (2) = [eWhy_1(2) — ze} (2)] ,,Jy(z) jP,,?(z), j=0,1,...,J" =1,

with initial values P,y 1(z) =0, Pop(2) =1, @f :=0. {Win}o_g is an arbitrary pre-

scribed sequence of monic polynomials of respective degree m; {¢} }]—-O and {p}'}; J ot
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are sequences of uniquely determined nonzero complea; constants, each of which is
given by (5.24a) or (5.17a), respectively; and {e’\}J_O and {eY}_y' are sequences of
complex polynomials of respective degree def; < h" 2 and Be\y < hV —2, each of which
is the unique solution of a linear system (5. 24b) or (5. 17b), respectwely (ef(z)=0
if h} =1, and €}/ (z) =0 if h} = 1.) The integers h} and hy are determined by (5.5)
and (5. 9), respectwely, i.e.,

(5.26a) h} :=min{k € N*; &(2"7tk=1P,) +# 0}
= min{k € N*; (Wi_1(Pry)?) # 0},
(5.26b) hY = min{k € N*; ®(z"/ k¥ PLy) # 0}
J

= min{k € N*; <I>(sz—1(P,',;/)2) # 0}.

Similar recurrences, which, however, involve all regular FOP1s on both diagonals,
have been given by Draux [6, pp. 394-398].

As in §2 we could state as corollaries the special results obtained for the cases
where the polynomials W, satisfy a three-term recurrence and where the polynomials

eg\ and e) are expressed as linear combinations of these Wy,. At this point, the

formulation of these results is left to the reader, but in §6 we will give their matrix
formulation.

Theorem 5.3 allows us to construct recursively the sequence Py, P;lcv' » Pnps P1'z¥,
Py, ... that contains all essentially distinct regular FOP1s on two adjacent diagonals.
However, as is apparent from Fig. 3, each of the sequences {Pn/\ }3120 and {P/ ny }3’10 in

general does not contain all regular FOP1s of the corresponding diagonal. If n >
then Py is also a regular element of the lower (V) diagonal, and if nf,; > n + 1

then zP' is also a regular element of the upper (") diagonal. To obtain two full
sequences of FOP1s, we use additionally the definition (1.28):

n—n} (z)PnA (z) if n’\ <n< n] (= n;\ + hf —-1),
(5.273-) Pn(Z) = { ng n —1(3) (z) if n <n< n 1 (= 'n;/ + h;/);
cn e nA(z)P A(z) ifnf§n<nj (=n§‘+h§‘—1),
(5.27b) P.(z):= { Way(IPy(2) ifnY Sn<ndy, (=ny+hY).
Then, clearly,

(5.28a) P, (2) = Pa(2) ifn} <n<nj,
(5.28b) Po(z)=2P,_i(2) ifn] <n<nfy,

Equations (5.27) and (5.28) allow us to modify the recurrences (5.25) in several ways.
If the three-term recurrence (2.10) is assumed to hold, we have moreover

(5.292)  Pat1(2) = (2~ 0 pn)Pa(2) = B ppPra(2), nf <n<ni -1,
(5.29b)  Pryy(2) = (2 - a'r‘:.V—n;{ )Py (2) — /3,5"_";1’4_1(2), ny <n<ndy, -2

Here, by (5.28), the terms zP,(z) and zP,,(z) on the right-hand side can be replaced
by zP)(z) and P,41(2), respectively:

(5.30a) 2P.(2) = Ppy1(2) + oV nAP (z) + B n,\Pn_l(z) n;\ <n ;’ 1,
(5.30b) Pny1(2) = Phyi(2) + 0l nvP’ (=) + BV nvP’ 1(2), nf <n<nfy, -2
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It is also worth noting that the terms e} (2)Pnp (2) and zef (Z)P,’,,'}/ (2), which ap-
pear in (5.25) and are only nonzero if A} > 1 and h}’ > 1, respectively, are, according
to (5.28), equal to e} (z)P,’l? (2) and e} (2)Ppy 41(2), respectively. In view of the def-
initions (5.27), the terms Wh?_l(z)Pn]A () and WhJY—l(Z)P,',]_v () can be written as
Pny (2) and P,’LjA“_l(z), so that the recurrences (5.25) become

(531a) Poy(2) = Pay(2) -} ()P(2) =} Pl ,(2), §=0,1,...,J",

nj-1

(5316) Pay,, (2) = 2Py _1(2) = €} (2)Paysa(2) = @Y Pup (), 5 =0,1,..., 0" 1.

The notation P indicates here and below that one can use either P, or P,..

Finally, in view of the later application to the nongeneric BCG process, we give
the analog of Theorem 2.9. By an argument based on the orthogonality relations (5.5)
and (5.9), which is analogous to the one for establishing (2.22), and by using (5.27),
we obtain:
(5.32a) @) =6,/8)_;, where 6}, = @(zPig_lP:,ay_l), 87 = ®(Pny Ps),
(5.32b) ©(€) Pap4kPrp) = ®(Paj4kPay), k=1,... k) —1;

- A () — )

(5.32¢) @) =67/67, where 6} = @(PnJYPn;\), 6 = @(an;\“_lP,'Ljv),

(5.32d) ®(ze) ny+kFny) = ®(2Phy kPon 1), k=1,.. LRy —1.

If (2.10) holds, we may insert P,y and P,’l?H_l into (5.32b) and (5.32d), according to

(5.29). We may also use (5.28b), although, in contrast to the situation in §2, there is
no need to do that:

(5.328) q)(e_;'\Pnf+kPn;‘) = q:>('Pn§‘+k(an.;.’—l - ahwg\—zpn}’—-l - ﬂ}‘g\—2pn;/—2))a
k=1,...,h -1,
(5.326) ®(ej Poy i Poy+1) = B(Pry 4k (2Pap,, -1 — 08y _oPup,, -1 = B _5Pus,,—2)),

k=1,...,hY — 1.

THEOREM 5.4. The linear systems (5.24) and (5.17) for computing the poly-
nomials e}, ey and the constants ¢}, ¢ can be replaced by the equivalent system
(5.32a)—(5.32d) consisting of single equations for ¢} and ¢, and of a right lower
triangular systems for the coefficients of e} and e}. If (2.10) holds, we may replace
(5.32b) by (5.32), and (5.32d) by (5.32f).

6. Matrix interpretations of staircase recurrences. In this section we give
a matrix formulation of Theorem 5.3 on the mixed three-term recurrences for block
staircase sequences of orthogonal polynomials. It is analogous to the matrix for-
mulation in Theorem 3.1 for the diagonal three-term recurrence (Theorem 2.7 and
Corollary 2.8). Whereas a block tridiagonal matrix H emerged there, we first find
here two block diagonal matrices, EV and E*, and a lower and an upper block bidiag-
onal matrix, FV and F”, respectively. They give rise to two further block bidiagonal
matrices GV := FV(EY)~! and G" := F"(E")~!, which turn out to be block LU
factors of H, but also block UL factors of another matrix H' of the same structure,
which belong to the functional &' instead of to ®.
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Again, we assume in view of the later application to the BCG method that the
polynomial basis {W,,} satisfies the three-term recurrence (2.10) whose matrix for-
mulation is given by (3.1)—(3.3). Then Theorem 5.3, the definitions (5.27), and the
relations (5.28) and (5.30) easily yield the following theorem.

THEOREM 6.1. Let {P,} and {P.} be the sequences of FOP1s corresponding to
the functionals ® and ¥, respectively, uniquely specified by (5.27), where {W,,} is
a sequence satisfying the three-term recurrence (2.10) (possibly with o¥¥ = g% = 0,
Vm € N). Define the infinite row vectors

(6.1) p:= [P, P,..], p=[PP,..]
and, for finite or infinite value of J", the infinite matrices
(6.2) EV := block diag [Ey,EY,...,EY\], E”":= block diag [E},E?,...,Ej}.],

with square blocks EY and E} of order h} + h} —1 that for j = 0,...,J" — 1 are
given by

I;-\ 0] 0 If —ef 0]
(6.3) E/:==| O Iy —-e/ [, Ef:=| 0T 1 oT
oT oT 1 [e) 0 Iy

Here, I} and I} are the unit matrices of order h}} — 1 and h) — 1, respectively, and
the row vectors

(6.4) e/ i=[eg €Y 4r--- ,exy_zj]T, e} :=[e0,€14s- -+ ,529_2,]-]71

contain the coefficients of the polynomials

hy -2 h}—2
(6.5) €] (2) = Z el Wi(2), €5(2)= Z e Wi(z)
=0 =0

from Theorem 5.3, expressed in terms of the basis {Wn}. If h} =1 or h] =1,
the rows and columns containing I} and I}/, respectively, are missing in E) and E}.
If JN < oo (and thus JV < oo also), then EY. := I (the infinite unit matriz); if
JV = JN =1, Eys =1 also, while, if JV = J", then E}. has the same structure as
in (6.3), with TV, =1L

Also define the infinite block bidiagonal matrices

(6.6)
FY [ Ly Fp ]
LY FY Lt F3
FY = LY Fy , FA o= Ly :
) A
LY, FYa Y
-1 Fj | Lja |

with square blocks FY and L} of order h} + hY — 1, whose upper left corner is the
n?,n’)-entry® of FV and F", respectively, and which for j = 0,1,...,J" — 1 are
507

3 The entries in the upper left corner of FV and F” are considered as (0,0)-entries. The entries
in the subblocks are in this text identified by their indices in the full matrix, e.g., the (n},nf) entry

of F;/ is the same as the (n;.\,n;.\) entry of FV. Likewise, the n;.\th row (column) of F;/ is the ng‘th
row (column) of FV.
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given as follows: If h)) > 1 and hy > 1,

T) | O | I | o] o
(6.7a) Fy:=| 1} | o 0|, Ly:=| O c/ | T |;
O | I/ | o o | o | BT

whereas, if h} =1 and hy > 1,

T \% \% \
(6.7b) F} := [ (I);’ % ] , Li:= [ cg 5%‘ ] :
and, if b} > 1 and by =1,
A Vv A
(6.7¢) FY := [ :;2_;, fé ] L} = [ (I)"T (1)] ,
which reduces even further to
(6.1d) Y=ol L) =[]

if both h} =1 and hy = 1. If T}Y denotes the tridiagonal matriz of order m + 1 with
entries BY , o and 1 in its (k+ 1)th column, cf. (3.2), then the blocks FY, F}, LY,
and LY contain

(6.8a) T} = T,,Wf_z, T} := T,V,‘J;_z,
6.8b) ) :=[p?,0,...,01T € Ch -1 £Y:=[pY,0,...,0]T € Chi 1,

J J J J
6.8¢ ¢} =[1,0,...,0]T e Ch -1 ¢Y:=[1,0,...,0]T € Ch/ -1,

J J
(6.8d) 1T :=[0,...,0,1] eC¥1, IT:=[0,...,0,1] € C¥ L.
IfJV=J)N-1< oo,
(6.8e) FY\ :=T", Lj.:=1,
while, if JV = J" < o0,
Tin | © I () o
Jl\
(6.8f) FY.:=| I4)Y oT |, Ljs:= [ o o W ] ,
o) I "

where cYya = [1,0,0,...]T has infinitely many components.

The off-diagonal blocks F} and LY are rank-one matrices of size (hj_, +hy_; —
1) x (h} +h{ —1) and (h}y, +hi, — 1; x (hf +h7;\-’ —1), respectively. Each has a single
nonzero element, namely, the (nj_,,ny) entry o7 of F" and the (n},,,n},,—1) entry
1 of FV, which lies in the upper right corner of LY. If j < J" and h}_y,h_;,h}, hY,
hiy 1, hf41 > 1, then F) and LY have the structure

o 0 (0] (0] o cg\
6.9 F) = / LY := | o7 T
(6.9) A o | ff ] 0], L of | o 0o |,
oT 0 oT [0) o) 0
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with diagonal blocks of order (h}_, —1) x (h} — 1), (hY_; —1) x 1, 1 x (h} — 1), and
(A1 — 1) x (hf = 1), 1 x (hY — 1) (hY. 41— 1) x 1, respectwely If one or several of
these sizes are zero, the structure is again modified, but the nonzero entry of L;’ 18

always in the upper right corner; the one of F;\ is in the first column zf h’\ =1, in

the last column if hV =1, in the first row if h 1, and in the last row zf = 1 If
JV =J"—-1< oo, FJA = 0; and if JV = J’\ < 00, Fx has the same structure as

in (6.9), but the last block column is infinitely wide.

In terms of the above-defined quantities, the mized recurrences (5.25) for the se-
quences {Pnp} and {Pyv} can be written as

J

(6.10a) p(2)E" = p'(2)F",
(6.10b) 2p'(2)EY = p(2)FV.
Likewise, if EE:;]’E&]’FE:»]’F&] denote the principal submatrices of order n + 1 of
EY,ENFV, and F", respectively, and if
(6.11) pPn =[P, P1,..., P, p,:=[P,P,...,Pl),
then we have
(6.12a) Pn(2)Ef, = PR(2)Fly,
(6.12b) D (EY, = Pal@)FYy (0,0, Para(2)].

Remarks. (i) EV and E" are unit upper triangular and block diagonal, and the
same holds for their inverses, which have the blocks

I | o | o I | e | O
613) (E)'=|0 | Iy | e |, (E}))'=]0" 1 of |,
oT | oT 1 o 0 Iy

differing from EY and E} by the missing minus sign in front of e} and e} only.
(ii) FV is unit upper Hessenberg, and F” is unit upper trlangular
(iii) If hY = hY = 1 (V4), EY and E” are the infinite unit matrix, and F¥ and F"

are lower and upper bidiagonal,

A
o 1 ¢ A
v 1 (p\l/ A 1 (2
(6.14) F' = 1 % , F' = 1

By using (6.13), we can readily turn the relations (6.10) into formally explicit
formulas for p and p’, which, however, are used in an implicit way as recurrences for
the elements of p’ and p, respectively, appearing on the right-hand side.

COROLLARY 6.2. Under the assumptions of Theorem 6.1, there holds

(6.15a) p(z) =p'(2) G"
and

(6.15b) zp'(2) = p(2) GV,
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where
Gy
LY GY
(6.16a) GV =FV(EY)!:= LY Gy
Lj._y GJa
and
[ G) F} T
G} F)
(6.16b) G" =FNEM ™ = G%
F’J/\\A
L GJ’\ i

have the same off-diagonal blocks as FV and F*. The diagonal blocks G} and G},
§=0,1,...,J" =1, are defined as follows: If h} > 1 and h} > 1,

T} (0] £y I A (0]
(6172) Gy=[1YT [ o" | 0|, G}:=| O | ¢ | T} |;

0 | I/ | & or |0 | 1T
whereas, if h}} =1 and hy > 1,

[ oT oY cY TV
(6.17b) Gy = T e;, ] , Gj:= [ 6 l;-’T ] =L};
ifh} >1 and b =1,

£y | N A
(6.17c) G} = lAT 6 ] =F], Gj:= [ OIT 1’ } ;
and, if both h} =1 and h}’ =
(6.17d) =[p]=F), Gr=[]=L}
FJV=JN—1< oo,
(6176) G.\;/\ = F.\;/\ = TW, GJ/\ = LJ/\ = I
while, if JV = J" < o0,
THA (0]
| AN e} (o)

(617f) G.\;/\ = F.\;/\ = |: 190%‘ 0]’:T :| y GJ/\ = [ (J) c§2 ™" } .

Note that the two relations (6.15) are just the recurrences (5.30) and (5.31) ex-
pressed in matrix notation.
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TABLE 1
Computation of H from GV and G" by equating the elements of H with those of GYG/.

h‘;'/—l h.‘/i\ h}/ ni—1 n; Ni4+1 ni42
>1 | >1(>1(nf  +1 A ny +1 niy
=1 |>1]|>1 "’?—1 n;\ = n;-’_l +1 n;/ +1 n?_‘_l
>1 | = >1 n}’_1+1 n? =n}’ n;.’+l "?-0-1
=1 |= >1 n;\_l n:/i\ = n;.’_l +1= n}’ n;./ +1 ";/,‘\+1
>1 | >1|=1fnf +1 A iy =nf+1|nf,+1
=1 {({>1|=1 n_y ng‘ =n_;+1 iy =nf+1|nf, +1
>1 | = = n}’_l +1 n? = n}’ n;‘_H = n}’ +1 n}’_H +1
=1 | = = n;.\_l n;\ = n}/__l +1= n}/ n§\+1 = n}/ +1 n;/_*_l +1
hi_y | By | Y || hi | ki a; Bi a;+1 | Bit1
>1 | >1|>1( k) [hY-1 Q;(e},0) A e/ | ¢f
=1|>1|>1|h}|h/-1 Qj(ef, ¢7) (p;.\_lgo;\ e:\i/ 4
>1 |=1|>1|h}|h-1 [o] A e | ¢f
S LR R DA
>1 | >1]|= LA I AR Qj(e}, ;) A - -
=1 |>1| =1 A} | hiy, | Qledo) +f) | 0fae; | — | -
>1 | =1 =11h} | hiy, [#5] 2 e
=1 |=1|=1]h | hiu ey + 71 ei1% | — | -

7. Matrix relations between diagonal and staircase recurrences: The
nongeneric qd algorithm. From the two relations (6.15) we can eliminate either p
or p’ to obtain

(7.1a) zp(z) = p(z)GYG"
and
(7.1b) 2p'(z) = p'(2)G"GV.

However, these are—in matrix notation—just the recurrences for the FOP1s P, and
those for the FOP1s P.,. Therefore, they must be identical to (3.11), which describes
this recurrence for P,, and with the corresponding relation for the set {P.}, respec-
tively. This leads to the following result.

THEOREM 7.1. Under the assumptions of Theorem 6.1 let H and H' be the block
tridiagonal matrices from (3.6) that describe, according to (3.11), the recurrences for
the FOP1s {P,} and {P.}, respectively, that correspond to the linear functionals ®
and ®'. Then H has the block LU factorization

(7.2a) H=G'G",
and H' has the block UL factorization
(7.2b) H = G"GY,

where GV and G" are the block bidiagonal matrices defined by (6.16)—(6.17) and (6.9).
The resulting relation between the entries of GV, G", and H or H' are listed in Tables
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TABLE 2
Computation of H' from GV and G” by equating the elements of H' with those of GA"GV.

hf h}/ hf+1 ni_y n; "2+1 "Ii+2
>1|>1] >1 ng\ n}/ n§\+1 n;./+1
= >1( >1 n}/_l n}/ = n;.\ n§‘+l n}’_,_l
>1 | = >1 ng.‘ n;.’ "'f+1 = n}’ +1 n;.’_H
= = >1 n}’_l n}’ = ;‘ "'?+1 = n;.’ +1 n;/+1
>1(>1| =1 n;.‘ n}’ n;/+l = n;‘_H n;‘+2
=1>1| =1 | nf,|n}=nj nir = ni nJv2
>1|=1] =1 n;.‘ n;.’ n}’_,_l = ;‘\+1 =n;.’+1 ng‘+2
=1]=1] =t ||nf,|nf=ny|nfya=nf,=n/+1]|nf,

hY [ R | hj || M hit1 aj_y | B aj B;
>1[(>1| >1 |[hY [h),—1| e} | ¢} (e, 0) oY
=1|>1| >1 || h | hjy,=1] = - Qe ¥)) A
>Ll=1) >1 hi ) hjyy =1 ef | ] 0] vy
=Lp=1] >0 hf ki -1 = - [ey] A
>1|>1 =1 A/ | hiy, | ef | ¢ @j(ey, 0741) of
=1|>1 =1 a/ | Ry | = = (e e) i) | o]
>l =1 =1 hf| hf, | e} | ¢ [044] ot
st)=t=tfia ] Ba | - | - | iHepal [

1 and 2. There n; and n) denote the sequences of the indices of the reqular FOP1s out
of {Pn} and {P.}, respectively; the entries of H' are also distinguished by a prime
from those of H. The functions Q; and ; are defined by

- W B w T
A 0
(7.3a) Q;(e},p) = Thwj’.‘—l N I B
L-1] o
_ 1 Te
e’ 0
(7.3b) (e, 0) =T o | 7 |+
| -1 ] 0

Remark. In the case Wy, (z) = 2™, the definitions (7.3) reduce to

(74) a0 = [5] eto= 5]
Proof. We have already derived (7.2), so it remains to relate the entries of H and
H’ to those of GY and G”. For this we need to compute explicitly the elements of the
products GYG” and G"G". The task is complicated by the fact that the structure
of the blocks depends on the quantities h;\ and h;-’ being larger than or equal to 1.
Let us start with the off-diagonal blocks of the products. First, the (j + 1,5)-

blocks of GYG” and G"G" are LYG} = L} and G},,LY = LY, respectively. The
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(j —1,1)-blocks are GY_;F} and F} G}, and their structure depends on the value of
hV 1 and h , respectlvely Smce F;\ has only one nonzero entry, namely, the ('n, _nn J

entry A of G”, only the ny_;th column of G}_; and the n}’th row of G matter

(Columns and rows of the blocks of GV and G’\ are here again numbered according

to their indices in the whole matrix.) The ny_;th column of G;’ 1 contains 1 as its

(ny_; +1,ny_;) entry if hY_; > 1, and ¢)_; as its (n}_;,n}_,) entry if hY ; = 1.
Consequently,

vV pA — ‘Pf if (m,n)= ("7'] 1+1n ) v
(7.5a) (G;_1Fj]mn = { 0 otherwise if hj_;>1,

and

VooN i = (). nY
(75b) GV 1Flmm _{ ‘Pj—ol%' Lft h(::g:s)e = (nf_1,m; } it Y, =1.

The nYth row of G contains 1 as its (n},n) — 1) entry if A} > 1, and ¢} as its
(n?,nfy, — 1) entry if A} =1, so that

QY — (P‘;\ if (man) ('n’_y nn 1) 3 A
(7.6a) [F5 G5 lmn = { 0 otherwise if by >1,

and

AGY _ | #je} if (myn)= (ni_y,np—1) | . A
(7.6b)  [F}GYlmm _{ AN if ) =1.

The diagonal blocks of GYG” and G"G" are GYG} + Ly_,F} and G} G} +
F},,LY. Here we obtain

(7-7&) LV lFA = 0 lf h}/—l > 1,

(7.70) (LY F}mn ={ ey i (mn) =(n7,nj) } if Y, =

0 otherwise

(7.8a) FALLY = O if By, > 1,
Jj+1 i+
‘p_1+1 if (ma 'I’l) = (n_;'/’n_;’\+1 - 1)
(7.8b) [F]_HL_7 ]m, { 0 otherwi if h_1+1

Furthermore, if h} > 1 and hY > 1,

T} Tje} £/
GG} = | 1T 529—2,_1' 0T ?
(0] cf T}’ + e}/l}’T
(7.9a)
T_;-\ + e_;\l;\T o f]y
v — .
GiGy=| oIi" T | Tie |5
T VT v
|0 L5 | eny-as |
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if i =1 and hY > 1,

0 YIYT T VoV +TVeY
(7.9b) G]YG]A=[ %i% | ey +Tie ],

- G)GY = | ¢ 5
Vv \ \2\% ) 2 J Y .
cj | Tj+ejl; LT | el

if A} >1and BY =1,

T, | Tpe} + £ T) + 1T | £y
79c) GYG) = J 1J 1 | GrGY = i___ 37 J |
( ) k] [ l;\T | 5;1\;\_2’1. J g l;-\T | 0
and, if h} = h) =1,
(7.9d) G/G} =lp]], GGy =[¢]].

To relate the entries of H and H' with those of GYG" and G"G", we need to
associate the blocks A;, B;, C; of H and the blocks Al, B!, C. of H' with those of
GVG”" and G"G", respectively. However, depending on hY and h} being equal to
or greater than 1, a diagonal block

(7.10a) H) := GYG) +L}_,F}
of order h} + h;.’ —1 of GYG” = H and such a block
(7.10b) H := G} G} + F},LY

of GGV = H' corresponds either to a single block A; or A} or to a 2 x 2 block
matrix

A; B; A B’
11 ¢ ol -1 %
(7.11) [ C: A ] o ARV ] ’

respectively. Likewise, the off-diagonal blocks may correspond toa 1x1,1x2,2x 1,
or 2 X 2 block matrix.

The indices of the regular elements of the sequences {P,} and {P.} are now
denoted by n; and nf, respectively, while {n}} C {n;} and {n}'} C {n{} still denote
the index subsequences of the regular elements in the generalized staircase. Since the
upper left corners of A; and G} G} are at (n;,n;) and (nf},n}), the association of
the blocks is based on the identification n; = n;\ Likewise, the upper left corner of
A at (nf,n}) corresponds to the (n},n}) element of G} G}/, hence we have n] = ny.
From (7.3)—(7.9) we can then read off the associations listed in Tables 1 and 2. 0

Tables 1 and 2 describe the structure and the entries of the products H = GVG*
and H' = GAGV in terms of the entries of GY and G”. Next, we are interested in
inverting these two operations, i.e., in computing the lower block bidiagonal matrix
GV and the upper block bidiagonal matrix G*, either from H or from H'. Of course,
GV and G" are required to have the structure specified by (6.16) and (6.17). While
H = GVG" is a block LU decomposition, H = G"G" is a (not so often encountered)
block UL decomposition. Theoretically, in view of

(7.12) H)™ =(GY)7H(GY) ™,

the latter could be obtained via a block LU decomposition of (H')~! followed by the
inversion of the factors, but we can directly determine the block UL decomposition
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with ease. From Theorem 7.1 we know that these two block decompositions exist, but
it is not yet clear how the sizes of the blocks of GV and G” can be determined from
those in H or from those in H'.

In the jth step of the block LU decomposition, H = GYG”, the block pivot
element is obtained by subtracting Ly ;F} from a diagonal block H} of H of the
appropriate size. It must then be split into G;’ Gg\:

(7.13) H} - L}_,F} = G}G}.

However, given H structured according to (3.6)—(3.10), we do not know a priori the
sizes of these diagonal blocks, since they may correspond to a single block A; or to
a 2 x 2 block matrix given on the left-hand side of (7.11). (This is also the reason
for calling these blocks H? and not Hj; the block sizes are the same as in G and
GV.) But any block pivot has to be nonsingular, and from this requirement we can
determine the correct size of the block H;‘ Any tentative 1 x 1 block pivot is either
a 1 x 1 matrix obtained by updating [ag ;] or a unit upper Hessenberg matrix. The
latter is a companion matrix if we assume for the moment that W,,(z) = z™. Hence
it is nonsingular if and only if the element in its upper right corner is nonzero. Thus,
identifying n; = n’, we then have H} := A, if and only if o ; minus the (n;,n;41—1)
element of L}’_IF’-( does not vanish, i.e., in view of (7.7) and n) = n;y; — 1 (cf. Table

1), if and only if ~

(7.14a) @; :=ao; # 0 in case hy_; > 1,

(7.14b) ¢}/ =g, — (p;.\ # 0 in case h;’_l =1.

Note that ¢} = Bi/pp ; if hY_; = 1 (cf. Table 1), and that this quantity can be
computed at this moment. Moreover, in the case of a 1 x 1 block pivot, i.e., when
(7.14) holds, we conclude from Table 1 and (7.4) that ¢} = @Y. Hence, (7.14) means
that we test whether the tentative value @’ of <p}’ does not vanish. This value does not
depend on the basis {W,, } chosen, as long as this basis consists of monic polynomials,
since <p}’ is the coeflicient of a regular FOP1 in one of our mixed three-term recurrence
formulas (5.25). Therefore, in the general case, we can replace (7.14) by a test for
the nonvanishing of the tentative value of <p;.’, which can be found by inversion of the
function ;, cf. Table 1.
If the test fails, we end up with a 2 x 2 block pivot,

A; B;
7.15 HY = | &0
(7.15) J [ Ci Aina

cf. (7.11), for which the unit Hessenberg matrix H} — LY _;F7} is always nonsingular,
since B;41 # 0, while the (n},n{,, — 1)-element of Ly_;F} is always zero because
n} <nj,—1.

The matrices GV and G” can thus be built up by successive determination of
the sizes of the block pivots and simultaneous computation of the entries by using
the formulas of Table 1. The result is summarized in the following theorem and in
Table 3.

THEOREM 7.2. Given H, one can compute the block LU factorization H = GYVG"
by a Gauss block elimination process. In step j, where the upper left corner of the
block pivot HY — Ly F} is at (n},n}) = (ni,n;), the block H} of H is defined by
identifying it with either the 1 x 1 block A; or the 2 x 2 block (7.15) (hence the size
of the block pivot is either h; or h; + h;11), depending on whether the tentative value
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@y of ¢y given in Table 3 is nonzero or zero. The relevant entries e), ), e}, and
¢} of GV and G" are then obtained according to Table 3. There the functions Q7
and w) are together the inverse of Q; defined in (7.3a); they are computed as follows:
Partition the matriz T,%_l and the vector a; according to

(7.16) T};Vg\_l =: [ S: T ] ,  a; =: {%] ;
then set

(7.17a) 0 (a;) :=S"'(a+t),

(7.17b) wia;) = a+71-sTQ}(a;).

The process starts at j =i = 0 with nf) := ng, ¢§ := 0, LY, F§ := O. (hY, does not
matter.)
Remark. In the case where W,,(2) = 2™, the definitions (7.17) reduce to

(7.18a) 0 (a;) == a=Inp_1a4,
(7.18Db) wi(ag) i=a=ag.
TABLE 3

Formulas for the block LU factorization H = GVG/.

hiy | ki 2 ng n nj1

>1 [ >1 wi(a;) =0 n; nit1 — 1 Nit2

=1|>1 wj’.‘(a,') - <p;.‘ =0 || n; nit1 — 1 Nit2

>1 = ag,; = 0 ni | ng=ni41—1| ni42

=1 = ag,i — ¢} =0 ni | ni=nip1—1 | nijo

>1 | >1 wJ’.\(ai) #0 n; nit1 — 1 Nit1

=1 | >1| wi(a) =@} #0 | n; nit1 —1 niy1

>1 | = g, #0 ni | ni=mnip1 -1 n

=1 |=1 ag,i — ) #0 ng | ng=ni41 -1 i
[ ] % [ 9 [ % [«
>1 [ >1|=0]| hi | hig1+1 Qg‘(ai) Bi ait+1 | Bit1
=1 |>1|=0{ hi [ hixa+1 | Q}Na:) | Bi/w]_; | @it1 | Bin
>1 [=1|=0( hi | hi1+1 0 Bi ait1 | Bit
=1 |=1|=0| hi [hip1+1 0 | Bi/ej_y | @it | Bita
>1 [ >1]#0]| hs 1 Q2 (ai) Bi 0 @y
= >1|(#0| hy 1 QNas) | Bifo)_, | O &)
>1 | =1|#0]| h; 1 0 Bi 0 &)
=1 |=1|#0]| h; 1 0 Bile}_, | © @y

For the block UL decomposition H' = G"G" we must likewise find a diagonal
block HY of H' of appropriate size, so that HY — F/, ;LY is nonsingular and can be
split into G} GY:

(7.19) H} - F},,L} = G}GY.
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In the case W,,,(2) = 2™ any tentative 1 x 1 block pivot is again either a 1 x 1 matrix
or a companion matrix. The condition for it to be nonsingular is now that o ; minus
the (n},n,, — 1)-element of ¥/, ;LY does not vanish; i.e., in view of (7.8), n; = ny
and nj,, =nf,; (cf. Table 2) if and only if

(7.20a) og; # 0 in case )y, > 1,
(7.20b) Qg — i1 # 0 in case hy, = 1.

However, <p§\+1 is not known at this moment. But we can apply a different argument.
Let ny := nj and assume that the elements of GV and G have already been
determined up to the (n) — 1)th column. Then hf, e}, and ¢} are known, and hY
is equal to the dimension k] of aj. From Table 2 we see that ¢ is determined by f;
and ¢}. Moreover, by analogy to (7.17) and (7.18) there are functions Q) and wy
inverting Q; the first one yields e} if hy > 1.
Next, let us first assume that h7 > 1 and consider

Vial) i v
A [ W (aj) in case h > 1,
(7:21) $it1 = { o in case h =1
as a tentative value for ¢}, ;. If nonvanishing, we let it be the true value of o7,
aﬁd set h%,, = 1 (e§\+/1 is then void). Otherwise, h},; > 1, hence n},; = n{,,,
€541 = A1, Pt = Piga-
h; =1, we instead let

V(a! Voo v
n . [ wi(@)—¢f incasehi>1,
(722) Pj+1 - { a6,i — (p;/ in case h] =1,

be the tentative value for ¢}, ;. The rest of the step is the same as before.

To complete the definition of the procedure we have to describe its start. At this
point we must note that although the functional ®' is uniquely determined by ®, the
converse is not true, since ® depends on ®(1) = ¢;, while ® is independent of ¢;.
Hence, the set {P,} of FOP1s determined by ® cannot be uniquely determined by
the set {P,} corresponding to . Moreover, the value of ¢; determines whether the
(I-1,0) and the (I,0) Padé approximants of f(z) = Y_ #xz* belong to the same block
of the table or not. In fact, they do if and only if ¢ = 0. (Recall that these Padé
approximants are polynomial interpolants.)

Therefore, given the recurrence formulas for {P.} (i.e., given the matrix H'),
those for {P,} and those for the mixed recurrence (i.e., the matrices H, GY and G")
are only determined after ¢; has been specified.

According to (5.17a), ¢y satisfies

(7.23) 0y B(2"0) = (2" Wy _1Ppy).

In the case h)) = 1, where n{) := ny :=ny =0 (i.e., i = j = 0), hy = hy,n{ = n}
and where both e{} and ¢ are void, we obtain

(724) 906/ = Q(ng’l—l)/qSla

which for the monomial basis Wy, (2) = 2™ reduces to

(7.25) @4 = Priny /-
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In the case hy > 1, where ny := ny = 0,ny = n} (ie, i = 1,j = 0), h) :=
o+ 1, hy := R, we have e := aj (cf. (7.9a) and (7.9c) with (3.7)) and, from (7.23),
(7.26) g = B(2" T Wiy 1Pl ) /iinys

which for W;,,(z) = 2™ reduces to

(7.27) @5 = Grny/Prany -

In both cases e, e}, and ¢} are obtained according to the general formulas in Table
4. Altogether we get the following analog of Theorem 7.2.

THEOREM 7.3. Given H' and either ¢; # 0 and Biiny or $1 =0, Gyn;, and
B1+ny, we can compute the block UL factorization H' = GGV by the following pro-
cess. In step j, where we compute columns n) = n! through ";'/+1 —1 of GV and G*,

J

the diagonal block Hy of H' (containing rows and columns ny through n},, — 1) is

defined as either the 1 x 1 block H;/ = A;. or the 2 x 2 block

v ' B

V . 1— %

(7.28) H;: [ c_, A ],

depending on whether the tentative value ¢§\+1 of pfy1 given in Table 4 is nonzero or
zero. The relevant entries e}, ¢}, e}, and Y., of G and G" are then obtained
according to Table 4. There the functions Q;/ and w}’ are together the inverse of (2}
defined in (7.3b); they are computed as follows: Partition the matriz T}, _, and the

J

vector a; according to

sT |7 a
then
(7.30a) Q) (a}) :=8"'(a+t),
(7.30b) wy(a}) = a+71—sTQ(a)).

The first step depends on the value ¢; = ®(1) (on which H' does not depend,
while H does):

If ¢ # 0, then
(7.31a) hy =1, hy := hy,

(7.31b) ny :=ny :=ng =0, ny :=nj,
e{ is void, and ¢y is given by (7.24); ey, €1, p{ are then obtained from the general

formulas in Table 4, with i = j = 0.
If ¢ =0, then

(7.32a) Y = hy+1, By = h),
(7.32b) ny :==ny =0, ny :=nj), nj:=n),
(7.32¢) e = ay,

and @y 1is gen by (7.26); ey, e, ¢ are obtained from Table 4 by setting i = 1,
j=0.
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TABLE 4
Formulas for the block UL factorization H' = G AGV.

AN P41 ny 41 nin
>1|>1 wy(a}) =0 n; L Mita
=1|>1 (l w(aj)—¢) =0 | nf N Miya
>1|=1 op; =0 ni | nj=n{+1|ni,
=1|= aa,i—s";’:O n} n’i+1=n£+1 n2+2
>1|>1 wy (a]) #0 n; mit1 i1
=1|>1 [l w(a)) -y #0 || n] i1 i1
SIS TP M A PR P
= = ag’i—cp}’;éo n} n’i+1=n£+1 "’£+1
hi | B | 85 || B | hia ef | ¢ |t |t
>1|>1] = hi | Ry +1|QY(@a) | B a; | B
=1|>1| =0 | h{ [ R}, +1|QY(a) | Bi/e} | & B;
>1| = = Ry | by, +1 0 B! a) B;
=1|=1|=0 | K K, +1]| 0 |B/e}| o) | 8
>1|>1( #0 |[ n 1 Qy(a) | B - | Fn
=1|>1| #0 || & 1 QY (a) | Bi/ef | — | #pa
>1|=1| #0 || & 1 0 B; - | #i
=1|=1| #0 || & 1 0 Bi/ef | — | #ha

Starting from the recurrence coefficients for some sequence {P,}52, of FOP1s,
say from {P,,}32,, inductive application of Theorem 7.2 and of the H' = G "GV
part of Theorem 7.1 allows us to compute the recurrence coefficients of any sequence
{Pny}820, 1 =1,2,.... These two theorems therefore define the progressive gd algo-
rithm, even for nongeneric situations. In the generic case, for which the algorithm
is due to Rutishauser [23], only the formulas for A} = hY = h; = h] = 1 (Vi, j) are
used, i.e., only those in the last rows of Tables 2 and 3. In this generic case the gd
table contains the recurrence coefficients for every diagonal sequence of FOP1s, i.e.,
our coefficients ag; (¢ =0,1,...) and B; (i =1,2,...) for every diagonal (I =0,1,...).
The progressive qd algorithm allows us to build up the qd table from its main diag-
onal, where [ = 0. (More generally, one can proceed downwards from any diagonal
or row.) Rutishauser had some heuristic rules for dealing with nongeneric situations,
namely, rules for filling the then appearing gaps in the qd table with zeros and oo
symbols. Draux [6] also formulated and established such rules. However, according to
the above result, we can define a qd table that is valid in every nongeneric situation
and contains as entries on its lth diagonal the nontrivial entries a; (¢ = 0,1,...) and
Bi (i =1,2,...) of the matrix H for this .

Likewise, starting from the recurrence coefficients of { Pp;0}32,, inductive applica-
tion of Theorem 7.3 and of the H = GYG" part of Theorem 7.1 allows us to compute
those of any sequence {Pp;1}52,, | = —1,-2,.... In each step a new “moment” ¢,
l = —1,-2,..., has to be provided. Hence, we can proceed from the main (or any
other) diagonal upwards and to the right. For the generic case this process is well
known. We call this the backward qd algorithm.

The progressive qd algorithm enables us in particular to compute the moments
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¢ (1=0,1,...) from the coefficients a; (: =0,1,...) and §; (¢ = 1,2,...) of the main
diagonal. Conversely, given the moments, the ordinary qd algorithm yields in the
generic case the recurrence coefficients on the main diagonal. This process is known
to be highly unstable. The same task can be done with the Chebyshev algorithm,
which is less likely to break down or to be unstable, since it requires only that all
FOP1s Py, on the main diagonal are regular. However, often the problem itself is
ill conditioned, and there is no chance for numerically stable computations. It has,
therefore, been proposed to replace the moments by modified moments if possible.
Golub and Gutknecht [9] have extended the corresponding modified Chebyshev algo-
rithm to the nongeneric case. The nongeneric Chebyshev algorithm is included there
as a special case.

The progressive and the backward qd algorithms are well known to have interest-
ing convergence properties. Basically, by proceeding downwards in the qd table we
obtain the poles of f, and by moving to the right we find its zeros, see, e.g., [3].

8. The nongeneric biconjugate gradient algorithm (BCG or BIOMIN)
and nongeneric BIODIR. The biconjugate gradient (BCG) algorithm is closely
related to the Lanczos biorthogonalization (BO) method. It can be traced back to
Lanczos [20], where it was introduced as “the complete algorithm for minimized itera-
tions.” More than 20 years later, Fletcher [7] revived and popularized it. It generates
the same biorthogonal vector sequences {x,}, {y»} characterized by (4.6)—(4.7), and
the same iterates {2z, } satisfying (4.61) as the normalized BIORES algorithm [11], but
additionally it generates two biconjugate vector sequences {u,} and {v,} taken from
the same nested sequences of Krylov spaces as {x,,} and {y,}:

(813‘) u, € ’Cn+l ‘= span (xﬂ’ Aan A2x0a EERE Anx0)a
(8.1b) Vn € Lpny1 :=span (yo, Afyy, (AH)2y0, e, (AH)"yo)
with

=0 if m#n,

This process can break down for various reasons, cf. [11]. From §4 we know
already that {x,} and {y,} satisfying (4.6) and (4.7) may not exist and that a
suitable modification of the process can be based on the theory of formal orthogonal
polynomials. An argument analogous to the one given in §4 shows that if (8.1) and
(8.2) can be fulfilled for n =0,1,...,v — 1, then they are fulfilled by

(83) U, = P (A)xol;, va =P (AT)yoly,

where the scale factors I';, and I/ are not necessarily the same as the factors T',,
and Ty, in (4.14), and where P, is the nth monic FOP1 with respect to the linear
functional &' = ®,; defined by

(8.4) ' (2%) := drt1 == (yo, AF lx0)B.

(Recall that if (8.2) holds for all m < v and n < v, all the polynomials P, (n < v) in
(8.3) are regular FOP1s.)

In case of a breakdown, the formulas (8.3) point again to the correct generalization
of the process: u,, and v,, must still have the same form, with P/, being an nth FOP1
for &', even if it is not a regular FOP1; hence (8.2) does not hold for this n. The
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recurrences of §5 allow us to find a recursive algorithm for computing u,, and v, along
with x,, and yy, and the relations of §§6 and 7 yield corresponding matrix results.
First we formulate the matrix algorithm that is based on a reinterpretation of
Theorems 5.3 and 5.4. Since it yields both a pair of biorthogonal and a pair of
biconjugate sequences, we call it, as in [11], the BOBC algorithm.
As an extension of (4.20a), for i,n € N we let

(853‘) Yn,i = Fn/Fn iy Yng = _n/f‘n 9
(85b) 7;1 i T, /F, —1) 7:;,1', = P, /Pn—n
and

(8.6a) Yoi =T /T iy Amii= | )y
(8.6b) Yovi =Ty /Tniy Ami=T0n/Tn_s.

Recall that the mixed three-term recurrence relations (5.25) allow us to generate
the two sequences {Pn/\ M. 3—0 and {P’ V}j—O consisting of regular FOP1s for ® and ¥’,
respectively, and that two full sequences of FOP1s for these two functionals are then

defined by (5.27). If A} :=n} —n{+1> 1 or by :=n},; —n) > 1, some polynomials

on the two diagonals coincide or differ only by a factor of 2, cf. (5.28); consequently,

(8.7a) Xn =UnYpo, Yn=VaTno if n} <n<ny,
(8.7b) Xp = Aun_l'y,/“’l, VYo = Aan_ﬁ,’l\,l, if n;/ <n< n§\+1

The polynomials W, in (5.27) are for practicality again assumed to satisfy the three-
term recurrence (2.10), so that the recurrences (5.29) hold, which translate into

(8-83) Xn+1 = [Ax — XpQ,, nA]’Yn+1 1~ Xp-1 ,v.V_nA’Yn+1 2
nj <n< nj 1,

(8.8b) Xnt1 = [Ax, — xnamn;_ll%ﬂ,l - Xp1 1‘:‘,—n;!—17n+1,2’
ny <n<njy; -2,

8.8 = [Aup — wnal AVay11 — W o,

( . C) Up41 —[ Uy uﬂan—n;‘]’)’n+l,l Up—1 n—n,’."y‘n+1,2’
ny <n<nf -2,

(8.8d =[Au,. — w _ o

. ) Upt1 = [ Up u"an-—n;f Tn+1,1 — Un—1 —nV'Yn+1 25

n <n< n —-2.

Of course, analogous formulas with the complex conjugate coefficients &—VV and ﬁ,‘z’-,
with the scale factors 4,,; and 7, ; of (8.6) and with A replaced by AH hold for {yn}
and {Vv,}, but from now on we only give those for {x,} and {u,}. For 31mphclty we
refer to these analogous formulas as the conjugate recurrences, although 'yn ; and fyn ;
need not be complex conjugate to v, ; and v,/ ;.

If ¢}, and €f; denote the coefficients of the polynomials ey and eJ , respectively,

(asis the case in (6 5)), the mixed three-term recurrence formulas (5.25) yield

_ v _ A \] _ A A\
(8.9a) Uny = XnyTny,0 ~ Xny-1€h1—2,jVny,1 ~ Xny —-2€h2-3,iTny 2

AV _ A
Xn€0,jTny ,hp -1 = Uny_, €5 Tn¥ ,hA+RY_ ~15
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when h} > 1, cf. (5.27a) and (5.31a). In view of (5.27b), (5.29b), and (5.28b), when
hY >1
¥ K

(8.9b)
x'nj_,_l A[ "1+1 17nj+1, —25},‘/_2’]’)’", AR —3Eh"—3,_77n1+1, -

— Upy eo,ﬂn _H,h\’] ngP, T, 1,hY +hG -1

(8.9¢) —Aun/\ —1’Yn M "’xnj+1—15hv_2,]'7nj+l, - Xn j+1_2ehv_3’ﬂn1+1, -
- an+150,g7n]+1,hV—l - xn’\(p] 7n3\+1,h +h"—1

(8.9d)  =[Axnp, 1~ Xnp,, -1 (ENy 2 + Y _3)lInp, 0
_ xnﬁl—z (6hv_3] + IBhV—S)’Yn]_,,l, xn1+1_3ah —4, M3
- xnv+1€o G Ry =1~ Xnd <P, T,y ohY +h-1

(cf. (5.31b)). However, when h}} = 1, i.e.,n] = n}, then WhA,l(z) =lande}(z) =
so that instead of (8.9a) we 51mply obtain

(8.9¢) Uny = Xn2Ypv 0 = Uny_, 95 VnY By,
Likewise, if by = 1, i.e., nf,; = n) + 1, (8.8b)—(8.8d) are replaced by
(8.9f) Xnf = Au"}/’y'/‘\fm’l — Xn} ¢;!7"f+1’hf ’

It remains to glve formulas for the index sequences {n}} and {n)'} and for the
coefficients &) P, AP <pJ , and @} that appear in (8.9). Fll‘St according to (5.26) and
(5.27), h} :=n] —n) + 1 and A} :=nf; —n) areglvenby

(8103‘) h‘;\ = min {k € N+; <Yn;.\,xn3\+k—l)B 74 0}’
(8.10b) hy := min {k € N*; (Vay, Aty ik1)B # 0}

Second, equations for the mentioned coefficients follow from Theorem 5.4; we choose

relations (5.32a)—(5.32c) and (5.32f) in order to work without Vny4lye o Vap, —1

(8'113) (p;'\’)’f/z\;‘,h}’_l’_yn}’,h;\(yn?—l,Aun}’__l)B = (y'rz;/,xn;‘)B,
k
(8.11b) Zall:g\—s—l,j7n}’,s<yn§‘+kaxn;.’——s)B = (Ynp+k, XnY)B,

s=1

k=1,..,h) -1,

(8'110) ‘Pg ’Yn" h" 1711A 1,"4}"—1()'11;{’)(1&;‘)3 = <yn§‘+1—1’Aun;’)Bv

i+1

(8-11(1) sty_s_l,j'_)’n -1 s(yn1+1—s—1,un;.’+k)3

s=1
(A Yn]_H i LA ]+1—2ﬂhv 2'7n —l,l,un;’+k)B,

k=1,..,hY —1.

_.1a”v
J+1 h3 -2

Agaln, (8.11a) and (8.11c) are single linear equations, hence explicit formulas, for <pj
and ¢y, respectively. Equations (8.11b) and (8.11d) are triangular systems for the
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coefficients €7 ; and €} ; in the representation (6.5) of the polynomials e} and €. If
h} = 1, the system (8.11b) is void, and, if A = 1, the system (8.11d) is void.
We now obtain the following algorithm.

ALGORITHM 4 (NONGENERIC BOBC ALGORITHM). Given a bounded linear
operator A : H — H and two initial vectors xo,yo € H satisfying (yo,%o)B # 0, set
U 1= Xg, Vo := Yo, hy) := 1. Then construct sequences {xn}°20, {¥n}0, {Un} 0,
and {vp}32, according to the inductive process, which, for j =0,1,..., consists of:

(i) If b > 1, then {anH_k}:i;l, {yn?+k}:igl, and h} are defined by ezecuting
concurrently (8.8a), the corresponding conjugate recurrence for Ynf+ks and (8.10a);
if h} = oo, then J® := j, JY := j — 1; in particular, if Xpp =0 or ypr = 0, then
hY = oo and Xnptk = 0 (Vk 2 0) or yuryr = 0 (VE > 0), respectively, and the
algorithm terminates (in practice, XnAtk and Yni+k aT€ then not needed);

(i) once h} has been determined, the nonzero constant ¢} is given by (8.11a)

and, if h} > 1, the coefficients {e}
linear system (8. 11b),

(iii) depending on whether or not h} > 1, U,y and Vny are then given by (8.9a)
or (8.9e) and the conjugate recurrence; if (vn;/,Aun;/)B # 0, set hy := 1; otherwise
hy > 1;

(iv) If hY > 1, then {unv+k}:Y_I1, YnY+1, {ynv+k}:;";1, and hy are defined by
(8.8d), (8. 7b), the recurrence conjugate to (8.8Db), and by (8.10b); zf hy = oo, then
JV := J" = j; in particular, if uny =0 or vpy = 0, then hy = oo and Xnptk =
0 (Vk > 1) or Ynpt+k = 0 (Vk > 1), respectively, and the algomthm terminates (in
practice, Xnftk and Yni+k are then not needed);

(v) once h} has been determined, the nonzero constant ¢y is given by (8.11c)

and, if b > 1, the coefficients {e J}
linear system (8. lld),

(vi) depending on whether h;’ > 1 or not, Xnh, and Ynp,, ore either given by
(8.9b) and the conjugate recurrence to (8.9d) or by (8.9f) and its conjugate recurrence;
if (Vap, »Unp, )B #0, set h,y =1, otherwise h{; > 1.

The recurrence coefficients o) and Y in (8.8) and the nonvanishing scale factors
F‘n’ F;u F‘n’ and 1_-\;1 (n € N)’ which determine 71/1\,1" 71\{,1" Tn,is 7::,«;‘: '_71/:,0 '77\{,1',’ :Yn,i’
and 7,, ; according to (8.5) and (8.6), can be chosen freely. (For the sake of simplicity,
we assume that Tg :=T§ =T :=T}:=1.)

As in Algorithm 1 (§4) we could set T, := T/ :=T,, := f‘;, :=1 (n € N), which
would imply that ¥, = Vs = Tni = Vs = Vs = Ws = Fui = Fas = 1 (¥n, Vi),
but might lead to overflow or underflow.

Of course, Algorithm 4 also has a matrix interpretation, which is analogous to
the one for Algorithm 1 that was formulated in Theorem 4.2 of Part I.

THEOREM 8.1. Gather the vectors generated by Algorithm 4 into

21 72 are obtained b solving the triangular
8, s Y

8_1 are obtained by solving the triangular

(8123) X := [xo,xl,x2,...], Y = [yo,yl,yg,...],
(812b) U= [uo,ul,U2,...], V:= [Vo,VI,Vz,...],

and the scale factors used into

(813&) T:= diag [Fo,rl,rg, .. .], f = diag [fo,fl,Fg, .. .],
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(8.13b) IV := diag [, 17,1%,...], I':=diag [T, T,T%,...].

Let D and DV be the block diagonal matrices

(8.14) D" := &((p)"p), DY:=¢'((»")"P)

expressing the formal orthogonality of the two sequences of FOP1s, and let
(8.15) D} :=TD'r, Dy :=T'D'I

be corresponding diagonally scaled matrices.* Furthermore, using the block matrices
EN EV, FA FY, G?, and GV from §6, introduce the scaled matrices

(8.16a) Ef .= (I')"'E'l, E}:=(I')"'EAT,
(8.16b) EY:=(I)'E'I', E{:=()"'E'L,
(8.16¢) Fp == (I)"'F'I, F}:=(T)"'F/T,

(8.16d) FY == (I')"'F'I’, F{:=(I")"'FVI,
(8.16e) Gp == (I7'G'I", G}:=(I)"'G'\I,
(8.16f) Gy :=([")"'G'T, G{:=(I')"'G'T.

Then Algorithm 4 induces the relations

(8.17a) AUE} =XFp, AFVE] =YF},
(8.17b) XEY = UFY, YE{=VFY,

which imply

8.18a AU =XG), APV =YGA],
r r
(8.18b) X=UGY, Y=VG{.

Moreover, if we write the infinite matriz with (m,n)-element (ym,Xn)B formally as
YHX, and the one with (m,n)-element (v, Au,)p as VE AU, then we have

(8.19) YHX =D, VHAU=DY.

Note that (8.9b) corresponds to (8.17a), while (8.9c) translates into the relation
(8.18a), which is equivalent to (8.17a).

From Algorithm 4 it is a small step to a nongeneric version of the BCG method,
which also goes under the names Lanczos/ORTHOMIN [16] and BIOMIN [11]. This
normalized nongeneric BIOMIN algorithm is a nearly straightforward application of
the above BOBC algorithm to the problem of solving a linear system of equations
Az = b. As in the generic case [11], the basic strategy is to define a sequence {z,}
of approximants in such a way that the vectors x, generated by Algorithm 4 are
the residuals, which means that I',, P, is the nth residual polynomial. Consequently,
for the normalized algorithm we have to choose I';, := 1/P,(0), thus producing a
breakdown whenever P, (0) = 0. However, the latter equality holds whenever hY > 1
and nY <n < njy,, cf. (5.28b). This mirrors the fact that the restriction of A that

4 The solid overbar denotes complex conjugation.
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is implicitly constructed at this stage is singular, and, hence, the projected system
cannot be solved in general. Recall that the same difficulty occurred in the nongeneric
normalized BIORES algorithm (Algorithm 2 of Part I). But here, the difficulty is easier
to recognize since it corresponds exactly to the case h}’ > 1. It is also easier to
understand how to circumnavigate it.

By translating (8.9b) into a polynomial recurrence (i.e., by inserting (8.3) and
(4.14)) we see that
(8.20) Pn]4+1 (0) P"?ﬂ = —Fpa (0) 1",,14 (p] Ynh

J+1,hv+h;‘—la

so that normalization is inherited from Pp (0) Ly to Pn]oH(O) Lnp, .o L€, from xnn
to Xnp, simply by choosing

-1
(8.21) ’7n§‘+1,h}’+h§‘—l = W
J

In contrast to Algorithm 2, only the iterates Zn) are considered as approximants,
and only the corresponding vectors Xnp are true res1duals (It is possible to modify
Algorithm 2 accordingly, thus av01dmg the breakdown due to normalization. The
resulting version is, in fact, just the unnormalized Algorithm 3 with scale factors I‘nJ_A

which yield normalized iterates when n = n}.)

ALGORITHM 5 (NORMALIZED NONGENERIC BOBC ALGORITHM FOR LINEAR
SYSTEMS: NORMALIZED NONGENERIC BIOMIN). For solving Az = b, choose an
initial approzimation zg, set ug := Xg := b — Az, choose vo :=yo with (yo,Xo)B #
0, and apply Algorithm 4 with the special choice (8.21) for the relative scale factors
Ty by +hy =1 (which determine l"nA ,» while the other scale factors T'y (n # n +1),

I, Ty, and ', may be chosen arbztmmly nonzero).
Addztzonally, compute for j =0,1,... the approzimant Znd, according to
(8.22) Znp,, =

_[un;\+1 I’Yn/\ 1~ Up +1—2€h -2 ]’Yn

+1’ ] 1102 - l'l'nj+1_3€h _337"

.1+1’

- T Uay 50,3'77. h\’]+zn"(p] Tn

Frohy+hy -1

The algorithm terminates when n = n i1 and xn = 0. Then njx =n and z, is the
solution of Az =b. However, if n = n] 1 =n)a, but X, # 0, the solution cannot be
found using those initial vectors (a case of incurable breakdo'wn)

As an analogy to the generic case [11] and to Algorithm 3 of Part I, we also suggest
an unnormalized version of the nongeneric BIOMIN algorithm. It not only avoids the
danger of breakdown due to normalization (as our nongeneric normalized BIOMIN
algorithm does too), but allows to monitor independently the damping effect of the
Lanczos polynomials P, and the often adverse effect of normalization at 0. In this
unnormalized version of BIOMIN we can choose all the scale factors I',, arbitrarily. We
keep track of them by evaluating a recurrence for Pnj i=Tna P,(0), which follows from
(8.20). Note that Pny #0 (V4) in view of ] # 0 (V7). In contrast to our unnormalized
nongeneric BIORES algorithm of Part I (Algorithm 3), we restrict ourselves here to
this subsequence; thus there is now only a small difference between the normalized
and the unnormalized version.

ALGORITHM 6 (UNNORMALIZED NONGENERIC BOBC ALGORITHM FOR LINEAR
SYSTEMS: UNNORMALIZED NONGENERIC BIOMIN). For solving Az = b choose an
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initial approzimation zo, set ug := Xg := b — Az, choose vy 1=y wzth (yo,xo)B #
0, and apply Algorithm 4 (with arbitrary nonzero scale factors Ty, T, Ty, and T%,).
Additionally, compute recursively the vector sequence {zn;\} according to (8.22) and

the scalar sequence {pn;\} according to

(823) Pnp = _‘p;'/')'n§‘+l,h;.’+h;‘—1pn§‘ .

The algorithm terminates when n = n’ 1 and x, = 0. Then, n) n =n and zn/pp is
the solution of Az = b. However, if n = n}; = nja, but x, # 0, the solution cannot
be found using those initial vectors (a case of incurable bmakdown)

By an induction argument we obtain the following theorem, which is analogous
to Theorem 4.6.
THEOREM 8.2. (i) In Algorithm 5 (normalized nongeneric BIOMIN) holds

(8.24) anA=b—Azn9, i=0,1,2/....
(ii) In Algorithm 6 (unnormalized nongeneric BIOMIN) holds

(8.25) Xnp = bpn? - Azn;\ , j=0,1,2,.

Proof. Assume that (8.25) holds up to a certain j. Using the formulas (8.23),
(8.22), and (8.9b) of Algorithm 6 we get
bpn;.‘+1 - Azn§‘+1 = b(p] LA

hY +h{—1Pn? +A[Un —1’Yn+

i+1 1)

(8.26) - unj+1 —2€h —2’]77; - u J+1 _3Eh\/ "3».77"'

102 5103

—Uny eo,"/,. oyl = Az, 05 T

fruhy +hi—1 = Xnj

41"

Hence, (8.25) follows by induction. In Algorithm 5, (8.21) guarantees that Pns defined
by (8.23), is 1 for all j, so that (8.24) holds. 0

Finally, we want to sketch the nongeneric generalization of yet another important
algorithm, namely, of BIODIR [11] (or Lanczos/ORTHODIR [16]). As in the generic
case [11], we first define a “biconjugation algorithm,” which is nothing more than the
BO algorithm with the inner product .,.)Ba instead of (.,.)g. This algorithm can be
used to generate the sequences {u,} and {v,} alone, without concurrently building
up {x,} and {y.}.

ALGORITHM 7 (NONGENERIC “BICONJUGATION (BC) ALGORITHM”). Given a
bounded linear operator A : H — H and two initial vectors wg,vo € H satisfying
(ug, Avo)p # 0, apply the nongeneric BO algorithm (Algorithm 1) with the inner
product (., .yga (instead of (.,.)B) to produce the two vector sequences {u,} and {v,}
with scale factors T, and T, and the matriz H' containing the recurrence coefficients
of the corresponding FOP1s. Denote the indices of the regular FOP1s by n}, and let
hi = nip — 5.

In view of their orthogonality properties, the resulting vector sequences are the
same as the sequences {u,}, {vs} generated by the BOBC algorithm (if the initial
vectors and the scale factors are the same). By applying half a step of the nongeneric
backward qd algorithm (specified by Theorem 7.3), we can find the factors G* and
GV of the relevant block UL decomposition of H’. Finally, we can apply formulas
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(8.9b) and (8.22) to compute the subsequences Xnp and zps, and (8.23) to find the
appropriate scale factors for the normalization given below.

ALGORITHM 8 (NORMALIZED NONGENERIC BIODIR). For solving Az = b,
choose an initial approzimation zy, set ug := x¢ := b — Azg, choose vg := yo with
(yo,X%0)B # 0, and apply Algorithm 7 (with arbitrary nonzero scale factors I}, and
I’,) in order to produce the two vector sequences {u,} and {v,} and the matriz H'
of recurrence coefficients of the corresponding FOP1s. Concurrently, compute block
by block the relevant block UL decomposition H' = G "GV according to Theorem 7.3.

The initial moments required for that are

5.2 go:= Xm0 Atoi)s
LoTo ’ " f‘é)r:;/_l
1

Additionally, for j = 0,1,... compute the subsequences {xn,} and {zn,} according to
(8.9b) and (8.22), the value of Vnp, kY +hp—1 being given by (8.21). (This determines
the scale factors I'y;, while 'y, (n # n;) can be chosen arbitrarily nonzero.)

The algorithm terminates when n = n},; and X, = 0. Then nj\ =n and z, is
the solution of Az =b. Ifn = n;-\_H = nja, but x,, # 0, the solution cannot be found
using those initial vectors (a case of incurable breakdown).

This algorithm is normalized in the same sense as Algorithm 5; the residual
polynomials I',; P, ; of the approximants Zn) are normalized to 1 at 0. Of course, we
could try to replace the backward qd step by the solution of an extra triangular system
of equations similar to (8.11c) and (8.11d). But this would require computation of
both extra vectors and inner products.

Note that the breakdown conditions for the nongeneric versions of unnormalized
BIORES, normalized and unnormalized BIOMIN, and normalized BIODIR are all the
same. This is in contrast to the generic versions of these algorithms [11].

9. The treatment of near-breakdown for diagonal sequences. So far we
have assumed that we work with exact arithmetic and that, therefore, the regular
formal orthogonal polynomials (FOP1s) are well defined, and the corresponding ele-
ments of the various vector sequences generated by Lanczos-type algorithms can be
computed accurately. Index steps h; of size greater than 1 between regular FOP1s
occur as a consequence of serious, but curable, breakdown. However, in practice exact
curable breakdown is very unlikely, but near-breakdown may occur as a consequence
of either an exact breakdown contaminated by roundoff or a very small |§;|. Any
such near-breakdown means that the recurrence coefficients o ; and ;41 are proba-
bly large and numerically not well determined; then the subsequent FOP1s and the
corresponding Krylov space vectors must be expected to be inaccurate.

Therefore, one must find a way to treat near-breakdowns. The simplest approach
would be to use exactly the same formulas as for the exact curable breakdown. This
would mean that we proceed implicitly with slightly modified data, but process them
in a stable way, instead of treating the original data in an instable way. However, in
this section we show that we can do even better. It is possible to treat near-breakdown
exactly and still fairly efficiently. If our previously defined algorithms are modified
accordingly, then, in exact arithmetic, those regular FOP1s that are well conditioned
are obtained independently of the threshold used to define near-breakdown. The
same is true for the corresponding Krylov space vectors. (Of course, the number of
“well-conditioned” regular FOP1s depends on the threshold.) Here we present only
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the polynomial formulation of these algorithms. Details of implementation for the
corresponding Lanzos-type algorithms are described in joint work with Freund and
Nachtigal [8]

In this section we treat ordinary, diagonal sequences of FOP1ls. Recall that
{nj}'j’=0 denotes the index sequence of the regular FOP1s P,; for some functional
®, and that this sequence is characterized by

(9.1a) ®(pPr;) =0 (Yp € Ppy,i-2),
(9.1b) ®(M71PL) = 6; #0,
where hj :=nj 1 —nj, j =0,...,J —1 (J < 00). This recursive definition of the
sequence {n;} implies that for j < J the diagonal blocks
- 5
(5j *
D; =
6] o ’ *
| 6 * o0 ok x]

of the formal Gramian D in (3.23) and (8.14) are nonsingular. For the intermediate
values of n (i.e., for those satisfying n; < n < nj;; for some j) the FOP1s are not
uniquely determined, and we made the particular choice (1.28) for these inner FOP1s.
Now, we want to extract an index subsequence {fix}f—, C {n;}j_o that marks
the well-conditioned regular FOP1s P;,. Before we come to its recursive definition
we choose first, by analogy to (1.28), tentative inner FOP1s for this subsequence:

(9.2) Pn(2) 1= Wi, (2)Pi, (2) if fig <1 < gy

Here W, is still a prescribed monic sequence, for example, one satisfying a three-term
recurrence (2.10). In the latter case the tentative inner polynomials 5, themselves are
obtained by a three-term recurrence. For simplicity, we could choose W, (2) = 2™,
although in practice this is often a rather inappropriate basis. To simplify formulas
we include in (9.2) n = 7, where p, = P;, is regular and thus not inner. Actually,
when computing the next well-conditioned regular FOP1 P;, ,,, we also start from a
polynomial of the form (9.2), with n = fij41, which is then orthogonalized with respect
to the previous blocks. We assume here that for those FOP1s this orthogonalization
process has already been carried out, so that (9.2) holds for i < n < fig4; instead
of for fix < n < figyr. _

One is tempted to define the index steps hy := fig+1 — 7ix, by analogy to (9.1) by

(9.3a) ®(pP;,) =0 (Vp € Pa.—-1),
(9.3b) |8('PL)| <e (0<i<hp—2),
(9.3c) (M 1P2 ) =: bk, |6k| > €,

where £ > 0 is some prescribed small constant. This would imply that

(9.4)

0 if g <n<figr1—2 and m+n < 2y,

0O(e) if g <n<figpr—2 and 27 <m+n

3 < g + kg1 — 2,
(5k+0(6) if fig<n<fg1—1 and m+n =g+ gy — 1.

Q(pmi"n) =
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For example, if K =5 and 7ip = 0, 7i; = 1, fig = 2, fi3 = 5, fi5 = 7, and if £, g,sc, and
* are abbreviations for O(¢), 8x + O(€), and O(1), respectively, the formal Gramian
of {pn} is then of the form

&
. 5
3 E &
E & &
E € & x
E & 8 x x 5
(95) [‘I’(ﬁmﬁn)]rono,n=o= I
€ 64
£ & x €
E €
E & €

There are two serious problems with this approach: First, while the formal
Gramian D of the FOP1s {P,} is block diagonal, this is obviously no longer true
for the one of {$,}. Here, small O(¢) elements can penetrate into several off-diagonal
blocks. As a consequence, it can be seen that the Hessenberg matrix of recurrence
coefficients for {$,} is no longer block tridiagonal; the formula for the regular FOP1
Dfir,, May contain not only terms from the two previous blocks but even terms from
older ones. Hence, the major advantage of the generic and the nongeneric Lanczos
algorithms is lost here. Second, ki, and thus the sequence {7+ } is generally not appro-
priately defined. Since |6| need not be much larger than e, |6x + O(¢)| may be small
or may even vanish, and the diagonal blocks of the formal Gramian may be singular.

The second difficulty can be overcome if we transform the sequence, {f,}, by a
block orthogonalization process® into a new formally block orthogonal sequence, {fr },
whose formal Gramian is block diagonal. The index subsequence {7} is then defined
by requiring that the diagonal blocks

(9.6) Dy, = [(Briy-+i P52

of this formal Gramian D are not only nonsingular, but neither near-singular nor ill
conditioned:

(9.7) Umin(ﬁk) > g, K,(ﬁk) < K.

The appropriate order of magnitude of € and of the upper bound &’ of the condition
number k depend on the functional ®. If the latter or the inner polynomials are
scaled such that amax(f)k) is a priori bounded, it suffices—at least in theory—to
make the first check. This is in accordance with the recommendation of Parlett
[21]. Note that—also just in theory—the near-breakdown threshold ¢ need not be
very small and the block size chosen need not be the minimal one satisfying (9.7).
Unfortunately, in practice, roundoff spoils the orthogonality and the determination of
the block size according to (9.7) may not work for large-scale systems. Therefore, a
different strategy has to be chosen in the implementation (see (8] for details).

5 Confer footnote 2 at the end of the introduction.
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However, as is seen from (9.5), the block orthogonalization process suggested
above also has the disadvantage that it may involve sums that contain elements from
several previous blocks, i.e., the upper triangular matrix describing this process is not
block bidiagonal, as one might have hoped. In fact, “long” recurrences may occur
here not only for some p;,, but also for some inner p,.

Things change if we build up the block orthogonal sequence {p,} directly by
orthogonalizing 2p, with respect to previous blocks. In fact, by a standard argument
we are going to conclude that the Hessenberg matrix H of recurrence coefficients is
then block tridiagonal. The freedom of choice present in (9.2) is gained from the
possibility of adding any linear combination of polynomials that have already been
computed in the block under construction. (The coefficients in this linear combination
are the same as those in the recurrence (2.10).) Since this linear combination is already
orthogonal to all previous blocks, it has no effect on the off-diagonal blocks of H.

Let p := [Bo, P1,-..] be the infinite row vector whose elements are the resulting
monic block orthogonalized polynomials 5,,. Then the block diagonal formal Gramian
of these polynomials can be written as

(9.8) D := &(5"p) := [(FmBn)]rmn=o -

(Recall that its diagonal blocks satisfy (9.7) by definition of {7ix}.)
Since the polynomials are monic of ascending degree, they can certainly be gen-
erated by a recurrence that has the matrix form

(9.9) 2p(z) = (2)H,

with H being unit upper Hessenberg. Consequently,

(9-10a) DH = &(p"p)H = (" pH) = &(p” 2p)
(9.10b) =oHTpTp) = AT®(pTp) = HTD.

Since H is upper Hessenberg and D is block diagonal, the left-hand side is upper
block Hessenberg and the right-hand side is lower block Hessenberg. Consequently,
both sides are block tridiagonal, and multiplication by D~ shows that the same is
true for H itself, i.e., by analogy to (3.6),

(A B -
Co A B,
Co (Bx)
| (Ck-1) (Ak) |

In general the block structure is coarser here than in (3.6), but all block boundaries
in this matrix are also present in the matrix H of (3.6). In view of H being unit
upper Hessenberg, the blocks C;. have again just a 1 in the upper right corner, and
the blocks Ay, are either 1 x 1 or unit upper Hessenberg. It remains to investigate the
upper triangular part of A and the superdiagonal blocks B;. Moreover, we have to
discuss how to determine the elements of these blocks.

The only condltlon we are imposing is that {§,} be formally block orthogonal,
ie. <I>(p p) = D is block diagonal. Splitting the row vector p into blocks of size R,

we ‘set P = [Po, P1,-- -, (Bx)] to get
(9.12a) Dy, = ®(B7 br) -
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From the kth block column of (9.10a) we extract the three conditions

(9.12b) Dy_1By. = ®(B}_12Px),
(9.12¢) DAy = &(f 2Dr),
(9.12d) Dy.41Ck = ®(P112Pk) -

If Pr_1, Pa,, and Dy_; are known, (9.12a)- (9.12c) allow us, if they are used column
by column and in parallel, to build up px, By, Ak, and Dy, and to determine fy41
and ps,,,. Actually, except for its last column, A, can be chosen as an arbitrary unit
upper Hessenberg matrix, hence we assume it given, except for the last column. For
example, each of the other columns may be zero except for a 1 on the subdiagonal.

First, since ®(pps) = 07 for all p € Pj, —1, only the last line of (9.12b) is nonzero:

(9.133) ﬁk—lﬁk = ikd)’{,
where
(9.13b) &F = ®(2hn,—1Dk), Ik :=[0,...,0,1]T € C** .

Hence, B has rank 1. Once p, is known for some n with (i, < 0 < figgr — 1),
column n of By is obtained by solving a linear system with the coefficient matrix
Dy_1, which is no longer triangular, but has constant nonzero antidiagonal elements
and a small upper left triangular part. 6 If n < figq41 — 1, the corresponding column
of Ay is prescribed, and thus p,4+1 can be computed accordmg to (9.9). Moreover,
the element 7 + 1 in the first row (i.e., row 7k + 1) of Dy, can be evaluated explicitly
using the definition (9.12a) of Dy. Once n+1 = fig41 — 1, the whole first column of
Dy, is known, as is its first row, thanks to symmetry

After splitting off the first row and column of Dy, and the first row and the last
column of Ay, (9.12c) is seen to yield a set of hi —1 triangular systems for computing
the yet unknown elements of Dy. Then, by (9.12b), too, the last column &, of Ay is
also found by solving a linear system with coefficient matrix Dy:

(9.14) Dy = ®(BY 2Bns-1) -

Finally, now that the last columns of A, and By, are known, the recurrence for the
next well-conditioned regular FOP1, p;,, , is ready.

Due to the special structure of ék, the only part of ﬁk that matters in (9.12d)
is the first column. It is easy to see that for the elements in this first column (9.12d)
provides formulas that are mathematically equivalent to those from the definition
(9.12a) of Dy.

Summarizing, we see that on the basis of the relations (9.12) we can build up H
and D column by column.

_One may wonder what can be said about the order of magnitude of the elements
of Dy and By if (9.3) holds for some € << 1 and with |6} >> 1 (k' =k — 1,k). In

6 Column n of ﬁk refers to the part of column n of H that lies in ﬁk; rows and elements are
referred to in an analogous fashion.
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the notation of (9.5) we clearly have, for 0 < k < K,

(& & - & &
é *
(9.15) Di =
€ *
X TS R

(When K < oo, the last diagonal block Dy is infinite and consists of elements of
order O(e).) From (9.15) it is easy to conclude that

*  * *
. * €
(9.16) D'=| . N I
*x € 5
and, therefore, that
€ E x
- &2 ... & ¢
(9.17) Bk - lk¢k = : : : I
&2 & ¢

where &2 := O(e?).

Actually, the order-of-magnitude statement in (9.17) can be seen to be a conse-
quence of the block diagonality of D, the block tridiagonality of H, and the special
structure of the blocks Dk and Ck Comparing superdiagonal blocks in the relation
(9.10), we get Dy_1Bi = Ck le, hence

(9.18)
* ok * 0 00 I3 £ %
* é . . &2 & &
B, =D;!,CT D= : ol =
k=D _ =1 . .. . o= . .
k=11 : S 0o --- 00 : :
*x € E g E * &2 &2 ¢

Comparing (9.13), (9.17), and (9.18), we get the additional relation

(9.19) OF = ®(2Pa,—1Px) = kpt = C1_ Dy = ®(p, Pr),

which is, indeed, a consequence of p, (n > 7ix) being orthogonal to Pj, _1.

10. The treatment of near-breakdown for staircase sequences. In this
section we modify the ideas of the previous section in order to compute a block
staircase sequence of well-conditioned FOP1s instead of a block diagonal sequence.

The aim is to determine two full sequences p := {p,}52, P’ := {P),}5> of monic
polynomials (5, and 7/, being of degree n) that are block orthogonal, well conditioned,
and block compatlble in the following sense. There are two (finite or infinite) index
sequences {7} }k Cor (A M, (with KV < KN < KV + 1 < 00) satisfying

(10.1) fip <y (k=0,...,K"), @ <fpy, (k=0,...,K"—1)
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such that the following two conditions hold: First

(10.2a) ®(Pmpn) = 0 if m < Ay < n for some k
or m < #) < n for some k,
(10.2b) ' (p),5%,) =0 if m < @) < n for some k

or m < fig,; < n for some k,
which means that the two formal Gramians
(10.3) D" :=9(p"p), DY:=((®)"D)

are block diagonal, with blocks starting at the columns 7, 72y + 1 (< #ig, ;) and @y,
o1 (S 7Y,,), respectively. Second, for their diagonal blocks

nk -1

o =V
(10.43) D = [Q(ﬁmﬁn)]?&n:ﬁ‘/g, DA+1 = [Q(pm n)] =iy +1°
(104b) f))c, = [¢/(~:n ~:l)]nk+1—.1 , Dk 1 - [@/ ~ = )]nk -1

mn=n m,n=np"’

holds, by analogy to (9.7), (for some € > 0, &’ > 1):

(10.5a) omin(D}) > ¢, w(D}) <,
(105b) Umin(f);c\.'.%) > €, N(ﬁ£+%) < N,’
(10.5¢) omin(DY) > ¢, (DY) <,
(105d) Umin(f);:_l) > &, K’(ﬁ;c/_%) < K

Note that some of the blocks D} k+(1/2) and DY k—(1/2) Ay be void. They exist only if
the respective index step

(10.6) hY :=fifp,, — iy, hp =y —np+1

is larger than 1. Then Dk+(1/2) lies in D" between Dk and Dk+1, and Dk —(1/2) lies

in DY between DY_, and DY. The blocks in (10.4a) have order h} and hY — 1; those

in (10.4b) have order hY and h} — 1, respectively.

The recursive process for constructing these two sequences, like the one in §5,
alternates between the two sequences. The block structure generated in this way
in the corresponding analog of the Padé table (which is a “near-FOP1 table”) still
resembles the one of Fig. 3, but at this point it is restricted to the two diagonals
specified by ! and | + 1. A conflict arises because we require the four conditions
(10.5a)—(10.5d), although (10.5a) and (10.5¢c) would be enough to determine the two
index sequences {7y} and {7} }. But it is important that ﬁ}ll lies in the first row

of a block, and ﬁﬁ£+1 in the first column, as happens automatically in §5, cf. Fig. 3.
This must now be enforced by a condition guaranteeing that the blocks ]3;6\ +(1/2) and
f))c’_(l /2) are nonsingular. In order that ﬁ%x and ﬁﬁ’/c\+1 be well-conditioned regular
FOP1s, these blocks can be neither near-singular nor ill conditioned. Consequently,
on each diagonal the sizes of some blocks may turn out to be larger than when we
apply the algorithm of the previous section to the respective diagonal. But this is the
price we have to pay for a “compatible” block structure on the two diagonals, i.e.,

index sequences {7} }, {f) }, which together define the blocks on both diagonals.
Now we come to the details of the algorithm. Its basic pattern is as follows:
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() When n = iy, ®-orthogonalize 2p;,_; with respect to Pz 1 to get fn; check
(10.5a) to determine whether f);c\ is just 1 x 1. If yes, set 71y := n and proceed with

(ii).

(ii) If not, ie., if A > fy, then, for n = af + 1,7} + 2,..., ®'-orthogonalize
Pn—1 With respect to Pza_1 to get fr,_;, and set P, := 2Pj_;; check (10.5a) and
(10.5d) to determine whether D} and DY _ (1/2) are completed, in which case Ay := n.

(iii) When n = 1)/, ®'-orthogonalize p,, with respect to Piy -1 to get Ph,; check
E})O.5c) to determine whether f)z is just 1 x 1. If yes, set 71y, ; := n and proceed with

i).

(iv) Ifnot, ie.,if g, , > Ay +1, then, for n = 2 +1,7) +2,..., ®-orthogonalize
2P, _, with respect to Pzv to get p, and set Pl, := Dn; check (10.5¢) and (10.5b) to
determine whether D) and f);c\_ (1/2) are completed, in which case fipyy i=n+1.

Note that the choice p,, := zp},_, in (ii) implies that p, is ®-orthogonal to Pzs_1;
analogously, the choice 5, := pn in (iv) implies that 5, is ®’-orthogonal to Psy_;.

By analogy to the generality introduced in §9, one can modify p,—1 and zp,,_,
(in (ii)), and 2p},_, and P, (in (iv)), by adding a linear combination of polynomials
(of the other type) that have already been found in the respective substep.

Since the polynomials p, (and, likewise, 7],) are not orthogonal to each other
within the blocks, the orthogonalization procedures called in the algorithm have to
make use of the inverses (D)™, (Dyy1/2)) ™" (and (DY_;5)) ", (D))~", respec-
tively).

As is seen from this recipe, another complication that arises is that the analog of
(5.28) does not hold. We still have

(10.7a) ®(pbn) = 0 (Vp € Pip—1) = ' (phn) = 0 (Vp € Pip_2),
(10.7b)  ®'(pPp_,) =0 (VP € Pay_1) = ®(p2hn_1) =0 (Vp € Pay_1),
(10.70) {)@n) =0 (Vp € 'Pﬁx) = q"(pﬁn) =0 (Vp € Pﬁx_l),

(10.7d) (I)'( ~/n___1) =0(Vpe Pﬁﬁ_l) = @(pzﬁ;_l) =0(Vpe Pﬁ{c\_l),

and we know that the left-hand sides are true when 7§ < n in (a), )/ < n in (b) and
(c), and i} < n in (d), respectively; but, in general,

(10.8) (2% n) £0 and Bz zf, ;) #0.

Therefore, p, needs to be ®'-orthogonalized with respect to z ~! or 13%:_1 to get

D,; likewise 2P}, _; needs to be ®-orthogonalized with respect to 2™ or Dy to get Pn.
In the recurrence formulas for 5/, (or p,) the polynomials p],, (or P, respectively) of
the previous block appear, but not those from older blocks.

There are other, theoretically equivalent formulations for the algorithm. Our
version, which is truly sequential, suggests an implementation by recurrence formulas
that have the matrix form

(10.9) B(z) ='(2)G", 2p'(2) = B(2)G",

as in (6.15), with G” unit upper triangular and GV unit upper Hessenberg. As in
(7.1), elimination of p’ or P, respectively, leads to

(10.10a) 2p(z) = p(z)H", where H" := GVG",
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and
(10.10b) 2p’(2z) = p'(z)HY, where HY := G"GV.

Each of these equalities is of the same type as (9.9). But as we mentioned above, if we
apply the algorithm of §9 to ®, the block structure of H in (9.9) may turn out to be
finer than the one of H” in (10 10a), because here we have the four conditions (10.5)
instead of the condition (9.7) determining the block sizes in (9.9). But we have also
pointed out that there is no need to choose in §9 the minimum block sizes satisfying
(9.7), and since each of the pairs (10.5a)—(10.5b) and (10.5¢)—(10.5d) is equivalent to
(9.7) (applied to the two different functionals ® and @'), each of (10.10a) and (10.10b)
is, indeed, identical to a case of (9.9). From §9 it follows in particular that H”" and
H" are block tridiagonal unit Hessenberg matrices. Therefore, G* and GV are block
upper bidiagonal and block lower bidiagonal, respectively:
(10.11)
Gy Gy B T
LY GY G} F3
GY = Ly Gy , GN:= G)
. A
£y, , & &
JA—-1 JN G Jn

L

analogous to (6.16). From (10.9) and our description of the algorithm, it is clear that
the blocks LV have again just a 1 in their upper rlght corner, that the blocks GV
are itself unit upper Hessenberg, and that the blocks G are unit upper triangular.
Further results on the structure of the blocks can be obtained by mixing the approach
of §6 with the one of §9, but the details become somewhat tedious.

Conclusions. In the two parts of this paper we have reviewed the theory of for-
mal orthogonal polynomials (FOPs) of the first and second kind (FOP1s and FOP2s,
respectively), and we have derived old and new recurrences for recursively constructing
certain sequences of such FOPs. From the beginning we dealt with the so-called non-
normal or nongeneric case, where some of the FOPs are not regular and the associated
Padé table has singular blocks. This led to “nongeneric” algorithms for constructing
such FOPs. By translating these nongeneric algorithms into algorithms for sequences
of vectors in Krylov space, we found nongeneric versions of the Lanczos-type algo-
rithms BIORES, BIOMIN, and BIODIR. They can overcome most exact breakdowns of
the previously known standard versions of these algorithms. (The exception is the
so-called incurable breakdown.)

Finally, in §§9 and 10, we addressed the near-breakdown and presented algorithms
for generating sequences of FOP1s in a stable way. By translating these “look-ahead”
algorithms for constructing FOP1s into algorithms for sequences of vectors in Krylov
space, we readily find stable look-ahead versions of BIORES, BIOMIN, and BIODIR.

Since the FOP1s are denominators of Padé approximants, and since the numer-
ators of Padé approximants satisfy the same recurrences, with different initial condi-
tions, the algorithms given in this work can also be considered as algorithms for gen-
erating sequences of Padé approximants on either a diagonal or a generalized staircase
of the Padé table. The look-ahead versions can be expected to be stable, in contrast to
other algorithms [2], [4]-(6], [10] that have been proposed for nonnormal Padé tables
and the related partial realization problem of systems theory. Applications to the fast
solution of Hankel systems are also foreseeable.
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A BOTTOM-UP INDUCTIVE PROOF
OF THE SINGULAR VALUE DECOMPOSITION*

C.-T. PANt AND KERMIT SIGMONt#

Abstract. The singular value decomposition (SVD) has a long history. The first proofs of the
SVD for real square matrices came out of the study of bilinear forms, first by Beltrami in 1873 and,
independently, by Jordan in 1874. Beltrami recognized and used the relationship of the SVD to the
eigenvalue decomposition of the matrices AT A and AAT, while Jordan used an inductive argument
that constructs the SVD from the largest singular value and its associated singular vectors. Many
proofs of the SVD in modern references are still based on one of these methods. The purpose of this
note is to give a new simple “bottom-up” inductive proof of the SVD, starting from the smallest
singular value, which is essentially different from either of these methods.

Key words. singular value decomposition
AMS subject classifications. 15A18, 15A23

The singular value decomposition (SVD) has a long history, a detailed survey
of which is given in [6, pp. 134-144]. The first proofs of the SVD for real square
matrices came out of the study of bilinear forms, first by Beltrami in 1873 [2] and,
independently, by Jordan in 1874 [7]. Beltrami recognized and used the relationship
of the SVD to the matrices ATA and AAT. Jordan used an inductive argument
that constructs the SVD from the largest singular value and its associated singular
vectors. The first proof of the SVD for square complex matrices seems to be by
Autonne in 1915 [1] and, later in 1939, Eckart and Young [3] who dealt with the
rectangular complex case. Many proofs of the SVD in modern references either rely
on the eigenvalue decomposition of the positive semidefinite Hermitian matrices A* A
and AA* [5], [8]-[10] or use a “top-down” inductive argument similar to Jordan’s [4],
[5, p. 427].

The purpose of this note is to give a new simple “bottom-up” inductive proof of
the SVD, starting from the smallest singular value. One should note that this proof
is essentially different from the “top-down” one; there does not appear to be a direct
dual to the “top-down” proof. The QR decomposition is needed in our proof. The
proof is motivated by ideas from a paper by Stewart [11]. Our proof also shows that,
if the estimates of the smallest singular value and its associated right singular vector
were exact in each step, Stewart’s URV decomposition [11] renders the exact SVD.

In this paper, bold lowercase letters denote the column vectors, and || - ||2 is either
the Euclidean norm of a vector or the spectral norm of a matrix. The ith column of
an identity matrix is denoted by e;.

LEMMA 1. For a square nonsingular complex matriz A one has

1
min |[[Ax =
pmin, Al = =,

* Received by the editors March 23, 1992; accepted for publication (in revised form) April 21,
1992. This research was supported in part by the Institute for Mathematics and Its Applications
with funds provided by the National Science Foundation.

1 Department of Mathematical Sciences, Northern Illinois University, DeKalb, Illinois 60115
(pan@math.niu.edu).

 Department of Mathematics, University of Florida, Gainesville, Florida 32611 (sigmon@
math.ufl.edu).
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Proof. Since A is nonsingular, it is easy to see that

-1
”A—1"2 = max "A x"2 = max "y"2 — 1 — i 1 .
x#0 ||x]|2 y#0 || Ay]l2 . |lAyllz  min || Ay]2
min == |y[2=1
y#0 [yl

LEMMA 2. If R is an m X n upper triangular matriz with m > n, then

|"'ii| Z min1||Rx||2

[l=ll2=

for each diagonal entry ri; of R.

Proof. If R is rank deficient, the stated bound is immediate since Rx = 0 for
some ||x||2 = 1, so we may assume that R has full column rank.

First note that for any entry a;; of a complex matrix A,

lai| = |ej Ae;| < [leillzl|Aejllz < lleillzllAllzllejllz = [|All2-
The matrix R has the form [R; 0] with R, invertible and (Ry!);; = 1/r4. Thus
IlRT |2 > |(RTY)is| = |1/7i], from which, by Lemma 1, the result follows since

1
min ||Rx||s = min ||Rix|s = ——— < |ryl- 0
in || Rx|| in || Rax|| E0 |73]

THEOREM 1. Each matrizc A € C™*™ has an SVD. That is, there exist unitary
matrices

UeC™™ and Ve C™"
such that
U*AV = diag(o1,...,0,) € C™*", p = min{m,n},

where 01 > 02 > -+ > 0p > 0.

If Ae R™*" then U and V may be taken to be real orthogonal matrices.

Proof. Assume that m > n (otherwise, consider A*). Let xo be a unit vector such
that || AXol|2 = min|y,=1 ||AX||2, and set o := || AXql||2. Let V1 € C**" be a unitary
matrix whose last column is x¢ and let U; € C™*™ be a unitary matrix such that
U (AV1) = R =: [r;;] is upper triangular (here we use the QR decomposition).

Since

|Renll2 = Uy AVien|l2 = Uy Axo|l2 = || Axol|2 = o,
from Lemma 2 we have
|7"1.n|2 +--+ II"n'nl2 = 02 < l"'nan’

and hence |r1,|2+ -+ + |rp_1,n|2 = 0. It follows that |r,,| = o so that rp, = oet for
some ¢t. Now define the diagonal unitary matrix W; := diag(1,...,1,e*) € C**™ and
observe that

R
0
0

-

A=UR(V\W))* with R= € Cmxn,

(=S B ]
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Since R; € C®=Dx(=1) and V;W; is unitary, a straightforward inductive
argument proves that there exist unitary matrices U € C™*™ and V € C"*™ such
that

g1
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PREDICTING STRUCTURE IN SPARSE MATRIX COMPUTATIONS*
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Abstract. Many sparse matrix algorithms—for example, solving a sparse system of linear
equations—begin by predicting the nonzero structure of the output of a matrix computation from
the nonzero structure of its input. This paper is a catalog of ways to predict nonzero structure. It
contains known results for some problems, including various matrix factorizations, and new results
for other problems, including some eigenvector computations.

Key words. sparse matrix algorithms, graph theory, matrix factorization, systems of linear
equations, eigenvectors
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1. Introduction. A sparse matrix algorithm is an algorithm that performs a
matrix computation in such a way as to take advantage of the zero/nonzero structure
of the matrices involved. Usually this means not explicitly storing or manipulating
some or all of the zero elements; sometimes sparsity can also be exploited to work
on different parts of a matrix problem in parallel. Large sparse matrix computations
arise in structural design, geodetics, fluid dynamics, heat transport, semiconductor
modeling, circuit analysis, molecular dynamics, geophysical reservoir analysis, and
many other areas. It is common for problems to be so large that they could not be
solved at all without sparse techniques.

Many sparse matrix algorithms (6], [15]-[17], [21] have a phase that predicts the
nonzero structure of the solution from the nonzero structure of the problem, followed
by a phase that does the numerical computation in a static data structure. This saves
space, because the space used by the pointers in a dynamic data structure during the
first phase can be reused by the numeric values in the second phase. Also, in many
applications a sequence of problems with the same nonzero structure must be solved,
and the structural phase can be done just once. The structural phase may also be
used to schedule the numerical phase efficiently on a parallel machine [20], [29].

Structure prediction can be used to save time as well as space in sparse Gaussian
elimination. The asymptotically fastest algorithms used to compute the Cholesky
factorization of a symmetric positive definite matrix are those of the Yale Sparse
Matrix Package [12] and Sparspak [15], which predict the structure of the triangular
factor by a version of Theorem 4.3. Gilbert and Peierls [24] have used prediction
of the structure of the solution of a triangular system of equations to develop the
first algorithm that performs sparse LU factorization with partial pivoting in worst-
case time proportional to the number of real arithmetic operations. (This method of
prediction is a special case of Theorem 5.1.)

Graph theory is a useful language in which to state and prove the results of
structure prediction. One reason for this is that the structural effect of a matrix
computation often depends on path structure, which is easier to describe in terms of
graphs than in terms of matrices. Parter [33] was among the first to use graph theory

* Received by the editors July 30, 1987; accepted for publication (in revised form) April 16, 1992.
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as a tool to investigate sparse matrix computation; Fiedler [13] also pioneered many
of these ideas.

This paper is a catalog of the effects of several common matrix computations
on nonzero structure. It includes arithmetic, linear systems, various factorizations,
and some eigenvector problems. Where appropriate, it cites algorithms to compute
nonzero structure as well as theorems that describe it. Some of these results are not
new. The known results are scattered among papers on various topics in linear algebra
and algorithms that have been published in journals on numerical analysis, theoretical
computer science, operations research, and engineering. Here they are presented in a
common framework, together with a few new results.

Three or four different graph models are used for structure prediction. Undirected
graphs model symmetric matrices; directed graphs model unsymmetric matrices un-
der symmetric permutations; bipartite graphs model arbitrary rectangular matrices;
and column intersection graphs can sometimes be used to apply undirected graph
results to rectangular matrices. This paper describes results using all the models, but
concentrates most heavily on those that use directed graphs to model unsymmetric
matrices with nonzero diagonal elements.

Sections 3-6 contain the results of the paper: Roughly speaking, the results in
§3 are immediate; those in §4 are known; most of those in §5 are consequences of
known results; and those in §6 are new. This paper is based on an earlier technical
report [19)].

2. Definitions. We assume that the reader is familiar with such basic graph-
theoretic terms as directed graph, undirected graph, and path. Harary [26] is a good
general reference.

2.1. Directed graphs and matrix structures. Let A be an n X n matrix.
The structure of A is its directed graph

struct(A) = G(4),
whose vertices are the integers 1,...,n and whose edges are
{(’l,,])zsﬁj andAij 750}

When no ambiguity can arise, we shall sometimes not distinguish between a matrix,
its graph, and the set of edges of its graph.

The graph G(A) does not specify whether the diagonal elements of A are zero or
not. In this paper we will use G(A) only for matrices with nonzero diagonal elements;
in the context of structure prediction, matrices with zero diagonal elements are more
usefully studied by means of their bipartite graphs, as described below.

Applying the same permutation to the columns and rows of A corresponds to
renumbering the vertices of the directed graph of A. In other words, if P is a permu-
tation matrix, then the directed graph of PAPT is isomorphic to the directed graph
of A. In general, if P and @ are different permutation matrices, then the directed
graph of PAQT is not isomorphic to that of A.

The structure of a vector x is

struct(z) = {i: z; # 0},

which can be interpreted as a set of vertices of the directed graph of any n X n matrix.
We will use the notation G; C G2 to mean that graph G; is a subgraph of
graph Gy; that is, that both the edge and vertex sets of G are subsets of those of G».
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2.2. Predicting structure in a computation. To say more precisely what
we mean by the structural effect of a computation, we make some remarks based on
those of Brayton, Gustavson, and Willoughby [3] and Edenbrandt [10]. Let f be a
function from one or more matrices or vectors to a matrix or vector. The structure
of A may not determine the structure of f(A); for example, in general the sum of two
full vectors is full, but (1,1)7 + (1,—1)T is not full. We wish to ignore zeros created
by coincidence in the numerical values of A and determine the smallest structure that
is “big enough” for the result of f with any input of the given structure. That is,
given f and struct(A), we want to determine

U{struct( f(B)) : struct(B) C struct(A)}.
B

Brayton, Gustavson, and Willoughby called an algorithm “s-minimal” if it computes
this structure from struct(A). We sometimes call this a “one-at-a-time” structure
prediction, since each position in the predicted structure can be made nonzero, but
there is no guarantee that all can be made nonzero at the same time.

Most of the functions we consider in this paper have the property that for each
input structure S, there is a worst-case value A with struct(4) = S such that
struct(B) C S implies struct(f(B)) C struct(f(A4)). In other words, each input
structure corresponds to a unique maximal output structure. We sometimes call such
an analysis an “all-at-once” structure prediction.

A function for which there is no “all-at-once” structure prediction is f(A) = U, the
upper triangular factor of A in Gaussian elimination with partial pivoting. Suppose
the structure of A is

X
X X
X X

Depending on the relative magnitudes of the elements in the first column, the structure
of f(A) may be

X X X X X X X
X , x x|, X , or X X
X X X X

The smallest structure big enough for f(A) is a full upper triangular matrix, even
though f(A) cannot be full.

2.3. Graph terminology. Representing a matrix structure as a graph has the
advantage that it is easy to describe properties that depend on paths in the graph.
Here we define several graph notions that depend on path structure.

The notation i - j means that there is an edge from ¢ to j in G(A); that is, that
A;; # 0. The notation ¢ N Jj means that there is a directed path from i to j in G(A).
Such a path may have length zero; that is, 4 A always holds. The matrix A may
be omitted if it is clear from context.

Now let G(A) be a directed graph, and let = be a subset of the vertices of G. We
say z is closed (with respect to A) if there is no edge of G from a vertex not in z to
a vertex in z; that is, if z; # 0 and A;; # 0 imply z; # 0. The closure of = (with
respect to A) is the smallest closed set containing x,

closure(z) = n{y :z C y and y is closed},
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X X X
X X X
X X
X X X
X X
X X
X X X X

F1G. 1. A matriz and its directed graph. closure({5}) is outlined.

which is the set of vertices of A from which there are paths to vertices of z. Figure 1
shows a matrix and its graph, with closure({5}) outlined.

The transitive closure of A is the graph G*(A) whose edges correspond to paths
in A. Thus

iC9D 5 ifandonlyif i#£j and i=2j.

The structural effect of Gaussian elimination can be described in terms of a subgraph
of G*(A) called the filled graph of A, which we write as G*(A). This graph has edges
corresponding to paths whose highest-numbered vertices are their endpoints:

+
i Al j ifandonlyif i#j and 1 =N j through vertices less than min(s, j).

Figure 2 is an example. Notice that the filled graph depends on the numbering of the
vertices of A, whereas the transitive closure and the closure of a vertex are preserved
under renumbering (that is, under graph isomorphism).

Remark 2.1. Rose [35] introduced the notation G*(A) for the filled graph of A,
but that notation is also widely used for transitive closure. Since we want to refer to
both transitive closures and filled graphs, we use G*(A) for the “smaller” of the two.

A graph G is strongly connected if there is a path from every vertex to every other
vertex, or, equivalently, if G* is a complete directed graph. A square matrix A is called
irreducible if struct(A) is strongly connected. Clearly, for any permutation matrix P,
PAPT is irreducible if and only if A is. The strongly connected components (or just
strong components) of a graph G are its maximal strongly connected subgraphs. Every
vertex of a graph is in exactly one strong component, and every edge is in at most
one strong component. If a square matrix A is permuted into block triangular form
with as many diagonal blocks as possible, the diagonal blocks partition the rows and
columns of A into sets corresponding to the strong components of struct(A). Figure 3
shows the strong components of the graph in Fig. 1, with the vertices renumbered so
that the matrix has a diagonal block for each strong component.

A square matrix A is called fully indecomposable if struct(PAQT) is strongly con-
nected for all permutation matrices P and Q. Clearly, this is equivalent to struct(PA)
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X X X
X X X
X X
X X X X X X X
X X
X X
X X X X X
FI1G. 2. Filled graph of ezample from Fig. 1.
X X X
X X X
X X X
X X X X
X X
X X
X X

F1G. 3. Matriz from Fig. 1 permuted to block triangular form. Strong components are outlined.

being strongly connected for all permutations P. As we will remark in the next sec-
tion, fully indecomposable matrices are the same as square strong Hall matrices.

If matrix A is symmetric, its directed graph contains edge (i, j) if and only if it
contains edge (j,7). Informally, we shall not distinguish between this graph and the
undirected graph of A, which has an undirected edge {1, j} if A;; # 0. Chordal graphs
are undirected graphs that are useful for describing symmetric Gaussian elimination.
An undirected graph is chordal if every cycle of length at least 4 has a chord; that
is, if for every cycle v1,va, ..., vk, v1 with k > 4 there is some edge {v;,v;} for which
i#£j+1 (mod k).

2.4. Nonsquare matrices. This paper concentrates on structure prediction re-
sults that use directed graphs and that (for the most part) apply to square matrices
with nonzero diagonals. For completeness, however, we include some results on ma-
trices that need not be square, or that may have zero diagonal elements. Two other
graph models are appropriate in that case.

If A has m rows and n columns, then AT A is an n x n symmetric matrix, whose
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diagonal is nonzero if A has no zero columns. Its structure is related to the column
intersection graph of A, which is the undirected graph G(A) whose vertices are the
integers 1,...,n (corresponding to the columns of A), and whose edges are

{{5,7} : i # j and 3k with Ag; # 0 and Ag; # 0}.

Thus Gn(A) has an edge between any pair of columns that share a nonzero row. This
implies that

G(ATA) C Gn(4),

with equality unless there is numerical cancellation in AT A. Permuting the rows of A
does not change the column intersection graph: if P is a row permutation matrix,
then Gn(PA) is the same as G (A).

If A has m rows and n columns, the bipartite graph of A is the undirected graph
H(A) whose vertices are 1’,2',...,m’ and 1,2,...,n, and whose edges are { {i',j} :
A;; # 0}. The superscript prime notation is intended to indicate that the row and
column vertices of H(A) are chosen from two different copies of the positive integers.
Permuting the rows and columns of A only relabels the vertices of the bipartite graph:
if P and Q are row and column permutation matrices, then H(PAQT) is isomorphic
to H(A).

Several structure prediction problems use matchings and alternating paths in the
bipartite graph of a matrix [4], [6], [7], [20], [23], [21], [32]. This paper does not
consider such problems in detail, but we include enough definitions here to state some
of these results in later sections.

Let A be an m X n matrix with m > n. We say that A has the Hall property
if, for every k with 0 < k < m, every set of k columns of A contains nonzeros in
at least k rows. (That is, every set of k column vertices of H(A) is adjacent to at
least k row vertices.) We say that A has the strong Hall property if, for every k with
0 < k < n, every set of k columns of A contains nonzeros in at least k + 1 rows. The
graph H(A) has a matching that covers all of its columns if and only if A has the Hall
property. A square matrix A with nonzero diagonal is irreducible if and only if H(A)
has the strong Hall property; an arbitrary square matrix A is fully indecomposable
if and only if H(A) has the strong Hall property. See Lovasz and Plummer [30] for
background on bipartite matching. Our terminology is from Coleman, Edenbrandt,
and Gilbert [4].

Incidentally, although permuting the rows and the columns of A independently
can change the directed graph of A, it does not change the row partition and the
column partition induced by the strong components of the graph of A. Another
way to say this is that, given a matrix A, if we first permute rows and columns
(asymmetrically) to make the diagonal elements nonzero, and then permute rows
and columns symmetrically to block triangular form with as many diagonal blocks as
possible, then regardless of the initial choice of nonzero diagonal we always get the
same block triangular form, up to possible permutation of the diagonal blocks and
reordering of the rows and columns within each block.

2.5. Other definitions. We will call a finite set {z1,...,2,} of complex num-
bers algebraically independent if the point (z;,...,Z,) is not a zero of any nonzero
n-variable polynomial with integer coefficients. Then z; is transcendental over the
field Q(z1,...,%i—1,Zit1,-..,Zn) of the rationals extended by all the z’s except z;.
There exist arbitrarily large algebraically independent sets, even of real numbers, by
a simple countability argument.
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3. Products. The following simple result is used in the proof of Theorem 6.1.
The structure is the bipartite graph of the matrix in question.
THEOREM 3.1. Let the structures of an m X n matrizc A and an n-vector x be
given.
(i) Whatever values A and x have, struct(Az) is a subset of the row vertices of
H(A) adjacent to column vertices whose indices are in struct(z).
(ii) There exits values for the nonzeros of A and x such that struct(Az) is equal
to the set of row vertices described above. o
The generalization to products of matrices is immediate, since each column of AB
is A times a column of B. Theorem 3.1 also implies that G(AT A) C G (A).

4. Factorizations. In this section we describe the structural effect of several
matrix factorizations. The necessary definitions are in §2.

4.1. LU factorization. For the factorization A = LU, where L is lower trian-
gular with unit diagonal and U is upper triangular, we consider square matrices A
with nonzero diagonal, and the graph in question is the directed graph of A. The
square matrix L + U — I represents the entire factorization. (Not all nonsingular
matrices have LU factorizations without pivoting. In a later subsection we consider
factorization with partial pivoting.)

THEOREM 4.1 (see [36]). Let a structure G(A) be given, with nonzero diagonal
elements.

(1) If values are chosen for which A has an LU factorization as above, then
G(L+U —1) CG*(A).
(if) Values for the nonzeros of A exist with G(L + U — I) = G*(A). 0

Rose and Tarjan [36] gave an algorithm for computing G+(A) from A in O(nm)
time, where A is n X n with m nonzeros. They also showed that G*(A) can be
computed in time asymptotically the same as that to compute G*(A), so a faster
algorithm to compute G+(A) would give a faster algorithm to compute transitive
closures than the best currently known. By using various transitively reduced graphs,
Eisenstat, Gilbert, and Liu [11], [22] give algorithms to compute G*(A) that are more
efficient in practice than transitive closure.

Remark 4.2. A nonsingular square matrix may have an LU factorization even
though it has zeros on the diagonal. In this case, Theorem 4.1(i) still holds; but the
converse, part (ii), is false. Brayton, Gustavson, and Willoughby [3] gave a counterex-
ample. Let

X X

struct(A) =

X X X X
X
X

X

The (4,3) entry in G*(A) is nonzero, but Ls3 = 0 regardless of the nonzero values
of A.

4.2. Cholesky factorization. Here we consider the factorization A = LLT,
where A is a symmetric, positive definite matrix, and L is lower triangular with
positive diagonal. Then A has a nonzero diagonal because it is positive definite, and
the directed graph of A corresponds to an undirected graph because A is symmetric.

THEOREM 4.3 (see [37]). Let a symmetric structure G(A) be given, with nonzero
diagonal elements.
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(i) No matter what values A has, if A has a Cholesky factorization A = LLT
then G(L) C G*(A).

(ii) There exist symmetric values for the nonzeros of A such that G(L + LT) =
G*+(A). |

Rose, Tarjan, and Lueker [37] gave an O(n + f) algorithm to compute G*(A) for
a symmetric n X n matrix A with fill of size f. Another such algorithm is implemented
in several standard sparse matrix computation packages [12], [15].

Rose showed that the graphs of Cholesky factors of symmetric matrices are exactly
the chordal graphs; or, equivalently, that a structure can be reordered to have no fill
if and only if it is chordal.

THEOREM 4.4 (see [37]). Let a symmetric structure G(A) be given, with nonzero
diagonal elements.

(i) G*(A) is a chordal graph.
(ii) Conversely, if G(A) is a chordal graph, then there is a permutation matriz P
such that G*(PAPT) = G(PAPT). o

Rose, Tarjan, and Lueker [37] and Tarjan and Yannakakis [39] gave linear-time
algorithms to determine whether a G(A) is chordal and, if so, to reorder its vertices
so that G*(PAPT) = G(PAPT). Such a reordering is called a “perfect elimination
order.”

4.3. Partial pivoting. The example in §2 showed that a result of the form of
Theorem 4.3 is not possible for LU factorization with partial pivoting, because no
single choice of nonzero values for A is guaranteed to produce nonzeros in all possible
positions of U. George and Ng [16] gave an upper bound. A few remarks are necessary
to understand the bound.

There are two ways to write the LU factorization, with partial pivoting, of a square
matrix A. Oneis as A = PLU, where L is unit lower triangular, U is upper triangular,
and P is a permutation matrix. The other is as A = P L1P,Ly...P, 1L, U,
where P; is a permutation that just transposes row i and a higher-numbered row,
and L; is a Gauss transform (a unit lower triangular matrix with nonzeros only in
column 7). To get the first factorization, use the standard outer product form of
Gaussian elimination to replace A by its triangular factors, pivoting by interchanging
two rows of the matrix at the beginning of each major step; at major step k, each row
thus interchanged contains entries of L in the first k — 1 positions and entries of the
partially factored A in the remaining positions. To get the second factorization, pivot
by interchanging, at the beginning of major step k, only columns k through n of the
two rows in question. In this case an entry of the lower triangle is never moved once
it is computed, and only the rows of the partially factored matrix are interchanged.

The factorizations are equivalent in the sense that the same arithmetic is per-
formed in each case, the two U’s are the same, and the values of the nonzeros in L — I
and L = > 1<i<n(Li—I) are the same; only the positions of the nonzeros in the lower

triangular factors are different. The George-Ng theorem describes the structures of L
and U, saying that both of them are subsets of the structure of the symbolic Cholesky
factor of AT A, that is, of the filled graph of the column intersection graph of A.

THEOREM 4.5 (see [16]). Let a structure G(A) be given. Whatever values A has,
if Gaussian elimination with partial pivoting gives the factors L and U as above, then
G(L+U) C GE(4). 0

The example in §2 showed that the converse of this theorem is not true. Various
partial converses hold, however. If we restrict ourselves to structures that are strong
Hall (fully indecomposable), which includes irreducible structures with nonzero diago-
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nals, then there is a “one-at-a-time” converse to Theorem 4.5 for the upper triangular
factor U:
THEOREM 4.6 (see [20]). Let a square strong Hall structure H(A) be given. For

GH(A
any choice of i < j with @ S j, there is a choice of values for A for which the

factorization with partial pivoting PA = LU makes U;; # 0. O

The “all-at-once” version of this statement is not true even for irreducible matri-
ces. For example, take G(A) to be a tridiagonal matrix plus a full first column. Then
G(A) is irreducible (and strong Hall), and it is easy to see that G} (A) is full. As
Theorem 4.6 states, it is possible to choose values for A to make any single position
in U nonzero; however, the first row of U will always be some row of A, so the entire
first row of U cannot be nonzero at the same time.

For the lower triangular factor L, Theorem 4.5 is not as tight as possible, even
in the “one-at-a-time” sense for strong Hall structures. For example, let G(A) be
tridiagonal (and hence strong Hall). Then G?#(A) is five-diagonal, predicting that
L could be lower tridiagonal; but, in fact, L must be lower bidiagonal. George and
Ng [17] suggest a way of predicting the structures of L and U by efficiently simulating
all possible pivoting steps. Gilbert and Ng [23] have recently shown that this method
(which we do not describe here in detail) gives a tight “one-at-a-time” prediction of
the structures of both L and U in the strong Hall case.

4.4. QR factorization. Suppose A is an m x n matrix with m < n. Here we
consider the factorization A = QR, where @ is an orthogonal matrix and R is upper
triangular with nonnegative diagonal. George and Heath observed that, since this R
is the same as the Cholesky factor of AT A, the structure of R can be predicted by
forming G~ (A) and doing structural Cholesky factorization.

THEOREM 4.7 (see [14]). Let the structure H(A) be given for a rectangular matriz
A with at least as many rows as columns. Whatever values A has, if A has full column
rank, then its orthogonal factorization A = QR satisfies G(R) C G (A). n|

The converse of this theorem is false; for example, if A is upper triangular with a
nonzero diagonal and a full first row, then Gn(A) = G/ (A) is full, but the orthogonal
factor R is equal to A. Coleman, Edenbrandt, and Gilbert supplied a converse in the
strong Hall case.

THEOREM 4.8 (see [4]). Let a structure H(A) be given with at least as many
rows as columns. If H(A) has the strong Hall property, then there exist values for
the nonzeros of A such that G(R) = G} (A), where R is the orthogonal factor of A as
above. O

Hare, Johnson, Olesky, and van den Driessche [27] gave a more complicated pre-
diction of the structure of both R and the orthogonal factor ). They showed that
their prediction was tight in the “one-at-a-time” sense for all Hall structures, that is,
for all structures with full symbolic column rank. Pothen [34] then proved that the
prediction of Hare et al. was in fact tight in the “all-at-once” sense, thus finishing off
the problem for both @ and R in the Hall case.

George and Ng [18] studied another representation of the structure of the orthog-
onal factor @ in the case that A is square and has nonzero diagonal elements. They
showed that a suitable representation of @ has a structure that also satisfies Theo-
rem 4.7. Suppose A is reduced to upper triangular form by a sequence of Householder
transformations that zero the subdiagonal elements of the first column, then the sec-
ond column, and so on. The Householder transformation used to zero column j (for
1< j <n)hastheform Q; =1 —ijf, where w; is a column vector whose first j —1
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entries are zero. The orthogonal factor @ = QTQ¥ ...QI_, is conveniently repre-
sented by the lower triangular matrix W whose columns are the w;. The George-Ng
result describes the structure of this triangular matrix.

THEOREM 4.9 (see [18]). Let a structure G(A) be given for a square matriz A
with nonzero diagonal elements. Whatever values A has, if its orthogonal factor is
represented by the matriz W described above, then G(W) C G (A). 0

This result is useful because in practice it often suffices to represent the orthogonal
factor by the sequence of Householder vectors, and that representation is often sparser
than an explicit representation of (). For example, consider a symmetric structure
whose graph G(A) is a square grid with n vertices, corresponding to the standard
five-point finite difference stencil on a k X k mesh with n = k2. The number of
nonzeros in A is ©(n). Take the numeric values of A to be algebraically independent.
It is straightforward to use the results cited above [18], [27] to show that a nested
dissection ordering of G~(A) asymptotically minimizes the number of nonzeros in all
of @, R, and W, and that for such an ordering the number of nonzeros in both R and
W is ©(nlogn) while the number of nonzeros in Q is ©(n3/2). Thus in this model
problem W is a much more efficient way to store the orthogonal factor than Q.

5. Solutions of linear systems. In this section we determine the structure
of the solution z to the square system of linear equations Az = b. We solve the
related problem of determining the structure of A~!. These results have not appeared
before in this form, but the upper bounds in Theorem 5.1 and Corollary 5.4 are
straightforward consequences of Tarjan’s work on elimination methods for solving
path problems in graphs [40] and are closely related to work done by Fiedler [13].
The proofs here are somewhat different.

The extremes of path structure in directed graphs are a strongly connected graph
(which corresponds to an irreducible matrix) and an acyclic graph (which corresponds
to a permutation of a triangular matrix). Some of these results become almost trivial
at the strongly connected extreme—for example, the inverse of an irreducible matrix
is full in the absence of coincidental cancellation. In solving general nonsingular
linear systems it is often advantageous to begin by partitioning the matrix into strong
components and then to factor only the irreducible blocks of the partition. This
approach is taken, for example, in the Duff and Reid MA28 code [9).

Curiously enough, the most important applications of the results in this section
are at the opposite extreme, for triangular systems. Structure prediction for sparse
triangular systems is used in efficient algorithms for LU factorization with partial
pivoting [24] and in parallel triangular solution [1].

Throughout this section A is an n X n matrix with nonzero diagonal, and the
graph in question is the directed graph G(A).

THEOREM 5.1. Let the structures of A and b be given.

(i) Whatever the values of the nonzeros in A and b, if A is nonsingular then

struct(A~'b) C closure(b).

(i) There exist nonzero values for which struct(A~1b) = closure(b). (In fact,

all the nonzeros in b can have the value 1.)
Proof. Part (i). Let values be given for which A is nonsingular. Renumber the
vertices of A so that closure(b) = {1,2,...,k} for some k < n. Then Az = b can be

partitioned as
B D y\ _[(d
C E)\z) \0o)’
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where B is k X k. By the definition of closure(b), there is no edge (¢,j) with ¢ ¢
closure(b) and j € closure(b). Therefore C' = 0. Then Ez = 0. Since A is nonsingular
and C = 0, matrix F is nonsingular. Therefore z = 0. Thus struct(z) C {1,...,k} =
closure(b).

Part (ii). Choose algebraically independent values for the nonzeros of A, and let
b; = 1 if ¢ € struct(b). Then A is nonsingular because det A is a nonzero polynomial
in the nonzeros of A. Let z = A~'b. Renumber the vertices of A so that struct(z) =
{1,2,...,k} for some k < n. Then Az = b can be partitioned as

B D\ (y\_(d
C E 0) \e)’
where B is k X k and all entries of y are nonzero. Consider row ¢ of C. We have

1) > ciyi = e

1<5<k

Now B is nonsingular, since det B is a nonzero polynomial. By Cramer’s rule, By = d
implies y; = det(BI?) / det B, where B|§' is B with column j replaced by d. Then (1)
implies

(2) > cijdet(B|f) — e;det B=0.
i<j<k

This is a polynomial with rational coefficients in the entries of A, so it is the zero
polynomial. Now y; # 0 implies that det(B I;’) is not the zero polynomial, so ¢;; must
be zero. Thus C = 0. This implies that z = (¥) is closed. Furthermore, det B # 0,
so (2) implies e; = 0. Thus e =0, so b = (g) and struct(b) C struct(z) = closure(z).
Therefore closure(b) C struct(z). With part (i), this gives closure(b) = struct(z). O

Remark 5.2. The proof of part (i) never assumes that the “nonzero values” of
A are in fact different from zero. Thus we have the slightly stronger result that if
G(A) C G(A) and struct(b) C struct(b) and A is nonsingular, then struct(A~15) C
closure(b).

Remark 5.3. It seems natural to conjecture in part (i) that if A is singular and
Az = b has a solution, then it has some solution with struct(z) C closure(b). Oddly
enough, this is false. Consider

110 1 1
2 20 1 1
A=lo o1 -1 2d b=}y
001 -1 0

All solutions to Az = b are of the form (a, —a,1,1)T, none of which is a subset of
closure(b) = (x, x,0,0)7.

COROLLARY 5.4. Let the structure G(A) be given.

(i) Whatever values A has, if A is nonsingular then G(A™) C G*(A).
(ii) Values exist for the nonzeros of A such that G(A™!) = G*(A).

Proof. Note that column j of G*(A) is closure(e”)), where el¥) is the jth unit
vector. The corollary is immediate from Theorem 5.1, noting that part (ii) of the
theorem holds even if the right-hand-side entries are all zeros and ones. o

Corollary 5.4 implies that if A is irreducible with nonzero diagonal, then A~! is
full unless numerical coincidence occurs. Duff et al. [8] gave another proof of this
special case.
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The case where A is allowed to have zeros on the diagonal is a straightforward
extension. First, for A~! to exist, H(A) must be Hall. That implies that a per-
mutation P exists for which PA has nonzero diagonal. Then the structure of the
solution to Az = b is the structure of A=1b = (PA)~!(Pb), which is the closure of
Pb with respect to the graph G(PA) by Theorem 5.1. The structure of A~! can be
predicted similarly by permuting to nonzero diagonal, forming the transitive closure,
and permuting back. This also implies a slightly stronger version of the result of Duff
et al.: if nonsingular A is fully indecomposable, or, equivalently, strong Hall (with no
restriction on the diagonal), then A~! is full unless numerical coincidence occurs.

The case where A is symmetric is simpler and less interesting, but the puzzling
examples such as the one in Remark 5.3 do not arise. If A is symmetric and its
graph is not connected, then A is block diagonal, and a linear system splits into a
separate problem for each block. If A is connected, then it is strongly connected and
the closure of every nonempty set is the whole graph. Then the upper bound in part
(i) of Theorem 5.1 is trivial, and values exist to achieve it.

THEOREM 5.5. Let a symmetric structure for A be given along with a nonzero
structure for b. If the structure for A is connected (i.e., irreducible, or not block diago-
nal), then there exist symmetric values for A such that struct(A~'b) =
{1,2,...,n}; that is, x is full. Also, in this case, A~1 is full.

Proof. The proof is almost identical to that of Theorem 5.1 (ii), so this is just a
sketch: Choose algebraically independent values for the lower triangle of A and make
the upper triangle symmetric. Then A is nonsingular. The polynomial in (2) does
not contain cj;, so we can still conclude c;; = 0 from the fact that it occurs multiplied
by a nonzero polynomial. Therefore A~!b is closed. But if symmetric A is connected,
then it is strongly connected, so the only nonempty closed set is {1,2,...,n}. O

6. Eigenvectors. In this section we determine the structure of the eigenvectors
of a square matrix A. The results in this section are new. We deal only with the case
of distinct eigenvalues. As described at the end of the section, the reason we cannot
handle multiple eigenvalues is related to Remark 5.3 above.

Throughout this section A is an m X m matrix with nonzero diagonal, and the
graph in question is the directed graph of A. Recall that e is the ith unit vector
and closure(e(®) is the structure of column i of the transitive closure of A.

THEOREM 6.1. Let the structure G(A) be given.

(i) Whatever the values of the nonzeros in A, if A has n distinct eigenval-
ues A1, ..., An, then the eigenvectors of A can be numbered vV, ..., u(™ such that
struct(u(®) C closure(e®).

(ii) There exist nonzero values for which A has n distinct eigenvalues, and the
eigenvectors satisfy struct(u®) = closure(e®).

Proof. Part (i). Let values be given for A. Renumber the vertices of A to put A
in block upper triangular form—that is, to put the strongly connected components of
A in topological order. Then A is partitioned as

B, 01,2 N 01,3
By, ... C2,3

A= . . )
0 B,

where each B; is square and strongly connected. Renumber the eigenvalues and eigen-
vectors in nondecreasing order of the highest-numbered nonzero in the eigenvector.
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That is, if u,(:) = '“;3-1 =...=ul) =0, then ug_l) = uff_:ll) =...=uf™) =0, for
l1<i<n. ’

Consider some eigenvector u(?. Suppose its highest-numbered nonzero is in a row
that runs through block B;. Then Au® = \u® is partitioned as

D E F v v Bl e Cl,j—l
0 B G wl=N|w], where D = : , etc.
0 0 H 0 0 0 Bj_y

Then Bjw = M\w with w # 0, so A; is an eigenvalue of B;. In fact, each A; is an
eigenvalue of one Bj, with j increasing as ¢ increases. Since no B; has more eigenvalues
than its dimension, we conclude by counting rows that row i and column % of A run
through B;. Now Bj; is strongly connected, so closure(e()) = closure(B;) (where
closure(B;) denotes the closure of the set of vertices of B; with respect to A).

We have Dv + Ew = v, so

(D= X\I)v = FEuw.

Since the eigenvalues of A are simple, ); is not an eigenvalue of D and D — \;I is
nonsingular. Thus, by Theorem 5.1,

struct(v) C closure( Ew).

Now if D is m x m and Bj is t x t, struct(w) C {m + 1,m +2,...,m + t} and
struct(Ew) C {1 < k < m : ag # 0 for some [ € struct(w)} by Theorem 3.1, so
struct(Ew) C closure(w) (closure still with respect to A) and struct(v) C closure(w).
Therefore, struct(u() = struct(v) U struct(w) C closure(w). Since w C Bj, this
implies that struct(u®) C closure(B;) = closure(e(®).

Part (ii). Choose algebraically independent values for A, choosing the diagonal
elements so far apart that no two are closer than 2max; °, . |ai;|. By Gerschgorin’s
theorem [25], this guarantees that there are n distinct, simple eigenvalues. (It would
be more elegant to conclude that the eigenvalues are simple from the algebraic inde-
pendence of the elements, but I do not know how to prove it.)

First we will show that each eigenvector is closed. Let u be an eigenvector with
Au = Au. Renumber the vertices of A so that.struct(u) = {1,2,...,t} for some t < n.
Then Au = Au can be partitioned as

® (& )(5)=2(6)

where B is t x t and vg # 0 for 1 < k < t. We will show C = 0. Intuitively, it seems
clear that if C # 0, then v cannot be both an eigenvector of B and a null vector of
C. A field-theoretic argument makes this intuition precise.

Since Bv = Av and the diagonal elements of B are far enough apart that their
Gerschgorin discs do not overlap, A is in the Gerschgorin disc of exactly one byg.
Renumber vertices 1 through ¢ so that by is b;3. Choose v such that v; = 1. Then
Buv = \v partitions into

1 1

bu ST V2 v2
g B : =A : )

(7 Vt



PREDICTING STRUCTURE IN SPARSE MATRIX COMPUTATIONS 75

where f and g are t — 1-vectors. Now we have

)
(B' = AI) ( : ) =—g.
[

By Gerschgorin’s theorem, ) is not an eigenvalue of B’, so B’ — \I is nonsingular and

_ det(B' - AI)[;?
(4) 'Uk—m fOI‘2SkSt
Now we fix i and j and show that ¢;; =0 (for 1 <i<n—tand 1<j<1).

Let F be the field obtained by adjoining to Q (the rationals) all the nonzeros of
B and all the nonzeros of row i of C except c;;. Now F[z] is the ring of one-variable
polynomials with coefficients in F', and F'(]) is the field obtained by adjoining A to F.
We know A is a zero of a nonzero polynomial in F[z], namely, det(B —zI). Therefore,
A is algebraic over F', so every element of F()) is a zero of some nonzero polynomial
in F[z].

Since Cv = 0, we have

Z CikVk = 0.

1<k<t

All the v are nonzero, so
1
(5) Cij = —‘; Zcikvk.

By (4), each vy is a rational function of )\ and elements of F, so vy € F(X). Each
¢ir, with k # j is in F. Therefore, the whole right-hand side of (5) is in F()X), so
¢ij € F()). This means that c;; is a zero of a nonzero polynomial in F[z]. But if ¢;;
is nonzero, then c;; was chosen to be transcendental over F. Thus c;; = 0; and, since
¢ and j were arbitrary, C = 0.

Recalling the partition of A in (3), C = 0 implies that the eigenvector u = ({) is
closed.

Now all the eigenvectors of A are closed. Renumber the eigenvectors so that A;
is in the Gerschgorin disc of a;;. The argument following (3) shows that ); is in

a Gerschgorin disc whose index j corresponds to a nonzero ug’) of u®®; since ); is

in only one disc, this means u{ # 0. Therefore, struct(e®)) C struct(u(®)). Since
u(® is closed, closure(e®)) C struct(u(®). Part (i) gives the opposite containment, so
struct(u®)) = closure(e(®). o

COROLLARY 6.2. Let the structure of A be given.

(i) No matter what nonzero values A has, if A has only simple eigenvalues, then
its eigenvectors can be ordered so that the matriz U whose columns are the eigenvectors
has G(U) C G*(A).

(ii) There ezist values for the nonzeros of A such that the eigenvectors can be
ordered so that G(U) = G*(A).
Proof. Similar to Corollary 5.4. 0
Remark 6.3. It is natural to conjecture that if A has multiple eigenvalues, then
there is some choice of a maximal set of eigenvectors whose structure is a subset of the
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2

F1G. 4. Graph of counterezample in Remark 6.3.

transitive closure of A. Again, oddly, this is false. From the example in Remark 5.3
we can construct

310 1 -1 X X X X X
2 40 1 -1 X X X X X
A=]10 0 3 -1 0 |, soG*(A)= X X
001 1 0 X X
000 O 2 X

The graph of A is shown in Fig. 4. The characteristic equation of A is det(z] — A) =
(z —2)*(x —5), so the eigenvalues are 2 and 5. The eigenspace of 5 is one-dimensional
and consists of multiples of (1,2,0,0,0)7, which comprise a column of the transitive
closure. However, the eigenspace of 2 is also one-dimensional and consists of multiples
of (0,0,1,1,1)T, which do not form a subset of any column of the transitive closure.

Mascarenhas [31] has recently extended Theorem 6.1 to the case where A has
multiple eigenvalues, provided that no two diagonal blocks of the block upper trian-
gular form of A share an eigenvalue. He has also proved a similar result for the more
general case where there are n linearly independent eigenvectors, that is, where each
eigenvalue has equal geometric and algebraic multiplicity.

For symmetric A, the situation for eigenvectors is the same as for symmetric linear
systems: If A is block diagonal, then each block is a separate problem; if A is not
block diagonal (i.e., A is irreducible or connected), then the upper bounds are both
trivial and tight.

THEOREM 6.4. Let a symmetric structure for A be given. If the structure is con-
nected, then there erist symmetric values for A such that A has n distinct eigenvalues,
and all its eigenvectors are full.

Proof. Just as in Theorem 5.5, the proof of Theorem 6.1 part (ii) goes through,
even if A is required to be symmetric. 0

7. Remarks, applications, and open problems. We have described several
matrix computations in which the nonzero structure of the result of the computation
can be inferred, partly or completely, from the nonzero structure of the input to the
computation. The language of graph theory seems most appropriate to state these
results, primarily because path structure is most easily described in graph-theoretic
terms.

Matchings in bipartite graphs are important in several of the results of §4. Bipar-
tite matching theory plays a central role in two other structural problems that we have
not described here: finding the sparsest basis for the range space (McCormick [32])
and for the null space (Coleman and Pothen [5], [6], Gilbert and Heath [21]) of a rect-
angular matrix. It turns out that the structural range space problem can be solved
in polynomial time, but the null space problem is NP-complete.
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Several applications of structure prediction to solving systems of linear equations
were cited in §1. Some of the present work was motivated by Gilbert and Peierls’s use
of structure prediction for triangular linear systems as part of an efficient algorithm for
sparse LU factorization with partial pivoting [24]. Another application of structure
prediction for triangular systems is in a practical problem in reservoir analysis. Here
a finite-element model of an underground reservoir of hot water (to be tapped for
power and heating for the city of Reykjavik) requires the solution of hundreds of
positive definite linear systems with the same coefficient matrix. All the systems have
very sparse right-hand sides, and, in addition, only a few of the unknown values are
required for each system. Sigurdsson [38] has used structure prediction with a simpler
version of Theorem 5.1 to speed up the Sparspak triangular solver for this problem.

We have been concerned exclusively with predicting nonzero structure in this
paper. A related question is: Given a matrix and a matrix function, which entries of
the matrix are unchanged in value by application of the function? Barrett, Johnson,
Olesky, and van den Driessche [2], [28] have given such characterizations for functions
including LU factorization and Schur complement.

A few open problems in structure prediction, some of which have already been
mentioned, are as follows. Is it possible to give a tight bound on the nonzero struc-
tures of the factors in Gaussian elimination with partial pivoting (§4)? What can be
said about solutions to singular linear systems in light of the counterexample in §57
What can be said about eigenvector structures for matrices with multiple eigenvalues
([31, §6])? What can be said about the structure of the singular value decomposition
(SVD) of a rectangular matrix [25]? The relationship between the singular values
of A and the eigenvalues of AT A, together with Theorem 6.4 on eigenvectors of sym-
metric matrices, suggests that the SVD of a connected matrix is always full (ignoring
numerical cancellation). This would certainly confirm the conventional wisdom that
there is no such thing as an SVD with sparse singular vectors.

Acknowledgments. My thanks to Tom Coleman, Anders Edenbrandt, Mike
Heath, Joseph Liu, Esmond Ng, Ragnar Sigurdsson, and Sven Sigurdsson for inter-
esting and useful discussions of these problems. Earl Zmijewski gave this paper a
careful and helpful critical reading. Gene Golub nudged me to finish revising it for
publication.
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CIRCULANT PRECONDITIONED TOEPLITZ LEAST SQUARES
ITERATIONS*

RAYMOND H. CHAN', JAMES G. NAGY!, AND ROBERT J. PLEMMONSS

Abstract. The authors consider the solution of least squares problems min ||b — T'z||2 by the
preconditioned conjugate gradient method, for m-by-n complex Toeplitz matrices T' of rank n. A
circulant preconditioner C is derived using the T. Chan optimal preconditioner on n-by-n Toeplitz row
blocks of T. For Toeplitz T that are generated by 2m-periodic continuous complex-valued functions
without any zeros, the authors prove that the singular values of the preconditioned matrix TC~! are
clustered around 1, for sufficiently large n. The paper shows that if the condition number of T is of
O(n®), a > 0, then the least squares conjugate gradient method converges in at most O(cda logn+1)
steps. Since each iteration requires only O(mlogn) operations using the Fast Fourier Transform, it
follows that the total complexity of the algorithm is then only O(am log? n+mlogn). Conditions for
superlinear convergence are given and regularization techniques leading to superlinear convergence
for least squares computations with ill-conditioned Toeplitz matrices arising from inverse problems
are derived. Numerical examples are provided illustrating the effectiveness of the authors’ methods.

Key words. least squares, Toeplitz matrix, circulant matrix, preconditioned conjugate gradi-
ents, regularization

AMS subject classifications. 65F10, 65F15

1. Introduction. The conjugate gradient (CG) method is an iterative method
for solving Hermitian positive definite systems Az = b (see, for instance, Golub and
Van Loan [21]). When A is a rectangular m-by-n matrix of rank n, one can still use
the CG algorithm to find the solution to the least squares problem

1) min [|b — Az|l2.
This can be done by applying the algorithm to the normal equations in factored form,
(2) A*(b— Az) =0,

which can be solved by conjugate gradients without explicitly forming the matrix A* A
(see Bjorck [7]).

The convergence of the CG algorithm and its variations depends on the singular
values of the data matrix A (see Axelsson [5]). If the singular values cluster around a
fixed point, convergence will be rapid. Thus, to make the algorithm a useful iterative
method, one usually preconditions the system. The preconditioned conjugate gradient
(PCG) algorithm then solves (1) by transforming the problem with a preconditioner
M, applying the CG method to the transformed problem, and then transforming
back. More precisely, one can use the CG method to solve

min [|b — AM~y|z,
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and then set z = M~1y.

In this paper we consider the least squares problem (1), with the data matrix
A = T, where T is a rectangular m-by-n Toeplitz matrix of rank n. The matrix
T = () is said to be Toeplitz if t;x = t;_g, i.e., T is constant along its diagonals.
An n-by-n matrix C is said to be circulant if it is Toeplitz and its diagonals c; satisfy
¢n—j = c—j for 0 < j < n — 1. Toeplitz least squares problems occur in a variety of
applications, especially in signal and image processing. (See Andrews and Hunt [3],
Jain [24], and Oppenheim and Schafer [28].)

Recall that the solution to the least squares problem

(3) min ||b — T'z||2

can be found by the PCG method by applying the method to the normal equations (2)
in factored form, that is, using T and T* without forming 7*T. The preconditioner
M considered in this paper is given by an n-by-n circulant matrix M = C, where
C*C is then a circulant matrix that approximates 7T

The version of the PCG algorithm we use is given in (7] and can be stated as
follows.

Algorithm PCG for Least Squares. Let z(©) be an initial approzimation to
Tz =b, and let C be a given preconditioner. This algorithm computes the least
squares solution, x, to Tz = b.
r©@ =p - Tz©
p(o) = 3(0) = C_*T*r(o)
Yo = ||8(°)||§
for k=0,1,2,...
q(k) = TC_lp(k)
o, = 3¢/ 19 P13
z*+D) = g(*) 4 o, C-1pk)
rE+1) = p(k) _ g (k)
glk+1) — o—*xp(k+1)

Terr = sV

Br = Yk+1/ "k
p(k+1) = 3(k+1) + ka(k)

The idea of using the PCG method with circulant preconditioners for solving
square positive definite Toeplitz systems was first proposed by Strang [30], although
the application of circulant approximations to Toeplitz matrices has been used for
some time in image processing, e.g., in [6]. The convergence rate of the method was
analyzed by R. Chan and Strang [9] for Toeplitz matrices that are generated by posi-
tive Wiener class functions. Since then, considerable research has been done in finding
other good circulant preconditioners or extending the class of generating functions for
which the method is effective. (See T. Chan [17], R. Chan [10], Tyrtyshnikov [32],
Tismenetsky [31], Huckle [23], Ku and Kuo [25], R. Chan and Yeung [13], T. Chan
and Olkin [18], R. Chan and Jin [12], and R. Chan and Yeung [14].)

Recently, the idea of using circulant preconditioners has been extended to non-
Hermitian square Toeplitz systems by R. Chan and Yeung [15] and to Toeplitz least
squares problems by Nagy [26] and by Nagy and Plemmons [27]. The main aims of this
paper are to formalize and establish convergence results and to provide applications
in the case where T is a rectangular Toeplitz (block) matrix.
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For the purpose of constructing the preconditioner, we will see that by extending
the Toeplitz structure of the matrix T" and, if necessary, padding zeros to the bottom
left-hand side, we may assume without loss of generality that m = kn for some positive
integer k. This padding is only for convenience in constructing the preconditioner and
does not alter the original least squares problem. In the material to follow, we consider
the case where k is a constant independent of n. More precisely, we consider in this
paper, kn-by-n matrices T' of the form

() r=| 7],

T}
where each square block Tj is a Toeplitz matrix. Notice that if T itself is a rectangular
Toeplitz matrix, then each block T} is necessarily Toeplitz.

Following [26], [27], for each block T}, we construct a circulant approximation Cj.
Then our preconditioner is defined as a square circulant matrix C, such that

k
C*C =) _C;C;.

=1

Notice that each C} is an n-by-n circulant matrix. Hence they can all be diagonalized
by the Fourier matrix F, i.e.,

C; = FA,F*,

where A; is diagonal (see Davis [19]). Therefore, the spectrum of Cj, j = 1,...,k,
can be computed in O(n logn) operations by using the Fast Fourier Transform (FFT).
Since

k
C*C=F) (AjA)F",
j=1

C*C is also circulant and its spectrum can be computed in O(knlogn) operations.
Here we choose, as in [26], [27],

X 1/2
(5) C=F|> MA;| F

=1

The number of operations per iteration in Algorithm PCG for Least Squares
depends mainly on the work of computing the matrix-vector multiplications. In our
case, this amounts to computing products:

Ty, T*z, C7'y, C™'y
for some n-vectors y and m-vectors z. Since

X -1/2
cly=F(S A  F,
j=1
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the products C~'y and C~*y can be found efficiently by using the FFT in O(nlogn)
operations. For the products Ty and T™*z, with T in block form with k& n-by-n blocks
T;, we have to compute n products of the form T;w, where Tj; is an n-by-n Toeplitz
matrix and w is an n-vector. However, the product T;w can be computed using the
FFT by first embedding T; into a 2n-by-2n circulant matrix. The multiplication thus
requires O(2nlog(2n)) operations. It follows that the operations for computing Ty
and T™z are of the order O(mlogn), where m = nk. Thus we conclude that the cost
per iteration in the PCG method is of the order O(mlogn).

As already mentioned in the beginning, the convergence rate of the method de-
pends on the distribution of the singular values of the matrix TC~!, which are the
same as the square roots of the eigenvalues of the matrix (C*C)~1(T*T). We will
show, then, that if the generating functions of the blocks T; are 2m-periodic con-
tinuous functions and if one of these functions has no zeros, then the spectrum of
(C*C)~Y(T*T) will be clustered around 1, for sufficiently large n. We remark that
the class of 27-periodic continuous functions contains the Wiener class of functions,
which in turn contains the class of rational functions considered in Ku and Kuo [25].

By using a standard error analysis of the CG method, we then show that if the
condition number k(T) of T is of O(n*), then the number of iterations required for
convergence, for sufficiently large n, is at most O(alogn + 1), where a > 0. Since
the number of operations per iteration in the CG method is of O(mlogn), the total
complexity of the algorithm is therefore of O(amlog®>n + mlogn). In the case in
which a = 0, i.e., T is well conditioned, the method converges in O(1) steps. Hence
the complexity is reduced to just O(mlogn) operations, for sufficiently large n. On
the other hand, the superfast direct algorithms by Ammar and Gragg [2] require
O(nlog® n) operations for n-by-n Toeplitz linear systems. The stability of fast direct
methods has been studied by Bunch [8].

The outline of the paper is as follows. In §2, we construct the circulant precon-
ditioners C for the Toeplitz least squares problem and study some of the spectral
properties of these preconditioners. In §3, we show that the iteration matrix 7C 1!
has singular values clustered around 1. In §4, we then establish the convergence rate
of the PCG method when applied to the preconditioned system, and indicate when
it is superlinear. In §5, we discuss the technique of regularization when the given
Toeplitz matrix T is ill conditioned. Numerical results and concluding remarks are
given in §6.

2. Properties of the circulant preconditioner. In this section, we consider
circulant preconditioners for least square problems and study their spectral properties.
We begin by recalling some results for square Toeplitz systems.

For simplicity, we denote by Cs, the Banach space of all 2w-periodic continuous
complex-valued functions equipped with the supremum norm || - ||c. As already
mentioned in §1, this class of functions contains the Wiener class of functions. For all
f €Can, let

1 [7 .
ar==— | f(0)e %, k=0,%1,%2,...,
2w J_,
be the Fourier coefficients of f. Let A be the n-by-n complex Toeplitz matrix with
the (j, k)th entry given by a;_i. The function f is called the generating function of
the matrix A.

For a given n-by-n matrix A, we let C be the n-by-n circulant approximation of

A as defined in T. Chan [17], i.e., C is the minimizer of F(X) = ||A — X||F over all
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circulant matrices X. For the special case where A is Toeplitz, the (j, £)th entry of C
is given by the diagonal c;_, where

(n—k)ak + kak—n
ckp =

n 0<k<n,
Cntk 0< —k<n.

(6)

The following three lemmas are proved in R. Chan and Yeung [15]. The first two
give the bounds of ||A||2 and ||C||2 and the last one shows that A — C has a clustered
spectrum for certain Toeplitz matrices A.

LEMMA 1. Let f € C3r. Then we have

(7) Al < 2)f]loo <00, n=1,2,....
If, moreover, f has no zeros, i.e.,

9eI[I-l-l1Irl,1r] |f(8)] >0,

then there exists a constant ¢ > 0 such that for all n sufficiently large, we have
8) 1 4ll2 > c.

LEMMA 2. Let f € Car. Then we have
9) [ICll2 < 2||fllc <00, m=1,2,....

If, moreover, f has no zeros, then for all sufficiently large n, we also have

(10) ez < 2|5l < oo.

Flloo

LEMMA 3. Let f € Cor. Then for all € > 0, there exist N and M > 0, such that
foralln > N,

A-C=U+Y,
where
rank U< M
and
V2 <e

Now let us consider the general least squares problem (3) where T is an m-by-n
matrix with m > n. For the purpose of constructing the preconditioner, we assume
that m = kn, without loss of generality, since otherwise the final block T} can be
extended to an n xn Toeplitz matrix by extending the diagonals and padding the lower
left part with zeros. (This modification is only for constructing the preconditioner.
The original least squares problem (3) is not changed.) Thus we can partition T as
(4), without loss of generality. We note that the solution to the least square problem
(3) can be obtained by solving the normal equations

T*Tz =T,
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in factored form, where
k
T*T =Y T;T;.
j=1

Of course, one can avoid actually forming 7*T for implementing the CG method for
the normal equations [7].

We will assume in the following that k is a constant independent of n and that
each square block Tj, j = 1,...,k is generated by a generating function f; in Car.
Following Nagy [26] and Nagy and Plemmons [27], we define a preconditioner for T'
based upon preconditioners for the blocks Tj;.

For each block T}, let C; be the corresponding T. Chan circulant preconditioner
as defined in (6). Then it is natural to consider the square circulant matrix

k
(11) C*C =) C;C;
j=1

as a circulant approximation to T*T [27]. Note, however, that C is computed (or
applied) using (5). Clearly C is invertible if one of the C; is. In fact, using Lemma, 2,
we have the following lemma.

LEMMA 4. Let f; € Car for j =1,2,...,k. Then we have

k
(12) ICI3 < 4D MIfill% <00, n=1,2,....
=1

If, moreover, one of the f; (say, f¢) has no zeros, then for all sufficiently large n, we
also have
2

< o0.
oo

(13) n«rorﬂhs4u}
J4

Proof. Equation (12) clearly follows from (11) and (9). To prove (13), we just
note that C;Cj are positive semidefinite matrices for all j = 1,...,k; hence

Amin(C*C) Z Amln(CECZ)’

where Apin(+) denotes the smallest eigenvalue. Thus by (10), we then have

. — .y _ 1]
(C*C) |2 < II(C7Ce) 1I|2=Ilcﬁllﬁs4Hﬁ .0

3. Spectrum of TC 1. In this section, we show that the spectrum of the matrix
(c*C)~ T T)

is clustered around 1. It will follow then, that the singular values of TC~! are also
clustered around 1, since (C*C)~}(T*T) is similar to (TC~!)*(T'C~!). We begin by
analyzing the spectrum of each block.

LEMMA 5. For 1 < j <k, if f; € Cax, then for all € > 0, there exist N; and
M; > 0, such that for all n > Nj,

T;T; - C5C5 =U; +Vj,
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where U; and V; are Hermitian matrices with
rank U; < M;

and

IVill2 < e.

Proof. We first note that by Lemma 3, we have for all € > 0, there exist positive
integers N; and M; such that for all n > N},
T; - C;i=U; +V;,

where rank U; < M; and ||V;||2 < e. Therefore,

TT; - CIC;
=T;(T; - Cj) + (T; - Cy)*C;
=T;(T; - C;) — (T; — C)*(T; — C3) + (T} — C3)*T;
=T (U; + V3) — (U5 + V)" (U5 + Vi) + (U; + V)" T;

=U; +V;.
Here
U; =T;U,; + U3T; — U3 0, - U3 V; — VU,
=05 (T3 = U; = Vi) + (T; - V;)" U
and

V= T+ TV -V

It is clear that both U; and V; are Hermitian matrices. Moreover, we have rank
U j S 2M 3 and

1Vjll2 < 2€|T5]|2 + €.
By (7), we then have
IVillz < 4ellfjlloo +26%. O
Using the facts that
k
rTo= 3T -0y
j=1

and that k is independent of n, we immediately have the following lemma.
LEMMA 6. Let f; € Coy for j =1,...,k. Then for all € > 0, there exist N and
M > 0, such that for alln > N,

™" -C*C=U+V,
where U and V are Hermitian matrices with

(14) rank U < M
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and

(15) IV]l2 < e

We now show that the spectrum of the preconditioned matrix
(C*0) (T T)

is clustered around 1. We note that this is equivalent to showing that the spectrum
of (C*C)~1(T*T) — I, where I is the n-by-n identity matrix, is clustered around zero.

THEOREM 1. Let f; € Cor for all j = 1,...,k. If one of the f; (say, f;) has no
zeros, then for all € > 0, there exist N and M > 0, such that for all n > N, at most
M eigenvalues of the matriz

c*o)~\(1*1) -1

have absolute values larger than e.
Proof. By Lemma 6, we have

(C*C)"Y(T*T) — I = (C*C)"Y(T*T — C*C) = (C*C)" Y (T + V).
Therefore, the spectra of the matrices
(C*C)(T*T) -1 and (C*C)~Y*(U +V)(C*C)~/?
are the same. However, by (14), we have
rank {(c*o)-1/2ﬁ(c*0)-1/2} <M

and by (15) and (13), we have

1 2

llCc* o) 2V (Cr o) Al < IVIRll(C*0) Hl2 < 42|+

’
[o o]

where € replaces the € specified in (15). Thus by applying the Cauchy interlace theorem
(see Wilkinson [33]) to the Hermitian matrix

(C*C)—l/20(0*0)—1/2 + (C*C)—I/Z"}(C*C)—l/'z’

we see that its spectrum is clustered around zero. Hence the spectrum of the matrix
(C*C)~Y(T*T) is clustered around 1. o

From Theorem 1, we have the desired clustering result; namely, if f; € Cor for
all j = 1,...,k and if one of the f; has no zeros, then the singular values of the
preconditioned matrizc TC~! are clustered around 1.

4. Convergence rate of the method. In this section, we analyze the con-
vergence rate of Algorithm PCG for Least Squares, for our circulant preconditioned
Toeplitz matrix TC~. We show first that the method converges, for sufficiently large
n, in at most O(alogn + 1) steps where O(n®) is the condition number of T. We
begin by noting the following error estimate of the CG method.

LEMMA 7. Let G be a positive definite matrixz and = be the solution to Gx = b.
Let x; be the jth iterant of the ordinary CG method applied to the equation Gx = b.
If the eigenvalues {6} of G are such that

0<6 < <6p<MSGpt1 <+ <bpg <712 S bngt1 <+ <,
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then

|lz — =;lle (7—1)1_'”—" (6 6k)
16 <2 .
16) llz —2olle = \v+1 sl ,g

Here
1/2
v= (B) >1
m
and ||vl|¢ = v*Gw.

Proof. 1t is well known that an error estimate of the CG method is given by the
following minimax inequality:

||z — z]le .
——— = < min max |P;(§
Iz —zolle = P; W23ax P58kl

where P; is any jth degree polynomial with constant term 1 (see Axelsson and Barker
[4]). To obtain an upper bound, we first use linear polynomials of the form (6 — k) /6k
that pass through (i.e., have as roots) the outlying eigenvalues 6;, 1 < k < p and
n—q+1 <k < n, in order to minimize the maximum absolute value of P; at these
eigenvalues. These polynomials are thus used as factors of the polynomials being
constructed. Next we use a (j — p — ¢)th degree Chebyshev polynomial 7;_,_, to
minimize the maximum absolute value of P; in the interval (6,41, 6n—4]. Then we get

-1 14 n
Y2 +m 6 — b b, — 6

o ] L (52), 11, (55
Y2~ M) b€mml |0 b/ henq+1 k

Equation (16) now follows by noting that for § € [y1,72], we always have

bp—6
<
0< 5

llz = zjlle
llz — o]l

and that

-1 _1\J—Pr-4q
Tvs [m] <2 ('7_1)
Y2e— M v+1
(see Axelsson and Barker [4]). 0
For the system

17 (C*C)"YT*T)x = (C*C)~'T*b,
the iteration matrix G is given by
G = (Cc*C)~V*(T*T)(C*C) 2,

By Theorem 1, we can choose y1 = 1 — € and 5 = 1 + €. Then p and g are constants
that depend only on € but not on n. By choosing € < 1, we have

¥-=1 1-+v1-¢
y+1 €

<e.
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In order to use (16), we need a lower bound for 6, 1 < k < p. We first note that

2
6=l = || T) ("0l < L2
T

k(T*T).

If one of the fp has no zeros, then by (8), we have for n sufficiently large
TN > 1 Tel3 > ¢

for some ¢ > 0 independent of n. Combining this with (12), we then see that for all
n sufficiently large,

NG|z < &- K(T*T) < &n,

for some constant ¢ that does not depend on n. Therefore,

1
6k >minép = -——- >2cn™%, 1<k<n.
CEERE TR =T 0 TR

Thus for 1 <k <pand § € [1 —¢,1+ €|, we have

6 — b
Ok

0< < en®.

Hence (16) becomes
||z — wj“G < PpPrel—P—4,
|lz — zollc

Given arbitrary tolerance 7 > 0, an upper bound for the number of iterations required
to make

|z — zlle <7
||z — zollc

is therefore given by

plogc+ aplogn —logT
loge

jo=p+q-— = O(alogn +1).

Since by using FFTs, the matrix-vector products in Algorithm PCG for Least
Squares can be done in O(m log n) operations for any n-vector v, the cost per iteration
of the CG method is of O(mlogn). Thus we conclude that the work of solving (17)
to a given accuracy 7 is O(amlog®n 4+ mlogn) when a > 0 and for sufficiently
large n.

The convergence analysis given above can be further strengthened. For T' an m-
by-n matrix of the form (4) with m = kn, let Apin(T;T;) = O(n™%) for j =1,..., k.
By Lemma 1, we already know that

)\min(’I;I}) S )\max(T;*T}) S 2||f”go’
therefore a; > 0. By the Cauchy interlace theorem, we see that

k
Amin(T*T) 2 Y Auin(T}T;) > O(n™%),

Jj=1
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where
a =mina; > 0.
3
Therefore,
Amax(T*T)
T —/— -~ < ).
K(T*T) < i (T°T) = O(n%)

In the case when one of the a; = 0, i.e., the block T} is well conditioned inde-
pendent of n, we see that the least squares problem is also well conditioned, so that
&(T) = O(1).

When at least one a; = 0, i.e., £(T') = O(1), the number of iterations required for
convergence is of O(1). Hence the complexity of the algorithm reduces to O(mlogn),
for sufficiently large n. We remark that in this case, one can show further that the
method converges superlinearly for the preconditioned least squares problem due to
the clustering of the singular values for sufficiently large n (see R. Chan and Strang
[9] or R. Chan [11] for details). In contrast, the method converges just linearly for
the nonpreconditioned case. This contrast is illustrated very well in the section on
numerical tests.

5. Preconditioned regularized least squares. In this section we consider
solving least squares problems (3), where the rectangular matrix T is ill conditioned.
Such systems arise in many applications, such as signal and image restoration; see
[3], [24], [28]. Often, the ill-conditioned nature of T results from discretization of
ill-posed problems in partial differential and integral equations. Here, for example,
the problem of estimating an original image from a blurred and noisy observed im-
age is an important case of an inverse problem and was first studied by Hadamard
[22] in the inversion of certain integral equations. Because of the ill conditioning of
T, naively solving Tz = b will lead to extreme instability with respect to perturba-
tions in b. The method of regularization can be used to achieve stability for these
problems [7]. Stability is attained by introducing a stabilizing operator (called a reg-
ularization operator), which restricts the set of admissible solutions. Since this causes
the regularized solution to be biased, a scalar (called a regularization parameter) is
introduced to control the degree of bias. More specifically, the regularized solution is

computed as
[6]- [ ]ew

where p is the regularization parameter and the p X n matrix L is the regularization
operator.

The standard least squares solution to (3), given by x = T'b, is useless for these
problems because it is dominated by rapid oscillations due to the errors. Hence in
(18), one adds a term min || Lz||2 to (3) in order to smooth the solution z. Choosing L
as a kth difference operator matrix forces the solution to have a small kth derivative.
The regularization parameter u controls the degree of smoothness (i.e., degree of bias)
of the solution, and is usually small. Choosing g is not a trivial problem. In some
cases a priori information about the signal and the degree of perturbations in b can be
used to choose p [1], or generalized cross-validation techniques may be used, e.g., [7].
If no a priori information is known, then it may be necessary to solve (18) for several

(18) min

’
2



TOEPLITZ LEAST SQUARES ITERATIONS 91

values of u [20]. Recent analytical methods for choosing an optimal parameter u are
discussed by Reaves and Mersereau [29].

Based on the discussion above, the regularization operator L is usually chosen
to be the identity matrix or some discretization of a differentiation operator [6], [20].
Thus L is typically a Toeplitz matrix. Hence, if 7' has the Toeplitz block form (4),

then the matrix
~ T
T= [ pL ]

retains this structure, with the addition of one block (or two blocks if L is a difference
operator with more rows than columns). Since T has the block structure (4), we can
form the circulant preconditioner C for T and use the PCG algorithm for least squares
problems to solve (18).

Notice that if L is chosen to be the identity matrix, then the circulant precondi-
tioner for T' can be constructed by simply adding u to each of the eigenvalues of the
circulant preconditioner for T'. In addition, the last block in T (i.e., 4I) has singular
values p. Thus, due to the remarks at the end of §4, if each block in T' is generated
by a function in Cay, and if u # 0, then x(T) < O(u~?) for all n. It follows then,
for these problems, that (18) can be solved in O(mlogn) operations, for sufficiently
large n.

6. Numerical tests. In this section we report on some numerical experiments
that use the preconditioner C' given by (5) in §1 for the CG algorithm PCG for
solving Toeplitz and block Toeplitz least squares problems. Here the preconditioner
C is based on the T. Chan optimal preconditioner C;, for each block T; of T', as in §2.
The experiments are designed to illustrate the performance of the preconditioner on
a variety of problems, including some in which one or more Toeplitz blocks are very
ill conditioned.

We use the stopping criteria ||s||2/||s(?||z < 10~7 for all numerical tests given
in this section. (Note that s() is the (normal equations) residual after j iterations,
and the zero vector is our initial guess. Observe that the value ||s()||2 is computed
as part of the CG algorithm.) All experiments were performed using the Pro-Matlab
software on our workstations. The machine epsilon for Pro-Matlab on this system is
approximately 2.2 x 10~16

To describe most of the Toeplitz matrices used in the examples below, we use the
following notation. Let the m-vector c be the first column of T and the n-vector rT
be the first row of . Then

T = Toep(c, ).

The right-hand-side vector b is generally chosen to be the vector of all ones.

Ezample 1. In this example we construct m x n Toeplitz matrices generated by
a positive function in the Wiener class, varying the number of rows and columns
and fixing the number of blocks in the block form (4) to k = 3. This example is a
rectangular generalization of test data used by Strang [30] and is defined as follows.
Let

c(i) = 211, i=1,...,m, and 7(j)= 2]1, j

The convergence results for this example are shown in Table 1, which shows
the number of iterations required for Algorithm PCG to converge using T (i.e., no

=1,...,n.
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Example 1: m =210, n=70

2
1.5+ E
Preconditioned T
1+ + HM + -
0.5+ E
(|3 AEEHHHHHH R R R+ R+
05} E
-1 N . . . A
0 0.5 1 1.5 2 2.5 3

Singular Value Distributions

FiG. 1. Singular values for T and TC~! in Ezample 1.

preconditioner) and our C. We can see from Table 1 that the use of our preconditioner
does accelerate the convergence rate of the CG algorithm for this problem. Moreover,
for this example the number of iterations remains essentially constant as m and n
increase.

In Fig. 1 we plot the singular values of T and TC~!. The plot of the singular
value distributions shows that the preconditioner clusters the singular values very well
for this example.

Ezample 2. In this example we use the following three generating functions in the
Wiener class to construct a 3n x n block Toeplitz matrix.

(i) Example (a) from R. Chan and Yeung [15]:
a(f) =r@) =7 -1+ 1) +v/=-1(ls - 1|+ 1), j=1,2,...,n.

(ii) Example (b) from R. Chan and Yeung [15]:

(@)= (li—-1+1)~*, i=12,...,n,
7‘2(j)=\/:T(|j—1|+1)_1'1, j=1a2a~“an'

(iii) Example (f) from R. Chan and Yeung [15]:

c3(1) =r3(1) = g
c3(j) =rs(§) = A=)V (%07 — Zpe)s G =23,

The matrix T is defined as
TT = [T1T7 T2T7 Tg]’

where Ty =Toep(ci,71), T2 =Toep(cg, 2), and T3 =Toep(cs,r3). For nxn systems R.
Chan and Yeung [15] show that x2(T3) = O(n*), while T} and T are well conditioned.
They also show that the T. Chan preconditioner works well for T} and T3, but not
well for T3.

In Table 1 we show the convergence results for this example, using no precon-
ditioner and C as a preconditioner, for several values of m and n. Figure 2 shows
the singular values of T and TC~! for m = 210 and n = 70. These results illustrate
the good convergence properties using the preconditioner C for this example contain-
ing an ill-conditioned block. Moreover, our computations verify the fact that xo(7T')
remains almost constant as n increases from 40 to 80.
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TABLE 1
Numbers of iterations for convergence in Examples 1-3.

Example 1 (m = 3n) [[ Example 2 (m = 3n) || Example 3 (m = 2n)
n no prec. | with prec. || no prec. | with prec. || no prec. | with prec.
40 33 7 96 14 29 11
50 36 7 126 14 33 15
60 41 7 155 13 44 13
70 41 7 167 13 52 12
80 4 7 186 13 65 14
2 Example 2: m =210, n=70
1.5¢ E
Preconditioned T
1+ + + e+ + .
05} .
T
or I
-0.5} i
_1 N s PR " Py N " N PR PR
101 100 101 102

Singular Value Distributions

FiG. 2. Singular values for T and TC~! in Ezample 2.

FEzample 3. In this example we form a 2n x n block Toeplitz matrix using gen-
erating functions from R. Chan and Yeung [15] that construct ill-conditioned n x n
Toeplitz matrices. Here T3 = T and thus both blocks of T are ill conditioned. The
generating function, which is in the Wiener class, is:

Example (c) from R. Chan and Yeung [15]:

a(l)=r(1)=0

a() =n@) = (- U+ )+ — 1+ )M, j=2,...,n

Using the above generating functions, we let

7 = [Ty, T3],

where Ty = T, =Toep(cy,71).

In Table 1 we show the convergence results for this example, using no precon-
ditioner and C as a preconditioner, for several values of m and n. Figure 3 shows
the singular values of T and TC~! for m = 140 and n = 70. These results illustrate
the good convergence properties of C for this example even though it contains all
ill-conditioned blocks.

Example 4. Here we consider an application to one-dimensional image or signal-
reconstruction computations. In this example we construct the 100 x 100 Toeplitz
matrix T', whose i, j entry is given by

_fo if |¢ — 5] > 8,
(19) tij = { £9(0.15,z; — x;) otherwise,
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Example 3: m =140, n=70

2 e
15F E
Preconditioned T
1+ + + - + +
0.5 4
T

0 + A b
-0.5 B
-1 i e s NPT
103 102 101 100 101

Singular Value Distributions

F1G. 3. Singular values for T and TC~! in Ezample 3.

where

and

_ 1 7’
9(0,7) = 2—\/—;;@(1) (_Iﬁ) .
Matrices of this form occur in many image-restoration contexts as a “prototype prob-
lem” and are used to model certain degradations in the recorded image [20], [24]. Due
to the bandedness of T, its generating function is in the Wiener class. The condition
number of T is approximately 2.4 x 106.

Because of the ill conditioning of T', the system T'z = b will be very sensitive to
any perturbations in b (see §5). To achieve stability we regularize the problem using
the identity matrix as the regularization operator. Eldén [20] uses this approach to
solve a linear system by direct methods with the same data matrix T defined in (19).
To test our preconditioner we will fix ;1 = 0.01, where p is chosen based on some tests
made by Eldén.

Let

=[4] e ie[]

Then 7 is simply a block Toeplitz matrix. Thus we can apply our preconditioner C,
and the PCG algorithm, to solve (18). The convergence results for solving Tz = b
and Tz = b with no preconditioner and Tz = b usmg C as a preconditioner are
shown in Table 2. The singular values of T' and T'C-! and the convergence history
for solving Tx = b and Tz=>5 using our preconditioner C are shown in Fig. 4. These
results indicate that the PCG algorithm with our preconditioner C' may be an effective
method for solving this regularized least squares problem.

In summary, we have shown how to construct circulant preconditioners for the
efficient solution of a wide class of Toeplitz least squares problems. The numerical



TOEPLITZ LEAST SQUARES ITERATIONS 95

TABLE 2
Numbers of iterations for convergence in Example 4.

[ n [ Te=b]Te=b] TClz=5b]
{100 [ >100 [ 54 ] 14 |

Example 4: Regularized Problem with n =100

2
15} B
Preconditioned System
1+ + -+ + E
05+ E
T
o + b obE S HHHHH - E
-0.5F E
-1

107 106 105 104 103 102 101 100 101 102
Singular Value Distributions

101 Example 4: Regularized Problem with n = 100
T - - ,

100 1,

101}
102}
103}
104}

105+ \i\ 4
"' Preconditioned System
106 \ 4
107 - - ~ ~
o 0 20 40 60 80 100
Iterations

F1G. 4. Singular values and convergence history for T and TCc-1.

experiments given collaborate our convergence analysis. Examples 1 and 2 both illus-
trate superlinear convergence for the PCG algorithm preconditioned by C, even when
in Example 2 the matrix T contains an ill-conditioned block. In addition, even though
the matrix T in Example 3 contains all ill-conditioned blocks, the scheme works well
for the computations we performed.

Example 4 illustrates the applicability of the circulant PCG method to regularized
least squares problems. The example comes from one-dimensional signal restoration.
Two-dimensional signal or image restoration computations often lead to very large
least squares problems where the coefficient matrix is block Toeplitz with Toeplitz
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blocks. Block circulant preconditioners for this case are considered elsewhere [16].

In this paper we have used the T. Chan [17] optimal preconditioner for the Toeplitz

blocks. Other circulant preconditioners such as ones studied by R. Chan [11], Huckle
[23], Ku and Kuo [25], Strang [30], Tismenetsky [31], or Tyrtyshnikov [32], can be used,
but the class of generating functions may need to be restricted for the convergence
analysis to hold.

(26]

(27]

REFERENCES

J. ABBISS AND P. EARWICKER, Compact Operator Equations, Regularization and Super-
resolution, in Mathematics in Signal Processing, Clarendon Press, Oxford, 1987.

G. AMMAR AND W. GRAGG, Superfast solution of real positive definite Toeplitz systems, SIAM
J. Matrix Anal. Appl., 9 (1988), pp. 61-76.

H. ANDREWS AND B. HUNT, Digital I'mage Restoration, Prentice-Hall, Englewood Cliffs, NJ,
1977.

O. AXELSSON AND V. BARKER, Finite Element Solution of Boundary Value Problems, Theory
and Computation, Academic Press, London, 1984.

O. AXELSSON AND G. LINDSKOG, On the rate of convergence of the preconditioned conjugate
gradient algorithm, Numer. Math., 48 (1986), pp. 499-523.

J. BIEDMOND, R. LAGENDUIJK, AND R. MESEREAU, lterative methods for image deblurring,
Proc. IEEE, 78 (1990), pp. 856-883.

A. BIORCK, Least Squares Methods, in Handbook of Numerical Methods, Vol. 1, P. Ciarlet and
J. Lions, eds., Elsevier/North Holland, Amsterdam, 1989.

J. BUNCH, Stability of methods for solving Toeplitz systems of equations, SIAM J. Sci. Statist.
Comput., 6 (1985), pp. 349-364.

R. CHAN AND G. STRANG, Toeplitz equations by conjugate gradients with circulant precondi-
tioner, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 104-119.

R. CHAN, The spectrum of a family of circulant preconditioned Toeplitz systems, SIAM J.
Numer. Anal., 26 (1989), pp. 503-506.

, Circulant preconditioners for Hermitian Toeplitz systems, SIAM J. Matrix Anal. Appl.,
10 (1989), pp. 542-550.

R. CHAN AND X. JIN, A family of block preconditioners for block systems, SIAM J. Sci. Statist.
Comput., 13 (1992), pp. 1218-1235.

R. CHAN AND M. YEUNG, Circulant preconditioners for Toeplitz matrices with positive con-
tinuous generating functions, Math. Comp., 58 (1992), pp. 233-240.

, Circulant preconditioners constructed from kernels, SIAM J. Numer. Anal., 29 (1992),

pp- 1093-1103.

, Circulant Preconditioners for Complez Toeplitz Matrices, Research Report 91-6, Dept.
of Math., Univ. of Hong Kong, Hong Kong, 1992.

R. CHAN, J. NAGY, AND R. PLEMMONS, Block Circulant Preconditioners for 2—-dimensional
Deconvolution Problems, SPIE Proc., V1770 (1992), pp. 60-71.

T. CHAN, An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Statist.
Comput., 9 (1988), pp. 766-771.

T. CHAN AND J. OLKIN, Preconditioners for Toeplitz-block Matrices, preprint, 1991.

P

L

. Davis, Circulant Matrices, John Wiley & Sons, Inc., New York, 1979.
. ELDEN, An algorithm for the regularization of ill-conditioned, banded least squares problems,
SIAM J. Sci. Statist. Comput., 5 (1984), pp. 237-254.
G. GoLuB AND C. VAN LoOAN, Matriz Computations, 2nd ed., The Johns Hopkins University
Press, Baltimore, MD, 1989.
J. HADAMARD, Lectures on the Cauchy Problem in Linear Partial Differential Equations, Yale
University Press, New Haven, CT, 1923.
T. HuckLE, Circulant and skew-circulant matrices for solving Toeplitz matriz problems, in
Proc. Copper Mountain Conference on Iterative Methods, Copper Mountain, CO, 1990.
A. K. JAIN, Fundamentals of Digital Image Processing, Prentice-Hall, Engelwood Cliffs, NJ,
1989.
T. Ku AND C. Kuo, Design and analysis of Toeplitz preconditioners, IEEE Trans. Acoust.
Speech Signal Process., V40 (1992), pp. 129-140.
J. NAGY, Toeplitz Least Squares Computations, Ph.D. thesis, North Carolina State University,
Raleigh, NC, 1991.
J. NAGY AND R. PLEMMONS, Some fast Toeplitz least squares algorithms, in Proc. SPIE Con-



TOEPLITZ LEAST SQUARES ITERATIONS 97

ference on Advanced Signal Processing Algorithms, Architectures, and Implementations II,
V1566, San Diego, CA, July 1991.

[28] A. OPPENHEIM AND R. SCHAFER, Discrete-Time Signal Processing, Prentice-Hall, Englewood
Cliffs, NJ, 1989.

[29] S. REAVES AND R. MERSEREAU, Optimal regularization parameter estimation for image re-
construction, in Proc. SPIE Conference on Image Processing Algorithms and Techniques
11, V1452 (1991), pp.127-137.

[30] G. STRANG, A proposal for Toeplitz matriz calculations, Stud. Appl. Math., 74 (1986), pp. 171—
176.

[31] M. Ti1SMENETSKY, A decomposition of Toeplitz matrices and optimal circulant preconditioning,
Linear Algebra Appl., 154-156 (1991), pp. 105-121.

[32] E. TYRTYSHNIKOV, Optimal and superoptimal circulant preconditioners, SIAM J. Matrix Anal.
Appl., 13 (1992), pp. 459-473.

[33] J. WILKINSON, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.



SIAM J. MATRIX ANAL. APPL. (©1994 Society for Industrial and Applied Mathematics
Vol. 15, No. 1, pp. 98-106, January 1994 006

INVERSE OF STRICTLY ULTRAMETRIC
MATRICES ARE OF STIELTJES TYPE*

SERVET MARTINEZ!, GERARD MICHON?, anp JAIME SAN MARTINt

Abstract. This paper shows that a nonnegative ultrametric matrix A is nonsingular and that
its inverse is a strictly diagonally dominant Stieltjes matrix. The method consists of studying the
spectral decomposition of A by showing that A preserves a maximal filtration.

Key words. ultrametric matrices, Stieltjes matrices

AMS subject classifications. 15A09, 15A18

1. Introduction. Our main result, which is Theorem 1, deals with the study of
properties of strictly ultrametric matrices (see definitions below). We show that these
matrices are nonsingular and that their inverses are Stieltjes matrices. In the proof of
the main result we show the following properties:

(i) any strictly ultrametric matrix A has an equilibrium potential, i.e., there
exists a measure v such that Av = 1, the 1-constant vector;

(ii) the matrix A given by A(i,j) = A(%,7)u(j), p being the normalized vector
proportional to v, preserves a maximal filtration of partitions;

(iii) this last result allows us to explicitly obtain the spectral decomposition of
A, and the monotone properties of its eigenvalues allow us to prove the theorem.

We remark that our results only concern finite ultrametric matrices. But these
results can be extended to strictly ultrametric matrices in which an increasing se-
quence (hq : @ > 1), defined analogously as in the proof of Theorem 1, has no finite
accumulation point.

Ultrametricity was first introduced in relation with p-adic number theory. In
applications like taxonomy [Be, p. 138], ultrametricity is an important notion because
of its relation with partitions. On the other hand, strictly ultrametric matrices appear
as covariance matrices of random energy models in statistical physics [CCP] as a
generalization of the diagonal case. Since most of the relevant quantities depend on
the inverse of the covariance matrix, our result concerning the inverse of a strictly
ultrametric matrix might be useful in this theory.

Relations between ultrametric matrices and filtrations of partitions (or fields)
were first developed by Dellacherie in [De]. A detailed study concerning ultrametric
matrices, maximal filtrations, and the associated spectral decomposition for countable
probability spaces was made in [DMS]. On the other hand, in [Mi] the study of strictly
ultrametric matrices was done in relation with potential theory in compact ultrametric
spaces.

Now let us give needed definitions as well as our main result. First, recall that
a metric on a set X is said to be ultrametric if it verifies the ultrametric inequality
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[Dj, p. 37]
d(z,y) < max{d(z,2),d(z,y)} for any z,y,2 € X.

We shall only deal with ultrametric distances on finite sets. Denote by I :=
{1,...,N} a finite set.

DEFINITION 1 (see [De]). A symmetric matrix A = (A(4,j),1,j € I) is said to be
ultrametric if there exists an ultrametric distance d on I such that

(1) d(i,5) = d(i, k) iff A3, 5) = A(5, k).

DEFINITION 2. A symmetric nonnegative matrix A is said to be strictly ultra-
metric if there exists an ultrametric distance d on I such that

() d(i,j) < d(i,k) iff A(3,5) > A, k).

Recall that a symmetric nonnegative matrix A is strictly ultrametric if and only
if (iff) it verifies the following two conditions:

(3) A(i, ) > inf{A(i, k), A(k,j5)} for any i,j,k € I,

(4) A(i,1) > sup{A(i,k) : k€ I — {i}} foranyic€ I,

where, in the case N = 1, condition (4) means A(%,) > 0.

In fact, if A is strictly ultrametric, condition (3) follows from property (2). Also
(4) is implied by (2) and the strict inequality d(¢,7) < d(i,j) for any ¢ # j. Re-
ciprocally, if (3) and (4) are verified, the following metric d is an ultrametric and
it verifies (2): d(¢,4) = O for any ¢ € I and d(i,j) = R — A(3,j) if i # j, where
R > max{A(:,j) : i # j}.

DEFINITION 3. A symmetric matrix B is a Stieltjes matrix if its off-diagonal ele-
ments are nonpositive, it is nonsingular, and B~1 is nonnegative (see [LT, par. 15.2]).

Our main result is the following theorem.

THEOREM 1. If A is a nonnegative strictly ultrametric matriz, then it is non-
singular, A~ is a strictly diagonally dominant Stieltjes matriz, and A=1(i,j) = 0 iff
A(i,5) =0 fori # 5.

2. Proof of the main theorem. Let us first show that a strictly ultrametric
matrix has an equilibrium potential.

LEMMA 1. Let A be a nonnegative, symmetric, strictly ultrametric matriz. Then,
there exists a strictly positive vector v = (v(i) : i € I), such that

(5) Av =1, where 1 is the 1-constant vector.

Proof. Let g(A) = |{A(%,7) : ¢,j € I'}| be the cardinality of the set of values taken
by the elements of matrix A. We shall prove the result by induction on g(A).

If g(A) = 1, the condition (4) implies N = 1. Since A(N,N) > 0, the result is
evident.

Let g(A) > 2. Assume we have shown the result for any strictly ultrametric
matrix A’ with g(4’) < q(A).

Let h := sup{A(3,j) : i # j}. Define the equivalence relation: i ~ j if i = j
or A(%,j) = h. Denote by i the equivalence class containing ¢ and by I the set of
equivalence classes. We remark that if ¢ # {i}, then A(3,7) > h.
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Condition (3) and the definition of I imply that if 7 # _1, then A(#,5') = A(i, j)

for any i’ € 7,5 € j. Then, the following matrix A = (A(3, ) : 3,j € I) is well defined:

(7 A7) = A®s,9) ifi= {5},

(®) AGH =h+EG) ifi # {a,

where

9) K@) = Y (A(k, k) — b1,
ket

The matrix A is symmetric and its coefficients are nonnegative. Let us show that it
satisfies properties (3) and (4).

First, let us prove (4). Take 3 i # 7. Then A(3,7) = A(4, j)- ] If i = {i}, it is evident
that A(3,7) > A(i, ). If i # {i}, we have by definition that A(7,7) > h > A(, 7).

Now let us show inequality (3), which is evident in the cases i=j=kor
z;éyaékgéz The case i = j ;ékmlmplledbyproperty(4) Ifz-k;é_;, it
is deduced from the equality A(i,j) = A(j,k), and if 7 # j = k, it is obtained from
A(i, j) = A(i, k).

Thus, the matrix A satisfies properties (3) and (4). On the other hand, ¢(4) =
{AG,7) : 1,7 € T}| < q(A), so, from induction hypotheses, we deduce that there exists
a strictly positive vector # = (i(3) : i € I) such that A = 1. This means that

> AG,5)p(j) =1 foranyie I

jer
Now, define
(10) v(i) = (@) ifi={i}
and
(11) v(i) = D(@)(AG, 1) — ) "HK @)1 if 1 # {i}.

From the definition of K (i) given in (9), we get 3, ; v(k) = (i) for any ¢ € I. We
have

D AGIPG) =) Y AGOU(E) + Y AG kv (k).

jeI J#i L€ kei
Since A(i,£) = A(i,£) when £ € j # i and ¥(j) = >_ec; V(£), then to complete the
induction, it suffices to show the equality

AG, D)) = A, k)v(k).

kei
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If 7 = {i}, the equality holds trivially, so assume i # {i}. Since A(i,k) = h for any
k € i — {i}, we deduce

> AG, k)v(k) = p(3)(K (3) ( > h(A(k, k) — h)=1 + A(i, i) (AG, 3) — h)"l)
kel kei—{i}

= v(3)(K (7))~ (hK (i) + (A(i,i) — R)(A(3,3) — h)~1)

= v(i)(h+ (K())~1) = () A, 7).

Then the result holds. 1]

Now, let us show our main result.

Proof of Theorem 1. Let A = (A(,7) : i,j € I) be a nonnegative, symmetric,
strictly ultrametric matrix. We must show that it is nonsingular and that its inverse
A-1 = (A-1(3,§) : i,j € I) satisfies

(12) A-1(3,5) <0 for any pair ¢ and j with  # j;
N

(13) A1(3,6) > ) 14716, 9)),
i=1
i

i.e., A1 is strictly diagonally dominant;
(14) A-1(3,5) = 0 iff A(¢,j) =0 for any pair i # j.
From Lemma, 1 there exists a strictly positive vector v = (v(i) : i € I) verifying

(5). Define the probability vector u = (u(i) : i € I) by p(i) = v(i) (32, v(45)) 1. We
have

Ap = p1,
where
-1
p=d_vG)]| >o
jeI
Define the following operator A acting on RN :
(15) (AN@) =Y AG)f(@nG) for f € RY.
jeI

Since A is symmetric, we see that A is selfadjoint with respect to the inner product
(, ). defined by

(16) (£,9)u = F(i)g(i)p().
i€l

Let us order the set of values {A(¢,j) : © # j} and denote them by h; < --- < hy.
We remark that 0 < h;. For any a = 1,...,p, define the relation i[a]k if ¢ = k or
A(i, k) > hq. Property (3) implies that the relation o] is an equivalence relation.
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Denote by Ba(i) := {k € I : i[a]k} the equivalence class of i. The partition
constituted by this set of atoms is denoted by Ba, i.e., Ba = {Ba(:)}. Observe that
B, = {{i} : i € I} is the finest partition.

Let us introduce the coarsest partition By = {I}. Note that B; is finer than
Bo. The sequence of partitions Bo C By C --- C B, is strictly increasing (where C
means being strictly coarser than). Let i € I. The sequence of atoms (By (i) : @ =
0,...,p) is nondecreasing, i.e., Bo_1(i) 2 Bqy(i) for @ = 1,...,p. We remark that if
k € Bo-1(i) — Ba(%), then A(i, k) = hq. For k # ¢ denote by T'(i, k) the unique index
a € {0,...,p}, such that k € Ba—_1(%) — Ba(Z) (it does exist because Bp(i) = {i}).
Then A(3, k) = hy(i,k). Thus, we deduce

17 k € Bo-1(i) implies A(3, k) = hr(i k) > ha
and
(18) k ¢ B, (i) implies A(3, k) = hy(i k) < ha-

Let us point out that (4) implies that A(,i) > hr(; ) for any k # i. On the other
hand from property (3), we also get that if By(j) = Ba(£) # Ba(i), then T'(j,k) =
T(¢,k) < a for any k € By(i), so

A(J’ k) = A(& k) < ha.

Now we shall identify a partition B of I with the field it generates. Since I is finite,
the field generated by B is {{Jgc; B : J C B}. We remark that a function f € R'is
B-measurable iff f(i) = f(j) for any i,j belonging to the same atom of B. We say
that an operator acting on IR preserves B if it preserves the B-measurable functions.
Let us show that the operator A defined in (15) preserves the filtration of fields
{Bs : @ = 0,...,p}. This means that for all @ = 0,...,p, for all f € R’ Ba-
measurable, the function Af is also Ba-measurable. For o = 0 this is satisfied because
a Bo-measurable function is a constant cl1, and A(cl) = cAp = pcl. For a = p the
property is also verified because By is the finest field. Now let us show the result for
a €{l,...,p—1}. We remark that it suffices to prove that Alpg_(;) is Bo-measurable
for any i € I, where 1p_(;) is the characteristic function of the atom By (i) € Ba.
Then, we must show that if

(19) Ba(j) = Ba(f), then (Alp,(;))(j) = (Alp,(;)) (D).
First assume that B, (j) = Ba(€) # Ba(i). Then A(j, k) = A({, k) for any k € By(%).
Thus,
(Alg,)@) = DY AGKuk) = (Alp,a)(©).
k€Ba (i)

Now assume B (j) = Ba(£) = Ba(i). Since (A1g)(j) = (A1p)(¢) for any atom
B € B, such that B # B,(i), and (A1)(j) = (A1)(£) (because Al is constant), we
deduce

(Alp,())() = ADG - Y. (AlB)() = (Als,w)(®).

BEBa_{Ba (')}

Then A preserves any B, for a =0,...,p.
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Now the filtration of fields By C - -+ C B, is contained in a maximal filtration of
fields Co C --- C Cn—1 (which is not necessarily unique). This means that {By : a =
0,...,p} C{Cy:v¥=0,...,N —1} and that if C is any field satisfying C; C C C Cy41,
then C = Cy or C = Cy41. This implies that Cy41 is formed from C, by splitting a
unique atom into two new atoms. This is why maximal filtrations of fields are also of
cardinality N (the cardinality of the set I).

Recall that for any v € {0,..., N — 2} there exists a(y) € {1,...,p}, such that
Ba(y)-1 G Cy C Ba(y)-

In the rest of this paper, C,(z) shall denote the atom of C, containing .

Now let us show that the operator A preserves the maximal filtration of fields
{Cy:v=0,...,N —1}. This is evident for Co = By = {I} and also for Cy_1 = B, =
{{i} : i € I'}. Sofixvy € {1,...,N—2}. Denote by a(y) € {1,...,p} the point verifying
Bay)—1 € Cy C Bqa(y)- We must prove that if Cy(j) = Cy(£), then (Alc, 3))(j) =
(Alg,,,)(#) for any Cy(i) € Cy.

First, assume C,(i) # Cy(j) = Cy(£). Then By()—1(j) = Ba(y)-1(f) and
Ba(y) () # Ba(y) (1) # Ba(y) 6). It Ba(—y)-—l(j) = Ba('y)—l(e) # Ba('y)—l(i), then
A(j,k) = A(¢,k) for any k € By(y)—1(i) D Cy(i). Thus

(Alc,))(d) = Z A, k)p(k) = (Alc, ;) (0).
kEC, ()

Now, assume Ba(,,)_.l(j) = Ba(.,)_l(f) = Ba(.y)_l(i). For any k € C—y(i) C Ba(.y)_l(i)
we have Ba(,y)(j) # Ba(,,) (k) # Ba(.,)(é) and so j,£ € Ba(,y)_l(k) - Ba(.y)(k). Then
A(j, k) = A(6,), which implies (A1, 5)(3) = (Alc, ) (€).

Now if j,£ are such that C,(j) = C,(£) = C,(%), then the result follows from the
equalities

(Mo,)@) =AnG - Y (Ale)(E), (A1) = (A1)(),
CeCy—{Cy(i)}
and Alc(j) = Alc(¥), for C € C,—{C,(3)}. Thus A preserves {Cy:v=0,...,N—1}.
Let us denote by E., = E;” the mean expected value operator with respect to the
field C, and the measure y, i.e.,

(Bv)(@) = (W(Cy@))t D F(R)u(k).
keC.(4)
Since A preserves C,, we have AE, = E,AE,, and since A is selfadjoint, we also
have A(Ey — Ey_1) = (Ey — Ey_1)A(Ey — Ey_,) for any v € {0,...,N — 1}, with
the convention E_; = 0. Since (E, — Ey—1)IR" is a one-dimensional subspace, we
conclude that (A(Ey — Ey-1))f = py(Ey — E4-1)f for certain p, € IR, for any
v €{0,...,N —1}. Then the spectral decomposition of A is

N-1

(20) A= Z py(Ey — Ey-1).
=0

Let us compute the eigenvalues {p, : v =0,..., N — 1} of the operator A. Since
Ap = A1 = pol, we get

(21) po = (Z V(")) )

iel
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where v is the vector given by Lemma 1. An eigenvector associated to po is fo = 1.

Now let us obtain the other values p, for v € {1,...,N — 1}. Recall that the
atoms of Cy_1 are the same as the atoms of C,, except that one atom of C,—; has been
split into two new atoms of C,, which is denoted by C (i) and C,(#’). These last two
atoms are disjoint and Cy—1(i) = Cy-1(¥') = Cy (i) U Cy(#'). Take

(22) fr = 1c, @) = C(1)) (W(Cy-1(9))) e,y -

Then
(By — Ey-1)fy = fy
and
Afy = A, ) — u(Cy(3)((Cy-1(3)))~ALc,_, 5
= py{lc, ) — M(Cy () ((Cy-1(4))) e, _, (5 }-

If we evaluate both functions at the point i/ € Cy_1(¢) — C(2), we get

py = (Alg,_, @) (#) — (Cy-1(2)) (W(Cy () 1 (Alc, ) (¢)-

For any v > 1 denote by a(v) the point of {1,...,p} satisfying Bs(,)—1 C Cy C
Ba(y)- Since i’ € C,(i') = Cy-1(i)—C,(3), for any k € C, (i) we have i’ € Bs(,)—1(k)—
Ba(q)(k). Then A(#, k) = hg(y), and we find

Py = ha(yp(Cy(3)) + Z A, )p(f) — p(Cy-1(9))(Cy (1))~ ha(y)r(Cy (3)).
LeC, (i)

So,

23) o= ), (A(i',e)“ha(‘r))ﬂ(e)=l’0{ > (A(i’,f)—ha(»f))V(v)}-

2eC, (i) £€C, (i)

Now, for £ € Cy(i') C Bg(y)—1(#'), inequality (14) implies A(#’,£) > hg(y). On the
other hand, A(#’,i’) > hg(y); hence py > 0 for any v € {0,..., N — 1}. Note that
Co(i') = I. Putting &(0) = 0, ho = 0, it is easy to verify that formula (23) also holds
for -y = 0 because Av = 1.

Since py > 0 for any v =1,..., N — 1, we deduce that A is nonsingular; so, from
(20),

N-1
Al = Z P;l(Ev — Ey-1).

=0
Now, let G be a diagonal matrix with G(j,5) = p(j) for any j € I. From the
definition of A given in (15), we get A = AG, so A—1 = GA-1. Let A-1(i,j) and
A-1(4, §) denote the (3, j) coefficients of the matrices A—! and A—1, respectively. Then
A-1(i, 5) = p(i)A-1(3, 5).
We have A-11 = G(A-11) = py'p. Thus

(24) > A-1(i,5) = p'u(i) >0 foranyic I.
jeI
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We shall prove now that (12) is satisfied. We have
N-1

A~1(4,5) = A71(6, )p(d) =< A~11gy, 16y >u= Z Pyt < (By—Ey-1)13y, 1y >p -
v=0

Now, (Eo — E-1)1y;} = Eolyjy = p(j), and for any v € {1,...,N — 1}

(By — Ey-1)1g5y = p(D{((Cy()) e, () — ((Cy-1(5)))"1e, - (4)}-

Note that if we set C_1(j) = ¢ for any j € I, then the last formula also holds for
v =0.

If Cy(j) = Cy-1(j), we have (Ey — Ey_1)1(;; = 0. When i ¢ Cy_1(j), we also
have i ¢ Cy(j), so < (Ey — Ey—1)1(;3,1{;) >u= 0. Define the set

J(i,5) ={0tu{y €{1,...,N =1} : C4(j) # Cy-1(j) and i€ Cy1(h)},
and denote its elements by 70 = 0 < 71 < :-+ < . We remark that m > 1. Set

v-1 := —1. Then from the definition of J(i,j), we have that the equality C,,—1(j) =
Ciye_1y(4) holds for any t =0, ..., m. Hence

A-lG,5) = Y pyt < (By— Ey-1)lgy 1y >u

YEJ(3,5)
= u(i)u(j){'jz;1 Py [(1(Cre (5))) 71 = (W(Coea (4))) 1]
- Pm (u(Cvm_l(j)))‘l}
Therefore,
(25) A71(5,5) = u(i)u(j)g(u(cm GNP = Pria)-

From (20) we get that for any t =0,...,m — 1, we have

(26) Py = Z (A(j,0) - ha('n))ﬂ(f)-
L€Cy, (4)

For any £ € C,,(j), we have A(j,£) — ha(y,) > 0. On the other hand, since C,,(j)
is decreasing with ¢ and hg(,,) is nondecreasing with ¢ (in fact, strictly increasing,
except perhaps at ¢t = 0 when 3 = 1 since hy = hp = 0), we deduce that p,, is
nonincreasing: pg = pyo = Py, = ¢ 2> Py, > 0. Hence py! is a nondecreasing
sequence, and we get (A~1)(i,5) < 0. Now condition (24) implies A~-1(%,%) > 0 and
A-1(i,4) > 35,4, |A~1(4, )| for any i € I, so property (13) also holds. Let us now
prove (14): A-1(¢,5) = 0 iff A(¢,5) =0 for ¢ # j.

We have i € Cy,,~1(j)—C,,, (j). Note that Bs(.,.)-1(j) D Cv,.(§) 2 Bs(y..)(4), s0
Ba(rm)=1(3) 2 Cr-1(3) D Cyn(§) 2 Ba(y)(@)- Then i € Ba(y)-1(4) — Batym)()-
We remark that T'(¢, 5) = a(ym), s0 A(4,5) = ha(y,)-
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If A(i,j) > O, then hs(,,.) > ha) = 0, so there must exist an index ¢t €
{0,...,m — 1} such that hs(y,) < ha(y,,), Which implies py, > py,,, (see formula
(26)). Equality (25) implies A—1(i, j) < 0.

If A(3,j) = 0, then m = 4 = @&(ym) = 1 and hy = 0. Now, for any £ €
Co(j) — C1(j), we have T'(j,£) = 1, which implies that A(j,£) = 0. Then

pn= Y, (AGOH-h)u@® = Y AGOu®

£eC1(j) £eC1(j)
= Y AGOuE) = AG,HuE) = po-
£eCo(j) Lel

From equality (25), we conclude A-1(3,j) = 0. 0
Remark. The proof also shows that any strictly ultrametric matrix is positive
definite, but this is a general property of any Stieltjes matrix [LT, p. 532).
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A LINEAR ALGEBRA PROOF THAT THE INVERSE OF A
STRICTLY ULTRAMETRIC MATRIX IS A STRICTLY
DIAGONALLY DOMINANT STIELTJES MATRIX*

REINHARD NABBEN! AND RICHARD S. VARGA?

Abstract. It is well known that every nm X n Stieltjes matrix has an inverse that is an n X n
nonsingular symmetric matrix with nonnegative entries, and it is also easily seen that the converse
of this statement fails in general to be true for n > 2. In the preceding paper by Martinez, Michon,
and San Martin [SIAM J. Matriz Anal. Appl., 15 (1994), pp. 98-106], such a converse result is in
fact shown to be true for the new class of strictly ultrametric matrices. A simpler proof of this basic
result is given here, using more familiar tools from linear algebra.

Key words. Stieltjes matrices, ultrametric matrices, inverse M-matrix problem

AMS subject classifications. 15A57, 15A48

1. Introduction. It is well known (cf. [3, p. 85]) that a Stieltjes matriz A = [a; ;]
in R™", which is defined to be a real symmetric and positive definite matrix with
a;; < 0foralli#j (1<4,j < mn), has the property that its inverse is a real
nonsingular and symmetric matrix, all of whose entries are nonnegative. Now, the
converse of this result is not generally true for any n > 3, as the following simple
matrix below shows. For n = 3, define the symmetric matrix B in IR33 by

4 0 2
B=|0 4 3],
2 3 4

so that B possesses only nonnegative entries. As the eigenvalues of B are (4 +
V13,4,4 — 1/13), then B is positive definite. But its inverse,

1 7 6 -8
B—1=1—2 6 12 -12 |,
-8 —-12 16

fails to be a Stieltjes matrix since its off-diagonal entries are not all nonpositive. For
n > 3, the matrix

B O d its in Bl O
0 I, and its inverse 0 I |

where I,,_3 is the identity matrix in IR*~3:"=3, similarly furnishes a counterexample
in R™™,

In the preceding paper [2, Thm. 1] by Martinez, Michon, and San Martin, it is
shown that a strictly ultrametric square matrix (to be defined below) is a nonsingular

* Received by the editors March 24, 1992; accepted for publication (in revised form) April 8, 1992.
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matrix, with nonnegative entries, whose inverse is a strictly diagonally dominant
Stieltjes matrix! As can be seen from their paper, their interesting result is proved
by using a variety of impressive tools from topology and real analysis, tools that
may prove useful for infinite dimensional extensions. The beauty of their result gave
us the stimulus to try to find a proof of their result that was fashioned solely from
more familiar tools from linear algebra, as such a proof might be more accessible to
numerical analysts and linear algebraists. We give such a linear algebra proof below.

With the notation that N := {1,2,...,n} for any positive integer n, we begin
with the following definition of [2].

DEFINITION 1.1. A matriz A = [a; ;] in R™™ is strictly ultrametric if

(1) A is symmetric with nonnegative entries,
(1.1) (ii) @i, > min{a;x;ax,;} for all 4,5,k € N,
(ili) a;; > max{a;k: k € N\{i}} for alli€ N,

where, if n =1, (1.1)(iii) is interpreted as a1, > 0.

The result of [2, Thm. 1] is stated in the following theorem.

THEOREM 1.2. If A = [a; ;] in R™™ is strictly ultrametric, then A is nonsingular
and its inverse, A1 := [a; ;] in R™", is a strictly diagonally dominant Stieltjes matriz
(i€, a;j <0 foralli # j and oy; > ZE: |ai k|, for all 1 < i,j < n), with the

1

additional property that
(1.2) a;; =0 ifand onlyif a;;=0.

Our proof of Theorem 1.2 is given in §3, after some necessary constructions are
given in §2.

2. Some constructions. For notation, on setting &, := (1,1,...,1)T in R?,
then
(2.1) Entl

is a rank-one matrix in R™", all of whose entries are unity.

Our first result, which is independent of results or techniques in [2], is necessary
for our complete characterization of strictly ultrametric matrices.

PROPOSITION 2.1. Let A = [a;;] in R™" be symmetric with all its entries non-
negative, and set

(2.2) 7(A) :=min{a;; : ¢,j € N}.

If n > 1, then A is strictly ultrametric if and only if A — T(A)£nEL is completely
reducible, i.e., there exists a positive integer r with 1 < r < n and a permutation
matriz P in R™" such that
cC O
(23) PUA- 6P = § 5 ],
where C € R™" and D € R """ are each strictly ultrametric.
Proof. For n > 1, assume that A is strictly ultrametric. Then, from (1.1) and
(22), it follows that A = [@;;] :== A— T(A)&,ET is strictly ultrametric with 7(4) = 0.
Moreover, as n > 1 and as 7(A) = 0, some off-diagonal entry of A is necessarily zero.
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Step 0 (1,2,3,4,5) u; = (1,1,1,1,1)T

Step 1 uz := (1,0,0,1,0)7;u; := (0,1,1,0,1)T

Step 2 ug := (1,0,0,0,0)T;us := (0,0,0,1,0)T
us := (0,1,0,0,0)T;u7 := (0,0,1,0,1)T

Step 3 us := (0,0,1,0,0)7;ug := (0,0,0,0,1)T

By a suitable permutation of indices, we may assume, without loss of generality, that
&l,'n = 0. Set

(2.4) S:={jeN:G4,;=0} and T:={jeN:a;>0}.

As @, = 0, then n € S, and similarly, since A is strictly ultrametric, then (cf.
(1.1)(iii)) @;,1 > 0, so that 1 € T. Thus, S and T form a partition of N, i.e., S and
T are nonempty disjoint sets with SUT = N. Again, by a suitable permutation of
indices, we may assume, without loss of generality, that

(2.5) T={1,2,...,r} and S={r+1,7r+2,...,n},

where 1 < r < n. 3
Next, consider any j € T and any k € S. Since A is a nonnegative matrix,
(1.1)(ii) implies that

(26) 0= &Lk > min {&l,j;a/j,k} >0 (J eT, ke S)
But as @;,; > 0 from (2.4), the inequalities of (2.6) and the symmetry of A give that
2.7) Gjp=0=dr; (eTkeS),

which gives the desired representation of (2.3). That the block diagonal submatrices
C and D in (2.3) are each strictly ultrametric is a consequence of the fact that A is
strictly ultrametric.
Conversely, if n > 1, if C € R** and if D € R* ™" * (with 1 < r < n) are each
strictly ultrametric, and if 7 > 0, then from Definition 1.1, the matrix
[ g 10) ] +T€n€1’1:

is also strictly ultrametric. 0

It is evident that the steps leading to the representation (2.3) can be similarly
applied to each of the strictly ultrametric block submatrices C and D of (2.3), provided
that their orders each exceed unity. More precisely, if C € R™" and if D € R*™""F
where 1 < 7 < n—1, then C —7(C)&.£F and D —7(D)&,—rEL_,. are, from the proof of
Proposition 2.1, each completely reducible strictly ultrametric matrices. This process
can be continued until only 1 X 1 positive matrices remain. This entire reduction
procedure can be described in terms of graph theory, as follows.
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For illustration, consider an ultrametric matrix A in IR%5, and suppose that the
block submatrices C and D in (2.3) are of orders 2 and 3, respectively. This is shown
in (reduction) Step 1 in the rooted reduction tree of Fig. 1, where the top vertex of Step
0 is associated with the set (1,2,3,4,5). At Step 1, the set (1,2,3,4,5) is decomposed
into the two nonempty disjoint sets (1,4) and (2,3,5), giving rise to two vertices in the
tree at Step 1. This step corresponds to the complete reducibility of A — 7(A)&ET
in (2.3). In Step 2, each of the sets (1,4) and (2,3,5) is further decomposed into two
disjoint nonempty sets, giving rise to four vertices in the tree at Step 2, and this
procedure is continued until all remaining sets have single elements. In this way, the
5 x 5 ultrametric matrix A has the representation

9
(2.8) A= Z nugu{,
=1

where the sum over nine terms in (2.8) comes from the fact that there are nine vertices
in the tree of Fig. 1. The associated vectors u; are also explicitly given in Fig. 1. The
scalars {7,}j_, are nonnegative, with (cf. (1.1)(iii)) 74, 7s,76,7s, and 79 necessarily

positive numbers. In fact, if the constants {r1,72,...,79} in (2.8) are chosen to be
{1,0,0,1,1,1,2,1,1}, then A can be computed from (2.8) to be
211 1

S
I
—
— = N
'S
N = =
— W

31 4

But, it is easy to verify (by induction) that for N = (1,2,...,n), the reduction
steps, as indicated in Fig. 1 for n = 5, give exactly 2n — 1 vertices for its associated
reduction tree. Hence, Proposition 2.1 gives the following representation for strictly
ultrametric matrices in IR™" for all n > 1, which goes beyond the results of [2].

THEOREM 2.2. Given any strictly ultrametric matriz A in R™® (n > 1), there

is an associated rooted tree for N = {1,2,...,n}, consisting of 2n — 1 vertices, such
that

2n—1
(2.9) A= Z Tgllgu{,

=1

where the vectors ug in (2.9), determined from the vertices of the tree, are nonzero
vectors in R™ having only 0 and 1 components, and, with the notation that

(2.10) x(ug) := sum of the components of uy,

where the 7¢’s in (2.9) are nonnegative with T4 > 0 when x(u¢) = 1. Conversely, given
any tree for N = {1,2,...,n}, which determines the vectors u, in R®, and given any
nonnegative constants {Te}2"7" with 7o > 0 when x(ug) = 1, then Yoty ‘rpupu? is
strictly ultrametric in R™".

COROLLARY 2.3. Any strictly ultrametric matriz in R™" is a real symmetric and
positive definite matriz.

Proof. From Theorem 2.2, any strictly ultrametric matrix admits a representation
(2.9) as a sum of rank-one nonnegative definite symmetric matrices. But, as the
condition that 7, be positive whenever x(u;) = 1 implies that the sum in (2.9) contains
a positive diagonal matrix, the sum (2.9) is necessarily positive definite. 0
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3. Proof of Theorem 1.2. With the constructions of §2, we come to the proof
of Theorem 1.2. The proof is an induction on n. If A is an n x n strictly ultrametric
matrix, then from Corollary 2.3, A is nonsingular and A~! exists. That A~! is a
strictly diagonally dominant Stieltjes matrix that also satisfies (1.2) of Theorem 1.2
is obvious for n = 1. Thus, by the inductive hypothesis, assume that Theorem 1.2 is
valid for all ultrametric matrices in IR’¥ with 1 < j < n—1 where n > 2, and consider
any strictly ultrametric matrix A = [a; ;] in R™". Up to a suitable permutation, we
have from (2.2) and (2.3) that

3.1) A= [ c9 ] + (AT with & = (1,1,...,1)T € R,

where, from Proposition 2.1, C in R™ and D in R* """ (with 1 < r < n) are
both strictly ultrametric and nonsingular. But as r and n — r are both less than n,
the inductive hypothesis, applied to C and D, gives that C~! and D~! are strictly
diagonally dominant Stieltjes matrices. Hence, if

Cc O

(3.2) M := [ o D

-1
sothatM‘1=[C 0 ],

O D!
then M ! is also a strictly diagonally dominant Stieltjes matrix. Next, the Sherman—

Morrison formula (cf. Golub and Van Loan [1, p. 51]), applied to (3.1), gives the
following representation for A=! of (3.1):

_ T(A)M 1T M1
[1+7(A)TM-1E,]

We first claim that the term in brackets in the denominator above is positive. To see

this, M1, as previously noted, is a strictly diagonally dominant Stieltjes matrix, so

that M~1¢, is a positive vector in IR®. On writing M~1¢,, := p > 0, this denominator
is just

(34) [+ (A M ] =1+ (AP > 1.

Moreover, since Mp = £, and since M is real symmetric, then the last term in (3.3)
can be expressed as the matrix

(3.3) (M +7(A), - €5) " = A =M

7(4) T
[+ 7(A)ekpl ™
which is obviously a real nonpositive definite symmetric matrix in IR™", all of whose
terms are zero if 7(A) = 0, or negative if 7(A) > 0. But, as the matrix of (3.5) is
added in (3.3) to M~!, which as noted above is a Stieltjes matrix, then all off-diagonal
entries of A~1 are necessarily nonpositive.
To show that A1 is strictly diagonally dominant, let

M-lgn =p= (pl7p2a oo 7p'n)T > 0.
For the ith row sum of A~!, it follows from the second part of (3.3) and (3.5) that
n
T(A)p; Elpj ‘
(3.6) (A7%n)i=pi— = P —— >0 (ieN).
[1 + 7(A) 'Elpj] 1+ 7(A) lej}
j= Jj=

(3.5)
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But, as all off-diagonal entries «; ; of A~! are nonpositive, (3.6) succinctly and pre-
cisely gives that A~! is strictly diagonally dominant!

Finally, we establish (cf. (1.2)) that o;; = 0 if and only if a;; = 0. First, if
7(A) > 0, then the strictly ultrametric matrix A = [a; ;] is, up to a permutation
matrix P, given from (3.1) by the sum

(37 A= g 9]+

which has only positive entries, i.e., a; ; > 0 for all 4,5 in N. On the other hand, from
(3.3) and (3.4),

4 _[c1t o 7(4)pp”
(38) AT = [ o D7 ] - [T+ T(A)ELel’

where every entry of the last matrix is negative. As the matrices C and D in (3.7) are
strictly ultrametric from Proposition 2.1, then C~! and D! are Stieltjes matrices.
Thus, from (3.8), the entries a; ; of A~ satisfy a; j < 0 for all i # j. Moreover, since
A1 is a strictly diagonal dominant matrix, then a;; > 0 for all 1 < ¢ < n. Hence, in
this case where 7(A) > 0, (1.2) of Theorem 1.2 vacuously holds.

If 7(A) = 0, then from (3.7) we have that

[c o L _[ectr o
A“[O D] and A ‘[ 0] D'l]’

so that A and A~! have the same off-diagonal blocks of zeros. But we can evidently
apply the inductive hypothesis to the block submatrices C and D, and we thus estab-
lish (1.2), namely, that the zero entries of A and A~! are the same. 0O

Having established Theorem 1.2, we deduce from it the following corollary, which
appears in [2, Lemma 1] as a step in establishing proof of Theorem 1.2.

COROLLARY 3.1. Let A in R™" be strictly ultrametric. If &, := (1,1,...,1)T in
IR", then there exists a vector p in R®, with all positive components, such that

(39) Ap =&

Proof. From Theorem 1.2, A~! is a strictly diagonally dominant Stieltjes matrix
in R™". Hence A~1£, =: p > 0, from which (3.9) directly follows. 0

In conclusion, we note that the more general problem of determining which non-
singular matrices in R™", with nonnegative coefficients, have inverses that are M-
matrices, has been studied by a number of authors over the years. Although we know
of no overlap between the results of this paper and results from these more general in-
vestigations, we have nonetheless listed, for the benefit of interested readers, a number
of papers [4]-[8] that deal with this more general problem.

Acknowledgment. We thank Professor C. R. Johnson for stimulating discus-
sions related to this research.
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GENERALIZED DISPLACEMENT STRUCTURE FOR BLOCK-TOEPLITZ,
TOEPLITZ-BLOCK, AND TOEPLITZ-DERIVED MATRICES*

Dedicated to Gene H. Golub on the occasion of his 60th birthday.

T. KAILATH} AND J. CHUNt

Abstract. The concept of displacement structure has been used to solve several problems connected with
Toeplitz matrices and with matrices obtained in some way from Toeplitz matrices (e.g., by combinations of
multiplication, inversion, and factorization). Matrices of the latter type will be called Toeplitz-derived (or
Toeplitz-like, close-to-Toeplitz). This paper introduces a generalized definition of displacement for block-Toeplitz
and Toeplitz-block arrays. It will turn out that Toeplitz-derived matrices are perhaps best regarded as particular
Schur complements obtained from suitably defined block matrices. The new displacement structure is used to
obtain a generalized Schur algorithm for fast triangular and orthogonal factorizations of all such matrices and
well-structured fast solutions of the corresponding exact and overdetermined systems of linear equations. Fur-
thermore, this approach gives a natural generalization of the so-called Gohberg-Semencul formulas for Toeplitz-
derived matrices.

Key words. Toeplitz matrix, displacement structure, factorization, generalized Gohberg-Semencul formulas,
Schur complements

AMS subject classifications. primary 65F05, 65F30; secondary 15A06

1. Introduction. Fast algorithms for triangular and orthogonal matrix factorization,
matrix inversions (least-squares) solutions of linear equations, and several related results
are now widely known for Toeplitz matrices. The concept of displacement structure [ 30]
was introduced to show, among other things, that fast algorithms could also be obtained
for several related matrices that do not have such structure; for example, though not
Toeplitz, matrices of the form T7', T\T,, Ty — T,T3' T4, T\T, — T5T,4, where the
{T;} are Toeplitz matrices, all possess fast algorithms. The reason basically is that all
these matrices have low displacement rank. The displacement of a (square) matrix 4
was defined in [30] as

(1) VA=A4-Z,AZ],

where Z, is the n X n (lower) shift matrix with 1’s on the first subdiagonal and 0’s
elsewhere. For a Toeplitz matrix, T, it is easy to see that VT will be identically
zero except for the first row and first column, so that the displacement rank of T =
rank V7T = 2 no matter what the size of T'. A significant fact is that, though 7! is not
in general Toeplitz, rank VT ~! = 2, So, also, though 7,7 is not in general Toeplitz,
rank VT,T, < 4. These facts have been exploited to obtain fast O(n?) algorithms for
factoring matrices such as 7' and T, T, and others. Nevertheless we show in this article
that matrices such as 77, T, — T.T3' T4, T\T, — T5T4, and so on may be better
studied by first trying to find an appropriate “Toeplitz-block” matrix in which these

* Received by the editors August 2, 1989; accepted for publication (in revised form) April 15, 1992.
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matrices appear as certain Schur-complement matrices and then analyzing these Toeplitz-
block matrices by introducing a suitably modified definition of displacement; the key
fact then used is that displacement structure is preserved under Schur complementation.
Besides enabling us to solve several new problems, this procedure also provides a new
and simpler approach to many of the problems studied in [4]-[6], [9]-[11], [13]-
[15], [19]-[21], [23], [27], [361, [37], [41], [43], [44]. It will perhaps be clearest to
present two simple examples.

Example 1. Study of T, First note that 7! is the Schur complement of the (1,1)
block in the Toeplitz-block matrix

) P
2) _[1 0]‘

It is a known result (see, e.g., [13], [37]) that the displacement rank of a Schur complement
of A cannot exceed the displacement rank of 4, which is 4, in general, because

_to —tl tn~1 1 0 0
-t th-1
0 -0
VA =] -1 4
1 tn—l : tl t() 0 0
0 0 0
0 - 0
0 0 0

However, it is well known that the displacement rank of 7~! cannot exceed 2. Therefore,
though the idea of studying matrices such as 77! and T, — T,T3' T, as Schur comple-
ments of suitable block matrices is not new (see especially the work of Delosme [13] and
[14] and others [5], [37], [43], [44]), doing this with the definition (1) will lead to
more complex algorithms than necessary.

On the other hand, suppose we define the modified displacement rank of 4 by the
rank of the matrix

, Z, O
VerA=A—FAFT, F= o z =7,® Z,
Then note that
[ -V T V I
VirnA = (Z1,2,) (2.2, ]
| V2] o
[ty -t -+ —t,.,] 1 0 - - 0]

0 0

| O

so that the F displacement rank of A4 is 2. Now the previously mentioned result on Schur
complements will show that V, » 77" < 2. O
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Example 2. Displacement rank of products. In [9], we gave a rather uninspiring
proof of the inequality

3) rank [V z,z,)(B1B;)] = rank [V(z,z,B1] + rank [V, 2,,B>] + 1.
An interesting proof follows by considering the block matrix
(4) A= [_I BZ] :
B, O
Note that B, B, is the Schur complement of —I in A4 and that
-1 Va,z,)B2
VirmA= 0 , F=2,®2,.
Va,z,)B1 I o

Now, (3) follows from the fact that rank [V, 2 (B B>)] = rank [V rA4].
On the other hand, note that if (consistent with the original definition (1)) we had
used Z,, instead of Z,, & Z,, we would have obtained a looser bound,

rank [V(Z,,,Z,,)(AlAZ)] = rank [V(Z,,,Z,,)AI] + rank [V(Z,,,Z,,)AZ] + 3.

Tighter bounds on the displacement rank of matrices are important because the operation
count of fast algorithms increases according to these bounds rather than to the displace-
ment rank. This is the feature made possible by using properly extended definitions of
displacement rank. O

An appropriate generalization of the ideas in these simple examples is introduced
in this article along with several applications. Section 2 gives the general definitions. The
heart of the article is § 3, where a generalized Schur algorithm is derived. Several appli-
cations are given in § 4. The concluding section reviews the main idea and makes com-
parisons with earlier approaches also using Schur complements (e.g., [5], [13], [37]).

2. Definitions and notations. Let 4 € R”*" be a given matrix and let /and F? be
strictly lower triangular matrices. The matrix

(5) Vs A=A — FAFYT,  FT=(F)T

is called the displacement of A with respect to the displacement operators { F/, F*}. Any
matrix pair { X, Y} such that

(6) V(F'f,F‘l’)f-t:/Y)/Ta XE[xlax2>"‘>xa], YE[YI: y2a--"Ya]

is called a generator of A (with respect to { F/, F*}). The number « is called the length
of the generator (with respect to { F/, F*}). A generator of 4 with the minimal possible
length is called a minimal generator. The length of the minimal generator of 4 (i.e.,
rank (Vps g5yA) = o) is called the displacement rank of A (with respect to { F/, F®})
and is denoted as o s, gy (A4).

If {X, Y} is a generator of A with respect to { F/, F?}, then for any nonsingular
matrix S € R**“, the matrix pair { XS, YS™7} is also a generator of A because

V(Ff,pb)A = XYT = XSSQIYT.

Hence, generators (even minimal ones) are not unique. For block-Toeplitz or Toeplitz-
block matrices, it is straightforward to obtain generators from the displacements by in-
spection.
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Note that the displacement of a symmetric matrix 4 can be written as V(p, 4 =
X Z X7 where 2 is a diagonal matrix with 1 or —1 along the main diagonal; we say that
A has a symmetric generator, { X, X 2}, with respect to F.

We should note that the following sum-of-products representation of a matrix 4
solves (5),

(7) A= z Kn(xi, Ff)KZ(yl, Fb)> A eRan’

i=1
where K,(x;, F/) € R™*" and K,(y;, F?) € R"*" are the so-called Krylov matrices
Kn(xi,Ff)E [xiafoi, . e ,(Ff)n_lxila Kn(yian)E [YianYi9' .. ,(Fb)n_IYi]-

The strict triangularity of { F/, F b} is important in this result; otherwise the Krylov
matrices would have an infinite number of columns. We shall show in § 4 that the
representation (7) yields generalizations of the celebrated Gohberg-Semencul formula
for the inverse of a Toeplitz matrix (see [22], [24]).

Choice of displacement operators. Let { X, Y } be a generator of length « of 4 with
respect to F/ and F?. If the matrix-vector multiplications F/u and F’v take f(n) and
b(n) operations, respectively, then the algorithms to be presented in § 3 will need
O(ang(n)) operations, where g(n) = max (f(n), b(n)). Therefore, the objective is to
choose the “simplest” or sparse (to make g(#n) small) strictly lower triangular matrices
F/ and F? that also make « as small as possible. For a scalar n X n Toeplitz matrix, a
natural choice of displacement operator is the n X » shift matrix, Z,, with 1’s along the
first subdiagonal and O’s elsewhere. We give some heuristic choices for block-Toeplitz
matrices, Toeplitz-block matrices, and their combinations.

For an M X N Toeplitz-block array with m; X n; Toeplitz matrices T ;,

Tl,l Tl ,2 : Tl,N
T2,l T2,2 : TZ,N

(8) A= €R™*",

TM ,1 TM 2 " TM N

we shall use the displacement operators,

M N
FF=&2z, F-=6z,
i=1

i=1

where @M | F; denotes the concatenated direct sum, i.e., the block diagonal matrix whose

ith diagonal block is F;.
For an M X N block-Toeplitz array with r X s rectangular blocks,

BO B—l : B—N+l
(9) A= Bl BO : B—N+2
BM—I BM_2 * B—N+M

a natural choice is

F=z4. Ft=2z%x

where Z¥, = [Z.,] can be seen as a block shift matrix, i.e., a k X k array with r X r
identity matrices on the first block subdiagonal and 0’s elsewhere.
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Example 3. Consider the matrix A4,

I B O
A=| BT 0 I |, BeR™ ",
o I O

If B is a Toeplitz matrix, then choosing
F=Ft=27,0627,0 Z,
will give a displacement rank of 4 for 4. If B is an M X N block-Toeplitz array with
r X s blocks, we could choose
F=F=74 &z ®Z},.
If B is a Toeplitz-block array, for example, B = [T, T,], where T, € R™*"and T, €
R™2*" then we could choose
F=F'=27,©2,0Z,®2Z,.

We can obtain a generator of 4 for each case by inspection. For example, for the case of
Toeplitz B = (b;- ), the following matrix

! 0 0 0]
0 b, 0 by
O bm-—] 0 bm-l
bo 5 bo -5 1

X = b'—l 0 b.—l 0 , s = 1 L

bi—n 0 by » 0 -1
0 1 0 1
. 0 . 0

0 0 0 0

is a generator of 4 with respect to Z,, ® Z, ® Z,. More systematic procedure is described
in the Appendix.

Proper generators. Let { X, Y } be a generator of a matrix 4. We say that a generator
is proper (with respect to the pivoting column j) if, for a certain i, all the elements in
the ith row of X and above, except for the element [ X]; ;, are zero and all elements in
the ith row of Y and above, except the element [Y]; ;, are zero. Often we shall denote a
proper generator as { X, Y, }. If { X, Y } is not proper, then by choosing an appropriate
S, we can obtain a proper generator { X.S, Y'S™7} under certain conditions on the matrix
A. A procedure for doing this is described in § 3.

3. Generalized Schur algorithm. A fundamental method for triangular matrix fac-
torization is the so-called Schur reduction process (see [40] and, e.g., [13], [14], [33],
[341, [37], [38]), which successively computes the Schur complements of the leading
submatrices iteratively; displacement structure allows the computation to be speeded up.
Our fast algorithms will be based on the following theorem.

THEOREM 1. Let {X ", YV} be a proper generator of a rectangular matrix
AWM e R™*" with respect to { F/, F®}. Also assume that {X (", YV} has been made
proper with respect to a particular (pivoting) column, which we shall index as “pvt.” If
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we denote the columns of X\ and YV by
X0 =1xi0, xR x 0L v =y, v,y
then the matrix A® defined by
A0 = 4D — xRy T

has null first column and row, and has a generator {X®, Y}, with respect to
{F/, F*} of the form

(1) : _ (e}
X(2)= [XI >-~->F/xl()\l/t)>"-axa]s Y(Z) - [YI ""’Fbylgl")"“’y‘("l)]'

Remark 1. The matrix 4® is the Schur complement of 4" with respect to the
(1,1) element of 4™,
Proof.

A — PAD T = A — xQyWT] — P40 = x{y T FT
= AD — FLADFT - xQy T + FxyTFT
= XOYOT — xRy + Py QT
= x@y@r,

The first column and row of 4 are null because
A(Z)el = [X(Z)Y(Z)T]el =0, e{A(Z) = elT[X(Z)Y(Z)T] =0,

where we have used the fact that F/ and F? are strictly lower triangular and
(X Yy(D]is proper. O

By applying the previous theorem using such a proper generator we can obtain a
(possibly nonproper) generator of 42, Converting this to proper form, we can proceed
to find a generator 4®). By repeating this process r times, we shall generate the matrices

2) — 1 1 nr
AP = 40— xRy AT,
"
— -1 -1 -1)T
A0 = 4D — XDy,

AT+HD = 40 xl(J%yl(J(q)’T.

(10)

It turns out that this process gives a partial triangular factorization of A", because (10)
shows that

r
AD = 3 X QYT + 40D

i=1

nr

l\' ypw

- 1 !

=l %0 %0, | [Farry,
’ y(r)T

pvt,
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where

0
O S(r+ 1)

Remark 2. The above r-step partial triangularization breaks down if and only if
there is a singular leading principal submatrix of order less than or equal to r; we shall
assume that this is not so, i.e., the matrix is assumed to be strongly nonsingular or strongly
regular. Various authors, including ourselves, however, have obtained results for the
indefinite matrices with singular leading principal submatrix case as well (see [38]).

The above process can be summarized in the following algorithm, which we shall
call a generalized Schur algorithm.

A(r+ D=

GENERALIZED SCHUR ALGORITHM
Input: A generator { X, Y} of 4 € R™*" with respect to { F/, F"}.
Output: (i) Partial triangular factors L € R”*"and Ue R"™*" of 4.
(ii) A generator {X, Y} of the Schur complement of the r X r leading principal
submatrix of 4,
Procedure:
for k := 1 to r do begin
Find a proper generator of 4%);
The kth column of L := x,,;; The kth row of U := y1;
Replace x,,; with F/x,,; and y,,; with Fly,,, to get a generator of A**1);
end
return (L, U, {X, Y });

Note that the above procedure needs O(apr) operations, where p = max (m, n)
and « is the length of the given generator, if the operation of making a generator proper
takes O(ap) operations. We now show how to do this.

Construction of proper generators. This can be done in various ways. We shall
describe a method using elementary matrices known as spinors; for methods using
Householder matrices, see, e.g., [7], [12], [13], [16], [32]. A spinor S(;;) € R**is
defined as the identity matrix except for the following four entries,

[SGinlii = ¢, [SGinlii = s2, [Suinlie = =s1, [Suinli = ¢
where [A4]; ; denotes the (i, j)th element of the matrix 4 and ¢* + 5,5, = 1. The inverse
of a spinor is also a spinor, viz., S(j‘”) is the identity matrix except for the following four
entries,
SHoli =¢, [SGolii= =52 [SUnly =51, Sl =c.
Let x" e R'**and y” € R'** be row vectors. Let ¢, s;, and s, be chosen as
172
C'—‘[ i Vi ] , Sz=—C"_j, S1=—C‘&
XiYi t Xy Xi Vi
and define x' and y’ by

T T T - T¢o-T
xT=x"Sg, Y =y S

Then it is easy to check that x} = y; =0 and x'"y’ = x"y. We shall call the elements x;
and y; pivoting elements. Therefore, by repeating this process we can annihilate all ele-
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ments of x and y except the pivoting elements, resulting in

[O,...,O,x;,O,...,O]=XTHS(,~|;), [0,...,0,y,»,0,...,0]=yTHS(_j,T,~).

J#i J#i

An arbitrary choice of pivoting element or an arbitrary ordering of annihilation
might result in [1 + (x;y;/x; ¥;)] = 0 for some j, for which real spinors do not exist. This
issue is handled by the following lemma, whose proof along with other related results
can be found in [7].

LEMMA 1. Letvy; = x;y; and s = 2; v; > 0(<0). If we choose a pivot element such
that v; > 0 (<0), and if we annihilate all elements with v; > 0 (<0) before annihilating
elements with v; < 0 (>0), then [1 + (x;x;/x;y)]>O0forall 1 = j= o, j# i.

Some special cases. 1f we are given a symmetric generator of a symmetric matrix
A,ie., if Y= XZ, then the updating of Y in the above procedure is redundant, because
the updated { X', Y'} after annihilating a row still remains symmetric. To see this, let

XT = yT = [xpvt, xj]'

Then the spinor that annihilates x; will reduce to a Givens rotation,

¢ -s
G(j|pvt)=[s c]’ ct+st=1.
On the other hand, if
x" = [Xpus X1, Y = [Xw, — X1,
the spinor will become a hyperbolic rotation,

ch —sh
—sh c¢ch

Notice that Givens and hyperbolic rotations preserve the symmetry of the updated gen-
erator, i.e.,

YST=Y=X'2, X'=XS, S:aGivens or hyperbolic rotation.

H(j|pv()=[ ], Chz'—Sh2= 1.

As another special case of spinors, consider the two row vectors

x" =D 51, ¥ = [V, 01
For this case, the spinor that annihilates x; will reduce to the usual elimination matrix,
(11) E(,»,,M)=[l _"], k=L
0 1 Xpvt

We may mention that Ahmed, Delosme, and Morf [2] showed the significance of such
elementary operations for efficient hardware implementation.

Remark 3. For a square Toeplitz-block array 4 € R"*” with T; ; € R"™*", we can
obtain the LU factorization of 4 by completing the generalized Schur algorithm with
r = n. Other authors have suggested first transforming A4 into a block-Toeplitz matrix by
pre- and postmultiplication with permutation matrices and then applying an algorithm
for square block-Toeplitz matrix to get a row- and column-permuted triangular factoriza-
tion of 4; there is clearly a difficulty with this approach when m; #¥ m;. More importantly,
if A is not positive definite, the permuted matrix is not necessarily strongly nonsingular,
for which ordinary LU factorization does not exist. Our approach does not have this
problem because it directly factorizes 4 without permutations.
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Remark 4. For a square block-Toeplitz array 4 € R"*", with square blocks B; €
R"*", there exist several fast block triangular factorization algorithms such as the Bareiss
algorithm [4], the multichannel Levinson algorithm [3], [35], and the Schur algorithm
[1]and [18], all of which require matrix (of the block size r X r) operations. Our approach
treats block-Toeplitz matrices in essentially the same way as scalar Toeplitz matrices
and in particular will use only elementary scalar operations. We remark that the absence
of matrix operations such as inversion may simplify the design of dedicated hardware
implementations.

4. Applications. By applying the generalized Schur algorithm in § 3 to judiciously
chosen block matrices, we can obtain interesting results including fast QR factorizations
and generalized Gohberg-Semencul formulas. Generators of the block matrices used in
this section can be easily found by inspection (see Appendix). The floating operation
(flop) counts given below are confined to the number of multiplications.

Simultaneous factorization of a symmetric Toeplitz matrix and its inverse. Let
T = (t;-;) € R"™", t, = 1, be a strongly nonsingular symmetric Toeplitz matrix. The
matrix

12) A= r 1
( ‘[1 0]

has a symmetric generator { X, X 2} with respect to Z, ® Z,, where

l l] ° tn—l 1 0 ° 0 T 1 0
X= s 2= .
0 l] * [,,-1 1 0 * 0 O —l

After performing #n steps of partial triangular factorization using the generalized Schur
algorithm, we shall have the factors L and U in

(13) A=[L][LT UT]+[0 0]
up e o S|

Now, one can check by comparing the entries of 4 in (12) and (13) that
T=LL", T '=UU", U: upper triangular.

Recall that the classical Schur algorithm gives only the factorization 7 = LLT,
whereas the Levinson algorithm gives the factorization 7! = UU”. Here we get both
simultaneously in 4n% + O(n) flops (or 2n? + O(n) if one uses fast rotations; see, e.g.,
[9] and [25]). The computation only of T = LLT needs just one half of the above flop
counts. If one only needs the factorization of T ™!, the above method is slower than the
Levinson algorithm; however, the above (Schur) method does not require inner products
and therefore is better suited to parallel implementation than the Levinson algorithm.

Orthogonalization of a fully windowed Toeplitz matrix [10]. Let T = (t,_;,)€R"*",
m > n be a fully windowed Toeplitz matrix, i.e.,

ti-;j=0, ifj>i, or i>m—n+j.

Then it is easy to check that B = (b;_;) = T”Tis also an (unwindowed ) Toeplitz matrix.
Now assume that ¢y # 0 and ¢,,_, ¥ 0, and consider the following matrix

T T
(14) A_—_[TT T]’

T O
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for which it can be checked that a symmetric generator with respect to Z, ® Z,, is
Voo bi/Vbe - by_1/Vbo to ti + tmn O - OF [1 0
X= , = .
0 b]/m * bn_l/Vb_o to t| * lm—n 0 * O O —1

After performing » steps of partial triangular factorization using the generalized Schur
algorithm, we shall have the factors R and Q in

_[RT ~ [0 O
o i< [Flinen+]2 9]

By comparing (14) and (15), one can easily see that
TTT = R™R, T = QR,

so that Q is orthogonal because R”"Q7’QR = RTR. The computation of 77T needs
nm — 3n* + O(n) flops and the partial triangularization needs additional 8»7* — 4nm +
O(m) flops (or 4m? — 2nm + O(m) flops with fast rotations).

Orthogonalization of a Toeplitz matrix. Let B € R™*" be a Toeplitz, block-Toeplitz,
or Toeplitz-block matrix of full-column rank, and let us define the block matrix

-I B O
(16) A=| BT 0 BT
O B 1

We can easily find a generator of 4 with respect to Z,, ® Z, © Z,, by inspection. For
example, if B is Toeplitz, a generator of A is given by

1 0 0 0
0 b, 0 b
0 b~ 0 Bn - 1
—bo 0 0 bo .‘l _l
X= _b—l b—l b.—l b—l , E - 1 5
_bl—n b—n+l bl—n b..,,+| 1
0 |
0 b, 0 b,
L 0 Z7m-l 0 bm_ 1_J

where b; = b,/ by. If we apply the generalized Schur algorithm with the above generator,
then after the mth step with m? + 2nm + O(n) + O(m) flops, we shall have a generator
of
BB BT
(17) A =
B I

After another 7 steps of partial triangularization with 12mn + 6n% + O(m) + O(n) flops
(or 6mn + 3n% + O(m) + O(n) flops with fast rotations), we shall have R and Q in

RT 0}
(m) — T
4 [Q][R’QH[O S]’
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such that B = QR. One can start with a generator of the block matrix (17), as in the
fully windowed case. We note that a closed-form expression for a generator of (17) for
block-Toeplitz and Toeplitz-block matrix B can be found in [7]. For a Toeplitz B, the
closed-form expression for a generator of (17) can be evaluated in mn flops, and, therefore,
it requires less computation to start with it. However, it would be necessary to work with
a generator for (16) if B is non-Toeplitz and only its generator is given.

If one wishes to find R ™! directly, then one can perform the (m + n) steps of partial
triangularization with the matrix

-1 B O
A=| BT 0 I
o I O
This is because
BTB I RT r O O
A = = ‘[R U"1+ ,
1 0 U o S

and, therefore, U = R~! because UR = I.

Removing forward elimination in square systems. If one’s primary interest in the
factorization is in solving a square symmetric Toeplitz system of equations,

(18) Bx=b, B=LL", BeR"", by=1,

then one might want to obtain the transformed right-side vector y = L~'b during the
course of the factorization process (see, €.g., [2], [25]). This can also be done using the
generalized Schur algorithm by performing the following triangular factorization of the
matrix A4,

(19) A=[B b]=L-[L7y]
whence the solution to (18) can be obtained by solving the triangular system of equations
(20) Lx =y.

Note that the matrix 4 has displacement rank three with respect to {Z,, Z, ® Z,},
(Z, = 0), and a generator is given by

b 0 0
by 0 Bo bo b, 0
x=| boh Byl
w-1 —b,_1 O
bn -1 bn -1 ﬁn -1 b 0 : 0 : 1

where

b = [605 61”"56"—1]T'

The triangularization in (19) needs 2n? + (n%/2) + O(n) flops (or n? + (n?/2) + O(n)
flops with fast rotations). Note that there is no saving in computing y = L~'b, as above,
over the conventional forward elimination method.

Removing back substitution in square systems. From a hardware implementation
point of view, the back-substitution step in (20) can be quite cumbersome [17]. This
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back-substitution process can also be eliminated by performing the partial triangularization
of the matrix [20]

o el e
I 0 vl o s

Notice that the solution B~'b is the Schur complement of B in A. For Toeplitz B
(bo = 1), a generator of 4 in (21) with respect to {Z, ® Z,, Z, ® 0} is given by

bO 0 BO bo 0 0
b, b, B, b -b, 0
X = . . . s Y = . . . s
bn—l bn—l ﬂn—l bn—l _bn—l 0
e e 0 0 0 1
where e; = [1, 0, ..., 0]7. After n steps of partial triangularization indicated in (21)

with 512 + O(n) flops (or 3n? + O(n) flops with fast rotations), we shall have a “generator
of the solution vector,” from which we can read out the solution after certain normal-
izations; see [29] for details.

Solving least-squares problems without back substitution. To solve the weighted
least-squares problem of minimizing

||Bz(le - b)"z,

where B; and B, are full-rank block-Toeplitz or Toeplitz-block matrices, we form the
matrix

-B, B, -b
(22) A=| BT o0 o0
0] I 0
Now notice that the least-squares solution
(23) x = (B{B2'B))"'Bib
is the Schur complement of the submatrix
-B, B
BT o]

The displacement rank of the matrix 4 in (22) is five. After m + n steps of the generalized
Schur algorithm, we shall have the solution (23) [see [29] for a generator of (22)].

Regularization. If the given Toeplitz least-squares system is particularly ill condi-
tioned, it is meaningless to compute the exact (least-squares) solution, because small
perturbations of the matrix can cause very large perturbations in the solution. In such
cases, we may solve the following regularized system [19], [36], [39], [44]

B b
[ ]x = [0] , BeR™*" L:lower triangular banded Toeplitz matrix.

nL
This can be done by partial triangularization of the matrix
B
nL 0
(24) A=
BT 4L O 0
0] I 0
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The matrix 4 in (24) has displacement rank five. After m + 2n steps of the generalized
Schur algorithm, we shall have the solution. We may remark that this technique of
regularization is known as the leakage method (adding white (if L = I) or colored (if L
is banded) noise with variance 52 to the data sample) in the signal processing literature.

Generalized Gohberg-Semencul formulas ([22], [24]). Generalized Gohberg—
Semencul formulas for the matrices

(T'T)', TITV'T,, I—T(T'T)'TT, (T™T)'T7,
can be obtained after partial triangularization of the (1,1) block of the matrices
[TTT I] [Tl Tz] [TTT TT] [TTT TT]
1 o] |17 o] T I/’ 1 (0]
using the generalized Schur algorithm (see [14], [26], [28], [31], [42] for related results).

5. Concluding remarks. We have generalized earlier definitions of the displacement
for Toeplitz-like matrices and presented a correspondingly generalized Schur algorithm
for obtaining their triangular factors and their displacement representations. Derived
matrices obtained as products and inverses of Toeplitz matrices can be nicely handled
by formulating them as Schur complements of entries in a suitably defined Toeplitz-
block matrix. The extended definition allows us to efficiently handle block-Toeplitz and
Toeplitz-block matrices and Schur complements with respect to the leading (block ) entries
of such matrices. Some interesting examples were given in § 4. Although the result that
displacement rank is not increased under Schur complementation has been know for
over a decade (see [5], [13], [37]), the failure to use a generalized definition of
displacement made further analysis more cumbersome; similarly cumbersome
were the efforts to find expressions for the generators of derived matrices such as
T, — T,T3'Ts.

We may note that appropriate modifications of the above approach can be used to
study Hankel, Vandermonde, Hilbert, and Cauchy matrices and derived matrices
(see [8]). Among earlier studies of such matrices, we may mention [13], [23],
[26],[32]-[34].

Finally, we remark that numerical stability issues are not examined here; studies
are in progress on appropriate modifications that can improve the stability.

Appendix. Given the displacement of a matrix, we can obtain a generator of the
matrix by representing each pair of nonzero columns and rows that cross at the main
diagonal as a sum of two rank-one matrices. More precisely, the following procedure can
be used to find a (possibly nonminimal) generator from the given displacement with
O(mn) flops.

Finding a generator
Input: The displacement Vs, pr A
Output: A generator { X, Y} of 4
Procedure:
Xi={ }BY={
while there is nonzero column or row
for each pair of a column u and a row v7 that crosses in the ith position of the main
diagonal of Vg ) A
if u; # 0 then
ii:=wu/ul’?; u:=wuexcept it; = 0;

V:=v/ul’?.v:=vexcept v = 0;
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else
Ui ;= uexcept @ = 1/2; u:= wexcept #f; = —1/2;
V= vexcept ; = 1/2;V:= vexcept b; = —1/2;
end;

X:=[X,a,u]; Y:=[Y,¥, —V];
Remove u and v;

end;

for each an unpaired ith column u
X:=[X,ul; Y:=[y, ¢];
Remove u and v;

end

for each an unpaired jth row v’
X:=[X,¢l; Y:=[Y,v];
Remove u and v;

end

return {X, Y}
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ON THE CONTROLLABILITY OF MATRIX PAIRS (4, K)
WITH K POSITIVE SEMIDEFINITE, II*

DAVID CARLSONf#

Abstract. The subject of the previous article by David Carlson, B. N. Datta, and Hans Schneider [ SIAM
Journal on Algebraic and Discrete Methods, 5 (1984) pp. 346-350] is revisited to improve and clarify results
given there and elsewhere.

Key words. controllability, Lyapunov matrix maps
AMS subject classifications. 15A24, 15A18

Introduction. For notation and terminology, we refer to the previous article [CDS].
In particular, 4, H, and K are n X n complex matrices and H and K are hermitian. The
following basic result, due independently to Chen [C] and Wimmer [ Wi], has had many
useful consequences (cf. [CD 1979a], [CD 1979b], [D]).

THEOREM A. Suppose that K = AH + HA* = 0. If (4, K) is controllable, then
6(A) = 0 and H is nonsingular (and w(H) = w(A), v(H) = v(A4)).

In particular, a search for a converse to this theorem led to [CDS]. The principal
result of that article, Theorem 4, is stated below as Theorem B.

If A(4) = I17;-1 (A + \)), then the map L,(H) = AH + HA* is one to one if and
only if (iff) A(A4) # 0. Note that A(4) # 0 implies that §(4) = 0 but not conversely.

We will often assume that A is a block-diagonal matrix,

(1) A = diag (A1, ..., Ap), with 4y, ..., 4, square.

Under (1), we will assume that matrices H = [H;;] and K = [K;] are partitioned con-
formably with 4 and will define H = diag (H,,, . . ., H,,)and K = diag (K1, . . ., K,,).
Observe that if L,(H) = K, then also L,(H) = K.

THEOREM B. Let A be a block-diagonal matrix, as in (1), and suppose that
6(A) =0 and

(2) a(4;) N o(4;)) = I, Lj=1,...,p,i%#].
Suppose that K = AH + HA* = 0. Then the following are equivalent:

(3a) (4, K) is controllable,

(3b) (4, K) is controllable,

(4a) H is nonsingular and (4*, H™'K) is controllable,
(4b) H is nonsingular,

(5a) x*Hx # 0 for every eigenvector x of 4*,

(5b) x*Hx # 0 for every eigenvector x of 4*.

We shall reprove and improve the lemmas in [CDS] that lead to Theorem B. We shall
show that (3a), (3b), and (4a) are equivalent whenever K = AH + HA* = 0 (the
assumptions that 6(4) = 0 and that A is written in block-diagonal form are not necessary)

* Received by the editors December 10, 1990; accepted for publication (in revised form) March 21, 1992.
This research was conducted at the Technion-Israel Institute of Technology, Haifa, Israel and was supported
by the National Science Foundation grant DMS-8808237 and by the Technion.

1 Mathematical Sciences Department, San Diego State University, San Diego, California 92182
(carlson@math.sdsu.edu).
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and present an alternate form of Theorem B for block-diagonal 4 without the general
assumption that 6(A4) = 0.

Given a matrix B, not necessarily square, the range of B is denoted in [CDS] by
Im B and the controllability space of (4, B) (the smallest A-invariant space containing
Im B) by C(A4, B). We shall emphasize here common aspects of these two concepts by
denoting the range of B by R(B) and the controllability space of (4, B) by R4(B). Note
that always R(B) = R4(B).

The following result appears as Corollary I1.2 of [ CS]; we shall extend it to a bound
on dim R,(K).

THEOREM C. Suppose that K = AH + HA* Z 0. Then

q
rank (K) = 7(4) + v(4) + 2 [8:/2],
i=1
where 8y, . .., &, are the degrees of the elementary divisors associated with imaginary
eigenvalues of A and [ x] is the floor or greatest integer function.
Finally, we shall improve the following result, which appeared as Theorem 4 of [CD
1979a].
THEOREM D. Suppose that AH + HA* = HBB*H and that

(6) (A*, B) is controllable.
Then the following are equivalent:

(7) H is nonsingular,

(8) (A, HB) is controllable.

Results on controllability spaces. In the proof of Lemma 1 of [CDS], the role of
the critical assumption (2) is not made explicit. That role is explicit in the proof of our
Proposition 1. It is closely related to Proposition 0.4 of [Wo] and provides a proof of
Exercise 1.5 of [Wo].

PROPOSITION 1. Let A be block diagonal as in (1) and suppose that (2) holds. Let
B = (B;) be partitioned conformably with A. Then R4(B) = ®7_, R4,(B;).

Proof. Itisclear that R, (B) = ®%_, R 4,(B;). To complete the proof, it is sufficient
to show thatfori=1,...,p,

00 ---DO0DR,B)DOD --- 0 < Ry(B).

By simultaneous permutation of the blocks of 4 and B, it is sufficient to show this for
i=1.

As o(Ay1) N o(diag (A, . . . , Apy)) = & by (2) there exists a polynomial f(\) over
C for which f(A4,) = I, f(diag (42, . . . , App)) = 0. Thus,

1 B, B,
s 0 [|#]-|0
0]l B, 0
sothat R(B;®0® --- ®0) < Ry(B). Similarly, forj=1,2, ...,
I A By A% B
syap=| 9. ||4=B: || 0
0 A%,B, 0
so that R(A’;.B, D0D --- ®0) < Ry(B). The result follows. O
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It is clear from Proposition 1 that if 4 is block diagonal as in (1), B = (B;) and
C = (C;) are partitioned conformably with 4 and R(C;) € R(B;),i=1,..., p, then

b b
R (C) = '631 R4, (C) = -631 R, (B;) = Ry(B).

This is true even if R(C) € R(B), e.g., take

1 0 1 1 1 0
A= , B= , C= .
0 - 1 1 0 1
It is known [A] that for K = (K};) 2 0,

R(KII)QR(KU)’ i)j= l""sps l¢]‘

LetK; = (K;y,...,Ki, ..., Kp)and K; = (0,...,0,K;,0,...,0)fori=1,...,p;
then

R(K;) = R(K;) = R(K;),

so we have R,(K) = R,(K), thus completing the proof of Lemma 1, our version of
Lemma 1 of [CDS].

LEMMA 1. Let A be block diagonal as in (1) and suppose that (2) holds. For K =
0, R4(K) = R4(K), and (3a) and (3b) are equivalent.

We next show that the best possible bound on the rank of K = AH + HA* 2 0
given in Theorem C extends to a bound on the dimension of R,(K). The proof of
Theorem C in [CS] extends easily to show that the bound (9) is also best possible.

THEOREM 1. Suppose that K = AH + HA* =z 0. Then

(9) rank K = dim (R,4(K)) = 7(A4) + v(A4) + % [6:/2].

i=1

Proof. We follow and extend the proof of Corollary II.2 in [CS]. In this proof,
A=diag (A, ...,Ag+14+1), Wwhere 4y, ..., 4,114+ aresquare, and, fori=1,...,
g, A;; is a single upper-triangular Jordan block of order §; associated with an imaginary
eigenvalue of 4. With H = [ H;] and K = [ K;]] partitioned conformably, fori=1,...,
g, K;; has by Theorem II of [CS] at most [;/2] nonzero rows; the bottom 6; — [§;/2]
TOWS are zero.

Because K = 0, this must also be true for K; = [K;,, . .., Ki4;+1]. And because for
j=1,2,..., A’ has conformable block-diagonal form, with upper-triangular diagonal
blocks, this same statement about zero and possibly nonzero rows holds for 4/K;. O

Suppose K = AH + HA* = 0 for some H # 0. As noted in the proof of Theorem
IV of [CS], there exists a nonsingular .S for which
Ay A

SAS™' = (
0 A22

)

0 0

with H;, nonsingular, and then

*
SKS* = (SAS™')(SHS*) + (SHS*)(SAS™")* = (A“H” :;H“A” g) :

It follows that (see also Lemma 3 of [CL])
(10) R4(K) = R(H),

which explains in a structural way the statement in Theorem A that H is nonsingular
whenever (4, K) is controllable.
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We next explore the case of equality in (10). Suppose first that 4 has a single
eigenvalue, which is imaginary. Then by the argument leading to (10) and Theorem 1
applied to 4,,, H,,, and K;,, if K = AH + HA* 2 0, then whenever H # 0 we cannot
have R,(K) = R(H). That is to say, R4(K) = R(H) iff H = 0.

We can now generalize Lemma 2 of [CDS]. A decomposition similar to that in our
Lemma 2 appears in Theorem 4.7 of [HS].

LEMMA 2. Let A be block diagonal as in (1), with (2) and

(11) either A(A;;) # 0, or A;; has a single eigenvalue that is imaginary, i =1,...,p,
holding. Suppose K=AH + HA *= 0.
Then R,4(K) < R(H), with equality iff H; = 0 for all i = 1, ..., p for which A;; has a

single imaginary eigenvalue. X A
Proof. Because K = L,(H) = 0, then also K = L,(H) = 0, so that

R,4(K) = Ry(K) < R(H)
by Lemma 1 and (10). As

V4 P
R.(K)= @ R, (K;) and R(H)= @ R(H;),
i=1 i=1

the statement on equality follows from Corollary 2 of [CL] for A;; with A(A;;) # 0 and
from our remarks above for 4; with a single imaginary eigenvalue. O

Note that every square complex matrix is similar to a block-diagonal matrix as in
(1), with (2) and (11) holding.

Note also that Lemma 2 may be regarded as a more structural explanation of another
part of Theorem A: if (4, K) is controllable, then so is (4, K), and by (10) H is nonsingular,
and A4 can have no imaginary eigenvalue.

Results on controllability. We first strengthen Theorem D.

THEOREM 2. Suppose AH + HA* = HBB*H . Then (8) ((A, HB) is controllable)
iff (6) ((A*, B) is controllable) and (7) (H is nonsingular).

Proof. That (6) and (7) together imply (8) is part of Theorem D. Suppose now
that (8) holds, then also (4, HBB*H) is controllable and HBB*H = 0.
It follows from Theorem A that H is nonsingular. Now

H'A+A*H'= HY(HBB*H)H ' = BB* =2 0

and, applying Theorem D again, (4*, H™'(HB) = B) is controllable. O

Observe that (6) does not imply (7) or (8) (take H = 0) and that (7) does not
imply (6) or (8) (take 4 = 0 and B = 0).

We may now reformulate and prove Theorem B without the assumption that
6(A4)=0.

THEOREM 3. Let A be block diagonal as in (1), with (2) and (11) holding. Suppose
that K = AH + HA* =z 0. The following are equivalent: (3a), (3b), (4a), 6(A4) = 0 and
(4b), 6(A) = 0 and (5a), 6(A) = 0 and (5b).

Proof. The proof in [CDS] that (3a) iff (5a) holds without the assumption that
6(A4)=0.

Recall that (4, B) is controllable iff (4, BB*) is. Now H is nonsingular if (3a) holds
(by Theorem A) or if (4a) holds (by hypothesis). From H™'(4AH + HA* = K)H ™' we
obtain

A*H'+ H'4 = H'KH,

and now (3a) and (4a) are equivalent by Theorem 2 applied to 4*, H™!, and K = BB*.
The rest of the proof follows immediately from Theorems A and B. O
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REDUCTION OF A TRANSFER FUNCTION
VIA AN OBSERVABILITY MATRIX*

STEPHEN BARNETTY

Abstract. An algorithm is given for reduction of a scalar transfer function g(s) to its lowest terms. The
main step is to reduce the observability matrix for a controllable canonical form state-space realization of g(s)
to a block-triangular form by row operations. No polynomial manipulations are required and only a single rank
computation is needed. As a byproduct, other properties of the numerator and denominator of g(s) are obtained
with little extra effort. The method can be extended to the case when a basis of orthogonal polynomials is used.

Key words. transfer function reduction, observability matrix
AMS subject classifications. 15, 93

1. Introduction. Consider a given proper transfer function

_ b(s)
(1.1 g(S)—a(s)
(1.2) =b0Sm+b|s”‘“+ oo+ by,

s"tas" M+ ta,

where by # 0 and t = n — m = 1. The state-space realization of (1.2) in controllable
canonical form is

(1.3) X = Ax + du, y = cx,
where
(1.4) d=10,0,...,0,1]7, c=1[bm,bp_1,...,b,0,...,0],
and 4 is an n X n companion matrix associated with a(s) in the form
0 In—l
(1.5) A= )
—a, - —a

where I,, _, denotes the unit matrix of order n — 1. If the realization (1.3) is completely
observable, then g(s) is irreducible. If not, then g(s) can be reduced to the form

B(s)  Bos™ K+ Bis™ K+ B
als) "4t 4 b,

(1.6)

where the greatest common divisor d(s) of a(s) and b(s) has degree k. There are, of
course, many ways of obtaining the reduced form ( 1.6): for example, determine d(s) by
constructing the Routh array associated with a(s) and b(s), and hence obtain a(s) and
B(s) by direct division; or, to avoid polynomial manipulations, use the Hankel matrix
of Markov parameters [10]. A recent method that also avoids divisions has been suggested
by Chui and Chen [11] and involves a Sylvester-type resultant matrix. This approach is
interesting, because although it has long been known [2, p. 39] how to compute d(s)
from a Sylvester matrix, their algorithm produces the reduced form (1.6) directly by
using appropriate row operations, without actually finding d(s) itself. However, it seems
to be true that for every algorithm involving a Sylvester matrix, there is a corresponding
scheme based on using a companion matrix. The purpose of this article is to show how

* Received by the editors November 26, 1990; accepted for publication (in revised form) March 23, 1992.
+ Department of Applied Mathematical Studies, University of Leeds, Leeds LS2 9JT, United Kingdom.
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the problem of reducing g(s) in (1.1) to the form (1.6) can also be solved in a “‘com-
panionable” fashion.

2. The algorithm. There is no loss of generality in assuming from now on that
bo =1, B0 = 1in (1.2) and (1.6), respectively. The algorithm is as follows.

Step 1. Construct the observability matrix M having rows ¢, ¢4, cA?,...,cA" ",
where 4 and c are defined in (1.3). Notice that the first ¢ rows of M are obtained simply
by performing repeated cyclic shifts on ¢, i.e.,

CAi=[0>01'-‘>03bm3”~>b13 130>~"1O]3 lzoa 1a“'>t_ L.
—_—— ———
i t—i—1
Step 2. Apply elementary row operations to the last 7 rows of the n X 2xn matrix
(2.1) X =[M,I,]

so as to reduce it to [ X, X,], where the n X n matrix X, has the block-triangular form

m t

X, Xt
(2.2) x,=|"" 7R

X2| 0 |m

In (2.2) the first  rows of X, are precisely the first ¢ rows of M constructed in Step 1, so
in particular X, is lower triangular and X5, is upper triangular relative to its secondary
(northeast to southwest) diagonal.

Notice that when ¢ = 1, then X is itself upper triangular in this latter sense.

Step 3. The matrix X5, is nonsingular if and only if g(s) in (1.1) is irreducible, so
if X5, in (2.2) has no zero rows, then no reduction of g(s) is possible. Otherwise, make
the last k rows of X;; zero, and row n — k + 1 of X, is then by Corollary 1.2 of [3]

[an—ky Op—f—15 + 5 &f, la 03“'>0]a

which gives the required coefficients of the denominator in (1.6).
Step 4. Construct the triangular Hankel matrix

0 1
0 1 w1
2.3) W= )
0 1 w - Wpyy
1 Wiy Wy o Wy
of order m — k + 1, where
J
(2.4) wi=—Xawe_;, w=1, j=12,...,m—k.
i=1

Step 5. The required coefficients of the numerator in (1.6) are given by
(2'5) [ﬁm—ka ﬁm—k—la ceey ﬁl) l] = [Olm_.k, A —f—15 ++ o5 Y, l]WT>
where T is the triangular Hankel matrix

bt by by 1
bn-t-t buga - by 10

(2.6) T= . . .o .
b, 1-

1 0
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Proof. Steps 1, 2, and 3 are derived in [3] in a more general setting. The theory
behind Steps 4 and 5 is developed in detail in [ 7] and relies on establishing a relationship
between b(A4) and a(B), where B is a companion matrix for b(s). O

The procedure can in fact still be applied if the degrees of b(s) and a(s) are equal:
simply replace the numerator in (1.1) by b(s) — a(s), so that the vector ¢ in (1.4) used
in Step 1 becomes

(27) [bn_ambn—l"‘an—l,--«,bl_aI]
and select the appropriate value of ¢ in (2.2).
3. Illustrative examples.

Example 1. Consider the example used in [11] with n = 4, namely,

s+ 3P+ 257+ s+ L
(3.1) g(S)=S4

— 13+ 22+ s+ 1

From (2.7) we have

c= [_%a %9 09 2]9
and from (1.5) the companion matrix for the denominator in (3.1) is
0 1 0 0
{0 o0 1 0
A=l 0 0o o 1
-1 4 2

After constructing the observability matrix M in Step 1, the matrix in (2.1) becomes

s
I B B T I
ol 4 4 3
3.3 1 -5
M
Using appropriate row operations, this is easily reduced to the stated form in Step 2:
— 3 0 2 1 0 0 0
1 1 1 09" -1 100
4 4 2 ] 2
(3.2) 0 0 00°' 2 -1 10
o o0 o060, 2 1 0 1
Xl XZ

Because the last two rows of X; in (3.2) are zero, it follows from Step 3 that £ = 2, and
hence row n — k + 1 = 3 of X, gives the denominator in (1.6) as a(s) = s — s + 2.
Using (2.4), the matrix in (2.3) is easily found to be

[0 0 1
wW=|0 1 i
) [ —
L 2 rl
and from (2.6)
(2 2 1
T=(3 1 0
L1 0 O
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Finally, from (2.5) we have
[82, 81, 1] = [2, =L, I]WT
=[1, 1, 1]
so that the numerator in (1.6) is 8(s) = s> + s + 1.

It should be noted that determination of k from X| is equivalent to finding the rank
of M in the solution of the reduction problem in [11], three separate rank calculations
are necessary.

Example 2. Consider

s+ 857+ 5 —42
s+ 10s* + 2253 + 452 — 235 — 14

g(s) =

for whichn = Sand ¢t = n — m = 2. Using 4 in (1.5) and Step 1, the matrix in (2.1) is
found to be

42 1 8 1 0
0 —42 1 8§ 1!
X 14 23 —46 —21 -2 ' I
28 -32 31 -2 —1 !
—~14 -51 —28 53 8§ !
M

This is reduced by row operations to the required form in Step 2 with

—42 1 8110
0 —42 1! 8 1
(3.3) Xi=| -196 =56 —4 ' 0 0 |
1008 144 0 ! 0 0
0 0 0100
X
1 0 00 0
0 1 000
(3.4) X=l 5 2 100
26 -7 —4 1 0
-2 =3 1 3 1

It follows from Step 3 by inspection of X; that k = 1, and fromrow n — k + 1 = 5 of X,
the denominator in (1.6) is

a(s) = s*+ 35+ 52— 35 — 2.

The above part of the example is essentially as worked out in [3]. To determine ((s),
from (2.3), (2.4), and (2.6) we have

1 8 1

8 1 0

0 0 1
W=10 1 —10], T=
1 —-10 78 1 0 0

so that in (2.5)
[:82, ﬁly 1] = [13 33 1]WT= [_6a 1’ 1],

whence the numerator in (1.6) is 8(s) = s> + s — 6.
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For the purposes of this article, only row n — k + 1 of X, needs to be recorded.
However, it should be pointed out that the other rows of X do in fact give the coefficients
of the set of Euclidean remainders associated with a(s) and b(s), as described in [6]. In
particular, a greatest common divisor d(s) of a(s) and b(s), if required, is given by the
last nonzero row in X;. Thus, in Example 1, from (3.2) we have

d(s)=—3s*—%s—1,
and, for Example 2, (3.3) gives
(3.5) d(s) = 144s + 1008.
Furthermore, without additional effort, the solution y(s) of the diophantine equation
(3.6) a(s)x(s) + b(s)y(s) = d(s)

can be read off from row n — k of X; [4]. Thus, in Example 2, the fourth row of X, in
(3.4) gives

y(s) = s> — 4s? — 75 — 26,

where d(s) is given in (3.5). Finally, following [7], the coefficients of —x(s) in (3.6) are
obtained by multiplying the elements in columns n —m + 1ton —k+ 1 ofrown — k
of X, by W T. In Example 2, this gives

[—4, LOIWT = [-6, 1, 0],
showing that x(s) = —s + 6.

4. Discussion and conclusions. It has been shown how a given transfer function
g(s) can be reduced to its lowest terms by performing row operations on the observability
matrix of a controllable canonical form realization so as to reduce it to the block-triangular
form (2.2). The reduction of the denominator of g(s) was given in [ 3], but the complete
algorithm is detailed above for the first time.

Like the scheme proposed in [11], there are no polynomial manipulations, but the
algorithm in § 2 seems to have several advantages.

(i) There is only a single computation of rank, that of the observability matrix M
in Step 3, whereas in [11] k + 1 separate calculations of rank are needed.

(ii) It is more natural in a control context to use an observability matrix rather
than a Sylvester-type matrix. For example, if a minimal realization of g(s) in state-space
form is required, then a standard method [ 8] is to extract the completely observable part
of the realization {4, d, ¢} in (1.3) using a similarity transformation. However, recovering
the reduced transfer function then requires inversion of a characteristic matrix, and this
is difficult in general.

(iii) The procedure described in this article also produces the greatest common
divisor between the numerator and denominator of g(s), as well as the solution of a
diophantine equation, and the associated Euclidean remainders, with little extra com-
putational effort. It is interesting that the method still gives the greatest common divisor
directly, even in cases where the Routh array applies to a(s) and 8(s) requires modifi-
cations. For example, if

3 2
s”=s"+s5s—1

0 )
8(9) st =253+ 252~
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then the algorithm gives

::1__-_1___—_1_11 1 0 00
_ 1 0 -1,0 -1 0 1 0
X i -1 o'ol |11 oo
0 0 0!0o0 01 -1 1

From the form of X;, we have k = 1, and n — k + 1 = 4 of X, gives the denominator of
the reduced form of g(s) as s — s + s°. The last nonzero row of X, shows that the
greatest common divisor of the numerator and denominator of g(s) is s — 1. The reader
can easily check that the first column element in the fourth row of the corresponding
Routh array is zero.

(iv) If the numerator and denominator of g(s) are expressed relative to a basis of
orthogonal polynomials, then the method described in § 2 for finding a(s) carries over
with little modification, provided that the companion matrix is replaced by the comrade
matrix [2, p. 372]. However, to find 3(s), it is necessary to reverse the roles of a(s) and
b(s), since there is no analogue of Steps 4 and 5 (for details, see [3] and [5]). The
method is therefore applicable to the model-reduction problem when, for example, a
transfer function is represented as a ratio of Chebyshev polynomial series [1], [9]. There
seems to be no corresponding generalization of the Sylvester-type matrix.
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Abstract. This article extends the classical Schur algorithm to matrix-valued functions that are bounded
on the unit circle and have a finite number of Smith-McMillan poles inside the unit disc. With each such
function this article associates two infinite sequences: one is the well-known sequence of reflection coefficients
(all less than one in magnitude), whereas the other is a sequence of signs. Under certain assumptions, the
number of negative signs equals the number of poles within the unit disc. This article shows how to solve
tangential interpolation problems using the algorithm and gives a simple proof for the connection between the
number of poles inside the unit disc of each solution to the inertia of a certain Pick matrix. Also described is a
numerically efficient procedure for carrying out the algorithm that involves only scalar operations.

Key words. Schur algorithm, tangential interpolation, fast algorithms
AMS subject classifications. 30C15, 30D30, 12D10

1. Introduction. In 1917, Schur [1] introduced a recursive algorithm for parame-
trization of scalar functions that are analytic and bounded within the unit disc. Since
then, the algorithm has been applied in many fields of engineering and mathematics.
Among others, applications include estimation and modeling of stochastic processes [2],
stability checking [3], [4], filter design [5], [6], fast algorithms for signal processing
[7], and H* control [8]. The survey article [7] contains a more detailed discussion of
several of these applications. Since its introduction, Schur’s algorithm, has been extended
in many directions. One such extension is the Nevanlinna algorithm [9], [10]; another
is the modified Schur algorithm [11]-[13] for meromorphic functions that have a finite
number of poles inside the unit disc.

Yet another extension by Delsarte, Genin, and Kamp [14] is the block Schur al-
gorithm for analytic matrix-valued functions. This algorithm cannot be applied to func-
tions with poles, because it requires square roots and some of the matrices in the recursion
may become indefinite (see also [4], [15]). Furthermore, this recursion is computationally
expensive because it requires matrix operations. A first step in a simplification of the
matrix algorithm was noted by FedCina [16], who introduced the tangential or directional
Schur algorithm; in this version the operations are performed in only one “direction” at
a time, for example, row after row. This procedure is more attractive because it saves
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computations. We also note that the tangential Schur algorithm implicitly appeared in
the work of Dewilde and Dym [17]. One contribution of our article is in further reducing
the operations in each direction to a set of elementary scalar operations. This process of
““scalarization” of the algorithm avoids matrix or vector arithmetic, reduces the com-
putation complexity, and provides the maximum degree of freedom in the implemen-
tation.

The main contribution of this article is the extension of the Schur algorithm to
functions that are both matrix valued and meromorphic, with a finite number of Smith-
McMillan poles inside the unit disc. We do so by combining the results of [17] on the
matrix Schur algorithm with the earlier work on scalar meromorphic functions [11]-
[13]. In the scalar case, functions with poles, or equivalently with reflection coeflicients
greater than one in magnitude, are handled by “switching” and performing the classical
Schur algorithm on the reciprocal function 1/f;(z) instead of on the original function
fi (z), whenever (the ith reflection coefficient) f; (0) exceeds one in magnitude. This idea
does not apply directly in the matrix case because the matrices involved might not even
be square; however, scalarization enables us to use the same idea at each scalar step of
the algorithm.

Our version of the algorithm produces a sequence of reflection coefficients {k; } 2 ¢
with |k;| < 1 and a sequence of signs {e; } 2. The latter contains the information on
the number of (Smith—McMillan ) poles inside the unit disc of the given function. When-
ever the sign in the recursion is positive (¢; = 1), this number does not change; each
time the sign is negative (¢; = —1), the number of poles decreases by one. As a result,
the total number of poles of a function is greater than or equal to the number of negative
signs in the sequence {¢; } < ¢; equality of these two numbers holds under certain ad-
ditional conditions (see § 2).

As an application, we show how to solve certain tangential interpolation problems
[16], [18, ch. 18] using the Schur algorithm. We also give a simple proof of the fact that
the minimum number of poles inside the unit disc of each interpolating function is equal
to the number of negative eigenvalues of a Pick matrix that is determined by the
given data.

Finally, for computational purposes we describe an array formulation of the algo-
rithm, using coeflicients of matrix Taylor expansions. The operations applied to the array
are (orthogonal and hyperbolic) rotations and shifts.

Asin [13], we shall assume regularity in the‘sense that no reflection coefficient has
unit magnitude; nonregular cases have to be treated by a different approach.

2. Modified Schur algorithm. We shall base our discussion on [17] and extend the
results therein to the meromorphic case.

Let F(z) be a p X g matrix of rational functions with

"F"oo = sup Umax(F(eja)) =1,
0=6<2r

where o, ( ) denotes the maximum singular value of the matrix. We can always write
F(z) as a ratio F(z) = Uy'(z2)Vy(z), where Uy(z) and Vy(z) are left coprime matrix
polynomials of sizes p X p and p X g, respectively [19, ch. 6]. We note that this repre-
sentation is not unique; however, every such representation has the property that the
poles of F(z) are exactly the zeros of Uy(z) (including multiplicity). Define the p X
(p + q) generator matrix of F(z) as

Go(z) = [Uo(2) Vo(2)].
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Also, choose a sequence of constant 1 X p vectors n; and a sequence { z; } § of extraction
points inside the unit disc. Then the first step in the ith stage of the Schur recursion of
[17]1is

(1a) Gi(2) = Gi(2)¥:(z), i=0,1,...,
where

(1b) Gi(z) = [Ui(z) Vi(2)],

(1c) Gi(z) = [Ui(2) Vi(2)],

(1d) Vi(2) = Upsq + (Bi(2) = 1)Jpgki (£ 5k ) EIW,
(1e) Bi(z) = (z— z)/(1 — z['2),

(1f) & =nGi(z),

and W, is any J,, unitary matrix. Because ¥;(z) is clearly analytic inside the unit disc,
the first step of each stage of the algorithm preserves the analyticity of the generator. It
can be also verified by a direct calculation that

(1g) n:Gi(z) = 0.

The second step of the ith stage of the Schur algorithm is given by
(2a) Gi+1(2) = 7' (2)Gi(2),
where ®;(z) is a p X p Blaschke factor defined as

(2b) ®(z) = 1, + (Bi(z) = Dnj (min)'mi.

The matrix

®;'(z) = I, + (B (2) — Dnf (nimi) 'm;

is not analytic inside the unit disc because of the simple pole at z = z;. Nevertheless, the
resulting generator G; , ,(z) in (2a) is analytic at z = z;. To prove this, we rewrite (2a)
in the form

Giv1(2) = [, — 07 (i) "0 1Gi(2) + nf (nim?) '[B! (2)miGi(2)].

Now, using (1g), we can easily see that G;, {(2) is finite at z = z;.

Another property that is preserved by the algorithm is the boundedness of the norm
of F;(z) = U;"' (2)V;(z). This follows from the fact that the matrix ¥;(z) is J,, parauni-
tary; hence, | U7 V;|l, = 1 implies that || U7 V;|, = 1. Now because

Fiv1(2) = Ui (2)Visi(2) = [871 (2)Ui(2)]7'[ @7 (2) Vi(2)] = Ui (2)Vi(2),

we obtain that if | F;|l, = 1, then | Fi 4l = 1.

Steps (1) and (2), which map G;(z) to G;+1(z), form the Schur algorithm for the
matrix case. We remark that the algorithm in [17] contains a third step, which is irrelevant
to our discussion, of producing a zero in F; , ;(z) at some fixed point.

It is clear from the above presentation that the algorithm preserves the following
two properties:

(i) G,(z) is analytic inside the unit disc.

(ii) 1 Fille = 1U7"Villo = 1.

That is, if the above two properties are satisfied for the generator G;(z), then they are
also satisfied for the generator G; , ((z).
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Besides the analyticity of G;(z) in the unit disc and the property || F;||, = 1, a third
property is also preserved when F;(z) is analytic: U;(z) is nonsingular for every z inside
the unit disc. This property is equivalent to »,(F;) = 0, where »,( -) denotes the number
of poles of the function inside the unit disc. A matrix G;(z) that has these three properties
is said to be admissible in the language of Dewilde and Dym [17]. Thus, the Schur
algorithm preserves the admissibility of G;(z) when F;(z) is analytic. We shall show
below how to extend the third property to the case of meromorphic F;(z).

We now present a different formulation of the algorithm in [17] by introducing

Hi = ‘EiI’Vi,
which allows us to write (1a) in the form
~ Tt s
(3) Gi(z)=Gi(Z)I/Vil:Ipq+(Bi(Z)— 1) pgHi ): )
#i Jpg i

Note that we still have complete freedom in choosing W;. Let us now define

(4) g = sgn (Iv‘inqﬂ;‘k) = sgn (Ez-]quz*) = sgn [niGi(Zi)Jqu;k(Zi)n;k]'

It is convenient to consider separately the cases of ¢; = *+1 (the case ¢; = 0 leads to a
singularity in the recursion and must be handled by different methods).

Case ¢; = 1. This case occurs, for example, if F;(z) is analytic and bounded by
unity inside the unit disc (see [17]). It is well known that every two vectors with the
same Euclidean norm can be (nonuniquely ) related by an orthogonal rotation. Similarly,
every two vectors with the same J norm can be related by a J-unitary matrix. Because
& has positive J norm, there exists a J-unitary matrix W; such that y; is collinear with
e, =[1,0,...],1e.,

(5) EWi = (&) e
This particular choice of u; = & W, reduces (1) to the simple form
(6a) Gi(2) = G(2)Wi(Bi(2) ® Isq1)-

Using this representation, it is easy to see that the first step in the algorithm consists of
a multiplication of G;(z) from the right by a J,,, paraunitary matrix, which is a product
of a constant part W;, and a “dynamic part” B;(z) @ I, 4.

A similar transformation can also be applied to the second step of the algorithm.
We choose a unitary matrix T; (i.e., T;T* = I), such that

nT; = lln:ll e.

Then, (2) can be written in the form
(6b) Givi(2) = Ti(B;' (2) ® I, ) T Gi(2).

We note that the choice to rotate in the direction of e, was for simplification purposes
only and that one can choose other directions of rotation as well.

So far the matrix rotation W is subject to only one constraint (5). We present here
one convenient way of choosing this matrix. First, we use the first entry of the row vector
¢, as a pivot element and perform p — 1 elementary orthogonal rotations that annihilate
the elements in positions 2 to p. Next, we use the last entry as a pivot element and
annihilate the entries in positions from p + 1 to p + ¢ — 1 using ¢ — 1 elementary
orthogonal rotations. The combined effect of these operations is to multiply G;(z) by a
matrix of the form P; & Q;, where P; and Q; are unitary. Because the matrix P; ® Q; is
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J,, unitary, the resulting vector has the form [x;,0,...,0(0,...,0, y;] with &J,,£] =
| x:12— |y;|?>> 0. As aresult it follows that | y;/x;| < 1. Finally, we do a single elementary
hyperbolic rotation that annihilates the last element of the vector. This last operation
can be described as a multiplication by the matrix 0;, which is defined as

(7a) o =( b _K"),
—K; M;
where
(7b) Li=ki*®I,_,, M;=1,_,0k;°, K, =kki‘ele,
and
(7c) ki=yi/xi, k§=V1— 1|kl ki‘=1/kf.

We note that the condition ¢; = 1 enables us to do the last operation because it guarantees
that |k;| < 1. The three different operations can be represented as follows:

(8) £ v [x,,0,...,000, ..., 0, 31 [2,0,...,0[0,...,0].
In conclusion, our matrix W; has the form
9) W,-=(Pi 0)( L,~* —K,»).

0 Qi/\-Ki M,

This representation of the Schur algorithm makes it possible to extend the results
proven in the scalar case [11]-[13] to matrix-valued functions.

LEMMA 1. Let Fi(z) = U7 (2)V;(z2) be a ratio of two left coprime matrix poly-
nomials and suppose that |Fille = 1 and ¢ = 1 (where ¢; is defined in (4)). Let
Fiv1(2) = Uit 1(2)Vis1(2), where Giy1((2) = [Ui1(2) Vii1(2)] is defined by (6).
Then

(i) IFiville = 1.

(i1) vp(F;+1) = vp(F;), where v,(F) denotes the number of poles of F(z) inside the
unit disc. The poles here are defined using the Smith-McMillan form (see [19]).

Proof. (i) Was already proved.

(ii) From (6)-(9) we obtain
(10) Uisi(2) = Ti[Bi_l (2)® Ip—l]Ti*[Ui(Z)PiLi - Vi(Z)QiKi*][Bi(Z) ©1, ]
Consequently,

det U, = det [U;(2)PiL; — Vi(2) Q. K} ]
=det [(Ui(z) — Vi(z2)Q; K L7 PP, L;]
= ki det [U;(z) = Vi(2)Q: K[ L' P{']
so that
(11) v,(Uiv1) = v(U; = ViQ; K[ L' P[),

where »,( ) denotes the number of zeros of the function inside the unit disc. Now we
observe that we can write

Ui(z) — Vi(2) QK L' P = Ui(2)[I — Ui (2)Vi(z) Q: K[ L' P[],
where

107 ViQi K L7 Pl = NUT Vil lQill I KL I P oo = Thi] < 1
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Thus, it follows from the matrix version of the Rouché theorem [15], [20] that
(12) v(U = ViQ; KL P*) = v(U;).
The last equation together with (11) imply

v(Ui+1) = v(U;),

which is equivalent to (ii). Actually, because K;*L;' = k;efe, is a rank 1 matrix, we
also observe that

det [I — Ui' (2)Vi(z)Qikielei P'] = 1 — ek, P Fi(2)Qie}.
Because || Fill, = 1 and |k;| < 1, it follows from the scalar Rouché theorem that
v.[1 — ek; P F;(2)Qies] = vy[1 — ek; P F;(2) Qe ],

which also implies (12). O

For the analytic case, Lemma 1 provides a proof for the third property in the Dewilde
and Dym definition of admissibility. Because an analytic function F;(z) satisfies
v,(U;) = 0 and ¢; = 1, Lemma 1 implies that v,(U;,,) = 0; hence, F;,(z) is also
analytic.

Case e; = —1. Because in this case £; = 1;G;(z;) has negative J norm, we can rotate
it so that u; will be collinear with e, = [0, ..., 0, 1]. As a result, we find that (6a) is
replaced by

(13) Gi(2) = Gi(2)Wi(Ip+4-1 D Bi(2))

in complete analogy with the scalar case. Similarly, the form of W¥; remains unchanged,
but now k; is selected to eliminate the first element of the vector §;, i.e.,

(14) £ S %, 0,...,000,...,0,%1210,...,0[0,...,0, z]

with k; = x;*/y.. We note that the second step in the recursion remains also unchanged
and is given by (6b). Finally, when ¢; = —1, the number of poles of F;(z) decreases by
one, as will be proved in the following lemma.

LEMMA 2. Let F;(z) = U;7'(z)V;(z) be a ratio of two lefi coprime matrix polyno-
mials and suppose |Fil|lo = 1 and ¢; = —1 (where ¢; is defined in (4)). Let F;,,(z) =
Uit 1(2)Vis1(2), where G;1(z) = [U;1(2) Viy1(2)] is defined by (13) and (6b).
Then

(1) "Fi+l"oo =1

(ll) Vp(Fi+l) = Vp(Fi) - L

Proof. (i) The proof is the same as in Lemma 1.

(i1) In this case

Uis1(2) = Ti[ BT (2) ® I, .| 1T [U; = Vi(2) QK" L' P[]
(compare with (10)). Thus,
v(Uis1) = v(U; = V;Q:; K L7 P ) — 1.
But the last equation and (12) from Lemma 1, which is also valid in this case, imply
v(Uiv1) = v(U;) — 1,

which is equivalent to (ii). O

The following theorem summarizes the results of Lemmas 1 and 2.

THEOREM 1 (Schur algorithm for matrix-valued meromorphic functions). Let
F;i(z) = U7' (2)Vi(z) be a ratio of two left coprime matrix polynomials with | F;|, = 1
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and let n; be any vector of dimension 1 X p. Define F; . (z) = U7l (2)V;1(z) by the
Sfollowing recursion.

T;(BT' (2) ® I,_ )T Gi(2)Wi(B(2) @ Iysg-1) ifei =1,

Gi1(2) =[ -1 % .
T:i(Bi (2)® L, )T Gi()WiIp+q-1 ® Bi(2)) ife; = —1,

where ¢; is defined in (4), W is a J,,, unitary matrix defined in (9) and satisfies
[:Gi(2:)peGi (zi)ni 1'77[1,0,...,0]  ife =1,

7:Gi(z))W; =
[=m:Gi(2:)pGi (z)ni 170, ..., 0,11 ife = —1,

and 7; is a unitary matrix that satisfies
nT; = |lnll [1,0,...,0].
Then,
(D) [1Fiville = 1.

[va,-) ife; = 1,

(il) vp(Fiy1) = ,
Vp(F,')_ 1 1fe,-=~1.

COROLLARY. The number of Smith-McMillan poles inside the unit disc is greater
or equal to the number of negative signs in the sequence {e; } % ¢.

Remarks. (1) Unlike the scalar case, equality does not always hold in the previous
corollary. The reason for this is the poor choice of extraction directions n,, which may
not cover all possible directions of the zeros. Equality occurs when at some stage of the
algorithm the generator becomes admissible, i.e., U;(z) does not have zeros inside the
unit disc. Such a case happens, for example, when the directions of extraction are chosen
to be the standard unit vectors in a cyclic order (see § 4). Another important case for
which equality holds is in interpolation problems where the algorithm terminates after
a finite number of steps with a constant or analytic (load) function. Yet, another case
of equality is discussed in the next remark.

(2) When U;(z) has a zero inside the unit disc it is possible, by choosing an ap-
propriate extraction point z; and extraction direction 7,, to make ¢; = —1 and to extract
this zero. Thus, by a proper choice of the first extraction points and extraction directions
we can extract all the poles of Uy(z) that are inside the unit disc to get an admissible
generator.

(3) Although the proofs of Lemmas 1 and 2 use the special choice for the matrix
W; asin (9), Theorem 1 is valid for any matrix W; that is J unitary. This follows from
the fact that multiplication of the generator G;(z) by a constant J-unitary matrix does
not change the number of zeros of U;(z) inside the unit disc.

(4) Limebeer and Green [21] obtained a similar result to Theorem 1 for the number
of poles of the interpolating function arising in model reduction problems. Their deri-
vation, however, is for functions that are meromorphic in a half plane and not in the
unit disc and it uses a different method than ours.

(5) Theorem 1 is equivalent to a certain result of Alpay and Dym [22] on the
dimension of reproducing kernel spaces associated with the Schur algorithm.

3. Interpolation problems. As an application of the Schur algorithm we describe
how to solve the tangential Schur-Takagi problem [16], [18], which is defined as follows.
Given a set of points z;, 0 = | = n — 1 inside the unit disc and a set of vectors x;, y;,
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0=i=n—1ofdimension 1 X pand | X g, respectively, find a matrix-valued function
F(z) of dimension p X ¢ such that

(D) IFle =1

2) x;F(z;)=y;,0=i=n-— 1.

(3) F(z) has k Smith-McMillan poles inside the unit disc (k = 0).

Remarks. For simplicity of discussion we assume that the points z; are distinct.

One solution of the problem that is described in [18, ch. 18] is as follows. We first
find a matrix-valued function

Mas) (An<z) Bn<z))

Cu(z) Dn(z)
that is J unitary on |z| = 1 and satisfies
[xy 1M, (z;)=0 fori=0,...,n—1.

Then a parametrization of all the solutions to the tangential interpolation problem is
given by

(15) F(z) = (4u(2)F(2) — Ba(2))(Dn(2) — Cu(2)F1(2)) 7,

where F(z) is such that | F |, = 1 and (D,(z) — C,(z)F.(z)) ! exists at the points
z;. To show that F(z) satisfies the interpolation condition (2), we write

—F —F
( I(Z)) = Mn(z)( ;(2))(Dn(2) — Cu(2)Fr(2))7",
and using the fact that
[xiyiIM,(z;) = 0,
we obtain
—F(z)\ _
[Xiyi]( 7 ) =0,

which is condition (2).
Our results show that the matrix M, (z) can be found using the Schur algorithm in
the following way. We define

M,(z) = ¥o(z) - ¥, -1(2),
where
V; = Ipsg+ (Bi(2) = DJpgbi (£ Jpgkl) "6
(compare with (1)) and
& = [xiyil¥o(zi) - Wi-1(z).
Then a simple calculation gives the desired condition
[xiyi IM(zi) = E¥:(z:) Wi a(2zi) -+ = 0.

We remark that the vectors £, . . ., £, - can be efficiently calculated in O(n?) operations.
From Theorem 1 we also obtain information on the number k of Smith-McMillan
poles of F(z) inside the unit disc:

k= VP(F) = N-—(80> .. ‘>8n—l)+ Vp(FL)9
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where N_(eg, ..., &,—1) is the number of negative elements in the sequence ¢, ...,
e, —1 (& was defined in (4)). Note that a solution with the minimum number of poles
(k= N_(ep, ..., en—1))1s obtained by choosing a function F;(z) that is analytic.

An alternative way to obtain the number N_(eg, ..., &, ;) is from the inertia of
the Pick matrix
* *
XiX; — Viy;
(16) P=P0=(——’ J y’*y’) .
V=2zizj  Josijan—

One can easily check that Py is the solution of the following matrix equation
Py — FPyF* = GoJGy,

where F = diag (2o, ..., z,-) and

Xo Jo
Gy = : .
Xn—1 Yu-u

Similarly, we define the matrix P;, 1 = i = n to be the solution of the equation

P, — FP,F* = G,JG}

G?
Gi:( E ),
Gr!

Gl = Loy]¥o(2) ¥i(z)- ¥ 1(z).

with

where

We note that

1

(Pi)im = PRy GIJ(GT)*,
—ZiZm

and consequently

1
Pidtm = (Pisidim = T — GiJ(GT)* =

= Gl (Gl 1)

1 — zz}

1
= o [GW(GT)" = GIE(z)T ¥ ] (zn)(GT)*]

I

1
e GiIlJ = J¥i(2) Y] (2,)I1J(GT)*

1—Z1m

L [(1— 12190~ zz)

ENEIED) TG |G

1

1 = zz5 (1= ziz)(1 = z:z})
1 — |Zi|2 1 i * 1
e z,*z,G' £ &J(GT) 1= z2%

Thus, we can write

*
P, — Py = gu; u,
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— *V=170 ge*
u*_ 1"|Zi|2 (1 Zozz') Gl‘lgl
P = T :
VIETET N - 2,2ty 6 e
Using the fact that P, = 0, repeated application of the last equation gives the decomposition
of the Pick matrix as

where

*
P = gououpg + - -- Cn_lu;‘:_lun_l.

Assuming that P is nonsingular, we obtain that N_(e, . . ., &, — ) is equal to the number
of negative eigenvalues of P.

Remark. The same technique of factorization of the Pick matrix was used in [23].
A similar factorization in the half-plane case was obtained in [21], [24].

4. Array formulation. For computational purposes it is more convenient to work
with an array of coefficients rather than with functions. Here we describe the array for-
mulation for the special case that all the extraction points are at the origin, i.e., z; = 0
for all i. The array G; = [U; V ;] is built of blocks of size p X (p + ), where each
block is a coeflicient of a (matrix) Taylor expansion

Uy, 2I,, 221, - ]1G; = ®o(2)" - Bi - 1(2)Gi(2) = Go(2)¥o(2) - - ¥, -1 (2).
Translating the modified Schur recursion in Theorem 1 to the array, we obtain

Z@Ip+q_1]

L, zI,, z*1,---1G;+: = [I,, zI,, z*1,*--1G;W;
1, zl,, z°1, 1Giv1 =y, 2, P 16 I{Ip+q-l®z

Consequently, one step of the algorithm is equivalent to a multiplication of the array
from the right by the matrix W; and then a downward shift of p places of the first or last
column depending if ¢; = 1 or ¢; = —1, respectively.

Translating the property 5,G;(0) = 0, which we quoted as (1g), to the array, we
can verify that the array G; has i left null vectors

{‘I]j(I)j_l(Z_l)‘ . "I>0(Z_l)[1p, ZIp, ZZIp' . ']}lz=0gi =0 forj = 0, ey i— 1.

Moreover, each additional step of the algorithm produces one more null vector. Thus,
in the array domain the algorithm finds recursively an array that has a given set of left
null vectors.

We now restrict our discussion to the case where each vector »; is chosen to be one
of the standard unit vectors { ¢;} f _1. In particular, we choose the vectors { »; } in a cyclic
order: mo = ey, ..., Mp—1 = €, Np = €1, . .., and so on. For the choice n; = ¢;, where
j=1i—1mod p, the corresponding ;, which is equal to the jth row of G;(0), is equal
to the ith row of the array G ;. Thus, for this case, the multiplication by W; performs a
special operation on the ith row of the array. Depending on whethere; = 1 or¢; = —1,
the multiplication by W; annihilates all the elements in positions from 2 to p + g or 1
to p + g — 1 on the ith row. Then, a downward shift of p places is done on the first or
last column, respectively. As a result, the first / rows of the array G, are equal to zero,
and the corresponding i null vectors in this case are the first i standard unit vectors.
Moreover, each cycle of p steps annihilates one complete block in the array and, therefore,
corresponds to one step of the algorithm in block form [14].

5. Concluding remarks. In this article we present a new version of the classical
Schur algorithm that is adapted to handle meromorphic matrix-valued functions. The
new version leads to a new parametrization of matrix-valued meromorphic functions
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that reflects the number of Smith~-McMillan poles inside the unit disc in a very explicit
way; it is also numerically efficient because it requires only scalar operations in contrast
to the matrix and vector operations in previous versions. We also show how to solve
tangential interpolation problems using this algorithm and we give a simple proof for
the connection between the inertia of a certain Pick matrix and the number of poles of
any interpolating function.
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REDUCIBILITY CONDITION OF A CLASS
OF RATIONAL FUNCTION MATRICES*

KAI SHENG LUt AND JIA NING WEI}

Abstract. The reducibility condition of a class of rational function matrices is derived. It is pointed out
that the coefficient matrix of any resistor-inductor-capacitor (RLC) network is such a rational function matrix,
which implies that the results obtained here can be applied to RLC networks and this paper has the effects on
connecting matrix algebra and electrical network theory.

Key words. rational function field, rational function matrix, reducibility, network
AMS subject classifications. 15A15, 15A04, 93A10, 94C05

1. Introduction. Since the concepts of controllability and observability were first
introduced by Kalman [1], much has been written on the subject [2]-[7] of linear
systems theory. The linear systems over the field of real numbers were heavily studied.
A linear system is said to be the one over the field of real numbers if each entry of each
coefficient matrix of the system is a real number. However, uncontrollability (unobserv-
ability) is a “singular” condition in the sense that if the system X = AX + BU, Y =
CX + DU is uncontrollable (unobservable), then almost any small perturbation of the
elements of 4 and B (A4 and C) will cause it to become controllable (observable) [8],
where the elements of 4, B, and C are considered to be the independent parameters.
Lin [9] first proposed the concept and condition of structural controllability to analyze
these issues. Shields and Pearson [10], Glover and Silverman [11], Davison [12], Hosoe
and Matsumoto [13], and Mayeda [14] extended them to multivariable linear systems.
In [9]-[14] a matrix is said to be a structured matrix (SM) if each entry in the matrix
is either fixed zero or free nonzero. Corfmat and Morse [15], Anderson and Hong [16],
and Willems [17] permit some dependent relationships among nonfixed entries that are
one-degree polynomials of independently variable parameters (simply, such a matrix is
called a one-degree polynomial matrix) for physical reasons. Murota [18]-[20] first
defined and studied the mixed matrices. A matrix A of the form 4 = Q + Tis called a
mixed matrix if the nonzero entries of T are algebraically independent over the field to
which the entries of Q belong. The irreducibility condition of mixed matrices was derived
in [19]. Yamada and Luenberger [21] investigated the properties of the matrices called
column-structured matrices (CSMs), which lie between SMs and the rational function
matrices (RFMs).

Let F; denote the field of all rational functions with real coefficients in g independently
variable parameters £ = (&, &, ..., &) € R?. RYis said to be a parameter space. Let
the matrix M = M(£). M is called an RFM or a matrix in the field F; if each entry in
M is a member in F;.

First, we establish some results on reducibility of RFMs of the form 4 =
(C+ V) 'WWand G=C + D with C = diag (&, ..., &), where &, ..., §, are n
independently variable parameters and the n X # matrices D, V, and U do not contain
£, ..., &, Obviously, 4 and G are not the matrices over the field of real numbers, SMs
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or CSMs. Also, A is not a one-degree polynomial-matrix or a mixed matrix. But when
D is a constant matrix, G can be considered to be a matrix defined in [15]-[17]. Un-
fortunately, the reducibility problem was not studied in [15]-[17]. G is a mixed matrix
and so the criterion of [19] is used to prove some important results of this paper.

Second, we present the following two properties.

Let M(£) be an n X n RFM. M(£) is said to be of property 2 if det (Ao — M(§)) #
0 over F;, where A is an arbitrary nonzero constant; M (§) is said to be of property 1
if its characteristic polynomial det (A — M(£)) in F¢[A] has no nonzero multiple
roots [22].

SMs and CSMs are of property 1, and it is not difficult to prove that they are of
property 2. The two properties have an important application to the problem of structural
controllability and observability [22]. The fact that the matrices 4 and G are also of
properties 1 and 2 is pointed out here.

2. Lemmas and definitions. Consider a linear time-invariant structured system
(2.1) X = AX + Be,

where the n X n matrix 4 = (C + V)™ 'U has n + m independent parameters § =
(&1, &2y ooy Ens Entts o on s Enem) € R®T™ R™ ™ js called the (n + m)-dimensional
parameter space. F; denotes the field of all rational functions of £-C = diag [&, &,

.., &]. Each element in V and U is a rational function of only &, 41, ..., £4m. SO
matrix 4 is an RFM. When £, 4, ..., £+, are fixed, V" and U become two constant
matrices.

Let R denote the real field and R[x;, x,, . . . , X,,] denote the ring of all real coefficient
polynomials of n indeterminates x;, Xz, ..., X,. R[Xy, ..., X,] can be simply written
asR,or R[ X}, X =(xy,X2,...,X,). Let F,denote the quotient field of R,. The following
lemma is a conclusion in algebraic theory [23].

LEMMA 1. If a polynomial f(\) in ring R,[\] can be decomposed in ring F,[\],
then f(\) can be also decomposed in ring R,[\].

When f()\) € R,[ )], the reducibility of /() in R,[ A] is equivalent to the reducibility
for f(\) in F,[A] by Lemma 1.

LEMMA 2. Iff(\) = apA\" + ;A" ' + -+ + a,_ |\ + a, is an n-degree polynomial
in R[N\ and ay # 0, a, # 0, then f(\) is reducible in R[] if and only if (iff’) g(\) =
ao+ a\+ -+ + a,_ N1+ a,\" is reducible in R,[\].

Proof. This proof is obvious.

LEMMA 3. Assume that f(x,, ..., X,) is a polynomial in R, and the highest de-
gree term is x,* X, (the degree of each of the other terms is less than n). Then
f(x\, ..., x,) is a reducible polynomial in R, iff f(x, — N\, ..., X, — \) is a reducible
polynomial in R,[\].

Proof. This proof is obvious.

DEFINITION 1. If an # X n matrix exists

(22) 0= e ,
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then Qis called a type 1 elementary matrix. An # X n matrix Pis said to be a permutation
matrix if P is a product of some type 1 elementary matrices. PAP™' is said to be a
permutation transformation of the matrix 4. Clearly, P! = P'.

DEFINITION 2. Let M be an n X n matrix over F;. M is then said to be reducible
under TMT ! or simply to be reducible if there exists some nonsingular matrix T over
F such that
(2.3) TMT™ =(M‘ 0 )

My M,

where M, is an n; X n, matrix, 1 < n; < n; otherwise, M is irreducible (under TMT ™).
M is said to be reducible under QMP if there exists some nonsingular matrix Q over R
and some permutation matrix P such that

(2.4) QMP=(M‘ 0 )

My M,

where M, is an n; X n; matrix, 1 = n; < n; otherwise, M is irreducible under QMP (see
p. 287, [19]). M is said to be reducible under PMP’ if there exists some permutation
matrix P such that

(2.5) PMP' = (M‘ 0 )

M2l M2
where M, is an n; X n; matrix, 1 = n; < n; otherwise, M is irreducible under PMP’'.

3. Reducibility condition.

THEOREM 1. Let G = C + D, where C = diag [£,, ..., &.], &1, .. ., &, are alge-
braically independent over R, and D is an n X n matrix over R. G is reducible under
PGP' if and only if it is reducible under QGP', where P is a permutation matrix and Q
is a nonsingular matrix over R.

Proof. The necessity of the proof is obvious.

For sufficiency, assume that G is irreducible under PGP'. Let

A A Ju J
(3.1) A=PGP’=( 1 12), J=( 11 12)’
2 Ax Jun Jn

where P is any permutation matrix, J is any nonsingular matrix over R, J;;, and 4,
are two n; X n; matrices, 1 = n; < n. 4, ¥ 0 (since G is irreducible under PGP') and

it is a matrix over R because of §,, . . ., £, on the diagonal of 4. Then,
> jll j12
(3.2) JéJA=(~ ~),
Jo In
where
(3.3) Ji2 = Judi + Jiada.

We now prove J;, # 0. Conversely, suppose J;, = 0. Since 4;, # 0 is a matrix over R,
Ji11A,; is also a matrix over R.

(l) If J11A|2 #* O, then J]2A22 = "J“A]z # 0 is a matrix over R. If Jiz #* 0, J|2A22
is a matrix over F; not over R and so Jy2 # 0. If J;; = 0, then J;, = J;; 4, # 0.

(ii) If Jy1 412 = 0, then Jy,45, = 0. Since Ay, has full rank, J;, = 0, which yields
that J;, and J,, are invertible. Thus, 41, = 0 by J;; 4,2 = 0, which is a contradiction.
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Hence, J;, # 0 from (i) and (ii). Let J = QP’, where Q is any nonsingular matrix
over R. Then J = J4 = QGP' is not a block-triangular matrix, which means that G is
irreducible under QGP'. O

THEOREM 2. Let G = C + D, where C = diag [&,, ..., &, &1, ..., &, are alge-
braically independent over R, and D is an n X n matrix over R. G is reducible (under
TGT™) iff G is reducible under PGP'.

Proof. 1t is only necessary to prove the necessity.

It can be known by Lemma 3 that the reducibility of det (A] — G') and the reducibility
of det G are equivalent. Thus, when G is reducible, det G is a reducible polynomial in
R[£]. Obviously, G is a nonsingular mixed matrix with respect to the field R. By Theo-
rem 6.2 in [19], G is reducible under QGP'. Then G is reducible under PGP’ by
Theorem 1. O

COROLLARY 1. Let K < F be fields, G = C + D, where C = diag [§,, ..., ] isa
matrix over F such that &,, . . . , &, are algebraically independent over the field K, and D
is an n X n matrix over K. Then the following propositions are equivalent.

(i) G isreducible under TGT ™!, where T is a nonsingular matrix over F.
(ii) G is reducible under QGP', where Q is a nonsingular matrix over K and P is
a permutation matrix.

(iii) G is reducible under PGP’, where P is a permutation matrix.

COROLLARY 2. Let G = C + D, where C = diag [£, ..., &1, &1, ..., &, are
algebraically independent over R, and D is a matrix over R. Then G is of properties 1
and 2.

Proof. Clearly, for any complex constant \q, det (Ao — G) is an n-degree polynomial
inf,..., &, Itisimpossible that the polynomial is identically zero, that is, any constant
cannot be an eigenvalue of G over F;. G is of property 2.

G is of property 1 by Theorem 26.1 of [18]. O

It is well known that the characteristic polynomial of an # X n matrix A4 can be
written as

(3.4) det(M—A)=N"+a\"" '+ - +a,_ A+ ay,

where a; = (—1)*Dy; Dy is a sum of all the principal minors of order k in the matrix 4,
1=k=nlfa#0(1=r=n),buta,,, = - - =a, =0, ris a generic order of 4. If
the generic order of A4 is r, then

(3.5) det (A — A4) = N"7"¢(N),

where p(A) = A"+ g\ '+ --- +a,_ A+ a,, a, # 0. $(\) is called a nonzero part of
det (A — A).

THEOREM 3. If A = (C + V)7'U, where C = diag [&,, &, . . ., &1, V and U are
two n X n constant matrices, U # 0, then the following propositions are equivalent .

1. The nonzero part ¢(\) of det (M — A) is a reducible polynomial in F;[A].

2(i). There exists some permutation matrix P such that

G, 0
(3.6) P(C+ V- UnP = @ ,
* ' Gk
where G; is an n; X n; irreducible matrix, G; = C; + V; — Uit, C; = diag [&;,, &,
ek i=0L2, 0 k(k>1),m+nt -t me=n;and &y, ..., iy E21, 4 - -
Eanys - -+ > Ek1s - - - » Ein, ar€ @ permutation of &, &, . . ., &,.
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2(ii). In (3.6) there exist at least two submatrices U; # 0 and U; # 0, i # j, | = i,
J = ksuch that det [N — (C; + V;)~'U;] and det [N — (C; + V;) ' U;] have, respectively,
nonzero parts that are irreducible polynomials in F;[A].

3. There exists some permutation matrix P such that

A” 0
(3.7) PAP' = ( ),

* A22
where A4, is a u X p matrix, | = u < n, and 4,, and 4,, have, respectively, nonzero
eigenvalues.

Proof. We use the cyclic method.
1 = 2(i). Assume that the nonzero part of det (A] — A) is reducible. Then

det (N —A) =det [\ - (C+ V) 'U] =det (C+ V) ' det [\(C+ V) — U]
= A'det (C+ V) 'det [(C+ V) — Ut],

where ¢ = 1/\. Suppose that the generic order of 4 is r, r = n. Then

(3.9) ¢(N\) = N'det(C+ V) 'det[(C+ V)— Ut].

By Lemma 2, ¢()) is reducible iff det (C + V')~! det [(C + V) — Ut] is a reducible
polynomial in F[¢]. Thus, ¢(¢) & det [(C + V) — Ut] is a reducible polynomial in
Ft]-0(2) = o1(2)@a(2) . . . o5(t), where s = 2, ¢;(¢) (1 = i = ) is prime polynomial.
Certainly, every ¢;(¢) is a nonzero-degree polynomial of £, . .., &,; otherwise contra-
dicting the fact that the coefficient of the highest degree power £,&,- - - £, in ¢(¢) is one.
Thus, det [C + V' — Ut] is a reducible polynomial in F(¢)[£], where F(¢) denotes the
field of all rational functions in ¢. Obviously, C + (V' — Ut) is a mixed matrix with respect
to F(t). Thus, (3.6) holds by Corollary 1.
1 = 2(ii). By the relation

(C, + V)'y, 0
(C+ )0,

(3.8)

(3.10) PAP' = )
. LG+ V)L

one can know that there exists iy (1 = ip = k) such that U;, # 0. Suppose that the nonzero
part of det [\ — (C;, + V;,)™'U, ] is equal to ¢(\). Then C;, + V;, — U, is reducible
by 2(i), which is a contradiction.

2 = 3. This proposition is obvious from (3.10).

3 = 1. This proposition is obvious. O

COROLLARY 3. IfA = (C+ V) 'U, where C = diag [£,, &, . . ., &1, Vand U are
two n X n matrices over R, and U is invertible, then det (\I — A) is reducible if and only
if there exists some permutation matrix P such that (3.7) holds.

Proof. It is only necessary to note that if U is invertible, the nonzero part of
det (M — A) is, itself, right, and so det (A — 4) has no zero eigenvalues. Thus, (3.7)
holds by Theorem 3, and A4,, and A, have nonzero eigenvalues, respectively. O

PROPOSITION 1. Let A = (C + V) 'U, where C = diag [£,, &, ..., £,]; Vand U
are two n X n matrices over R. Then A is of property 2.

Proof. Conversely, suppose that there exists a complex constant Ay # 0 such

that det (Ao/ — A4) = O for all the parameters £, &, ..., &,. By (3.8) there exists ¢, =
1/Xo # 0 such that for all the parameters £, &, ..., &,
(3.11) det [(C+ V) = Uto] = L det (C + V) det (Aol — A) = 0.

Ao



156 KAI SHENG LU AND JIA NING WEI

However, the left-hand side of (3.11) is an n-degree polynomial of &, &, .. ., &,, which
contradicts the fact that (3.11) is an identity. O

COROLLARY 4. If A = (C+ V) 'U, where C = diag [£,, &, . . ., £,], Vand U are
two n X n matrices over R, then A is of property 1.

Proof. If, on the contrary, 4 has nonzero multiple eigenvalues, then the
nonzero part of det (Al — A) is reducible. Then (3.10) holds and det (A — 4) =

k_idet[N — (C; + V;)"'U;]. But det [AI — (C; + V;)~'U;] has no nonzero multiple

roots for every i = 1, 2, .. ., k; otherwise, C; + V; — Uj;t is reducible still. On the other
hand, each det [A\] — (C; + V;)~'U;] has no nonzero constant roots by Proposition 1.
Moreover, since (C; + V;)'U; and (C; + V;) ' U; have no parameters in common, where
i,j=1,2,...,k,i#j,they have no nonzero roots in common, which contradicts the
assumption. Hence, this corollary is true. O

The assumption of Theorem 3 is that det [Al — A] has the nonzero part ¢(\).
Theorem 4 and Corollary 5 indicate the condition under which deg [¢(A)] = 1.

Let M = (my)nxn, i,j = 1,..., n. By the definition of determinant,

(3.12) detM = 2 (—l)"'(jlj2"'jn)mljlm2j2. . .mnjn’

where 2 denotes the sum of all permutations. Equation (3.12) is called the expansion
of the determinant det M and m, j,- - - m,;, is called a term in the expansion.
LEMMA 4. Let M = (my) = C + D, where C = diag [£1, ..., &), and D isann X n

m, o omy i m, where {iy, ... L} {l,...,n},nZ=rz3;j,...,]J is aper
mutation of iy, ..., 5and (iy, ..., 0) # (Jis o - o5 Jr)s My, T 0, My, 7 0, my, ., # 0,

my;, #0,b=1,....,r— ;¢ =§&---&/& &, &, then there is some nonzero term
that contains nondiagonal entries and whose degree is greater than deg .

Proof. Without loss generality, let i, = j,, ..., iy = j, 1 = s <r — 1
Gis+1y - oy b)) F Us+1s - - +» Jr), Where joyy, ..., j, is a permutation of 5.y, ...,

i,. If j4+1 # ig+,, then there must exist j, € {js+2, ..., jr} such that j, = i,
s + 2 = x = r. This implies that the expansion of det M has a nonzero term
M, - Mg o Mg M, EjoeiEjora w2 &G, whose degree is greater than
deg . O

THEOREM 4. Let ¢(\) be the nonzero part of det [N — (C + V) 'U] and G =
C + V — Ut be irreducible, where C = diag ¢, ..., &), V and U are two n X n ma-
trices over R, and t is a parameter independently of ¢, . .., £,. Then deg [¢(N)] = 1
iff U+#0.

Proof. Necessity is obvious. Sufficiency will be proven. Since the coeflicient of
the term £, & ---£, in ¢(t) = det G is equal to one, ¢(¢) = 0 has no zero roots. It
is thus known by <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>